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p-GROUPS.

IAN KIMING

Abstract. First we extend the main result of our previous article (Math.

Scand. 62 (1988), 153–172) concerning finite p-groups possessing an automor-
phism of p-power order and with exactly p fixed points, to the case p = 2.

Secondly, we use our techniques to prove a generalization of certain classical
results of Blackburn concerning ‘exceptionality’ in finite p-groups of maximal

class.

1. Introduction.

In this article the symbol p always denotes a prime number and ‘p-group’ means
‘finite p-group’.

The following theorem is the main result in [3].

Theorem. A. (Corollary 3 in [3]). There exist functions of two variables, u(x, y)
and v(x, y), such that whenever p is an odd prime number, k is a natural number
and G is a finite p-group possessing an automorphism of order pk having exactly p
fixed points, then G possesses a normal subgroup of index less than u(p, k) having
class less than v(p, k).

Theorem A can be seen as a generalization of the fact proved in [4] that the
derived length of a p-group of maximal class is bounded above by a function de-
pending only on p. For the theory of finite p-groups of maximal class the reader is
referred to [1] or [2], III, §14.

In section 2 below we prove that the prime number p = 2 does not have to be
excluded in theorem A.

In section 3 we use our techniques to prove a theorem which can be viewed as
a generalization of a theorem of Blackburn concerning ‘exceptional’ p-groups of
maximal class: Blackburn proved that if G is an exceptional p-group of maximal
class and order pn then 6 ≤ n ≤ p + 1 and n is even; see for example [2], III,
Hauptsatz 14.6.. Having proved our theorem we shall point out the connection to
this result of Blackburn.

We shall use the following notation: Let G be a p-group. If x, y ∈ G we write

xy = y−1xy and [x, y] = x−1y−1xy.

If x ∈ G and α is an automorphism of G, we write xα for the image of x under α.
The terms of the lower central series of G are written γi(G) for i ∈ N.
If |G/Gp| = pd, we write ω(G) = d.
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A central series
G = G1 ≥ G2 ≥ . . . ≥ Gs ≥ . . .

is called strongly central if [Gi, Gj ] ≤ Gi+j for all i, j.
The letter e always denotes the neutral element in a given group.

We shall now recall some definitions and results from [3] which will be needed
in the sequel.

Definition 1. Let G be a p-group. We say that G is concatenated if G possesses
an automorphism α, a strongly central series

G = G1 ≥ . . . ≥ Gn+1 = e = Gn+2 = . . .

(for some n ∈ N) and elements gi ∈ Gi for i = 1, . . . , n+ 1 such that the following
holds:

(1) |Gi/Gi+1| = p for i = 1, . . . , n,

(2) Gi/Gi+1 is generated by giGi+1 for i = 1, . . . , n+ 1,

(3) [gi, α] := g−1
i gαi ≡ gi+1 mod Gi+2 for i = 1, . . . , n.

In this situation we shall also say that G is α-concatenated. Thus, when we say
that G is α-concatenated we mean that G possesses an automorphism α, a strongly
central series

(+) G1 ≥ G2 ≥ . . . ≥ Gs ≥ . . .
and elements gi ∈ Gi such that the conditions of the above definitions are fulfilled.
Obviously then, α has p-power order and (+) is completely determined by G and α.
The symbols Gi will then always refer to the terms of this strongly central series.
When G is α-concatenated we shall also assume that the elements gi have been
chosen, and the symbols gi will then always refer to these fixed choices.

The relevance of the above definition for our purposes is the fact that if G is a
p-group and α an automorphism of p-power order of G , then G is α-concatenated
if and only if α has exactly p fixed points in G; cf. Theorem 2 in [3].

Definition 2. Suppose that G is an α-concatenated p-group. Let t be a non-negative
integer. We say that G has degree of commutativity t if

[Gi, Gj ] ≤ Gi+j+t for all i, j ∈ N.

Thus, G has in any case degree of commutativity 0.

If G has degree of commutativity t and order pn, then we introduce certain
invariants associated with this degree of commutativity. The invariants ai,j for
i, j ∈ N are integers defined modulo p by the following requirements:

[gi, gj ] ≡ g
ai,j
i+j+t mod Gi+j+t+1 for i+ j + t ≤ n

and
ai,j ≡ 0 (p) for i+ j + t ≥ n+ 1.

Thus, if G has degree of commutativity t and if the associated invariants are all
congruent to 0 modulo p , then G has degree of commutativity t+ 1.
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Theorem. B. (Theorem 9 in [3]). Let G be an α-concatenated p-group of order
pn. Suppose that G has degree of commutativity t and let ai,j for i, j ∈ N be the
associated invariants. Then the following holds:

(1) ai,j ≡ −aj,i (p) for i+ j + t ≤ n.

(2) ai,jak,i+j+t + aj,kai,j+k+t + ak,iaj,k+i+t ≡ 0 (p) for i+ j + k + 2t ≤ n.

(3) ai,j ≡ ai+1,j + ai,j+1 (p) for i+ j + t+ 1 ≤ n.

(4) For r ∈ N we have

ai,i+r ≡
[ r+1

2 ]∑
s=1

(−1)s−1

(
r − s
s− 1

)
ai+s−1,i+s (p) for 2i+ r + t ≤ n.

Definition 3. Suppose that G is a (α)-concatenated p-group with ω(G) = d. We
say that G is straight if the following conditions are fulfilled.

(1) Gpi = Gi+d for all i ∈ N.

(2) x ∈ Gr and c ∈ Gs implies

x−p(xc)p ≡ cp mod Gr+s+d for all r, s ∈ N.

(3) If gGi+1 is a generator of Gi/Gi+1 then the element gpGi+d+1 is a generator
of Gi+d/Gi+d+1.

Theorem. C. (Theorem 10 in [3]). Let G be a concatenated p-group of order pn.
Suppose that G is straight with ω(G) = d. Suppose further that G has degree of
commutativity t and let ai,j be the associated invariants. Then we have for all i, j

i+ j + d+ t ≤ n =⇒ (ai,j ≡ ai+d,j (p)).

Theorem. D. (Corollary 2 in [3]). Let G be an α-concatenated p-group with α of
order pk. Put

s = 1 + (1 + p+ . . .+ pk−1).
Then Gs is a straight, α-concatenated p-group.

Finally we shall need the following technical lemma, which is a refinement of the
Hall-Petrescu formula (cf. [2],III, Satz 9.4, Hilfsatz 9.5).

Lemma. E. (Lemma 2 in [3]). Let F be the free group on free generators x and
y. Let p be a prime number and n a natural number. Then we have

xp
n

yp
n

= (xy)p
n

ccp . . . cpn ,

with certain elements

c ∈ γ2(F )p
n

and cpi ∈ γpi(F )p
n−i

for i = 1, . . . , n, where each cpi has the form

cpi ≡ [y, x, . . . , x︸ ︷︷ ︸
pi−1

]aip
n−i∏

µ

vbµp
n−i

µ

modulo
γpi+1(F )p

n−i
γpi+1(F )p

n−i−1
. . . γpn(F ),
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for certain integers ai and bµ, and where each vµ has the form

vµ = [y, s1, . . . , spi−1]

with sk ∈ {x, y} and sk = y for at least one k in each vµ. Furthermore,

ai ≡ −1 (p) for i = 1, . . . , n.

2.

In this section we shall prove the extension of theorem A to the case p = 2. First
we need a result which will also be useful in the next section.

Proposition 1. Let G be an α-concatenated, straight p-group of order pn with α of
order pk. Let d = ω(G), and let ai,j for i, j ∈ N denote G’s invariants with respect
to degree of commutativity 0. Then the following holds.
(1) If n ≥ 1 + pk then d has the form

d = pr(p− 1) for some r ∈ {0, . . . , k − 1}.
(2) Suppose that s is a non-negative integer such that d > ps(p− 1). Define

a
(v)
i,j = aipv,jpv

for v = 1, . . . , s+ 1 and i, j ∈ N. Then

a
(v)
i,j ≡ a

(v)
i+1,j + a

(v)
i,j+1 (p),

for v = 1, . . . , s+ 1 and all i, j ∈ N such that pv(i+ j + 1) ≤ n.

Proof. Let i ∈ N. Using Lemma E for computation in the semi-direct product
G < α >, we see that

(++) αp
v

[αp
v

, gi] = (α[α, gi])p
v

= αp
v

[α, gi]p
v

c−1
pv . . . c

−1
p c−1,

for given v ∈ N, where putting U =< α, [α, gi] > we have

[α, gi]p
v

∈ Gi+1+vd,

c ∈ γ2(U)p
v

≤ Gi+2+vd,

cpµ ∈ γpµ(U)p
v−µ
≤ Gi+pµ+(v−µ)d

for µ = 1, . . . , v, and where cp, . . . , cpv have the forms given in Lemma E.

Proof of (1): Suppose that n ≥ 1 + pk and let

m = min{pµ + (k − µ)d|µ = 0, . . . , k}.
Let ν ∈ {0, . . . , k} be such that

m = pν + (k − ν)d,

and suppose that ν is unique with this property in {0, . . . , k}. Using (++) for v = k
we see that

e = [αp
k

, g1] ≡ g−p
k

2 mod Gm+2 if ν = 0,
and

e ≡ cpν mod Gm+2 if ν > 0.
In the first case we deduce 2 + kd ≥ n+ 1 ≥ 2 + pk and so

m = 1 + kd ≥ 1 + pk > pk,
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which is impossible. In the case ν > 0 we note that cpν according to Lemma E
satisfies

cpν ≡ [g1, α, . . . , α︸ ︷︷ ︸
pν

]−p
k−ν
≡ g−p

k−ν

1+pν mod Gm+2.

From this we deduce that 1 + pν + (k − ν)d ≥ n+ 1 ≥ 2 + pk, and so

m = pν + (k − ν)d ≥ 1 + pk > pk,

which is impossible. Consequently, there exist two different numbers µ and ν in
{0, . . . , k} such that

m = pµ + (k − µ)d = pν + (k − ν)d.

Since m is minimal, we then easily see that |µ − ν| = 1, and so d has the form
pr(p− 1) with r ∈ {0, . . . , k − 1}.

Proof of (2): Suppose that s is a non-negative integer with d > ps(p − 1), and
let v ∈ N be such that 1 ≤ v ≤ s+ 1. Then

pµ−1 + (v − µ+ 1)d > pµ + (v − µ)d for µ = 1, . . . , v,

and from (++) we conclude that

[αp
v

, gi] ≡ c−1
pv mod Gi+1+pv for i ∈ N,

since

ps(p− 1) + 1 ≥ 1
s+ 1

ps+1 for s ≥ 0.

According to Lemma E we have

c−1
pv ≡ [[α, gi], α, . . . , α︸ ︷︷ ︸

pv−1

] ≡ [gi, α, . . . , α︸ ︷︷ ︸
pv

]−1 ≡ g−1
i+pv mod Gi+1+pv ,

and so

(+ + +) [gi, αp
v

] ≡ gi+pv mod Gi+pv+1 for i ∈ N.

Now suppose that i, j ∈ N are such that pv(i+ j + 1) ≤ n, and put

m = pv(i+ j + 1) + 1.

Consider Witt’s identity

[A,B−1, C]B [B,C−1, A]C [C,A−1, B]A = e

modulo Gm with:

A = gipv , B = α−p
v

and C = gjpv .

Using (+ + +) and noting that gm−1 6= e, it then follows that:

a
(v)
i,j ≡ a

(v)
i+1,j + a

(v)
i,j+1 (p).

�

Theorem 1. Let G be a concatenated, straight 2-group of order 2n and with ω(G) =
2k. Put d = 2k.

Then G is metabelian, and if n ≥ 2d then G has degree of commutativity n− 2d.
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Proof. If d = 1 then |G/G2| = 2, and so G is cyclic. But then the statements of
the theorem are clear. So, we assume that k > 0.

We now suppose that n ≥ 2d and will show that G has degree of commutativity
n − 2d. If n = 2d this is obviously the case, so we assume that n > 2d and that
G has degree of commutativity t with t ≤ n − 2d − 1. Let ai,j be the associated
invariants.

For s = 1, . . . , 1
2d we have 2s+d+ t+1 ≤ n, and using Theorem B and Theorem

C we then find modulo 2

as,s+1 ≡ as,s+d+1 ≡
1
2d+1∑
h=1

(−1)h−1

(
d+ 1− h
h− 1

)
as+h−1,s+h

≡
1
2d∑
h=0

(−1)h
(
d− h
h

)
as+h,s+h+1 (2),

and

as+1,s ≡ as+1,s+1+(d−1) ≡
1
2d∑
h=1

(−1)h−1

(
d− 1− h
h− 1

)
as+h,s+h+1 (2).

Now, for h = 1, . . . , 1
2d we have(

d− h
h

)
=
(
d− h− 1
h− 1

)
d− h
h

,

and since d is a power of 2 and h ≤ 1
2d , we see that

(
d−h
h

)
and

(
d−h−1
h−1

)
have the

same parity. Using Theorem B (1) we then conclude that

0 ≡ as,s+1 + as+1,s ≡ as,s+1 +

1
2d∑
h=1

(
(
d− h
h

)
+
(
d− h− 1
h− 1

)
)as+h,s+h+1

≡ as,s+1 (2),
for s = 1, . . . , 1

2d . Then Theorem B (4) shows that

a1,1+r ≡ 0 (2) for r = 0, . . . , d.

Hence Theorem C gives

a1,j ≡ 0 (2) for all j.

Using this and Theorem B (3) we easily see by induction on i that

ai,j ≡ 0 (2) for all i, j.

Consequently, G has degree of commutativity t+ 1.
So, G has degree of commutativity n− 2d .
The group G/G1+d has exponent 2, hence is abelian. If n ≤ 2d the same holds

for the group G1+d. If n ≥ 2d then G1+d is abelian since G has then degree of
commutativity n− 2d. Thus, G is metabelian in any case. �

Theorem 2. Let G be an α-concatenated, straight 2-group of order 2n with α of
order 2k. Then the following holds.
(1) If n ≥ 1 + 2k then G has class at the most 2k−1.
(2) If n ≥ 2k+1 − 3 then G has class at the most 2.
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(3) G has class at the most 2k − 1.

Proof. Let d = ω(G). If n ≥ 1 + 2k then according to Proposition 1, d has the form
d = 2r for some r ∈ {0, . . . , k − 1}. Hence, if k = 1 and n ≥ 3 then G is cyclic. If
n ≤ 2 then G is abelian. We may consequently assume that k ≥ 2.

Suppose that n ≥ 1 + 2k. According to Theorem 1, G has then degree of
commutativity t = n − 2d. Now, it is easily seen by induction on i that if i ∈ N
and i ≥ 2 then

γi(G) ≤ Gi+1+(i−1)t.

So, γi(G) = {e} if

(+) i ≥ 2n−2d
n−2d+1 .

Using n ≥ 1 + 2k and d = 2r with r ∈ {0, . . . , k − 1}, an easy calculation shows
that (+) is satisfied if i ≥ 1 + 2k−1. (+) is also satisfied if i ≥ 3, provided that
n ≥ 2k+1−3 (note that then n ≥ 2k+1−3 ≥ 2k +1, since k ≥ 2, whence d ≤ 2k−1).
This proves (1) and (2).

Finally, (3) follows from (1) because G obviously has class at the most 2k − 1 if
n ≤ 2k. �

Our extension of Theorem A to the case p = 2 now follows immediately from
Theorem D and Theorem 2: If G is an α-concatenated 2-group with α of order 2k,
then the normal subgroup

G1+(1+2+...+2k−1)

has index
21+2+...+2k−1

,

and has class at the most 2k − 1.

3.

We now turn our attention to our second objective described in the introduction.
In what follows, p will denote an odd prime number. The content of the main result
of this section, which is Theorem 3 below, is roughly speaking that if G is an
α-concatenated, straight p-group of order pn with α of order pk, if ai,j are the
invariants associated with degree of commutativity 0, and if ai,j is congruent to 0
modulo p whenever i+j is less that a certain number, which is ‘small’ compared with
pk, then ai,j can be incongruent to 0 modulo p only if i+ j is ‘big’ compared with
min{n, ω(G)}. Furthermore, G has degree of commutativity 1, if n is sufficiently
large compared with pk.

This result will be a consequence of the following two propositions.

Proposition 2. Let p be an odd prime number and let n, r and r0 be natural
numbers. Assume that 3 ≤ r ≤ n − 1. Suppose that we are given integers ai,j for
i, j ∈ N with i+ j ≤ n. Suppose further that the following conditions are satisfied.

(1) ai,j ≡ −aj,i (p) for i+ j ≤ n.

(2) ai,j+1 + ai+1,j ≡ ai,j (p) for i+ j + 1 ≤ n.

(3) ai,jak,i+j + aj,kai,j+k + ak,iaj,k+i ≡ 0 (p) for i+ j + k ≤ n.

(4) ai,j ≡ 0 (p) for i+ j ≤ r.
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(5) api,pj ≡ 0 (p) for p(i+ j) ≤ r0.

(6) a1,r 6≡ 0 (p).

Then the following assertions hold.

(I). Let m be an integer such that 0 ≤ m ≤ min{n − r − 1, r − 2, p − 1}. Let i be
an integer such that 1 ≤ i ≤ m+ r. Then

ai,r−i+m+1 ≡ bi,ma1,r (p),

where
bi,m = 0 for 1 ≤ i ≤ m,

and

bi,m = (−1)i+m+1

(
i− 1
m

)
for m+ 1 ≤ i ≤ m+ r.

(For m = 0, this also holds without the assumption (6)).

(II). The number r is even.
If r ≤ n− 2 then r ≡ 0 (p).
If p+ 1 ≤ r ≤ n− p then r ≥ r0 − p+ 1.

Proof. Proof of (I): We prove the statement by induction on m.
Since

ai,r−i+1 + ai+1,r−i ≡ ai,r−i ≡ 0 (p)
for i = 1, . . . , r − 1, because of (2) and (4), we deduce the statement for m = 0.

Let µ be a natural number such that µ ≤ min{n− r − 1, r − 2, p− 1}. Assume
that the statement in (I) has been proved for 0 ≤ m ≤ µ− 1. Since µ ≤ n− r− 1 ,
we may consider the congruence (3) for (i, j, k) = (1, µ+ 1, r − 1). This gives

(+) aµ+1,r−1a1,r+µ ≡ 0 (p),

since ar−1,1 ≡ 0 (p) according to (4), and since

a1,µ+1 ≡ 0 (p)

according to (4) because µ ≤ r − 2. From the induction hypothesis we get

aµ+1,r−1 ≡ −µa1,r (p),

and since we have 1 ≤ µ ≤ p− 1, we then deduce from (6) and (+) that

(++) a1,r+µ ≡ 0 (p).

For 2 ≤ i ≤ µ+ r, the induction hypothesis and (2) show that

(−) ai−1,r−i+µ+2 + ai,r−i+µ+1 ≡ ai−1,r−i+µ+1 ≡ bi−1,µ−1a1,r (p);

from this and (++) we find successively

a1,r+µ ≡ 0 (p), a2,r+µ−1 ≡ 0 (p), . . . , aµ,r+1 ≡ 0 (p),

because
bi−1,µ−1 ≡ 0 (p) for i ≤ µ.

Again, (−) and the induction hypothesis show that

ai,r−i+µ+1 ≡ (−1)i+µ+1

(
i− 2
µ− 1

)
a1,r − ai−1,r−i+µ+2 (p),
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for i = µ+ 1, . . . , µ+ r , which together with aµ,r+1 ≡ 0 (p) gives us successively

ai,r−i+µ+1 ≡ (−1)i+µ+1

(
i− 1
µ

)
a1,r (p)

for i = µ+ 1, . . . , µ+ r.
Thus the statement in (I) holds for m = µ .
This proves (I).

Proof of (II): Suppose that r is odd and put i = r+1
2 .

Using (I) for m = 0 we see that

ai,r−i+1 ≡ (−1)i+1a1,r 6≡ 0 (p).

Since i = r − i+ 1, this contradicts (1) because p is odd. So, r is even.
Suppose that r ≤ n− 2. Then we may use (I) for (m = 1, i = 1) and for

(m = 1, i = r + 1) (recall that r ≥ 3). Using (1) this gives

0 ≡ −a1,r+1 ≡ ar+1,1 ≡ (−1)r+1ra1,r (p),

and so r ≡ 0 (p) because of (6).
Suppose that p+ 1 ≤ r ≤ n− p . From the above it follows that r ≡ 0 (p). We

may use (I) for m = p− 1 and i = p. This gives

ap,r ≡ a1,r 6≡ 0 (p).

Since r ≡ 0 (p), we then deduce from (5) that p+ r ≥ r0 + 1. �

Definition 4. We define the function f(n) for natural numbers n ≥ 2 as follows.
If v is a non-negative integer such that:

2pv ≤ n ≤ 2pv+1,

we put
f(n) = 2pv[

n

2pv
].

Proposition 3. Let G be a concatenated, straight p-group (p odd) of order pn. Let
d = ω(G) and let s be the largest non-negative integer such that d > ps−1(p − 1).
Let ai,j for i, j ∈ N be the invariants of G associated with degree of commutativity
0. Assume that

ai,j ≡ 0 (p) for i+ j ≤ 3ps.
Then the following statements hold.

(I). If n ≤ d+ ps+1 + ps − 1 then

ai,j ≡ 0 (p) for i+ j ≤ f(n).

(II). If d = ps(p− 1) and n ≥ ps+1 + ps then G has degree of commutativity 1.

Proof. Proof of (I): For µ = 0, . . . , s we put

nµ = [np−µ],

and
a
(µ)
i,j = apµi,pµj for i, j ∈ N.

Then for µ = 0, . . . , s we have

(1) a
(µ)
i,j ≡ −a

(µ)
j,i (p) for i+ j ≤ nµ,
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(2) a
(µ)
i,j+1 + a

(µ)
i+1,j ≡ a

(µ)
i,j (p) for i+ j + 1 ≤ nµ,

(3) a
(µ)
i,j a

(µ)
k,i+j + a

(µ)
j,k a

(µ)
i,j+k + a

(µ)
k,i a

(µ)
j,k+i ≡ 0 (p) for i+ j + k ≤ nµ.

(1) and (3) follow for arbitrary µ from the fact that (1) and (3) hold for µ = 0, cf.
Theorem B (1) and B (2). (2) follows from Proposition 1.

We see from the definition of f(n) that we may assume that n has form

n = 2mpl with 1 ≤ m ≤ p.

We may also assume that n ≥ 3ps, which gives l ≥ s. Furthermore,

2ps+1 − 1 = ps(p− 1) + ps+1 + ps − 1 ≥ d+ ps+1 + ps − 1 ≥ n = 2mpl ≥ 2pl,

whence s ≥ l. Thus we assume that

n = 2mps with 1 ≤ m ≤ p.

Then
nµ = 2mps−µ for µ = 0, . . . , s.

Now we show by induction on s− µ that if µ ∈ {0, . . . , s} then

a
(µ)
i,j ≡ 0 (p) for i+ j ≤ f(nµ).

For µ = 0 this is precisely the statement in (I).
Suppose first that µ = s. By assumption we have

a
(s)
i,j ≡ 0 (p) for i+ j ≤ 3.

We also have ns = 2m ≤ 2p and so f(ns) = ns. Now assume that not all of the
numbers

a
(s)
i,j with i+ j ≤ ns

are congruent to 0 modulo p. Let rs ∈ N be largest possible such that

a
(s)
i,j ≡ 0 (p) for i+ j ≤ rs.

Then 3 ≤ rs ≤ ns − 1. Now we see that we may use proposition 2 with r = rs and
r0 = ns (note that ns ≤ 2p, and that we must have

a
(s)
1,rs
6≡ 0 (p),

because of (2)). So, rs is even. If rs ≤ ns − 2 then rs is divisible by p and so

rs ≥ 2p ≥ ns.

Consequently, we have rs ≥ ns − 1, and since rs and ns are both even, we get
rs = ns, contradiction.

Suppose then that µ < s and that

a
(µ+1)
i,j ≡ 0 (p) for i+ j ≤ f(nµ+1).

Assume that not all of the numbers

a
(µ)
i,j with i+ j ≤ nµ

are congruent to 0 modulo p, and let rµ ∈ N be largest possible such that

a
(µ)
i,j ≡ 0 (p) for i+ j ≤ rµ.
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Then we have rµ ≤ nµ−1, and because of the assumptions of the theorem, we have
rµ ≥ 3ps−µ ≥ p+ 1. Furthermore,

a
(µ)
pi,pj = a

(µ+1)
i,j ≡ 0 (p) for p(i+ j) ≤ pf(nµ+1) = pnµ+1 = nµ.

Thus, we see that we may use Proposition 2 with r = rµ and r0 = nµ;note that we
must have

a1,rµ 6≡ 0 (p).
So, if rµ ≤ nµ − p then rµ ≥ nµ − p + 1; so, rµ ≥ nµ − p + 1. Since µ < s, we

have nµ ≡ 0 (p), and so rµ ≤ nµ−2 is impossible since rµ would then be divisible
by p and so rµ = nµ. Hence, rµ ≥ nµ − 1, and since rµ and nµ are both even, we
deduce rµ = nµ, contradiction.

This proves (I).

Proof of (II): We use induction on n. For n = ps+1 + ps the statement follows
from (I) since we have f(n) = n in this case.

Thus we assume that n > ps+1 + ps. Considering G/Gn we deduce from the
induction hypothesis that

ai,j ≡ 0 (p) for i, j ≤ n− 1.

If not all of the numbers ai,j are divisible by p, we find (considering (2)) that

a1,n−1 6≡ 0 (p).

But since n− 1 > d we find using Theorem C that

a1,n−1 ≡ a1,n−1−d ≡ 0 (p);

contradiction. �

Theorem 3. Let G be an α-concatenated, straight p-group (p odd) of order pn and
with α of order pk. Let ai,j for i, j ∈ N be G’s invariants associated with degree of
commutativity 0, and assume that

ai,j ≡ 0 (p) for i+ j ≤ 3pk−1.

Put d = ω(G) and let s be the largest non-negative integer with

d > ps−1(p− 1).

Then we have

ai,j ≡ 0 (p) for i+ j ≤ f(min{n, d+ ps+1 + ps − 1}).
Furthermore, if n ≥ pk + pk−1 then G has degree of commutativity 1.

Proof. First note that d ≤ pk: For if n ≥ 1 + pk then d ≤ pk−1(p− 1) according to
Proposition 1. And if n ≤ pk then d ≤ n ≤ pk. So, s ≤ k.

If s ≤ k − 1 then by using Proposition 3 on

G/Gd+ps+1+ps ,

we obtain

ai,j ≡ 0 (p) for i+ j ≤ f(min{n, d+ ps+1 + ps − 1}).
Suppose then that s = k. According to Proposition 1 we must then have n ≤ pk.

Using Proposition 3 on
G/Gpk−1(p−1)+1,
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we find
ai,j ≡ 0 (p) for i+ j ≤ pk−1(p− 1).

But since pk−1(p− 1) < d ≤ n ≤ pk, we find

f(min{n, d+ pk+1 + pk − 1}) = f(n) = pk−1(p− 1).

Finally, suppose that n ≥ pk + pk−1. Then according to Proposition 1 we have

d = pr(p− 1) for some r ∈ {0, . . . , k − 1}.
Then s = r ≤ k− 1. Then Proposition 3 and the assumption of the theorem imply
that G has degree of commutativity 1. �

Suppose that G is a finite p-group of maximal class of order pn where p is an
odd prime number and n ≥ 4. Then for any maximal subgroup of G there exists
an inner automorphism of G which, when restricted to this subgroup, has order p
and exactly p fixed points (see Theorem 3 in [3]). In particular, the group

G1 = CG(γ2(G)/γ4(G)),

which is a maximal subgroup of G, is α-concatenated for some automorphism α of
order p. Further, the concatenated p-group G1 is straight (see Satz III, 14.16 in
[2] and Theorem 6 in [3]). If ai,j are the invariants of G1 associated with degree of
commutativity 0, then by definition of G1 we have

a1,2 ≡ 0 (p).

Note that the order of G1 is pn−1. We say that G is exceptional, if G1 does not
have degree of commutativity 1. We conclude from Theorem 3 that if n ≥ p + 2
then G is not exceptional. Further, if 4 ≤ n ≤ p+ 1 then

ai,j ≡ 0 (p) for i+ j ≤ f(n− 1).

But f(n− 1) = n− 1 if n is odd, and f(n− 1) = n− 2 if n is even.
Hence we see that if G is exceptional then n ≤ p+1 and n is even. Furthermore,

G/Gn−1, which is a finite p-group of maximal class, is never exceptional. These
statements are classical results of Blackburn concerning finite p-groups (p odd) of
maximal class. Thus, Theorem 3 may be viewed as a generalization of these results.
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