A NOTE ON A THEOREM OF A. GRANVILLE AND K. ONO.

IAN KIMING

Abstract

It was recently proved by A. Granville and K. Ono, confer [2],[3], that if $t \in \mathbb{N}, t \geq 4$ then every natural number has a t-core partition. The essence of the proof consists in showing this assertion for t prime, $t \geq 11$. We give an alternative, short proof for these cases.

Suppose that $n \in \mathbb{N}$ and that $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right)$ is a partition of n, i.e. $\lambda_{1}, \lambda_{2}, \ldots$ is a sequence of non-negative integers of which only finitely many are $\neq 0$, and such that:

$$
\lambda_{1} \geq \lambda_{2} \geq \ldots \quad \text { and } \quad n=\sum_{i=1}^{\infty} \lambda_{i}
$$

Then the partition $\lambda^{\prime}=\left(\lambda_{1}^{\prime}, \lambda_{2}^{\prime}, \ldots\right)$ associated with λ is defined by

$$
\lambda_{i}^{\prime}=\#\left\{j \in \mathbb{N} \mid \lambda_{j} \geq i\right\}
$$

and λ^{\prime} is also a partition of n. If $(i, j) \in \mathbb{N}^{2}$ such that $\lambda_{i} \lambda_{j}^{\prime}>0$ we have the (i, j) 'th hook number of λ :

$$
h_{i, j}(\lambda):=\lambda_{i}+\lambda_{j}^{\prime}-i-j+1
$$

If $t \in \mathbb{N}$ and if none of the hook numbers of λ is divisible by t, one says that λ is a t-core partition of n.

The ' t-core partition conjecture' asserts that if $t \in \mathbb{N}, t \geq 4$, then every $n \in \mathbb{N}$ has a t-core partition. This conjecture is proved by A. Granville and K. Ono in the papers [2], [3]. The conjecture had attracted some interest since it has implications in the representation theory of symmetric and alternating groups: It implies that if p is a prime number ≥ 5 then for every $n \in \mathbb{N}$ both the symmetric group S_{n} and the alternating group \bar{A}_{n} has a p-block of defect zero. Together with previously known results this further implies that if p is prime ≥ 5 then every finite simple group has a p-block of defect zero. We refer to [2] for a survey of these results.

Now let $n \in \mathbb{N}$. Then n has a t-core partition if and only if the equations:

$$
\begin{equation*}
n=\sum_{i=0}^{t-1}\left(\frac{t}{2} \cdot x_{i}^{2}+i x_{i}\right) \quad \text { and } \quad \sum_{i=0}^{t-1} x_{i}=0 \tag{0}
\end{equation*}
$$

have a (simultaneous) integral solution; in fact, it was proved in [1] that the number of integral solutions to (0) equals the number of t-core partitions of n.

As explained in [3], the t-core partition conjecture is proved if it is shown that (0) has for all $n \in \mathbb{N}$ an integral solution in each of the cases: $t=4,5,6,7,9$ and (t prime, $t \geq 11$). The cases $t=4,6,9$ were handled in [3] by special arguments. The cases $t=5,7,11,13$ can be handled by using modular forms: K. Ono informed me that the cases $t=5,7$ and $t=11$ respectively were done in unpublished notes by A. O. L. Atkin and himself respectively. Finally, in [2] a special argument using modular forms for the case $t=13$, and a general argument for $t \geq 17$ were given.

We shall give an alternative, simple proof of the fact that (0) has an integral solution for all $n \in \mathbb{N}$ if t is prime, $t \geq 11$; in particular, our proof avoids computation with modular forms. As in [2], the proof has two parts: One for 'large' n and one for 'small' n. We pay for the simplicity of our argument for 'large' n by having to prove the following lemma, which requires a little amount of computation (which however is not more than the amount of computation which was needed for the case $t=13$ in [2]).

Lemma. Suppose that t is prime, $t \geq 11$ and $n \leq t\left(t^{2}-1\right) / 4+(t-1)$.
Then (0) has an integral solution $\left(x_{0}, \ldots, x_{t-1}\right)$.
Proof. Put $n_{0}=t\left(t^{2}-1\right) / 4+(t-1)$. Suppose that $s \in\{1, \ldots,(t-1) / 2\}$, put:

$$
m_{s}:=\frac{t+1}{2}-s, \quad c_{0}(n):=n
$$

define the integers $y_{i}(n), c_{i}(n)$ for $i=1, \ldots, s$ successively:

$$
y_{i}(n):=\left[\left(-1+\sqrt{1+4 t c_{i-1}(n)}\right) / 2 t\right], \quad c_{i}(n):=c_{i-1}(n)-\left(t y_{i}(n)^{2}+y_{i}(n)\right)
$$

so that $c_{i}(n) \geq 0$ for all i, and define the integers $x_{m_{s}}(n), \ldots, x_{t-m_{s}}(n)$:

$$
x_{m_{s}+2 i-2}(n):=-y_{i}(n), \quad x_{m_{s}+2 i-1}(n):=y_{i}(n) \quad \text { for } \quad i=1, \ldots, s
$$

Then we have:

$$
c_{s}(n)=n-\sum_{i=m_{s}}^{t-m_{s}}\left(\frac{t}{2} \cdot x_{i}(n)^{2}+i x_{i}(n)\right) \quad \text { and } \quad \sum_{i=m_{s}}^{t-m_{s}} x_{i}(n)=0 .
$$

We conclude that the proof is finished if for some $s \in\{1, \ldots,(t-1) / 2\}$ the equations:

$$
\begin{equation*}
r=\left(\sum_{i=0}^{m_{s}-1}+\sum_{i=t-m_{s}+1}^{t-1}\right)\left(\frac{t}{2} \cdot x_{i}^{2}+i x_{i}\right) \quad \text { and } \quad\left(\sum_{i=0}^{m_{s}-1}+\sum_{i=t-m_{s}+1}^{t-1}\right) x_{i}=0 \tag{1}
\end{equation*}
$$

have an integral solution for $r=c_{s}(n)$, for all $n \leq n_{0}$.
Now let us notice that the proof of lemma 1 in [2] actually shows that if $r \leq$ $m_{s}\left(m_{s}-1\right)$ then (1) has an integral solution (with $x_{i} \in\{0, \pm 1\}$ for all i).

So, the proof is finished if for some $s \in\{1, \ldots,(t-1) / 2\}$ we have:

$$
\begin{equation*}
c_{s}(n) \leq\left(\frac{t+1}{2}-s\right)\left(\frac{t-1}{2}-s\right) \quad \text { for all } \quad n \leq n_{0} \tag{2}
\end{equation*}
$$

Now, $y_{i}(n) \in \mathbb{Z}$ is largest possible such that $t y_{i}(n)^{2}+y_{i}(n) \leq c_{i-1}(n)$, and so

$$
c_{i}(n)=c_{i-1}(n)-\left(t y_{i}(n)^{2}+y_{i}(n)\right) \leq 2 t y_{i}(n)+t+1 \leq t+\sqrt{1+4 t c_{i-1}(n)}
$$

consequently, if $s \in\{1, \ldots,(t-1) / 2\}, j \in\{0, \ldots, s-1\}$ and $f_{j}(x)$ is a polynomial, then the condition

$$
(4 t)^{2^{j}-1} c_{s-j}(n) \leq f_{j}(t) \quad \text { for all } \quad n \leq n_{0}
$$

is implied by:

$$
(4 t)^{2^{j+1}-1} c_{s-j-1}(n) \leq f_{j+1}(t) \quad \text { for all } \quad n \leq n_{0}
$$

where

$$
\begin{equation*}
f_{j+1}(x):=\left(f_{j}(x)-x \cdot(4 x)^{2^{j}-1}\right)^{2}-(4 x)^{2^{j+1}-2} \tag{3}
\end{equation*}
$$

provided that

$$
\begin{equation*}
g_{j}(t):=f_{j}(t)-t \cdot(4 t)^{2^{j}-1} \geq 0 \tag{4}
\end{equation*}
$$

Hence, if we define $f_{0}(x):=((x+1) / 2-4)((x-1) / 2-4), g_{0}(x):=f_{0}(x)-x$, and $f_{i}(x), g_{i}(x)$ for $i=1,2,3,4$ in accordance with (3) and (4), we have that (2) holds for the case $s=4$, if
(5) $g_{0}(t), g_{1}(t), g_{2}(t), g_{3}(t) \geq 0 \quad$ and $\quad\left((4 t)^{15} c_{0}(n) \leq f_{4}(t) \quad\right.$ for all $\left.n \leq n_{0}\right)$.

But since we have $c_{0}(n)=n \leq t\left(t^{2}-1\right) / 4+(t-1)$, we see that (5) holds if

$$
\begin{equation*}
g_{0}(t), \ldots, g_{3}(t), f(t) \geq 0 \tag{6}
\end{equation*}
$$

where

$$
f(x):=f_{4}(x)-(4 x)^{15}\left(x\left(x^{2}-1\right) / 4+x-1\right)
$$

Now, $g_{0}(x), \ldots, g_{3}(x), f(x)$ are certain polynomials with rational coefficients which can easily be computed by using (for example) MAPLE. For example, one finds:

$$
f(x)=2^{-32}\left(x^{32}-320 x^{31}+48496 x^{30}-4639040 x^{29}+\ldots\right)
$$

Again, using MAPLE we can compute approximations to the real roots of these polynomials and thus verify that (6) holds for $t \geq 43$, i.e. (2) holds for $s=4$ if $t \geq 43$.

On the other hand, when $t \in\{37,41\}$, (2) holds in the case $s=4$ since a direct computation shows that for all $n \leq n_{0}$ we have:

$$
\left(c_{4}(n) \leq 206 \quad \text { if } \quad t=41\right), \quad\left(c_{4}(n) \leq 186 \quad \text { if } \quad t=37\right)
$$

hence we may assume $t \leq 31$.
In the remaining cases $t=11,13,17,19,23,29,31$ we finish the proof by stating the following facts which can be checked in a few minutes on a machine.

If $t \in\{11,13\}$ and $n \leq n_{0},(0)$ has a solution with

$$
\begin{equation*}
x_{1}, x_{2}, x_{3}, x_{4}, x_{6} \in\{0, \pm 1\} \quad \text { and } \quad x_{t-4}, x_{t-3}, x_{t-2}, x_{t-1} \in\{0, \pm 1, \pm 2\} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
x_{5}=0 \quad \text { and } \quad x_{j}=0 \quad \text { for } \quad 7 \leq j \leq t-5 \tag{8}
\end{equation*}
$$

For $t=17,19,23,29,31$ we have $c_{1}(n) \leq c_{1}:=290,362,530,842,962$ respectively, and (1) has for $s=1$ and all $r \leq c_{1}$ a solution with (7) and (8).

We can now give our alternative proof of the following theorem due to A . Granville and K. Ono, cf. [2],[3]. In their proof of existence of integral solutions to (0) when $t \geq 17$, they exploited the theorem of Lagrange on the representation of natural numbers as sums of 4 squares. In our proof of existence for $t \geq 11(t$ prime) we use Gauss' three square theorem.

Theorem. Suppose that t is prime, $t \geq 11$.
Then for all $n \in \mathbb{N}$, (0) has an integral solution.
Proof. Write $n=t m^{\prime}+r^{\prime}$ with $0 \leq r^{\prime} \leq t-1$. Because of the lemma we may and will assume $n \geq t\left(t^{2}-1\right) / 4+(t-1)$, hence $m^{\prime} \geq\left(t^{2}-1\right) / 4$. Define the integers m and r as follows:

$$
(m, r):= \begin{cases}\left(m^{\prime}, r^{\prime}\right) & \text { if } m^{\prime} \equiv 1(2), r^{\prime} \not \equiv 0(4) \\ \left(m^{\prime}+2, r^{\prime}-2 t\right) & \text { if } m^{\prime} \equiv 1(2), r^{\prime} \equiv 0(4) \\ \left(m^{\prime} \mp 1, r^{\prime} \pm t\right) & \text { if } m^{\prime} \equiv 0(2), r^{\prime} \equiv \pm t(4) \\ \left(m^{\prime}+1, r^{\prime}-t\right) & \text { if } m^{\prime} \equiv r^{\prime} \equiv 0(2)\end{cases}
$$

Then $n=t m+r$ and either

$$
\begin{equation*}
m \equiv r \equiv 1(2) \quad \text { and } \quad 4 m \geq r^{2} \tag{I}
\end{equation*}
$$

or

$$
\begin{equation*}
m \equiv 1(2), r \equiv 2(4) \quad \text { and } \quad 16 m \geq r^{2} \tag{II}
\end{equation*}
$$

If case (I) prevails, we have that $4 m-r^{2}$ is odd and $\not \equiv-1$ (8). Hence, by Gauss' three square theorem we have

$$
4 m-r^{2}=a^{2}+b^{2}+c^{2}
$$

for certain integers a, b, c which must all be odd (since $4 m-r^{2} \equiv 3$ (4)). We may then assume that $r+a+b+c$ is divisible by 4 , and we define the integers:
$\alpha=(r+a+b+c) / 4, \beta=(r-a-b+c) / 4, \gamma=(r-a+b-c) / 4, \delta=(r+a-b-c) / 4$, $x_{0}=-\alpha, x_{1}=\alpha, x_{2}=-\beta, x_{3}=\beta, x_{4}=-\gamma, x_{5}=\gamma, x_{6}=-\delta, x_{7}=\delta$, and $x_{i}=0$ for $i \geq 8$. Then $x_{0}+\ldots+x_{t-1}=0$ and:

$$
\sum_{i=0}^{t-1}\left(\frac{t}{2} \cdot x_{i}^{2}+i x_{i}\right)=t \cdot \frac{1}{4}\left(r^{2}+a^{2}+b^{2}+c^{2}\right)+r=t m+r=n .
$$

In case (II), use the same arguments and definitions of $\alpha, \beta, \gamma, \delta$ with r replaced by $r / 2$. Then put

$$
x_{0}=-\alpha, x_{1}=-\beta, x_{2}=\alpha, x_{3}=\beta, x_{4}=-\gamma, x_{5}=-\delta, x_{6}=\gamma, x_{7}=\delta
$$

and $x_{i}=0$ for $i \geq 8$.
Remark. The above lemma could of course be checked for all odd t in the range $9 \leq t \leq 41$. This would prove the lemma and the above theorem for odd t with $t \geq 9$.

References

[1] F. Garvan, D. Kim, D. Stanton: 'Cranks and t-cores.' Invent. Math. 101 (1990), 1-17.
[2] A. Granville, K. Ono: 'Defect zero p-blocks for finite simple groups.' Trans. Amer. Math. Soc. 348 (1996), 331-347.
[3] K. Ono: 'On the positivity of the number of t-core partitions.' Acta Arith. 66 (1994), 221-228.
kiming@math.ku.dk
Dept. of math., Univ. of Copenhagen, Universitetsparken 5, 2100 Copenhagen \varnothing, Denmark.

