SOME REMARKS ON A CERTAIN CLASS OF FINITE
p-GROUPS.

IAN KIMING

ABSTRACT. First we extend the main result of our previous article (Math.
Scand. 62 (1988), 153—-172) concerning finite p-groups possessing an automor-
phism of p-power order and with exactly p fixed points, to the case p = 2.
Secondly, we use our techniques to prove a generalization of certain classical
results of Blackburn concerning ‘exceptionality’ in finite p-groups of maximal
class.

1. INTRODUCTION.

In this article the symbol p always denotes a prime number and ‘p-group’ means
‘finite p-group’.

The following theorem is the main result in [3].

Theorem. A. (Corollary 3 in [3]). There exist functions of two variables, u(x,y)
and v(x,y), such that whenever p is an odd prime number, k is a natural number
and G is a finite p-group possessing an automorphism of order p* having exactly p
fized points, then G possesses a normal subgroup of index less than u(p, k) having
class less than v(p, k).

Theorem A can be seen as a generalization of the fact proved in [4] that the
derived length of a p-group of maximal class is bounded above by a function de-
pending only on p. For the theory of finite p-groups of maximal class the reader is
referred to [1] or [2], III, §14.

In section 2 below we prove that the prime number p = 2 does not have to be
excluded in theorem A.

In section 3 we use our techniques to prove a theorem which can be viewed as
a generalization of a theorem of Blackburn concerning ‘exceptional’ p-groups of
maximal class: Blackburn proved that if G is an exceptional p-group of maximal
class and order p™ then 6 < n < p+ 1 and n is even; see for example [2], I1I,
Hauptsatz 14.6.. Having proved our theorem we shall point out the connection to
this result of Blackburn.

We shall use the following notation: Let G be a p-group. If x,y € G we write
¥ =y oy and [z,y] = 27ty Loy,
If x € G and « is an automorphism of G, we write x® for the image of x under «.
The terms of the lower central series of G are written v;(G) for ¢ € N.
If |G/GP| = p¢, we write w(G) = d.
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A central series
G=G1>Gy>...>2Gs> ...

is called strongly central if [G;, G;] < G,4; for all 4, j.
The letter e always denotes the neutral element in a given group.

We shall now recall some definitions and results from [3] which will be needed
in the sequel.

Definition 1. Let G be a p-group. We say that G is concatenated if G possesses
an automorphism a, a strongly central series

G=G12...2Gn+1=€:Gn+2:...

(for some n € N) and elements g; € G; fori=1,...,n+ 1 such that the following
holds:

(1) |G1/GZ+1‘:p fOT’l-Zl,...,TL
(2) G;/Git1 s generated by g;Giy1 fori=1,...,n+1,
(3) [9i:0] == g; 'g% = giy1 mod Gy fori=1,... n.

In this situation we shall also say that G is a-concatenated. Thus, when we say
that G is a-concatenated we mean that G possesses an automorphism «, a strongly
central series

+) G >Gy>...>G,> ...

and elements g; € G; such that the conditions of the above definitions are fulfilled.
Obviously then, « has p-power order and (+) is completely determined by G and «.
The symbols G; will then always refer to the terms of this strongly central series.
When G is a-concatenated we shall also assume that the elements g; have been
chosen, and the symbols g; will then always refer to these fixed choices.

The relevance of the above definition for our purposes is the fact that if G is a
p-group and « an automorphism of p-power order of G , then G is a-concatenated
if and only if « has exactly p fixed points in G; cf. Theorem 2 in [3].

Definition 2. Suppose that G is an a-concatenated p-group. Lett be a non-negative
integer. We say that G has degree of commutativity t if

[GZ‘, G]] < Gi+j+t fO?” all 1,] € N.

Thus, G has in any case degree of commutativity 0.

If G has degree of commutativity ¢ and order p™, then we introduce certain
invariants associated with this degree of commutativity. The invariants a;; for
1,7 € N are integers defined modulo p by the following requirements:

9:,95] = 97 mod Gigjie for i+j+t<n
and
a;; =0  (p) for it+j+t>n+1

Thus, if G has degree of commutativity ¢ and if the associated invariants are all
congruent to 0 modulo p , then G has degree of commutativity ¢ + 1.
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Theorem. B. (Theorem 9 in [3]). Let G be an a-concatenated p-group of order

p". Suppose that G has degree of commutativity t and let a; ; for i,j € N be the

associated invariants. Then the following holds:
(1) a;; =—a;; (p) for i+j+t<n.

(2) @i jAk it jrt + QG kG jrkrt T ki@ krive =0 (p) for i+j+k+2t<n.

(3) a;j = i1, +aijr1 (p) for i+j+t+1<n.
(4) For r € N we have

[Z3]
(T — S .
Qi jgr = ; (,1)5 1 (s B 1>ai+s_1’i+s (p) for 2i+4+r+t<n.

Definition 3. Suppose that G is a («)-concatenated p-group with w(G) = d. We
say that G s straight if the following conditions are fulfilled.

(1) G? = Gita for all ieN.
(2) z € G, and c € G4 implies
2 P(xe)’ = mod Grisiqg forall r,seN.

(3) If gGiy1 is a generator of G;/Git1 then the element gPG,itqy1 is a generator
of Gita/Gita+-

Theorem. C. (Theorem 10 in [3]). Let G be a concatenated p-group of order p™.
Suppose that G is straight with w(G) = d. Suppose further that G has degree of
commutativity t and let a; ; be the associated invariants. Then we have for all i, j

t+j+d+t<n = (aij = airay (D))

Theorem. D. (Corollary 2 in [3]). Let G be an a-concatenated p-group with o of
order p*. Put
s=14+0+p+...+p" ).

Then G is a straight, a-concatenated p-group.

Finally we shall need the following technical lemma, which is a refinement of the
Hall-Petrescu formula (cf. [2],III, Satz 9.4, Hilfsatz 9.5).

Lemma. E. (Lemma 2 in [3]). Let F be the free group on free generators x and
y. Let p be a prime number and n a natural number. Then we have

" yP" = (zy)P ccy . .. epn,
with certain elements
c ey (F)P" and Cpi € fypi(F)pn71
fori=1,...,n, where each cy: has the form
o i n—1 b pnfi
cpi =y, x, ..., x]%P Hv“
D s Ay ) n
pi—1 .

modulo ‘ ‘
Vpit+1(F)P ’ Ypit1r (F)P e (F),
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for certain integers a; and b, and where each v, has the form

Uy = [, 81,5 Spi_1)
with s, € {x,y} and s =y for at least one k in each v,. Furthermore,

a; = —1 (p) for i1=1,...,n.

2.

In this section we shall prove the extension of theorem A to the case p = 2. First
we need a result which will also be useful in the next section.

Proposition 1. Let G be an a-concatenated, straight p-group of order p™ with o of
order p¥. Let d = w(G), and let aij fori,j € N denote G’s invariants with respect
to degree of commutativity 0. Then the following holds.

(1) If n > 1+ p* then d has the form
d=p"(p—1) for some r€{0,...,k—1}.
(2) Suppose that s is a non-negative integer such that d > p*(p — 1). Define
(v)

@;5 = Qipv,jpv
forv=1,...;s4+1 andi,j € N. Then

az(’,vj) = agi)l,j + az(':Uj)Jrl (),

forv=1,...,s+1 and all i,j € N such that p*(i +j + 1) < n.

Proof. Let ¢ € N. Using Lemma E for computation in the semi-direct product
G < a >, we see that

(++) o[ g] = (ala, gi])?" = o [a, i et et e
for given v € N, where putting U =< «, [a, g;] > we have
[, gil"" € Gititods
c €U < Giyatua,
Cpr € 'Yp“(U)pv_u < Gigprt(v—p)d

for u=1,...,v, and where ¢,, ..., c,» have the forms given in Lemma E.

Proof of (1): Suppose that n > 1+ p* and let
m =min{p* + (k — p)d|jp=0,...,k}.
Let v € {0,...,k} be such that
m = p” + (k —v)d,

and suppose that v is unique with this property in {0, ..., k}. Using (++) forv =k
we see that
e= [apk,gl} = g;pk mod G2 if v=0,
and
e=cpr mod Grgo if v>0.

In the first case we deduce 2+ kd > n + 1> 2 + p* and so
m=1+kd>1+p" > pF,
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which is impossible. In the case v > 0 we note that ¢, according to Lemma E
satisfies

k—v k—v
_ - — —P
G =01,04...,a]7P =01+ mod Gpyo.
——

o
From this we deduce that 1+ p” + (k —v)d > n+1 > 24 p*, and so
m=p* + (k—v)d>1+p" > p",

which is impossible. Consequently, there exist two different numbers p and v in
{0,...,k} such that

m=ph+ (k= p)d = p* + (k- v)d.
Since m is minimal, we then easily see that |¢ — v| = 1, and so d has the form
p"(p—1) with r € {0,...,k—1}.
Proof of (2): Suppose that s is a non-negative integer with d > p*(p — 1), and
let v € N be such that 1 <v < s+ 1. Then
PP (v—p+1)d>pt + (v —p)d for p=1,...,v,
and from (++) we conclude that

[oF g] = c;vl mod  Giti4p for ieN,
since
pP’lp—1)+1=> ﬁpsﬂ for s>0.
According to Lemma E we have
e = llongil o, =g, ... 0] 7t = g;rlpv mod  Git14pv,
pv—1 Y

and so
(+++) [9i 0P ] = giype mod  Gijpoin for i€ N.
Now suppose that i, j € N are such that p¥(i + j + 1) < n, and put
m=p’(i+j+1)+1

Consider Witt’s identity

[A,B~',C)P[B,C~ ', AI°|C, A", B]" = ¢
modulo G,,, with:

A=gp, B= o and C= Gijpv -

Using (+ + +) and noting that g,,—1 # e, it then follows that:

a“z(',vj) = az(i)l,j + az(‘,vj)+1 (p)-

O

Theorem 1. Let G be a concatenated, straight 2-group of order 2™ and with w(G) =
2k Put d = 2F.

Then G is metabelian, and if n > 2d then G has degree of commutativity n — 2d.
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Proof. If d = 1 then |G/G?| = 2, and so G is cyclic. But then the statements of
the theorem are clear. So, we assume that k£ > 0.

We now suppose that n > 2d and will show that G has degree of commutativity
n — 2d. If n = 2d this is obviously the case, so we assume that n > 2d and that
G has degree of commutativity ¢ with ¢ < n — 2d — 1. Let a;; be the associated
invariants.

Fors=1,..., %d we have 2s+d+t+1 < n, and using Theorem B and Theorem
C we then find modulo 2

Zd+1 dt1—h
Us 541 = Qs,s+d+1 = Z (1)h1< h—1 )as-‘rh—l,s-l-h
h=1
1d
d—h
=S 0 (1) et )
h=0
and
14
2 _1{d—1—h
Us41l,s = Qs41,5+14+(d—1) = Z(_l)h 1( h—1 >a5+h,8+h+1 (2)
h=1
Now, for h=1,..., %d we have

d—h\ (d—h—-1\d-h
h N h—1 h
and since d is a power of 2 and h < %d , we see that (d;h) and (dgﬁzl) have the

same parity. Using Theorem B (1) we then conclude that

3d

d—h d—h-—1
0= As s+1 + As41,s = Qs s+1 + Z(( h ) + < h—1 ))a5+h,5+h+1
h=1
= Gs,5+1 (2),

for s=1,...,%d . Then Theorem B (4) shows that
a114r =0 (2) for r=0,...,d.
Hence Theorem C gives
a; =0 (2) for all j.
Using this and Theorem B (3) we easily see by induction on 4 that
a;,; =0 (2) for all 4, j.
Consequently, G has degree of commutativity ¢ + 1.

So, G has degree of commutativity n — 2d .

The group G/G14+4 has exponent 2, hence is abelian. If n < 2d the same holds
for the group Gi44. If n > 2d then G114 is abelian since G has then degree of
commutativity n — 2d. Thus, G is metabelian in any case. (]

Theorem 2. Let G be an a-concatenated, straight 2-group of order 2" with a of
order 25. Then the following holds.

(1) If n > 1+ 2% then G has class at the most 2571,

(2) If n > 21 — 3 then G has class at the most 2.
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(3) G has class at the most 2F — 1.

Proof. Let d = w(G). If n > 1+ 2* then according to Proposition 1, d has the form
d = 2" for some r € {0,...,k —1}. Hence, if k = 1 and n > 3 then G is cyclic. If
n < 2 then G is abelian. We may consequently assume that k& > 2.

Suppose that n > 1 + 2¥. According to Theorem 1, G has then degree of
commutativity ¢ = n — 2d. Now, it is easily seen by induction on ¢ that if i € N
and 7 > 2 then

Yi(G) < Gigag(i—1)t-
So, 1 (G) = {e} if

S 2n-2d
(+) v

Using n > 1+ 2% and d = 2" with r € {0,...,k — 1}, an easy calculation shows
that (+) is satisfied if i > 1+ 28~1. (+) is also satisfied if i > 3, provided that
n > 281 3 (note that then n > 21 —3 > 2F 11, since k > 2, whence d < 2k~1).
This proves (1) and (2).

Finally, (3) follows from (1) because G obviously has class at the most 2% — 1 if
n < 2k, O

Our extension of Theorem A to the case p = 2 now follows immediately from
Theorem D and Theorem 2: If G is an a-concatenated 2-group with o of order 2%,
then the normal subgroup

Gl+(1+2+...+2’°*1)

has index
21+2+...+2’“*1

9

and has class at the most 2% — 1.

3.

We now turn our attention to our second objective described in the introduction.
In what follows, p will denote an odd prime number. The content of the main result
of this section, which is Theorem 3 below, is roughly speaking that if G is an
a-concatenated, straight p-group of order p™ with « of order p*, if a;; are the
invariants associated with degree of commutativity 0, and if a; ; is congruent to 0
modulo p whenever i+ is less that a certain number, which is ‘small’ compared with
p*, then a;; can be incongruent to 0 modulo p only if ¢ 4 j is ‘big’ compared with
min{n,w(G)}. Furthermore, G has degree of commutativity 1, if n is sufficiently
large compared with p*.

This result will be a consequence of the following two propositions.

Proposition 2. Let p be an odd prime number and let n, r and ro be natural
numbers. Assume that 3 < r < n — 1. Suppose that we are given integers a; ; for
1,7 € N with i + j < n. Suppose further that the following conditions are satisfied.

(1) a;; =—a;; (p) for i+j<n.
(2) aijy1+aiy1; =a;j (p) Jor i+j+1<n.

(3) i jQkivj + kG j+k + itk =0 (p)  for i+j+k<n.
(4)

a;; =0 (p)  for i+j<r
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(5) apipi =0 (p) for p(i+j) <ro.

6) a1 Z0 (p).

Then the following assertions hold.

(I). Let m be an integer such that 0 < m < min{n —r —1,r —2,p — 1}. Let i be
an integer such that 1 <i < m+r. Then
@i r—itm+1 = bimar,  (p),
where
bim =0 for 1<i<m,
and

. 0 — 1
bim: 1 i+m+1 t
m=(=1) N

(For m = 0, this also holds without the assumption (6)).

) for m+1<i<m-+4r.

(IT). The number r is even.
Ifr <n—2thenr =0 (p).
Ifp+1<r<n—pthenr>rog—p+1.
Proof. Proof of (I): We prove the statement by induction on m.
Since
Qir—it1 + Git1r—i = Qi =0 ()
fori=1,...,r — 1, because of (2) and (4), we deduce the statement for m = 0.
Let © be a natural number such that ¢ < min{n —r — 1,7 — 2,p — 1}. Assume

that the statement in (I) has been proved for 0 <m < pu—1. Since py <n—r—1,
we may consider the congruence (3) for (i,7,k) = (1, u+ 1,7 — 1). This gives
() e84, =0 (p),
since a,—11 =0 (p) according to (4), and since
a1 =0 (p)
according to (4) because p < r — 2. From the induction hypothesis we get
Ap+1,r—1 = —HA1r (),

and since we have 1 < p < p — 1, we then deduce from (6) and (+) that
(++) ar+p =0 (p).
For 2 <i < u+ r, the induction hypothesis and (2) show that
(-) i1 r—ipt2 T Qir—igpl = Gio1p—itp+1 = bic1,u—101,  (D);
from this and (++) we find successively

al,’r'—&-u = 0 (p)7 a277'+,U«—1 = 0 (p)a sty aM,T‘-‘rl = 0 (p)7
because

biciu—1=0 (p) for i< p.

Again, (—) and the induction hypothesis show that

) 1 —2
Wi r—ipt1 = (1)Z+“+1<

- 1> a1, — A—1,r—it+pu+2 (p),
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fori=p+1,...,u+r , which together with a,,4+1 =0 (p) gives us successively

i i—1
Qir—itpt1 = (—1) +HJrl( 1 >a1,r (p)

fori=p+1,...,p0+7.
Thus the statement in (I) holds for m = pu .
This proves (I).

r+1

Proof of (II): Suppose that r is odd and put ¢ = *£=.

Using (I) for m = 0 we see that
aip—i1 = (1) a1, 0 (p).

Since i = r — i + 1, this contradicts (1) because p is odd. So, r is even.

Suppose that » <n — 2. Then we may use (I) for (m =1, i = 1) and for

(m=1,1=r+41) (recall that r > 3). Using (1) this gives
0=—ai,+1 = ar1,1 = (1) rar, (),

and so r =0 (p) because of (6).

Suppose that p+1 <r <n—p . From the above it follows that r =0 (p). We
may use (I) for m =p—1 and ¢ = p. This gives

Ap,r = A1,r #0 (p)

Since r =0 (p), we then deduce from (5) that p+r > rg + 1. O

Definition 4. We define the function f(n) for natural numbers n > 2 as follows.
If v is a non-negative integer such that:

2p1} S n S 2pU-‘r17

we put
n

fm) = 2[5

]

Proposition 3. Let G be a concatenated, straight p-group (p odd) of order p™. Let
d = w(G) and let s be the largest non-negative integer such that d > p*~(p — 1).
Let a;; fori,j € N be the invariants of G associated with degree of commutativity
0. Assume that

a;; =0 (p) for i+j5 <3p°.
Then the following statements hold.
(I). If n<d+p*Tt +p* —1 then

a; ;=0 (p)  for i4+j< f(n).

(II). If d =p*(p — 1) and n > p**t1 + p® then G has degree of commutativity 1.
Proof. Proof of (I): For p=0,...,s we put
n# = [npi'u]a
and
a%) = Qpniprj for 4,57 €N.
Then for 4 =0,...,s we have

(1) az(-f;-) = —agf? (p) for i+ j<mny,
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(2) (1) (k)

a;' i taly " (p) for i+j+1<n,,

5]

(3) a%)a;’fi)ﬂ + a;fgagglk + a,(;fi)agf‘k)ﬂ =0 (p) for i+j4+k<n,.

(1) and (3) follow for arbitrary p from the fact that (1) and (3) hold for p = 0, cf.
Theorem B (1) and B (2). (2) follows from Proposition 1.

We see from the definition of f(n) that we may assume that n has form
n:2mpl with 1 <m <p.
We may also assume that n > 3p®, which gives | > s. Furthermore,
2 —1=p(p— 1) +p +p =1 > d+p T 4 p* — 1> =2mp' > 2P,
whence s > [. Thus we assume that
n = 2mp° with 1 <m <p.
Then
n, = 2mp*H for u=0,...,s.
Now we show by induction on s — u that if p € {0,..., s} then
a =0 (p) for i+j< fny).
For 4 = 0 this is precisely the statement in (I).
Suppose first that 4 = s. By assumption we have
GEZ?EO (p) for i+j<3.

We also have ngy = 2m < 2p and so f(ns) = ns. Now assume that not all of the
numbers
al’)  with i+j<n,
are congruent to 0 modulo p. Let r4 € N be largest possible such that
agfj) =0 (p) for i+j<r,.

Then 3 < ry; <ng — 1. Now we see that we may use proposition 2 with r = rg and
ro = ns (note that ny < 2p, and that we must have

af). 20 ()
because of (2)). So, rs is even. If ry < ns — 2 then r; is divisible by p and so
Ts 2 2p 2 ng.

Consequently, we have ry > ns — 1, and since ¢ and ng are both even, we get
rs = Ng, contradiction.

Suppose then that u < s and that
aEZH) =0 (p) for i+ j < f(nu41)-
Assume that not all of the numbers
agf;-) with ¢+7 <n,
are congruent to 0 modulo p, and let 7, € N be largest possible such that

agf;) =0 (p) for i+j<r,..



SOME REMARKS ON A CERTAIN CLASS OF FINITE p-GROUPS. 11

Then we have r,, < n, —1, and because of the assumptions of the theorem, we have
r, > 3p°~# > p+ 1. Furthermore,

W) _ Lt —_ (»)

pipj ,J

for  p(i+j) < pf(nu+1) = prus1 = nu.
Thus, we see that we may use Proposition 2 with r = r, and ro = n,;note that we
must have

al,r,L 7’i~ 0 (p)

So, if r, <n, —pthenr, >n, —p+1;s0, 7, >n, —p+1. Since u < s, we
haven, =0 (p), and so r, < n, —2 is impossible since r,, would then be divisible
by p and so r, = n,. Hence, r, > n, — 1, and since r,, and n, are both even, we
deduce r,, = n,, contradiction.

This proves (I).

Proof of (II): We use induction on n. For n = p**! + p® the statement follows
from (I) since we have f(n) = n in this case.

Thus we assume that n > p**t! + p*. Considering G//G,, we deduce from the
induction hypothesis that

a;; =0 (p) for 4,5 <n-—1.
If not all of the numbers a; ; are divisible by p, we find (considering (2)) that
a1n-1Z0 (p).
But since n — 1 > d we find using Theorem C that
1p—1 = A1lpn—1—-d = 0 (p);
contradiction. (]
Theorem 3. Let G be an a-concatenated, straight p-group (p odd) of order p™ and

with a of order p*. Let aij fori,5 € N be G’s invariants associated with degree of
commutativity 0, and assume that

a;,; =0 (p) for i4j <3pFt
Put d = w(G) and let s be the largest non-negative integer with
d>ptp—1).
Then we have
ai; =0 (p)  for i+j< f(min{n,d+p**" +p°—1}).
Furthermore, if n > p* 4+ pF=1 then G has degree of commutativity 1.

Proof. First note that d < p*: For if n > 1+ p* then d < p*~!(p — 1) according to
Proposition 1. And if n < p* then d < n < p*. So, s < k.
If s <k — 1 then by using Proposition 3 on
G/Gaypstiipe
we obtain
a;; =0 (p) for i+j < f(min{n,d+p*™ +p* —1}).

Suppose then that s = k. According to Proposition 1 we must then have n < p*.
Using Proposition 3 on

G/kafl(p—l)-s-l’
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we find
a;,; =0 (p) for i+j<plp-1).
But since p*~1(p — 1) < d < n < p*, we find

f(min{n,d +p**' +p* —1}) = f(n) =p* (p—1).

Finally, suppose that n > p* 4+ p*~1. Then according to Proposition 1 we have
d=p"(p—1) for some r € {0,...,k—1}.

Then s = r < k — 1. Then Proposition 3 and the assumption of the theorem imply
that G has degree of commutativity 1. O

Suppose that G is a finite p-group of maximal class of order p” where p is an
odd prime number and n > 4. Then for any maximal subgroup of G there exists
an inner automorphism of G which, when restricted to this subgroup, has order p
and exactly p fixed points (see Theorem 3 in [3]). In particular, the group

G1 = Ca(12(G)/1(@)),
which is a maximal subgroup of GG, is a-concatenated for some automorphism « of
order p. Further, the concatenated p-group G is straight (see Satz III, 14.16 in
[2] and Theorem 6 in [3]). If a; ; are the invariants of G associated with degree of
commutativity 0, then by definition of G; we have

a12=0 (p).
Note that the order of G is p"~!. We say that G is exceptional, if G; does not

have degree of commutativity 1. We conclude from Theorem 3 that if n > p + 2
then G is not exceptional. Further, if 4 <n < p+ 1 then

a;,; =0 (p) for i+j<f(n—-1).
But f(n—1)=n—1ifnis odd, and f(n — 1) =n — 2 if n is even.
Hence we see that if G is exceptional then n < p+1 and n is even. Furthermore,
G/Gp—1, which is a finite p-group of maximal class, is never exceptional. These

statements are classical results of Blackburn concerning finite p-groups (p odd) of
maximal class. Thus, Theorem 3 may be viewed as a generalization of these results.
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