
ON THE LIFTINGS OF 2-DIMENSIONAL PROJECTIVE GALOIS
REPRESENTATIONS OVER Q.

IAN KIMING

Abstract. We show how the problem of determining the possible Artin con-

ductors and determinant characters of liftings of a given 2-dimensional (ir-
reducible) projective Galois representation over Q can be reduced to certain

analogous local problems, and we solve those problems. By this, the problem

of determining all irreducible representations of Gal(Q/Q) in GL2(C) with pre-
scribed Artin conductor and determinant character is effectively reduced to a

question in geometry of numbers.

1. Introduction and motivation

Given a 2-dimensional, continuous representation:

ρ : Gal(Q/Q)→ GL2(C),

where C has the discrete topology so that ‘continuous’ implies ‘having finite image’,
we may consider its projectivisation:

ρ̄ : Gal(Q/Q)→ PGL2(C),

obtained by composing ρ with the canonical projection GL2(C)→ PGL2(C). Some-
times, and in particular in connection with investigations of the conjectural corre-
spondence between 2-dimensional, continuous, irreducible, ‘odd’ Galois representa-
tions over Q and modular forms of weight 1 on congruence subgroups of SL2(Z), it
is of interest to reverse this situation, i.e. to consider ρ̄ as being given and ask for
‘liftings’ of ρ̄ that is, representations ρ as above whose projectivisation is ρ̄ (cf. for
example: [1], [2], [5]). According to a theorem of Tate, such liftings always exist.
Of particular interest is the knowledge of the Artin conductors and determinant
characters of the liftings, where by the determinant character det(ρ), of a lifting
ρ we understand the character of Gal(Q/Q) obtained by composing ρ with the
determinant:

det : GL2(C)→ C×.
The class field theoretic conductor of det(ρ) divides the Artin conductor a(ρ) of

ρ, so that det(ρ) may be viewed as a Dirichlet character modulo a(ρ). Hence, one
wants to address the following question: Given ρ̄ as above, what are the possible
pairs (N, ε), where N ∈ N and ε is a Dirichlet character modulo N , such that ρ̄ has
a lifting with Artin conductor N and determinant (character) ε? For each occurring
pair (N, ε) one also wants to know its ‘multiplicity’, i.e. the number of inequivalent
liftings of ρ̄ with Artin conductor N and determinant ε.

Given an answer to this question, we can reduce the problem of enumerating all
(irreducible) Galois representations:

ρ : Gal(Q/Q)→ GL2(C)
1
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with given Artin conductor, N , and determinant, to a question in geometry of
numbers: For if ρ has Artin conductor N , then the minimal Artin conductor of a
lifting of the associated projective representation ρ̄ will certainly be ≤ N , and this
gives, as will become clear from the following, an explicit bound for the discriminant
D(K/Q), where K is the fixed field of the kernel of ρ̄. The finitely many possibilities
for K can thus, at least in principle, be found by geometry of numbers.

Let us now return to the situation where the projective representation ρ̄ is given.
Now, if ρ is any lifting of ρ̄, then the other liftings of ρ̄ are ρ ⊗ χ, where χ runs
through the characters of Gal(Q/Q). The determinant of ρ⊗ χ is:

det(ρ⊗ χ) = det(ρ) · χ2,

hence it is clear that we can answer the above question, if we can point to one lifting
ρ, with such precision that we may determine det(ρ) and the Artin conductor of
every ‘twist’ ρ ⊗ χ. Let us now localize the question by choosing for each prime
number p a place of Q over p; let Dp resp. Ip be the associated decomposition
resp. inertia group. The restriction ρ̄p of ρ̄ to Dp can be viewed as a projective
representation of Gal(Qp/Qp). The following theorem of Tate is now helpful.

Theorem. (Tate, cf. [5]) Let ρ̄ be a projective representation of Gal(Q/Q). As-
sume that for each prime number p there is a given lifting rp of ρ̄p. Assume further
that rp is unramified (i.e. rp(Ip) = 1) for all but finitely many p. Then there is a
lifting ρ of ρ̄ such that:

ρ | Ip = rp | Ip for all p,

and ρ is unique.

Given ρ̄, the restriction ρ̄p is unramified for almost all p, and one knows that
there is always a system (rp) of liftings of ρ̄p satisfying the requirements of the
theorem, cf. [5]. In the situation of the theorem the determinant of ρ is given, once
one knows its restriction to Ip for all p, and this restriction is det(rp) | Ip. Viewing
via local class field theory the character det(rp) as a character of Q×p , this restriction
is simply the restriction of det(rp) to the group of units of Zp. Furthermore, if χ
is a character of Gal(Q/Q), then we may by global class field theory view χ as an
idele class character and consider its restriction χp to Q×p for every p. The Artin
conductor of ρ⊗χ is the product of the Artin conductors of rp⊗χp for all p. (Note
that these latter conductors depend only on the restriction of rp to Ip.)

Concerning the question of equivalence of twists ρ⊗χ in case ρ is 2-dimensional,
one must know for what characters χ the representations ρ and ρ⊗χ are equivalent.
If χ is non-trivial this can only happen, if Im(ρ̄) is a dihedral group, and this case
can be completely analyzed, as will become clear from the following, by use of the
well-known theorem of Mackey concerning induced representations. Thus, we shall
not pursue this question further.

It is now clear that we can answer the above question once we have solved the
following problem.

Problem: Let p be a prime number and let ρ̄ : Gal(Qp/Qp) → PGL2(C) be a
(continuous) representation. Determine for some lifting ρ of ρ̄ the following:



LIFTINGS OF 2-DIMENSIONAL PROJECTIVE GALOIS REPRESENTATIONS 3

(1) the restriction of det(ρ) to the group of units of Zp, viewing det(ρ) as a
character of Q×p ,

(2) the Artin conductor of ρ⊗ χ, where χ runs through all characters of Q×p .

(ρ has to be chosen to be unramified, if ρ̄ is unramified.)

The purpose of this note is to solve this problem.

Given ρ̄ : Gal(Qp/Qp) → PGL2(C), let us consider the finite extension M/Qp

which is cut out by ρ̄, i.e. M is the fixed field of the kernel of ρ̄. For the Galois
group G = Gal(M/Qp) we have a priori the following possibilities:

(a) G is a cyclic group,

(b) G is a dihedral group,

(c) G is isomorphic to A4 or S4,

since G is a finite, solvable subgroup of PGL2(C).

Here, we may dispose of case (a) immediately: If G is a cyclic group, then ρ̄ is
given by a character χ0 of Gal(Qp/Qp), and the liftings of ρ̄ are the representations:

ρ(χ) : g 7→
(
χ0(g)χ(g) 0

0 χ(g)

)
,

where χ runs through all characters of Gal(Qp/Qp). The determinant of ρ(χ) is
χ0χ

2 and its Artin conductor is the product of the conductors of χ0χ and χ.

The cases (b) and (c) will be considered in sections 2 and 3 respectively. In
section 2 we shall consider a somewhat more general problem, which is analogous
to the above problem in case (b). A specialization, which is given in the second part
of Theorem 1 of section 2, gives however a complete solution to the above problem
for the case (b); see the discussion at the beginning of section 2.

For case (c) there is already essential information available: Building upon [6],
the minimal conductor of a lifting of ρ̄ was determined by Buhler and Zink, cf.
[2] and [7]. In fact, the conductors of twists ρ ⊗ χ, where ρ is a lifting of ρ̄ with
minimal conductor, were determined in [7]. Hence, in this case our problem is to
complement these works by discussing the associated determinant characters.

Let us now introduce the following notation. If p is a prime number and M/Qp

a finite extension, let OM denote the ring of integers in M , ℘M its prime ideal, πM
a prime element of ℘M , U0

M = UM the group of units of OM and for i ∈ N let U iM
denote the group of 1-units of level ≥ i. Let EM denote the group of roots of unity
in M× of order prime to p, and let for l a prime number µl∞(M) be the group of
roots of unity in M× of l-power order. The extension of M obtained by adjoining
the p′th roots of units will be denoted by M(µp). Finally, denote by ℘

cM (χ)
M the

(class field theoretic) conductor of χ, if χ is a character of M×; for convenience, we
shall refer to cM (χ) as the conductor of χ.



4 IAN KIMING

2. The dihedral case

Consider a projective representation:

ρ̄ : Gal(Qp/Qp)→ PGL2(C)

of dihedral type, i.e. the extension M/Qp cut out by ρ̄ has Galois group isomorphic
to:

Dn = 〈σ, τ | σ2 = τn = 1 , στσ−1 = τ−1〉
for some n ≥ 2. We want to recall a few elementary facts, for which the reader is
referred to [5], about this situation. The field M contains a quadratic extension
L/Qp corresponding to the cyclic subgroup 〈τ〉 of Dn. (There is exactly 1 such
quadratic extension in M (i.e. such that M/L is cyclic) if n ≥ 3, and if n = 2 we
let L denote any of the 3 quadratic extensions in M .) The Galois group of M/L
is then cyclic of order n, so that the restriction of ρ̄ to Gal(Qp/L) is given by a
character χ of Gal(Qp/L). Conversely, if L/Qp is a given quadratic extension and χ
is a non-trivial character of Gal(Qp/L), then the field M cut out by χ is Galois over
Qp with dihedral Galois group if and only if χ ◦ VerL/Qp

vanishes, where VerL/Qp

denotes the transfer. If this condition is fulfilled, χ then gives rise to a unique
projective representation ρ̄ : Gal(Qp/Qp)→ PGL2(C) of dihedral type. Any lifting
ρ of ρ̄ has (up to equivalence) the form:

ρ = IndL/Qp
(ψ),

where IndL/Qp
means induction from Gal(Qp/L) to Gal(Qp/Qp), and where ψ is a

character of GalQp/L) with:

ψ(σgσ−1) = χ(g)ψ(g), g ∈ Gal(Qp/L),

where σ denotes any element of Gal(Qp/Qp)−Gal(Qp/L). The Artin conductor of
ρ is:

A(ρ) = D(L/Qp)NL/Qp

(
℘
cL(ψ)
L

)
,

where D(L/Qp) is the discriminant of L/Qp and NL/Qp
: L → Qp the norm, and

its determinant is:
det(ρ) = ε · (ψ ◦VerL/Qp

),
where ε is the quadratic character corresponding to L/Qp. Furthermore, if ϕ is a
character of Gal(Qp/Qp), then:

ρ⊗ ϕ = IndL/Qp
(ψ)⊗ ϕ = IndL/Qp

(ψ · res (ϕ)),

where res is the restriction to Gal(Qp/L).

Viewing χ and ψ as characters of L× and ϕ as a character of Q×p , we now see
(by class field theory) that the problem of section 1 amounts to the following:

Given a quadratic extension L/Qp and a character χ of L× which vanishes on
Q×p , determine for a character ψ of L× such that:

(∗) ψ
(σx
x

)
= χ(x) for all x ∈ L×,

where σ denotes the generator of Gal(L/Qp), the following:

(1) the restriction of ψ to the group of units of Zp,
and
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(2) the conductor of ψ · (ϕ◦NL/Qp
), where ϕ runs through the characters of Q×p .

We have found it profitable to consider a slightly more general problem: Suppose
that K is a finite extension of Qp, l is a prime number and L/K is a Galois extension
with Galois group Z/Zl generated by σ. Suppose further that χ is a character of
L× vanishing on K× . Determine for a character ψ satisfying (∗) the answers to
(1) and (2) above.

A solution to this problem has, along lines completely analogous to the above
discussion, applications to the study of liftings of projective, l-dimensional repre-
sentations:

Gal(K/K)→ PGLl(C)
for which the image in PGLl(C) is a finite group of the type: < σ > n < τ >,
where τ has order n, σ has order l and:

στσ−1 = τa,

where a is an integer in (Z/Zn)× such that:

n divides 1 + a+ . . .+ al−1.

The dihedral case above corresponds to l = 2, a = −1.
This more general problem will be considered in the first part of Theorem 1 below

under certain assumptions on the ground field K. In case l = 2, these assumptions
are true if K = Qp for some p, so that the specialization l = 2 of the first part of
Theorem 1 gives, according to the above discussion, a complete and explicit solution
to case (b) of the problem considered in the introduction. This solution is given in
the second part of Theorem 1.

First, we need the following simple proposition.

Proposition 1. Suppose that l is a prime number, that K/Qp is a finite extension
and that K× contains the l′th roots of unity. Let L/K be a Galois extension with
Galois group G ∼= Z/Zl, and let σ be a generator of G. Denote by σ − 1 the
endomorphism x 7→ x−1σx of L×.

(1) Let i ∈ N. An element x ∈ K× belongs to (Lx)σ−1U iL if and and only if
xp ∈ NL/K(U iL).

(2) Suppose that L/K is unramified. Then: (U iL)σ−1 ≤ U iL for all i ∈ N, and the
homomorphism:

U iL/U
i
KU

i+1
L → U iL/U

i+1
L

induced by σ − 1 is injective.

(3) Suppose that L/K is ramified with ramification groups:

G = G0 = . . . = Gt 6= Gt+1 = 0

(where t is a non-negative integer).
If i ∈ N with l | i, we have: (U iL)σ−1 ≤ U i+t+1

L .

If i ∈ N with l - i, then: (U iL)σ−1 ≤ U i+tL , and the homomorphism:

U iL/U
i+1
L → U i+tL /U i+t+1

L

induced by σ − 1 is an isomorphism.



6 IAN KIMING

Proof. (1) This is a trivial consequence of Hilbert’s theorem 90.

(2) We may choose π = πK as a prime element of L. It is trivial that σ − 1
maps U iL into itself for all i ∈ N. Let i ∈ N and let u ∈ U iL − U

i+1
L be such that

u−1σu ∈ U i+1
L . Modulo U i+1

L the element u is represented by 1 + aπi for some
a ∈ EL. Now, σ(1+aπi)

1+aπi ≡ (1 + (σa)πi)(1 − aπi) ≡ 1 + (σa − a)πi mod ℘2i
L , hence

σa−a is not a unit. Then σa
a −1 is also not a unit, so σa

a is a 1-unit. Since σa
a ∈ EL,

we deduce σa
a = 1, i.e. a ∈ K×, and thus u ∈ U iKU

i+1
L .

(3) Clearly, σ− 1 maps U iL into itself for all i. Suppose first that t = 0, i.e. L/K
is tamely ramified, i.e. l 6= p. It follows that we can choose a prime element π of L
such that:

σπ = ζπ,

ζ is a primitive l′th root of unity. Let i ∈ N and u ∈ U iL − U
i+1
L . Modulo U i+1

L we
can represent n by 1 + aπi for some a ∈ EL. Now, as σ acts trivially on a we get:

σ(1 + aπi)
1 + aπi

≡ (1 + aζiπi)(1− aπi) ≡ 1 + a(ζi − 1)πi mod ℘2i
L .

Since ζi− 1 is a unit if and only if l - i, our claims follow immediately in this case.
Suppose then that L/K is wildly ramified, i.e. t > 0, i.e. l = p. Let π be a

prime element for L. We have:

σπ = π + uπt+1 ,

where u is a unit, since σ ∈ Gt −Gt+1. If now i ∈ N and b ∈ OL, then:

σ(1 + bπi) = 1 + (σb)(π + uπt+1)
i

≡ 1 + (σb)πi + iu(σb)πi+t mod ℘i+t+1
L ,

since t ≥ 1. As σb ≡ b mod ℘t+1
L , we obtain:

σ(1 + bπi)
1 + bπi

≡ (1 + (σb)πi + iu(σb)πi+t)
∞∑
k=0

(−1)kbkπik

≡ 1 + iu(σb)πi+t +
∞∑
k=1

(−1)k−1bk−1(σb− b)πik

≡ 1 + iu(σb)πi+t mod ℘i+t+1
L .

It follows that (U iL)σ−1 ≤ U i+tL for all i, that (U iL)σ−1 ≤ U i+t+1
L , if p | i, and that

the homomorphism:
U iL/U

i+1
L → U i+tL /U i+t+1

L

induced by σ − 1 is injective if p - i. If p - i , every element of U i+tL can modulo
U i+t+1
L be represented by an element of the form 1+iu(σb)πi+t, this homomorphism

is also surjective. �

We want to consider the situation of proposition 1 in the case that K = Qp(µp)
and l = p, i.e. L/K is a Galois extension with Galois group G ∼= Z/Zp. Let σ be a
generator of G. Recall that the group of 1-units of K has a basis, as a Zp-module,
of the form:

ζ, η2, . . . , ηp ,
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whereζ is a primitive p′th root of unity and ηi has level exactly i (i.e. ηi ∈ U iK −
U i+1
K ) for i = 2, . . . , p (cf. [3] pp. 246–247). Here, and in what follows, we suppose

that a choice of the elements η2, . . . , ηp has been fixed. Put:

U ′K = 〈η2, . . . , ηp〉 .

Let χ be a character of L× which vanishes on K× . Let c = 1 if χ is unramified
and c = cL(χ) otherwise.

Suppose first that L/K is ramified with t = p − 1, where t is defined as in
proposition 1, and that χ is wildly ramified, i.e. c > 1. Let the integer a be such
that c ≡ a(p) and 1 ≤ a ≤ p. Using [4], chapter 5, one finds:

U
1
p (c−a)+p
K = NL/K(U c+p−1

L ),

so that if u ∈ U ′K with up ∈ U
1
p (c−a)+p
K , then there is x ∈ L× such that:

u ≡ σx

x
mod U c+p−1

L .

If x, y ∈ L× and:
σx

x
≡ σy

y
mod U c+p−1

L ,

put z = x/y. Then z−1σz ∈ U c+p−1
L , and since c ≥ 1, we see that z ∈ K×U1

L.
If z ∈ K×, then χ(x) = χ(y). Otherwise, choose i ∈ N largest possible such that
z ∈ K×U iL. Then p - i, since U jL ≤ K×U j+1

L , if p | j. So, proposition 1 gives
that z−1σz 6∈ U i+pL ; as z−1σz ∈ U c+p−1

L , we have i ≥ c = cL(χ), hence χ(z) = 1.
Since η2, . . . , ηp form a basis of U ′K , we infer the existence of a character ψ2 on
U ′K satisfying the following requirements: For i = 2, . . . , p let si ≥ 1 be smallest
possible such that:

ηp
si

i ∈ U
1
p (c−a)+p
K ,

and let xi ∈ L× be such that:

ηp
si−1

i ≡ σxi
xi

mod U c+p−1
L .

The requirements are then:

ψ2(ηp
si−1

i ) = χ(xi) , i = 2, . . . , p.

We let ψ2 denote any such character. One easily sees, that ψ2 has the following
property: If u ∈ U ′K and x ∈ L× are such that:

u ≡ σx

x
mod U c+p−1

L ,

then:
ψ2(u) = χ(x).

Suppose then that L/K is unramified. By a similar, but simpler argument, one
now infers the existence of a character ψ2 on U ′K satisfying: Let for i = 2, . . . p the
integer si ≥ 1 be smallest possible such that:

ηp
si

i ∈ U cL.
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Then there are xi ∈ L× such that:

ηp
si−1

i ≡ σxi
xi

mod U cL , i = 2, . . . , p,

and the requirements are:

ψ2(ηp
si−1

i ) = χ(xi) , i = 2, . . . , p.

Denote by ψ2 any such character. One finds that ψ2 has the property: If u ∈ U ′K
and x ∈ L× are such that:

u ≡ σx

x
mod U cL,

then:
ψ2(u) = χ(x).

Theorem 1. (1). Suppose that l and p are prime numbers, and that K is a finite
extension of Qp containing the l′th roots of unity. Let L/K be a Galois extension
with Galois group G ∼= Z/Zl and let σ be a generator of G. If L/K is unramified,
put t = 0. If L/K is ramified, we denote by t ≥ 0 the break in the ramification
filtration of G:

G = G0 = . . . = Gt 6= Gt+1 = 0.
If l = p, we make the assumption that K = Qp(µp), and furthermore

that t ≥ p− 1, if L/K is ramified.

Let χ be a non-trivial character on L× which vanishes on K×. Let α ∈ K× be
such that L = K(α1/l), and let the primitive l′th root of unity be such that:

σα1/l = ζα1/l.

Let ψ1 be a character of µl∞(K) satisfying the following requirements:

ψ1 = 1 , if L 6= K(
√
−1) and χ(α1/l) = 1 ,

ψ1(ζ) = χ(α1/l) , if L 6= K(
√
−1) and χ(α1/l) 6= 1 ,

ψ1 = 1 , if L = K(
√
−1) and χ(1 +

√
−1) = 1 ,

ψ1(−1) = χ(1 +
√
−1)2 , if L = K(

√
−1) and χ(1 +

√
−1) 6= 1 .

(Note that if also L = K(β1/l), then χ(α1/l) 6= 1⇐⇒ χ(β1/l) 6= 1 .)

Define:

c =
{

1, if χ is unramified
cL(χ), if χ is ramified

If l 6= p , let U ′K be U1
K , and put U ′K = 〈η2, . . . , ηp〉 if l = p. Let ψ2 be the trivial

character on U ′K , if either l 6= p or if l = p and L/K is ramified with either t ≥ p
or (t = p − 1 and c = 1 ). Otherwise, i.e. if l = p and L/K is either unramified
of ramified with (t = p − 1 and c > 1), let ψ2 be a character on U ′K of the type
described immediately after proposition 1.

Finally, denote by U0 the group of roots of unity in K× of order prime to lp.

Then there exists a character ψ on L× such that:

(i) ψ
(σx
x

)
= χ(x) for all x ∈ L×
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(ii) ψ(〈πL〉U0) = 1

(iii) ψ | µl∞(K) = ψ1

(iv) ψ | U ′K = ψ2

and

(v) cL(ψ) = c+ t.

Furthermore, if ϕ is a character of K× and NL/K denotes the norm map L× →
K× , then:

cL(ψ · (ϕ ◦NL/K)) = max
{
c+ t , cL(ϕ ◦NL/K)

}
,

and for the number cL(ϕ ◦NL/K):

cL(ϕ ◦NL/K) = cK(ϕ) , if L/K is unramified

and if L/K is ramified:

cL(ϕ ◦NL/K) = lcK(ϕ) + (1− l)t+ 1 , if cK(ϕ) ≥ t+ 2 ,
cL(ϕ ◦NL/K) ≤ t+ 1 , if cK(ϕ) ≤ t+ 1.

(2). Retaining the notation of (1), consider the situation of (1) for l = 2, so that
K is a finite extension of Qp, L/K a quadratic extension, and χ a character on L×

which vanishes on K×. The assumptions of (1) then simply mean that K = Q2 if
p = 2.

Furthermore, the character ψ2 may be explicated as follows.

If p 6= 2, or if p = 2 and L/K ramified but χ unramified, ψ2 is trivial.

Otherwise we have p = 2, so that K = Q2, and L = Q2(
√
α) where α is −3, −1

or 3 and χ is (wildly) ramified if α is −1 or 3. Then U ′K is the group generated by
5 and for ψ2 we may choose any character on < 5 > satisfying the following.

If α = −3: Then L = Q2(ε), where ε is a primitive 3’rd root of unity. Put ψ2 = 1
if c ≤ 2. If c ≥ 3, we require:

ψ2(52c−3
) = χ(1 + ε · 2c−1).

If α = −1 or α = 3: Here L/Q2 is wildly ramified, and since χ is ramified we
have c = cL(χ) > 1. Then c is an even number. Let π be a prime element of L (for
example 1 +

√
α). Put ψ2 = 1 if c = 2. If c ≥ 4, we require:

ψ2(52
1
2 c−2

) = χ(1 + πc−1).

Proof. (1). We shall first show that:

(∗) (L×)σ−1 ∩ µl∞(L) =
{
〈
√
−1〉, if L = K(

√
−1)

〈ζ〉, otherwise

For, if ξ ∈ (L×)σ−1 ∩ µl∞(L), then NL/K(ξ) = 1. So, if ξ ∈ K×, we get ξl = 1,
hence ξ ∈ 〈ζ〉. If ξ 6∈ K×, we have:

σξ = ζaξ for some a 6≡ 0 (l).
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Then:
1 = NL/K(ξ) = ξlζa·

l(l−1)
2 ,

and so l = 2, since otherwise ξl = 1. But then: ξ2 = ζ−1 = −1, i.e. ξ ∈ 〈
√
−1〉 and

L = K(
√
−1). On the other hand we clearly have ζ ∈ (L×)σ−1, and if L = K(

√
−1)

then:
√
−1 =

σ(1−
√
−1)

1−
√
−1

.

This establishes (∗).

Define the character ψ0 on (L×)σ−1 by:

ψ0

(σx
x

)
= χ(x) for x ∈ L×;

this is well-defined since χ vanishes on K× . It now follows from (∗) and the
definition of ψ1 that there is a character on (L×)σ−1µl∞(L) whose restriction to
(L×)σ−1 and µl∞(K) respectively is ψ0 and ψ1 respectively.

If y ∈ (L×)σ−1µl∞(L) ∩ U ′K , then:

yl = NL/K(y) ∈ µl∞(K) ∩ U ′K = {1}.
So, if l 6= p we have y = 1, since y is a 1-unit. If l = p, it also follows that y = 1,
since y ∈ U ′K and U ′K is torsion free for l = p.

We deduce the existence of a character on (L×)σ−1µl∞(L)U ′K whose restriction
to (L×)σ−1, µl∞(K) and U ′K respectively is ψ0, ψ1 and ψ2 respectively. We fix one
such character and denote it by abuse of notation by ψ0.

Denote by i0 the smallest non-negative integer such that:

U i0L ∩ (L×)σ−1 ≤ ker (ψ0).

We claim that:

(∗∗) i0 = c+ t .

Note that i0 ≥ 1, because (L×)σ−1 ≤ U0
L and because ψ0 cannot be trivial on

(L×)σ−1 since χ is non-trivial.

If L/K is unramified, then χ must be ramified, since χ vanishes on K×. Hence:
c = cL(χ). Clearly, σ − 1 has kernel EK on EL. Proposition 1 then implies that
x−1σx ∈ U iL ⇒ x ∈ K×U iL, for i ≥ 0. So: i0 ≤ c. If c = 1, we must then have
i0 = 1. Otherwise there is an x ∈ U c−1

L with χ(x) 6= 1. Then x 6∈ K×U cL, and so
proposition 1 gives: x−1σx ∈ U c−1

L − U cL. So: i0 ≥ c.

If L/K is ramified, then EL = EK and so χ is either unramified of wildly
ramified. Suppose that χ is unramified. Then c + t = 1 + t. Since χ(πL) 6= 1 and
π−1
L σπL ∈ U tL − U

t+1
L , we have i0 ≥ 1 + t. On the other hand, we now see that

proposition 1 implies: x−1σx ∈ U1+t
L ⇒ x ∈ K×U1

L. So: i0 ≤ 1 + t.

Suppose finally that L/K is ramified and that χ is wildly ramified. Then c+ t =
cL(χ)+t. We note that c 6≡ 1 (l). This follows once we note that if i ∈ N is divisible
by l, then:

U iL ≤ K×U i+1
L .
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There is an x ∈ U c−1
L with χ(x) 6= 1. Now proposition 1 gives that x−1σx ∈

U c−1+t
L − U c+tL , since c − 1 is not divisible by l. Hence i0 ≥ c + t. On the other

hand, suppose that x ∈ L× is such that x 6∈ K× and x−1σx ∈ U c+tL . Let i be largest
possible such that l - i and such that there is a y ∈ U iL with x ≡ y mod K×. Then
y 6∈ U i+1

L ; for if l - i+1, this is clear, and otherwise there is a y1 ∈ U i+2
L with y ≡ y1

mod K× and l - i+ 2. As l - i, proposition 1 gives that x−1σx = y−1σy 6∈ U i+t+1
L .

So: i ≥ c, whence χ(x) = χ(y) = 1. We conclude that i0 ≤ c+ t.

By this, (∗∗) is established.

Concerning the norm map NL/K : L× → K× we note the following: If L/K is
unramified, then:

NL/K(U iL) = U iK for all i ≥ 0,
and if L/K is ramified, we have:

NL/K(U lx+(1−l)t+1
L ) = . . . = NL/K(U lx+(1−l)t+l

L ) = Ux+1
K for x ≥ t,

and
NL/K(Ux+1) ≤ Ux+1

K for 0 ≤ x ≤ t,
cf. [4], chapter 5. From this, the remarks in the statement of (1) of the theorem
about the number cL(ϕ ◦NL/K) for a character ϕ of K× immediately follow.

We now claim that:

(∗ ∗ ∗) 〈πL〉U0U
i0
L ∩ (L×)σ−1µl∞(L)U ′K ≤ Ker(ψ0) .

The rest of (1) of the theorem follows from (∗ ∗ ∗). For if (∗ ∗ ∗) holds, then we
know from harmonic analysis that there is a character ψ on the locally compact
group L× whose restriction to the compact group (L×)σ−1µl∞(L)U ′K is ψ0 and
which vanishes on the closed subgroup 〈πL〉U0U

i0
L . If ψ is any such character, then

ψ satisfies (i), (ii), (iii), and (iv) in the statement of the theorem and cL(ψ) is at the
most i0 = c + t. Furthermore, by definition of i0 there is an x ∈ U i0−1

L ∩ (L×)σ−1

with ψ(x) 6= 1. Hence cL(ψ) is exactly i0. If ϕ is any character on K×, then
ϕ◦NL/K vanishes on (L×)σ−1 and in particular (ϕ◦NN/L)(x) = 1. It follows that:

cL(ψ · (ϕ ◦NL/K)) = max
{
cL(ψ) , cL(ϕ ◦NL/K)

}
.

We shall now demonstrate (∗ ∗ ∗).

Suppose that y ∈ 〈πL〉U0U
i0
L ∩ (L×)σ−1µl∞(L)U ′K . As y ∈ (L×)σ−1µl∞(L)U ′K ,

y is a unit, so that we can write:

y = u0u =
σx

x
· ξu1,

with u0 ∈ U0, u ∈ U i0L , x ∈ L×, ξ ∈ µl∞(L) and u1 ∈ U ′K . Then NL/K(y) =
NL/K(ξ)ul1, so there is an s ∈ N such that:

NL/K(y)l
s

is a 1-unit.

On the other hand, NL/K(y) = ul0NL/K(u), hence:

ul
s+1

0 is a 1-unit.
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Since u0 is a root of unity of order prime to lp, we deduce:

u0 = 1.

We now split the discussion up into 4 cases.

I. Suppose first that l 6= p. Then U ′K = U1
K , t = 0 and i0 = c. Now, NL/K(u) =

NL/K(ξ)ul1, so NL/K(ξ) ∈ µl∞(K) ∩ U1
K = {1}, and as we have seen this gives

ξ ∈ (L×)σ−1. Then u1 ∈ NL/K(U cL), since l 6= p.

Ia. If L/K is unramified, we get:

u1 ∈ NL/K(U cL) = U cK ≤ U cL,

and so σx
x · ξ ∈ (L×)σ−1 ∩ U cL, hence

ψ0(y) = ψ0

(σx
x
ξ
)
ψ0(u1) = ψ2(u1) = 1,

since ψ2 is trivial.

Ib. If L/K is ramified, choose a such that 1 ≤ a ≤ l and c ≡ a (l). Then:

u1 ∈ NL/K(U cL) = U
c−a

l +1

K ≤ U c−a+lL ≤ U cL,
and as in Ia we deduce that ψ0(y) = 1.

IIa. Suppose now that l = p and L/K is unramified. Then µp∞(L) = µp∞(K) =
〈ζ〉 ≤ (L×)σ−1 so that we can write:

y = u =
σx0

x0
· u1 for some x0 ∈ L×.

Then u−1
1 ≡ σx0

x0
mod U cL, since u ∈ U i0L = U cL, and so ψ2(u1) = χ(x0)−1, hence:

ψ0(y) = χ(x0)ψ2(u1) = 1.

IIb.
Suppose then finally that l = p and that L/K is ramified. We have K = Qp(µp)

which has ramification index e = p − 1 over Qp. Since the 1-units η2, . . . , ηp have
level > e

p−1 , it follows that if λ ∈ U ′K has level exactly i, then λp has level exactly
i+ e. Choose a such that 1 ≤ a ≤ p and c ≡ a (p), and put w = 1

p (c− a) + t. Now,

NL/K(ξ)up1 = NL/K(u) ∈ NL/K(U c+tL ) = Uw+1
K ,

and so NL/K(ξ) and up1 both belong to Uw+1
K . As NL/K(ξ) is a power of ζ, we must

have NL/K(ξ) = 1, so ξ ∈ (L×)σ−1. Consequently, there is x0 ∈ L× such that:

y = u =
σx0

x0
· u1.

Suppose first that t ≥ p or (t = p− 1 and c = 1). In both cases we have:

t ≥ p− p− a
p− 1

,

and this gives:
u1 ∈ Uw+1−e

K ≤ Up(w+1−e)
L ≤ U c+tL ,
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hence x−1
0 σx0 ∈ U c+tL . We then deduce that x0 ∈ K×U cL. For, since c ≥ 1, we must

have x0 ∈ K×U1
L, so if x0 6∈ K× we choose i largest possible such that x0 ∈ K×U iL;

then p - i, and proposition 1 gives σx0
x0
6∈ U i+t+1

L , hence i ≥ c. We then get:

ψ0(y) = χ(x0)ψ0(u1) = ψ2(u1) = 1,

since ψ2 is trivial.

Suppose then that t = p− 1 and c > 1. Now,

u−1
1 ≡ σx0

x0
mod U c+tL ,

so from the properties of ψ2 we obtain:

ψ0(y) = χ(x0)ψ2(u1) = χ(x0)χ(x−1
0 ) = 1.

This finishes the proof of (∗ ∗ ∗) and of (1) of the theorem.

(2). For p = 2 the special assumptions on K and L are: K = Q2 and t ≥ 1 if
L/K is ramified; but here the last assumption is vacuous since there are no tamely
ramified extensions of Q2.

If p 6= 2, or if p = 2 and L/Q2 is ramified but χ unramified, then (1) implies
that ψ2 may be chosen to be trivial.

Otherwise, p = 2 and L = Q2(
√
α) where α is −3, −1 or 3. Here we may

explicate ψ2 as a character on < 5 > by going through the procedure given before
the statement of Theorem 1.

Notice first that:
52s

≡ 1 + 2s+2 mod 2s+3,

if s is a non-negative integer.
Suppose that α = −3: Then L/Q2 is unramified, i.e. L = Q2(ε), where ε is a

3’rd root of unity. We have σε = ε2, where σ is the non-trivial automorphism of
L/Q2. The requirement on ψ2 is that:

ψ2(52s−1
) = χ(x) ,

where s ≥ 1 is smallest possible such that:

52s

∈ U cL ,

and x ∈ L× is such that:

52s−1
≡ σx

x
mod U cL.

If c ≤ 2 we have s = 1 and may choose x = 1; hence ψ2 = 1.
If c ≥ 3 we have s = c− 2. Since ε2 + ε+ 1 = 0 we have:

52c−3
(1 + ε · 2c−1) ≡ (1 + 2c−1)(1 + ε · 2c−1) ≡ 1 + ε2 · 2c−1 mod U cL,

so that we may choose x = 1 + ε · 2c−1; the requirement on ψ2 is then:

ψ2(52c−3
) = χ(1 + ε · 2c−1).
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Suppose that α = −1 or α = 3: Here L/Q2 is ramified so that χ is assumed to
be ramified. Then c = cL(χ), which must be even, since χ vanishes on Q×2 . The
number t is 1 in both cases. If π is a prime element of L, we have then:

σπ = π + uπ2,

where σ is the non-trivial automorphism of L/Q2 and u a (1-)unit. Now, the
requirement on ψ2 is that:

ψ2(52s−1
) = χ(x),

where s ≥ 1 is smallest possible such that:

52s

∈ U
1
2 c+1

Q2
,

and x ∈ L× is such that:

52s−1
≡ σx

x
mod U c+1

L .

If c = 2, we have s = 1 and we may choose x = 1 ; hence ψ2 = 1.
If c ≥ 4, we have s = 1

2c− 1 and:

52
1
2 c−2

(1 + πc−1) ≡ 1 + πc−1 + πc ≡ 1 + πc−1 + u(c− 1)πc

≡ 1 + (σπ)c−1 mod U c+1
L ,

since u(c−1) is a 1-unit. Hence we may choose x = 1+πc−1, and so the requirement
on ψ2 is:

ψ2(52
1
2 c−2

) = χ(1 + πc−1) .

This finishes the proof of (2) of the theorem. �

Remark 1. The value c+t is the smallest possible value of cL(ψ) if ψ is a character
on L× with ψ(x−1σx) = χ(x) for all x ∈ L×; this follows immediately from the
definition of i0(= c+ t) in the proof of the theorem.

Remark 2. Notice that one of the non-trivial and essential points of Theorem 1 is
the fact that cL(ψ · (ϕ ◦NL/K)), where ψ is as in the theorem and ϕ is a character
on K×, can be computed alone from the knowledge of c, t and cK(ϕ). For if L/K
is unramified, we have cL(ϕ ◦NL/K) = cK(ϕ) and so:

cL(ψ · (ϕ ◦NL/K)) = max {c+ t, cK(ϕ)} .

If L/K is ramified and cK(ϕ) ≥ t+ 2, we have:

cL(ψ · (ϕ ◦NL/K)) = max {c+ t, l · cK(ϕ) + (1− l)t+ 1} ;

and finally, if L/K is ramified and cK(ϕ) ≤ t+1, then cL(ϕ◦NL/K) ≤ t+1 ≤ c+t,
and so:

cL(ψ · (ϕ ◦NL/K)) = max
{
c+ t, cL(ϕ ◦NL/K)

}
= c+ t.

In particular, (2) of Theorem 1 gives a complete solution to ‘case (b)’ of the
problem considered in the introduction.
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3. The ‘primitive’ case

Let p be a prime number and K/Qp a finite extension. Let us consider a projec-
tive representation:

ρ̄ : Gal(Qp/K)→ PGL2(C),
such that Im(ρ̄) is isomorphic to A4 or S4. We want to recall a few facts concerning
this situation; we refer to [2] or [7].

First of all, we must necessarily have p = 2, cf. [2], pp. 18–20.

Let M denote the fixed field of Ker(ρ̄), and put G = Gal(M/K) so that ρ̄ is
given by an embedding of G in PGL2(C). The group G contains a unique normal
subgroup V isomorphic to the Klein 4-group, and we have G/V either cyclic of
order 3 or isomorphic to S3. Let L denote the fixed field of V . Then M/L is
totally, wildly ramified, and L/K is at the most tamely ramified. If G ∼= S4, the
quadratic extension K0/K contained in L must then be unramified, and since L/K
is not abelian, L/K0 is tamely ramified of degree 3. Let e denote the ramification
index of L/K, so that e is 1 or 3. Since V has no proper subgroup which is normal
in G, we see that the ramification groups for M/L are all either V or 0; define t ≥ 1
such that:

V = V0 = . . . = Vt 6= Vt+1 = 0
is the sequence of ramification groups for M/L.

For every lifting ρ of ρ̄ the restriction of ρ to Gal(Q2/M) has the form:

ρ(g) =
(
χ(g) 0

0 χ(g)

)
,

where χ is a character of Gal(Q2/M); we refer to χ as the central character of the
lifting ρ. The Artin conductor ℘a(ρ)K is related to the conductor of χ by:

([) a(ρ) =
1
2e

(cM (χ) + 3t+ 4e− 1).

The representation ρ̄ has a lifting ρ with central character χ such that:

([[) cM (χ) = 3t+ 1, hence a(ρ) =
3
e
t+ 2,

and ℘
3t/e+2
K is the minimal value of the Artin conductor of a lifting of ρ̄. Fur-

thermore, if ρ is a lifting with this minimal Artin conductor and χ is its central
character, then there is an u ∈ U3t

M with:

([[[) NM/K(u) = 1 and χ(u) 6= 1.

Here, ([) and ([[) are the principal statements of [2], chap. 2, and [7], section 3.
The existence of u ∈ U3t

M with ([[[) follows from the proof of minimality of 3t + 1
in ([[), cf. [7], section 3.

Now we want to study the norm map NM/K : M → K. Let W be a subgroup of
V of order 2 and let L0 be the fixed field of W . It is easy to see that the ramification
groups for M/L0 and L0/L are the following:

W = W0 = . . . = Wt 6= Wt+1 = 0,
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and
(V/W ) = (V/W )0 = . . . = (V/W )t 6= (V/W )t+1 = 0.

We conclude that:

Ux+1
L0

= NM/L0(U2x−t+1
M ) = NM/L0(U2x−t+2

M ) for x ≥ t,

and
UxL0
≥ NM/L0(UxM ) for 1 ≤ x ≤ t,

and similarly for L0/L, cf. [4], chap. 5. Hence:

Ux+1
L = NM/L(U iM ) for 4x− 3t+ 1 ≤ i ≤ 4x− 3t+ 4 , if x ≥ t ,
UxL ≥ NM/L(UxM ) if 1 ≤ x ≤ t .

Using again [4], chap. 5, we furthermore obtain:

Ux+1
K = NL/K(Uex+aL ) for x ≥ 0, 1 ≤ a ≤ e.

Combined with the above, we find for 1 ≤ a ≤ e:

(\) Ux+1
K = NM/K(U iM ) for 4ex− 3t+ 4a− 3 ≤ i ≤ 4ex− 3t+ 4e,

if ex ≥ t− a+ 1 , x ≥ 0, and

(\\) Ux+1
K ≥ NM/K(Uex+aM ) if 0 ≤ x ≤ t− a

e
.

We conclude that if ϕ is a character on K× with conductor cK(ϕ) = c, then:

(]) cM (ϕ ◦NM/K) ≤ ec− e+ 1, if c ≤ t− 1
e

+ 1,

and

(]]) cM (ϕ ◦NM/K) = 4ec− 3t− 4e+ 1, if c ≥ t+ 1
e

+ 1,

since in the latter case: c− 2 ≥ 1
e (t− e+ 1) and c− 1 ≥ t

e so that:

U cK = NM/K(U4ec−3t−4e+1
M ),

and
U c−1
K = NM/K(U4ec−3t−4e

M ).

The next result is due to E.-W. Zink (see [7]), but we shall restate and reprove
the result in order to make a few points more explicit.

Proposition 2. Let ρ̄ : Gal(Q2/K) → PGL2(C) be a representation with Im(ρ̄)
isomorphic to A4 or S4. If ρ is any lifting of ρ̄ with minimal Artin conductor, then
for any character ϕ of K× we have, retaining the above notation, for the exponent
a(ρ⊗ ϕ) of the Artin conductor of ρ⊗ ϕ:

a(ρ⊗ ϕ) = 3
e t+ 2 for cK(ϕ) ≤ 3t

2e
+ 1 ,

a(ρ⊗ ϕ) = 2cK(ϕ) for cK(ϕ) ≥ 3t
2e

+ 1 .
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Proof. Let ρ be any lifting of ρ̄ with minimal Artin conductor ℘3t/e+2
K and let χ be

the central character of ρ. Let ϕ be a character of K× and put c = cK(ϕ). Now,
ρ⊗ ϕ is also a lifting of ρ̄ and its central character is:

χ · (ϕ ◦NM/K).

According to ([[) and ([[[) above, we have cM (χ) = 3t+1 and there is an u ∈ U3t
M

with NM/K(u) = 1 and χ(u) 6= 1. So, χ · (ϕ ◦ NM/K) does not vanish on u, and
from this we conclude that:

cM (χ · (ϕ ◦NM/K)) = max
{

3t+ 1 , cM (ϕ ◦NM/K)
}
.

Suppose that c ≥ 3t
2e + 1. We claim that c ≥ t+1

e + 1. This is clear if t ≥ 2. If
t = e = 1, then c ≥ 3 = 1 + 2

e , and if t = 1, e = 3, then 2
e + 1 < 2 ≤ c. From (]])

we conclude that:

cM (ϕ ◦NM/K) = 4ec− 3t− 4e+ 1 ≥ 3t+ 1,

hence cM (χ(ϕ ◦NM/K)) = 4ec− 3t− 4e+ 1,and:

a(ρ⊗ ϕ) =
1
2e

(cM (χ(ϕ ◦NM/K)) + 3t+ 4e− 1) = 2c.

Suppose then that c ≤ 3t
2e +1. If c > t−1

e +1, then e(c−1) ≥ t, so that according
to (\):

U cK = NM/K(U4ec−3t−4e+1
M ),

whence:
cM (ϕ ◦NM/K) ≤ 4ec− 3t− 4e+ 1 ≤ 3t+ 1.

If c ≤ t−1
e + 1, then (]) gives:

cM (ϕ ◦NM/K) ≤ ec− e+ 1 ≤ t < 3t+ 1.

So, cM (χ · (ϕ◦NM/K)) = cM (χ) = 3t+ 1 in any case, and a(ρ⊗ϕ) = 3
e t+ 2. �

We shall now restrict the discussion to the ground field K = Q2. We know, see
[6], that M/Q2 is a finite extension with Galois group isomorphic to A4 or S4 if
and only if M is one of the following 4 fields.

M1 = Q2

(
ζ7 ,

√
1 + 2ζ7 ,

√
1 + 2ζ2

7 ,
√

1 + 2ζ4
7

)
,

where ζ7 is a primitive 7’th root of unity; put:

L = Q2(ζ3, π),

where ζ3 is a primitive 3’rd root of unity and π3 = 2, and let α be the automorphism
of L with απ = ζ3π; define then:

Mi = L
(√

xi ,
√
αxi ,

√
α2xi

)
for i = 2, 3, 4,

where x2 = 3(1 + π)(1 + π2), x3 = 3(1 + π) and x4 = 1 + π2. We have:

Gal(M1/Q2) ∼= A4 and Gal(Mi/Q2) ∼= S4 for i = 2, 3, 4.
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In the above notation we have the values e = 1, 3, 3, 3 and t = 1, 5, 5, 1 respec-
tively for the extensions Mi/Q2, i = 1, 2, 3, 4 respectively.

The following theorem solves the problem of section 1 for 2-dimensional, projec-
tive Galois representations over Q2 of type A4 or S4.

Theorem 2. Let ρ̄ : Gal(Q2/Q2) → PGL2(C) be a representation such that
Gal(M/Q2) is isomorphic to A4 or S4, where M is the fixed field of Ker(ρ̄). Then
ρ̄ has a lifting ρ such that its determinant character ε = det(ρ), viewed as a char-
acter of Q×2 , and the Artin conductors 2a(ρ⊗ϕ) of the twist ρ ⊗ ϕ, where ϕ is any
character of Q×2 with conductor c = cQ2(ϕ), satisfy the following.

I. If M = M1: ε(−1) = −1 , ε(5) = 1, and:

a(ρ⊗ ϕ) =
{

5 for c ≤ 2
2c for c ≥ 3 .

II. If M = M2: ε(−1) = −1 , ε(5) = 1, and:

a(ρ⊗ ϕ) =
{

7 for c ≤ 3
2c for c ≥ 4 .

III. If M = M3: ε(−1) = ε(5) = 1, and:

a(ρ⊗ ϕ) =
{

7 for c ≤ 3
2c for c ≥ 4 .

IV. If M = M4: ε(−1) = ε(5) = 1, and:

a(ρ⊗ ϕ) =
{

3 for c ≤ 1
2c for c ≥ 2 .

Proof. Let ρ be a lifting of ρ̄ with minimal conductor and let χ be its central
character. Hence cM (χ) = 3t + 1, where t = 1, 5, 5, 1 respectively if M = Mi,
i = 1, 2, 3, 4 respectively. The restriction of det(ρ) to Gal(Q2/M) is given by:

det(ρ)(g) =
(
χ(g) 0

0 χ(g)

)
, g ∈ Gal(Q2/M) ,

hence, if ε = det(ρ) is viewed as a character of Q×2 and χ as a character of M×, we
have:

(†) ε ◦NM/Q2 = χ2 .

We must determine the restriction of ε to the group of (1-)units of Q2. Now, the
image of the norm map M× → Q×2 coincides with the image of the normM×0 → Q×3 ,
where M0/Q2 is the maximal abelian extension contained in M , and since M0 is
in any case unramified, we have NM/Q2(UM ) = UQ2 . Hence it suffices to study the
behaviour of χ2 on UM . Now, if χ2 is trivial on UM , then ε is unramified, hence
ε = ψ2 for some unramified character ψ on Q×2 . Then ρ ⊗ ψ−1 still has minimal
conductor and the square of its central character is 1. By replacing ρ by ρ ⊗ ψ−1

if necessary, we may assume that if χ2 is non-trivial, it is non-trivial on UM .
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Now, the minimal order among the orders of central characters of liftings of ρ̄ is
4, 4, 2, 2 respectively for the cases M = Mi, i = 1, 2, 3, 4 respectively, cf. [7], section
2, or [1], where it is shown how to compute this order using a criterion of Serre.
Let ρ1 be a lifting of ρ̄ whose central character χ1 has this minimal order. There is
a character ψ of Q×2 such that:

ρ = ρ1 ⊗ ψ ,

if ψ is viewed as a character of Gal(Q2, /Q2), and this means:

(††) χ = χ1 · (ψ ◦NM/Q2) .

We now split the discussion up into 4 cases.

M = M1: From (\) above we get:

U2
Q2

= NN/Q2(U5
M ) ,

and since cM (χ) = 3t + 1 = 4, we deduce from (†) that ε(5) = 1. On the other
hand, χ2 must be non-trivial, hence non-trivial on UM , so ε is non-trivial on UQ2 .
Hence, ε(−1) = −1.

M = M2: Here, (\) above gives:

U2
Q2

= NM/Q2(U9
M ).

Now, if u ∈ U8
M then u2 ∈ U16

M , and since cM (χ) = 3t+1 = 16, we find cM (χ2) ≤ 8.
We deduce that ε(5) = 1. As in the preceding case we then find that ε(−1) = −1.

M = M3: Suppose that χ2 is non-trivial. Then χ2 is non-trivial on UM , and
since (††) gives:

χ2 = ψ2 ◦NM/Q2 ,

because χ2
1 = 1, we deduce that ψ2 is non-trivial on UQ2 . Since ψ2(−1) = 1, we

then see that ψ2 has conductor at least 3. Then (]]) above gives:

cM (χ2) = cM (χ2 ◦NM/Q2) = 12cQ2(ψ2)− 26 ≥ 10,

which is impossible, because we have cM (χ2) ≤ 8 as in the case M = M2. Hence
χ2 = 1, and ε(−1) = ε(5) = 1.

M = M4: If χ2 were non-trivial, then ψ2 would have conductor at least 3, and
(††) combined with (]]) above would give:

cM (χ2) = cM (ψ2 ◦NM/Q2) = 12cQ2(ψ2)− 4 ≥ 32,

contradicting cM (χ) = 3t+ 1 = 4. Hence χ2 = 1, and ε(−1) = ε(5) = 1.

This finishes the proof of the theorem, since the statements about the Artin
conductors of the twists ρ⊗ ϕ follow immediately from proposition 2 because ρ is
a lifting with minimal Artin conductor. �
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braic Number Fields. Academic Press 1977.
[6] A. Weil: ‘Exercises dyadiques.’ Invent. Math. 27 (1974), 1–22.

[7] E.-W. Zink: ‘Ergänzungen zu Weils Exercises dyadiques.’ Math. Nachr. 92 (1979), 163–183.

kiming@math.ku.dk

Dept. of math., Univ. of Copenhagen, Universitetsparken 5, 2100 Copenhagen Ø,
Denmark.

mailto:kiming@math.ku.dk

	1. Introduction and motivation
	2. The dihedral case
	3. The `primitive' case
	References

