SOME REMARKS ON A CERTAIN CLASS OF FINITE p-GROUPS.

IAN KIMING

Abstract

First we extend the main result of our previous article (Math. Scand. 62 (1988), 153-172) concerning finite p-groups possessing an automorphism of p-power order and with exactly p fixed points, to the case $p=2$. Secondly, we use our techniques to prove a generalization of certain classical results of Blackburn concerning 'exceptionality' in finite p-groups of maximal class.

1. Introduction.

In this article the symbol p always denotes a prime number and ' p-group' means 'finite p-group'.

The following theorem is the main result in [3].

Theorem. A. (Corollary 3 in [3]). There exist functions of two variables, $u(x, y)$ and $v(x, y)$, such that whenever p is an odd prime number, k is a natural number and G is a finite p-group possessing an automorphism of order p^{k} having exactly p fixed points, then G possesses a normal subgroup of index less than $u(p, k)$ having class less than $v(p, k)$.

Theorem A can be seen as a generalization of the fact proved in [4] that the derived length of a p-group of maximal class is bounded above by a function depending only on p. For the theory of finite p-groups of maximal class the reader is referred to [1] or [2], III, §14.

In section 2 below we prove that the prime number $p=2$ does not have to be excluded in theorem A.

In section 3 we use our techniques to prove a theorem which can be viewed as a generalization of a theorem of Blackburn concerning 'exceptional' p-groups of maximal class: Blackburn proved that if G is an exceptional p-group of maximal class and order p^{n} then $6 \leq n \leq p+1$ and n is even; see for example [2], III, Hauptsatz 14.6.. Having proved our theorem we shall point out the connection to this result of Blackburn.

We shall use the following notation: Let G be a p-group. If $x, y \in G$ we write

$$
x^{y}=y^{-1} x y \quad \text { and } \quad[x, y]=x^{-1} y^{-1} x y
$$

If $x \in G$ and α is an automorphism of G, we write x^{α} for the image of x under α.
The terms of the lower central series of G are written $\gamma_{i}(G)$ for $i \in \mathbb{N}$.
If $\left|G / G^{p}\right|=p^{d}$, we write $\omega(G)=d$.

A central series

$$
G=G_{1} \geq G_{2} \geq \ldots \geq G_{s} \geq \ldots
$$

is called strongly central if $\left[G_{i}, G_{j}\right] \leq G_{i+j}$ for all i, j.
The letter e always denotes the neutral element in a given group.
We shall now recall some definitions and results from [3] which will be needed in the sequel.

Definition 1. Let G be a p-group. We say that G is concatenated if G possesses an automorphism α, a strongly central series

$$
G=G_{1} \geq \ldots \geq G_{n+1}=e=G_{n+2}=\ldots
$$

(for some $n \in \mathbb{N}$) and elements $g_{i} \in G_{i}$ for $i=1, \ldots, n+1$ such that the following holds:

$$
\begin{equation*}
\left|G_{i} / G_{i+1}\right|=p \quad \text { for } i=1, \ldots, n \tag{1}
\end{equation*}
$$

$$
\begin{gather*}
G_{i} / G_{i+1} \quad \text { is generated by } g_{i} G_{i+1} \quad \text { for } i=1, \ldots, n+1, \tag{2}\\
{\left[g_{i}, \alpha\right]:=g_{i}^{-1} g_{i}^{\alpha} \equiv g_{i+1} \bmod G_{i+2} \quad \text { for } i=1, \ldots, n} \tag{3}
\end{gather*}
$$

In this situation we shall also say that G is α-concatenated. Thus, when we say that G is α-concatenated we mean that G possesses an automorphism α, a strongly central series
$(+) \quad G_{1} \geq G_{2} \geq \ldots \geq G_{s} \geq \ldots$
and elements $g_{i} \in G_{i}$ such that the conditions of the above definitions are fulfilled. Obviously then, α has p-power order and $(+)$ is completely determined by G and α. The symbols G_{i} will then always refer to the terms of this strongly central series. When G is α-concatenated we shall also assume that the elements g_{i} have been chosen, and the symbols g_{i} will then always refer to these fixed choices.

The relevance of the above definition for our purposes is the fact that if G is a p-group and α an automorphism of p-power order of G, then G is α-concatenated if and only if α has exactly p fixed points in G; cf. Theorem 2 in [3].

Definition 2. Suppose that G is an α-concatenated p-group. Let t be a non-negative integer. We say that G has degree of commutativity t if

$$
\left[G_{i}, G_{j}\right] \leq G_{i+j+t} \quad \text { for all } \quad i, j \in \mathbb{N}
$$

Thus, G has in any case degree of commutativity 0 .
If G has degree of commutativity t and order p^{n}, then we introduce certain invariants associated with this degree of commutativity. The invariants $a_{i, j}$ for $i, j \in \mathbb{N}$ are integers defined modulo p by the following requirements:

$$
\left[g_{i}, g_{j}\right] \equiv g_{i+j+t}^{a_{i, j}} \quad \bmod \quad G_{i+j+t+1} \quad \text { for } \quad i+j+t \leq n
$$

and

$$
a_{i, j} \equiv 0 \quad(p) \quad \text { for } \quad i+j+t \geq n+1
$$

Thus, if G has degree of commutativity t and if the associated invariants are all congruent to 0 modulo p, then G has degree of commutativity $t+1$.

Theorem. B. (Theorem 9 in [3]). Let G be an α-concatenated p-group of order p^{n}. Suppose that G has degree of commutativity t and let $a_{i, j}$ for $i, j \in \mathbb{N}$ be the associated invariants. Then the following holds:

$$
\begin{align*}
& a_{i, j} \equiv-a_{j, i} \quad(p) \quad \text { for } \quad i+j+t \leq n \tag{1}\\
& a_{i, j} a_{k, i+j+t}+a_{j, k} a_{i, j+k+t}+a_{k, i} a_{j, k+i+t} \equiv 0 \quad \text { (p) } \quad \text { for } \quad i+j+k+2 t \leq n \tag{2}\\
& a_{i, j} \equiv a_{i+1, j}+a_{i, j+1} \quad(p) \quad \text { for } \quad i+j+t+1 \leq n \tag{3}
\end{align*}
$$

(4) For $r \in \mathbb{N}$ we have

$$
a_{i, i+r} \equiv \sum_{s=1}^{\left[\frac{r+1}{2}\right]}(-1)^{s-1}\binom{r-s}{s-1} a_{i+s-1, i+s} \quad(p) \quad \text { for } \quad 2 i+r+t \leq n
$$

Definition 3. Suppose that G is a (α)-concatenated p-group with $\omega(G)=d$. We say that G is straight if the following conditions are fulfilled.

$$
\begin{equation*}
G_{i}^{p}=G_{i+d} \quad \text { for all } \quad i \in \mathbb{N} \tag{1}
\end{equation*}
$$

(2) $x \in G_{r}$ and $c \in G_{s}$ implies

$$
x^{-p}(x c)^{p} \equiv c^{p} \quad \bmod \quad G_{r+s+d} \quad \text { for all } \quad r, s \in \mathbb{N}
$$

(3) If $g G_{i+1}$ is a generator of G_{i} / G_{i+1} then the element $g^{p} G_{i+d+1}$ is a generator of G_{i+d} / G_{i+d+1}.
Theorem. C. (Theorem 10 in [3]). Let G be a concatenated p-group of order p^{n}. Suppose that G is straight with $\omega(G)=d$. Suppose further that G has degree of commutativity t and let $a_{i, j}$ be the associated invariants. Then we have for all i, j

$$
i+j+d+t \leq n \quad \Longrightarrow \quad\left(a_{i, j} \equiv a_{i+d, j} \quad(p)\right)
$$

Theorem. D. (Corollary 2 in [3]). Let G be an α-concatenated p-group with α of order p^{k}. Put

$$
s=1+\left(1+p+\ldots+p^{k-1}\right)
$$

Then G_{s} is a straight, α-concatenated p-group.
Finally we shall need the following technical lemma, which is a refinement of the Hall-Petrescu formula (cf. [2],III, Satz 9.4, Hilfsatz 9.5).

Lemma. E. (Lemma 2 in [3]). Let F be the free group on free generators x and y. Let p be a prime number and n a natural number. Then we have

$$
x^{p^{n}} y^{p^{n}}=(x y)^{p^{n}} c c_{p} \ldots c_{p^{n}}
$$

with certain elements

$$
c \in \gamma_{2}(F)^{p^{n}} \quad \text { and } \quad c_{p^{i}} \in \gamma_{p^{i}}(F)^{p^{n-i}}
$$

for $i=1, \ldots, n$, where each $c_{p^{i}}$ has the form

$$
c_{p^{i}} \equiv[y, \underbrace{x, \ldots, x}_{p^{i}-1}]^{a_{i} p^{n-i}} \prod_{\mu} v_{\mu}^{b_{\mu} p^{n-i}}
$$

modulo

$$
\gamma_{p^{i}+1}(F)^{p^{n-i}} \gamma_{p^{i+1}}(F)^{p^{n-i-1}} \ldots \gamma_{p^{n}}(F)
$$

for certain integers a_{i} and b_{μ}, and where each v_{μ} has the form

$$
v_{\mu}=\left[y, s_{1}, \ldots, s_{p^{i}-1}\right]
$$

with $s_{k} \in\{x, y\}$ and $s_{k}=y$ for at least one k in each v_{μ}. Furthermore,

$$
a_{i} \equiv-1 \quad(p) \quad \text { for } \quad i=1, \ldots, n
$$

2.

In this section we shall prove the extension of theorem A to the case $p=2$. First we need a result which will also be useful in the next section.

Proposition 1. Let G be an α-concatenated, straight p-group of order p^{n} with α of order p^{k}. Let $d=\omega(G)$, and let $a_{i, j}$ for $i, j \in \mathbb{N}$ denote G 's invariants with respect to degree of commutativity 0 . Then the following holds.
(1) If $n \geq 1+p^{k}$ then d has the form

$$
d=p^{r}(p-1) \quad \text { for some } \quad r \in\{0, \ldots, k-1\}
$$

(2) Suppose that s is a non-negative integer such that $d>p^{s}(p-1)$. Define

$$
a_{i, j}^{(v)}=a_{i p^{v}, j p^{v}}
$$

for $v=1, \ldots, s+1$ and $i, j \in \mathbb{N}$. Then

$$
a_{i, j}^{(v)} \equiv a_{i+1, j}^{(v)}+a_{i, j+1}^{(v)}(p),
$$

for $v=1, \ldots, s+1$ and all $i, j \in \mathbb{N}$ such that $p^{v}(i+j+1) \leq n$.
Proof. Let $i \in \mathbb{N}$. Using Lemma E for computation in the semi-direct product $G<\alpha>$, we see that
$(++) \quad \alpha^{p^{v}}\left[\alpha^{p^{v}}, g_{i}\right]=\left(\alpha\left[\alpha, g_{i}\right]\right)^{p^{v}}=\alpha^{p^{v}}\left[\alpha, g_{i}\right]^{p^{v}} c_{p^{v}}^{-1} \ldots c_{p}^{-1} c^{-1}$,
for given $v \in \mathbb{N}$, where putting $U=<\alpha,\left[\alpha, g_{i}\right]>$ we have

$$
\begin{gathered}
{\left[\alpha, g_{i}\right]^{p^{v}} \in G_{i+1+v d},} \\
c \in \gamma_{2}(U)^{p^{v}} \leq G_{i+2+v d}, \\
c_{p^{\mu}} \in \gamma_{p^{\mu}}(U)^{p^{v-\mu}} \leq G_{i+p^{\mu}+(v-\mu) d}
\end{gathered}
$$

for $\mu=1, \ldots, v$, and where $c_{p}, \ldots, c_{p^{v}}$ have the forms given in Lemma E .
Proof of (1): Suppose that $n \geq 1+p^{k}$ and let

$$
m=\min \left\{p^{\mu}+(k-\mu) d \mid \mu=0, \ldots, k\right\} .
$$

Let $\nu \in\{0, \ldots, k\}$ be such that

$$
m=p^{\nu}+(k-\nu) d
$$

and suppose that ν is unique with this property in $\{0, \ldots, k\}$. Using $(++)$ for $v=k$ we see that

$$
e=\left[\alpha^{p^{k}}, g_{1}\right] \equiv g_{2}^{-p^{k}} \quad \bmod \quad G_{m+2} \quad \text { if } \quad \nu=0,
$$

and

$$
e \equiv c_{p^{\nu}} \quad \bmod \quad G_{m+2} \quad \text { if } \quad \nu>0
$$

In the first case we deduce $2+k d \geq n+1 \geq 2+p^{k}$ and so

$$
m=1+k d \geq 1+p^{k}>p^{k}
$$

which is impossible. In the case $\nu>0$ we note that $c_{p^{\nu}}$ according to Lemma E satisfies

$$
c_{p^{\nu}} \equiv[g_{1}, \underbrace{\alpha, \ldots, \alpha}_{p^{\nu}}]^{-p^{k-\nu}} \equiv g_{1+p^{\nu}}^{-p^{k-\nu}} \quad \bmod \quad G_{m+2} .
$$

From this we deduce that $1+p^{\nu}+(k-\nu) d \geq n+1 \geq 2+p^{k}$, and so

$$
m=p^{\nu}+(k-\nu) d \geq 1+p^{k}>p^{k}
$$

which is impossible. Consequently, there exist two different numbers μ and ν in $\{0, \ldots, k\}$ such that

$$
m=p^{\mu}+(k-\mu) d=p^{\nu}+(k-\nu) d
$$

Since m is minimal, we then easily see that $|\mu-\nu|=1$, and so d has the form $p^{r}(p-1)$ with $r \in\{0, \ldots, k-1\}$.

Proof of (2): Suppose that s is a non-negative integer with $d>p^{s}(p-1)$, and let $v \in \mathbb{N}$ be such that $1 \leq v \leq s+1$. Then

$$
p^{\mu-1}+(v-\mu+1) d>p^{\mu}+(v-\mu) d \quad \text { for } \quad \mu=1, \ldots, v
$$

and from $(++)$ we conclude that

$$
\left[\alpha^{p^{v}}, g_{i}\right] \equiv c_{p^{v}}^{-1} \quad \bmod \quad G_{i+1+p^{v}} \quad \text { for } \quad i \in \mathbb{N}
$$

since

$$
p^{s}(p-1)+1 \geq \frac{1}{s+1} p^{s+1} \quad \text { for } \quad s \geq 0
$$

According to Lemma E we have

$$
c_{p^{v}}^{-1} \equiv[\left[\alpha, g_{i}\right], \underbrace{\alpha, \ldots, \alpha}_{p^{v}-1}] \equiv[g_{i}, \underbrace{\alpha, \ldots, \alpha}_{p^{v}}]^{-1} \equiv g_{i+p^{v}}^{-1} \quad \bmod \quad G_{i+1+p^{v}},
$$

and so
$(+++) \quad\left[g_{i}, \alpha^{p^{v}}\right] \equiv g_{i+p^{v}} \quad \bmod \quad G_{i+p^{v}+1} \quad$ for $\quad i \in \mathbb{N}$.
Now suppose that $i, j \in \mathbb{N}$ are such that $p^{v}(i+j+1) \leq n$, and put

$$
m=p^{v}(i+j+1)+1
$$

Consider Witt's identity

$$
\left[A, B^{-1}, C\right]^{B}\left[B, C^{-1}, A\right]^{C}\left[C, A^{-1}, B\right]^{A}=e
$$

modulo G_{m} with:

$$
A=g_{i p^{v}}, \quad B=\alpha^{-p^{v}} \quad \text { and } \quad C=g_{j p^{v}}
$$

Using $(+++)$ and noting that $g_{m-1} \neq e$, it then follows that:

$$
a_{i, j}^{(v)} \equiv a_{i+1, j}^{(v)}+a_{i, j+1}^{(v)} \quad(p)
$$

Theorem 1. Let G be a concatenated, straight 2 -group of order 2^{n} and with $\omega(G)=$ 2^{k}. Put $d=2^{k}$.

Then G is metabelian, and if $n \geq 2 d$ then G has degree of commutativity $n-2 d$.

Proof. If $d=1$ then $\left|G / G^{2}\right|=2$, and so G is cyclic. But then the statements of the theorem are clear. So, we assume that $k>0$.

We now suppose that $n \geq 2 d$ and will show that G has degree of commutativity $n-2 d$. If $n=2 d$ this is obviously the case, so we assume that $n>2 d$ and that G has degree of commutativity t with $t \leq n-2 d-1$. Let $a_{i, j}$ be the associated invariants.

For $s=1, \ldots, \frac{1}{2} d$ we have $2 s+d+t+1 \leq n$, and using Theorem B and Theorem C we then find modulo 2

$$
\begin{align*}
a_{s, s+1} \equiv & a_{s, s+d+1} \equiv \sum_{h=1}^{\frac{1}{2} d+1}(-1)^{h-1}\binom{d+1-h}{h-1} a_{s+h-1, s+h} \\
& \equiv \sum_{h=0}^{\frac{1}{2} d}(-1)^{h}\binom{d-h}{h} a_{s+h, s+h+1} \tag{2}
\end{align*}
$$

and

$$
\begin{equation*}
a_{s+1, s} \equiv a_{s+1, s+1+(d-1)} \equiv \sum_{h=1}^{\frac{1}{2} d}(-1)^{h-1}\binom{d-1-h}{h-1} a_{s+h, s+h+1} \tag{2}
\end{equation*}
$$

Now, for $h=1, \ldots, \frac{1}{2} d$ we have

$$
\binom{d-h}{h}=\binom{d-h-1}{h-1} \frac{d-h}{h}
$$

and since d is a power of 2 and $h \leq \frac{1}{2} d$, we see that $\binom{d-h}{h}$ and $\binom{d-h-1}{h-1}$ have the same parity. Using Theorem B (1) we then conclude that

$$
\begin{gathered}
\left.0 \equiv a_{s, s+1}+a_{s+1, s} \equiv a_{s, s+1}+\sum_{h=1}^{\frac{1}{2} d}\binom{d-h}{h}+\binom{d-h-1}{h-1}\right) a_{s+h, s+h+1} \\
\equiv a_{s, s+1}
\end{gathered}
$$

for $s=1, \ldots, \frac{1}{2} d$. Then Theorem B (4) shows that

$$
a_{1,1+r} \equiv 0 \quad(2) \quad \text { for } \quad r=0, \ldots, d
$$

Hence Theorem C gives

$$
a_{1, j} \equiv 0 \quad(2) \quad \text { for all } \quad j .
$$

Using this and Theorem B (3) we easily see by induction on i that

$$
a_{i, j} \equiv 0 \quad(2) \quad \text { for all } \quad i, j .
$$

Consequently, G has degree of commutativity $t+1$.
So, G has degree of commutativity $n-2 d$.
The group G / G_{1+d} has exponent 2 , hence is abelian. If $n \leq 2 d$ the same holds for the group G_{1+d}. If $n \geq 2 d$ then G_{1+d} is abelian since G has then degree of commutativity $n-2 d$. Thus, G is metabelian in any case.

Theorem 2. Let G be an α-concatenated, straight 2 -group of order 2^{n} with α of order 2^{k}. Then the following holds.
(1) If $n \geq 1+2^{k}$ then G has class at the most 2^{k-1}.
(2) If $n \geq 2^{k+1}-3$ then G has class at the most 2 .
(3) G has class at the most $2^{k}-1$.

Proof. Let $d=\omega(G)$. If $n \geq 1+2^{k}$ then according to Proposition 1, d has the form $d=2^{r}$ for some $r \in\{0, \ldots, k-1\}$. Hence, if $k=1$ and $n \geq 3$ then G is cyclic. If $n \leq 2$ then G is abelian. We may consequently assume that $k \geq 2$.

Suppose that $n \geq 1+2^{k}$. According to Theorem 1, G has then degree of commutativity $t=n-2 d$. Now, it is easily seen by induction on i that if $i \in \mathbb{N}$ and $i \geq 2$ then

$$
\gamma_{i}(G) \leq G_{i+1+(i-1) t}
$$

So, $\gamma_{i}(G)=\{e\}$ if
$(+) \quad i \geq \frac{2 n-2 d}{n-2 d+1}$.
Using $n \geq 1+2^{k}$ and $d=2^{r}$ with $r \in\{0, \ldots, k-1\}$, an easy calculation shows that $(+)$ is satisfied if $i \geq 1+2^{k-1}$. $(+)$ is also satisfied if $i \geq 3$, provided that $n \geq 2^{k+1}-3$ (note that then $n \geq 2^{k+1}-3 \geq 2^{k}+1$, since $k \geq 2$, whence $d \leq 2^{k-1}$). This proves (1) and (2).

Finally, (3) follows from (1) because G obviously has class at the most $2^{k}-1$ if $n \leq 2^{k}$.

Our extension of Theorem A to the case $p=2$ now follows immediately from Theorem D and Theorem 2: If G is an α-concatenated 2 -group with α of order 2^{k}, then the normal subgroup

$$
G_{1+\left(1+2+\ldots+2^{k-1}\right)}
$$

has index

$$
2^{1+2+\ldots+2^{k-1}}
$$

and has class at the most $2^{k}-1$.

3.

We now turn our attention to our second objective described in the introduction. In what follows, p will denote an odd prime number. The content of the main result of this section, which is Theorem 3 below, is roughly speaking that if G is an α-concatenated, straight p-group of order p^{n} with α of order p^{k}, if $a_{i, j}$ are the invariants associated with degree of commutativity 0 , and if $a_{i, j}$ is congruent to 0 modulo p whenever $i+j$ is less that a certain number, which is 'small' compared with p^{k}, then $a_{i, j}$ can be incongruent to 0 modulo p only if $i+j$ is 'big' compared with $\min \{n, \omega(G)\}$. Furthermore, G has degree of commutativity 1, if n is sufficiently large compared with p^{k}.

This result will be a consequence of the following two propositions.
Proposition 2. Let p be an odd prime number and let n, r and r_{0} be natural numbers. Assume that $3 \leq r \leq n-1$. Suppose that we are given integers $a_{i, j}$ for $i, j \in \mathbb{N}$ with $i+j \leq n$. Suppose further that the following conditions are satisfied.

$$
\begin{align*}
& a_{i, j} \equiv-a_{j, i} \quad(p) \quad \text { for } \quad i+j \leq n \tag{1}\\
& a_{i, j+1}+a_{i+1, j} \equiv a_{i, j} \quad(p) \quad \text { for } \quad i+j+1 \leq n \tag{2}\\
& a_{i, j} a_{k, i+j}+a_{j, k} a_{i, j+k}+a_{k, i} a_{j, k+i} \equiv 0 \quad \text { (p) } \quad \text { for } \quad i+j+k \leq n \tag{3}\\
& a_{i, j} \equiv 0 \quad(p) \quad \text { for } \quad i+j \leq r \tag{4}
\end{align*}
$$

$$
\begin{align*}
& a_{p i, p j} \equiv 0 \quad(p) \quad \text { for } \quad p(i+j) \leq r_{0} \tag{5}\\
& a_{1, r} \not \equiv 0 \quad(p) . \tag{6}
\end{align*}
$$

Then the following assertions hold.
(I). Let m be an integer such that $0 \leq m \leq \min \{n-r-1, r-2, p-1\}$. Let i be an integer such that $1 \leq i \leq m+r$. Then

$$
a_{i, r-i+m+1} \equiv b_{i, m} a_{1, r} \quad(p),
$$

where

$$
b_{i, m}=0 \quad \text { for } \quad 1 \leq i \leq m
$$

and

$$
b_{i, m}=(-1)^{i+m+1}\binom{i-1}{m} \quad \text { for } \quad m+1 \leq i \leq m+r
$$

(For $m=0$, this also holds without the assumption (6)).
(II). The number r is even.

If $r \leq n-2$ then $r \equiv 0(p)$.
If $p+1 \leq r \leq n-p$ then $r \geq r_{0}-p+1$.
Proof. Proof of (I): We prove the statement by induction on m.
Since

$$
a_{i, r-i+1}+a_{i+1, r-i} \equiv a_{i, r-i} \equiv 0
$$

for $i=1, \ldots, r-1$, because of (2) and (4), we deduce the statement for $m=0$.
Let μ be a natural number such that $\mu \leq \min \{n-r-1, r-2, p-1\}$. Assume that the statement in (I) has been proved for $0 \leq m \leq \mu-1$. Since $\mu \leq n-r-1$, we may consider the congruence (3) for $(i, j, k)=(1, \mu+1, r-1)$. This gives
$(+) \quad a_{\mu+1, r-1} a_{1, r+\mu} \equiv 0 \quad(p)$,
since $a_{r-1,1} \equiv 0 \quad(p)$ according to (4), and since

$$
a_{1, \mu+1} \equiv 0 \quad(p)
$$

according to (4) because $\mu \leq r-2$. From the induction hypothesis we get

$$
a_{\mu+1, r-1} \equiv-\mu a_{1, r}
$$

and since we have $1 \leq \mu \leq p-1$, we then deduce from (6) and $(+)$ that $(++) \quad a_{1, r+\mu} \equiv 0 \quad(p)$.
For $2 \leq i \leq \mu+r$, the induction hypothesis and (2) show that
(-) $\quad a_{i-1, r-i+\mu+2}+a_{i, r-i+\mu+1} \equiv a_{i-1, r-i+\mu+1} \equiv b_{i-1, \mu-1} a_{1, r} \quad(p)$;
from this and $(++)$ we find successively

$$
a_{1, r+\mu} \equiv 0 \quad(p), \quad a_{2, r+\mu-1} \equiv 0 \quad(p), \ldots, a_{\mu, r+1} \equiv 0 \quad(p)
$$

because

$$
b_{i-1, \mu-1} \equiv 0 \quad(p) \quad \text { for } \quad i \leq \mu
$$

Again, (-) and the induction hypothesis show that

$$
a_{i, r-i+\mu+1} \equiv(-1)^{i+\mu+1}\binom{i-2}{\mu-1} a_{1, r}-a_{i-1, r-i+\mu+2} \quad(p)
$$

for $i=\mu+1, \ldots, \mu+r$, which together with $a_{\mu, r+1} \equiv 0 \quad(p)$ gives us successively

$$
a_{i, r-i+\mu+1} \equiv(-1)^{i+\mu+1}\binom{i-1}{\mu} a_{1, r} \quad(p)
$$

for $i=\mu+1, \ldots, \mu+r$.
Thus the statement in (I) holds for $m=\mu$.
This proves (I).
Proof of (II): Suppose that r is odd and put $i=\frac{r+1}{2}$.
Using (I) for $m=0$ we see that

$$
a_{i, r-i+1} \equiv(-1)^{i+1} a_{1, r} \not \equiv 0 \quad(p)
$$

Since $i=r-i+1$, this contradicts (1) because p is odd. So, r is even.
Suppose that $r \leq n-2$. Then we may use (I) for ($m=1, i=1$) and for ($m=1, i=r+1$) (recall that $r \geq 3$). Using (1) this gives

$$
0 \equiv-a_{1, r+1} \equiv a_{r+1,1} \equiv(-1)^{r+1} r a_{1, r} \quad(p),
$$

and so $r \equiv 0 \quad(p)$ because of (6).
Suppose that $p+1 \leq r \leq n-p$. From the above it follows that $r \equiv 0 \quad(p)$. We may use (I) for $m=p-1$ and $i=p$. This gives

$$
a_{p, r} \equiv a_{1, r} \not \equiv 0 \quad(p)
$$

Since $r \equiv 0 \quad(p)$, we then deduce from (5) that $p+r \geq r_{0}+1$.
Definition 4. We define the function $f(n)$ for natural numbers $n \geq 2$ as follows. If v is a non-negative integer such that:

$$
2 p^{v} \leq n \leq 2 p^{v+1}
$$

we put

$$
f(n)=2 p^{v}\left[\frac{n}{2 p^{v}}\right] .
$$

Proposition 3. Let G be a concatenated, straight p-group (p odd) of order p^{n}. Let $d=\omega(G)$ and let s be the largest non-negative integer such that $d>p^{s-1}(p-1)$. Let $a_{i, j}$ for $i, j \in \mathbb{N}$ be the invariants of G associated with degree of commutativity 0. Assume that

$$
a_{i, j} \equiv 0 \quad(p) \quad \text { for } \quad i+j \leq 3 p^{s}
$$

Then the following statements hold.
(I). If $n \leq d+p^{s+1}+p^{s}-1$ then

$$
a_{i, j} \equiv 0 \quad(p) \quad \text { for } \quad i+j \leq f(n)
$$

(II). If $d=p^{s}(p-1)$ and $n \geq p^{s+1}+p^{s}$ then G has degree of commutativity 1 .

Proof. Proof of (I): For $\mu=0, \ldots, s$ we put

$$
n_{\mu}=\left[n p^{-\mu}\right]
$$

and

$$
a_{i, j}^{(\mu)}=a_{p^{\mu} i, p^{\mu} j} \quad \text { for } \quad i, j \in \mathbb{N} .
$$

Then for $\mu=0, \ldots, s$ we have

$$
\begin{equation*}
a_{i, j}^{(\mu)} \equiv-a_{j, i}^{(\mu)} \quad(p) \quad \text { for } \quad i+j \leq n_{\mu} \tag{1}
\end{equation*}
$$

$$
\begin{align*}
& a_{i, j+1}^{(\mu)}+a_{i+1, j}^{(\mu)} \equiv a_{i, j}^{(\mu)} \quad(p) \quad \text { for } \quad i+j+1 \leq n_{\mu} \tag{2}\\
& a_{i, j}^{(\mu)} a_{k, i+j}^{(\mu)}+a_{j, k}^{(\mu)} a_{i, j+k}^{(\mu)}+a_{k, i}^{(\mu)} a_{j, k+i}^{(\mu)} \equiv 0 \quad(p) \quad \text { for } \quad i+j+k \leq n_{\mu} \tag{3}
\end{align*}
$$

(1) and (3) follow for arbitrary μ from the fact that (1) and (3) hold for $\mu=0$, cf. Theorem B (1) and B (2). (2) follows from Proposition 1.

We see from the definition of $f(n)$ that we may assume that n has form

$$
n=2 m p^{l} \quad \text { with } \quad 1 \leq m \leq p
$$

We may also assume that $n \geq 3 p^{s}$, which gives $l \geq s$. Furthermore,

$$
2 p^{s+1}-1=p^{s}(p-1)+p^{s+1}+p^{s}-1 \geq d+p^{s+1}+p^{s}-1 \geq n=2 m p^{l} \geq 2 p^{l}
$$

whence $s \geq l$. Thus we assume that

$$
n=2 m p^{s} \quad \text { with } \quad 1 \leq m \leq p
$$

Then

$$
n_{\mu}=2 m p^{s-\mu} \quad \text { for } \quad \mu=0, \ldots, s
$$

Now we show by induction on $s-\mu$ that if $\mu \in\{0, \ldots, s\}$ then

$$
a_{i, j}^{(\mu)} \equiv 0 \quad(p) \quad \text { for } \quad i+j \leq f\left(n_{\mu}\right)
$$

For $\mu=0$ this is precisely the statement in (I).
Suppose first that $\mu=s$. By assumption we have

$$
a_{i, j}^{(s)} \equiv 0 \quad(p) \quad \text { for } \quad i+j \leq 3
$$

We also have $n_{s}=2 m \leq 2 p$ and so $f\left(n_{s}\right)=n_{s}$. Now assume that not all of the numbers

$$
a_{i, j}^{(s)} \quad \text { with } \quad i+j \leq n_{s}
$$

are congruent to 0 modulo p. Let $r_{s} \in \mathbb{N}$ be largest possible such that

$$
a_{i, j}^{(s)} \equiv 0 \quad(p) \quad \text { for } \quad i+j \leq r_{s}
$$

Then $3 \leq r_{s} \leq n_{s}-1$. Now we see that we may use proposition 2 with $r=r_{s}$ and $r_{0}=n_{s}$ (note that $n_{s} \leq 2 p$, and that we must have

$$
a_{1, r_{s}}^{(s)} \not \equiv 0 \quad(p),
$$

because of (2)). So, r_{s} is even. If $r_{s} \leq n_{s}-2$ then r_{s} is divisible by p and so

$$
r_{s} \geq 2 p \geq n_{s}
$$

Consequently, we have $r_{s} \geq n_{s}-1$, and since r_{s} and n_{s} are both even, we get $r_{s}=n_{s}$, contradiction.

Suppose then that $\mu<s$ and that

$$
a_{i, j}^{(\mu+1)} \equiv 0 \quad(p) \quad \text { for } \quad i+j \leq f\left(n_{\mu+1}\right)
$$

Assume that not all of the numbers

$$
a_{i, j}^{(\mu)} \quad \text { with } \quad i+j \leq n_{\mu}
$$

are congruent to 0 modulo p, and let $r_{\mu} \in \mathbb{N}$ be largest possible such that

$$
a_{i, j}^{(\mu)} \equiv 0 \quad(p) \quad \text { for } \quad i+j \leq r_{\mu}
$$

Then we have $r_{\mu} \leq n_{\mu}-1$, and because of the assumptions of the theorem, we have $r_{\mu} \geq 3 p^{s-\mu} \geq p+1$. Furthermore,

$$
a_{p i, p j}^{(\mu)}=a_{i, j}^{(\mu+1)} \equiv 0 \quad(p) \quad \text { for } \quad p(i+j) \leq p f\left(n_{\mu+1}\right)=p n_{\mu+1}=n_{\mu}
$$

Thus, we see that we may use Proposition 2 with $r=r_{\mu}$ and $r_{0}=n_{\mu}$; note that we must have

$$
a_{1, r_{\mu}} \not \equiv 0 \quad(p)
$$

So, if $r_{\mu} \leq n_{\mu}-p$ then $r_{\mu} \geq n_{\mu}-p+1$; so, $r_{\mu} \geq n_{\mu}-p+1$. Since $\mu<s$, we have $n_{\mu} \equiv 0 \quad(p)$, and so $r_{\mu} \leq n_{\mu}-2$ is impossible since r_{μ} would then be divisible by p and so $r_{\mu}=n_{\mu}$. Hence, $r_{\mu} \geq n_{\mu}-1$, and since r_{μ} and n_{μ} are both even, we deduce $r_{\mu}=n_{\mu}$, contradiction.

This proves (I).
Proof of (II): We use induction on n. For $n=p^{s+1}+p^{s}$ the statement follows from (I) since we have $f(n)=n$ in this case.

Thus we assume that $n>p^{s+1}+p^{s}$. Considering G / G_{n} we deduce from the induction hypothesis that

$$
a_{i, j} \equiv 0 \quad(p) \quad \text { for } \quad i, j \leq n-1
$$

If not all of the numbers $a_{i, j}$ are divisible by p, we find (considering (2)) that

$$
a_{1, n-1} \not \equiv 0 \quad(p)
$$

But since $n-1>d$ we find using Theorem C that

$$
a_{1, n-1} \equiv a_{1, n-1-d} \equiv 0 \quad(p)
$$

contradiction.
Theorem 3. Let G be an α-concatenated, straight p-group (p odd) of order p^{n} and with α of order p^{k}. Let $a_{i, j}$ for $i, j \in \mathbb{N}$ be G 's invariants associated with degree of commutativity 0 , and assume that

$$
a_{i, j} \equiv 0 \quad(p) \quad \text { for } \quad i+j \leq 3 p^{k-1}
$$

Put $d=\omega(G)$ and let s be the largest non-negative integer with

$$
d>p^{s-1}(p-1)
$$

Then we have

$$
a_{i, j} \equiv 0 \quad(p) \quad \text { for } \quad i+j \leq f\left(\min \left\{n, d+p^{s+1}+p^{s}-1\right\}\right)
$$

Furthermore, if $n \geq p^{k}+p^{k-1}$ then G has degree of commutativity 1.
Proof. First note that $d \leq p^{k}$: For if $n \geq 1+p^{k}$ then $d \leq p^{k-1}(p-1)$ according to Proposition 1. And if $n \leq p^{k}$ then $d \leq n \leq p^{k}$. So, $s \leq k$.

If $s \leq k-1$ then by using Proposition 3 on

$$
G / G_{d+p^{s+1}+p^{s}}
$$

we obtain

$$
a_{i, j} \equiv 0 \quad(p) \quad \text { for } \quad i+j \leq f\left(\min \left\{n, d+p^{s+1}+p^{s}-1\right\}\right)
$$

Suppose then that $s=k$. According to Proposition 1 we must then have $n \leq p^{k}$. Using Proposition 3 on

$$
G / G_{p^{k-1}(p-1)+1}
$$

we find

$$
a_{i, j} \equiv 0 \quad(p) \quad \text { for } \quad i+j \leq p^{k-1}(p-1)
$$

But since $p^{k-1}(p-1)<d \leq n \leq p^{k}$, we find

$$
f\left(\min \left\{n, d+p^{k+1}+p^{k}-1\right\}\right)=f(n)=p^{k-1}(p-1)
$$

Finally, suppose that $n \geq p^{k}+p^{k-1}$. Then according to Proposition 1 we have

$$
d=p^{r}(p-1) \quad \text { for some } \quad r \in\{0, \ldots, k-1\}
$$

Then $s=r \leq k-1$. Then Proposition 3 and the assumption of the theorem imply that G has degree of commutativity 1.

Suppose that G is a finite p-group of maximal class of order p^{n} where p is an odd prime number and $n \geq 4$. Then for any maximal subgroup of G there exists an inner automorphism of G which, when restricted to this subgroup, has order p and exactly p fixed points (see Theorem 3 in [3]). In particular, the group

$$
G_{1}=C_{G}\left(\gamma_{2}(G) / \gamma_{4}(G)\right)
$$

which is a maximal subgroup of G, is α-concatenated for some automorphism α of order p. Further, the concatenated p-group G_{1} is straight (see Satz III, 14.16 in [2] and Theorem 6 in [3]). If $a_{i, j}$ are the invariants of G_{1} associated with degree of commutativity 0 , then by definition of G_{1} we have

$$
a_{1,2} \equiv 0 \quad(p)
$$

Note that the order of G_{1} is p^{n-1}. We say that G is exceptional, if G_{1} does not have degree of commutativity 1 . We conclude from Theorem 3 that if $n \geq p+2$ then G is not exceptional. Further, if $4 \leq n \leq p+1$ then

$$
a_{i, j} \equiv 0 \quad(p) \quad \text { for } \quad i+j \leq f(n-1)
$$

But $f(n-1)=n-1$ if n is odd, and $f(n-1)=n-2$ if n is even.
Hence we see that if G is exceptional then $n \leq p+1$ and n is even. Furthermore, G / G_{n-1}, which is a finite p-group of maximal class, is never exceptional. These statements are classical results of Blackburn concerning finite p-groups (p odd) of maximal class. Thus, Theorem 3 may be viewed as a generalization of these results.

References

[1] N. Blackburn: 'On a special class of p-groups.' Acta Math. 100 (1958), 45-92.
[2] B. Huppert: 'Endliche Gruppen I.' Grundlehren der mathematischen Wissenschaften 134, Springer 1983.
[3] I. Kiming: 'Structure and derived length of finite p-groups possessing an automorphism of p-power order having exactly p fixpoints.' Math. Scand. 62 (1988), 153-172.
[4] C. R. Leedham-Green, S. McKay: 'On p-groups of maximal class I.' Quart. J. Math. Oxford, Ser. (2) 27 (1976), 297-311.

kiming@math.ku.dk

Dept. of math., Univ. of Copenhagen, Universitetsparken 5, 2100 Copenhagen \varnothing, Denmark.

