
A TABLE OF A5-FIELDS.

JACQUES BASMAJI, IAN KIMING

For an extension K of Q with Galois group isomorphic to A5, we shall by a root
field of K mean any extension of Q of degree 5 contained in K. Table 1 is a table
containing all A5-extensions of Q which are non-real and for which the discriminant
of a root field is at the most 20832. This table was used in section 4 of I, and our
present purpose is to describe how the table was obtained.

Our starting point is the following theorem of Hunter.

Theorem. (cf. [3]) Suppose that F/Q is an extension of degree 5 and discriminant
D. Then there is an algebraic integer θ in F such that

F = Q(θ),

and such that, denoting by θ1 = θ, θ2, θ3, θ4, θ5 the conjugates of θ,∑
i

θi ∈ {0,±1,±2},

and ∑
i

|θi|2 ≤
(

8
5
|D|
) 1

4

.

Let D be a positive real number. If K/Q is a non-real Galois extension with
Galois group isomorphic to A5 such that the discriminant of a root field of K is
bounded by D, then we conclude that K is the splitting field of a polynomial

f(x) = x5 + a1x
4 + a2x

3 + a3x
2 + a4x+ a5 ∈ Z[x],

such that
a1 ∈ {0,±1,±2},

and, denoting by θ1, θ2, θ3, θ4, θ5 the roots of f ,∑
i

|θi|2 ≤
(

8
5
D

) 1
4

.

We want to bound the coefficients of f .

Suppose first that a1 = 0. Now, f(x) has 1 real root and 2 pairs of complex
conjugate roots, so we may write:

θ1 = r , θ2 = σ1 + it1 , θ3 = σ1 − it1 , θ4 = σ2 + it2 , θ5 = σ2 − it2 ,
with r, σ1, σ2, t1, t2 ∈ R. We have:

r + 2σ1 + 2σ2 =
∑

i

θi = 0,

i.e:
r = −2(σ1 + σ2).

1
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We then compute:∑
|θi|2 = 6σ2

1 + 8σ1σ2 + 6σ2
2 + 2t21 + 2t22 ,

a2 = −3σ2
1 − 4σ1σ2 − 3σ2

2 + t21 + t22 ,

a3 = 2σ3
1 + 8σ2

1σ2 + 8σ1σ
2
2 + 2σ3

2 + 2σ1t
2
1 + 2σ2t

2
2 ,

a4 = −4σ3
1σ2 − 7σ2

1σ
2
2 − 4σ1σ

3
2 − 3σ2

1t
2
2 − 3σ2

2t
2
1 − 4σ1σ2t

2
1

−4σ1σ2t
2
2 + t21t

2
2 .

From this it follows immediately that

|a2| ≤
1
2

∑
|θi|2 .

Put α1 = σ2
1 + t21 and α2 = σ2

2 + t22. Then:∑
|θi|2 = 4σ2

1 + 8σ1σ2 + 4σ2
2 + 2α1 + 2α2 ,

a3 = 8σ2
1σ2 + 8σ1σ

2
2 + 2σ1α1 + 2σ2α2 ,

a4 = −4σ2
1α2 − 4σ1σ2α1 − 4σ1σ2α2 − 4σ2

2α1 + α1α2 .

If we fix the value of
∑
|θi|2 to be β, we may then seek the extremal points of

a3 and a4 considered as functions of σ1, σ2, α1, α2 under the restrictions

α1 ≥ σ2
1 and α2 ≥ σ2

2 .

It turns out to be unproblematic to find these extremal points by applying the
Langrangian method. We shall not repeat the computations here, but merely note
that one finds the following possible extremal values for a3 and a4:

± 1
3
√

30
β

3
2 , ± 1

3
√

3
β

3
2 , ±1

5
β

3
2 , ± 1

2
√

5
β

3
2 , for a3 ,

and

− 4
61
β2 , − 1

20
β2 , − 3

80
β2 , 0 ,

1
16
β2 ,

1
15
β2 ,

3
40
β2 , for a4 .

For a5 we may use the inequality between arithmetic and geometric means:(
|a5|2

) 1
5 =

(∏
|θi|2

) 1
5 ≤ 1

5

∑
|θi|2 ,

i.e.:

|a5| ≤
(

1
5

∑
|θi|2

) 5
2

.
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Noting that we may well assume that a5 is positive, we conclude that (in the
case a1 = 0):

−1
2
β(D) ≤ a2 ≤ 1

2
β(D) ,

− 1
2
√

5
β(D)

3
2 ≤ a3 ≤ 1

2
√

5
β(D)

3
2 ,

− 4
61
β(D)2 ≤ a4 ≤ 3

40
β(D)2 ,

1 ≤ a5 ≤
(

1
5
β(D)

) 5
2

,

with

β(D) =
(

8
5
D

) 1
4

.

If a1 6= 0, we first note that the bounds for a5 obviously still hold. Secondly, we
consider the polynomial

f̃(x) = f

(
x− 1

5
a1

)
= x5 + ã2x

3 + ã3x
2 + ã4x+ ã5 ,

where:

a2 = ã2 +
2
5
a2
1 ,

a3 = ã3 +
3
5
a1ã2 +

2
25
a3
1 ,

a4 = ã4 +
2
5
a1ã3 +

3
25
a2
1ã2 +

1
125

a4
1 .

Now, f̃(x) has the roots θi+ 1
5a1, i = 1, 2, 3, 4, 5, and we find (using

∑
θi = −a1):∑

i

|θi +
1
5
a1|2 = −1

5
a2
1 +

∑
i

|θi|2.

The above considerations then give us bounds for ã2, ã3, ã4 in terms of β̃(D) =
− 1

5a
2
1 + β(D), and this of course gives us immediately bounds for a2, a3, a4.

For the case:
D = 20832,

we obtain the following bounds:

For a1 = 0 : −25 ≤ a2 ≤ 25 ,
−82 ≤ a3 ≤ 82 ,
−172 ≤ a4 ≤ 197 ,

1 ≤ a5 ≤ 337 .

For a1 = ±1 : −25 ≤ a2 ≤ 25 ,
−97 ≤ a3 ≤ 97 ,
−207 ≤ a4 ≤ 231 ,

1 ≤ a5 ≤ 337 .
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For a1 = ±2 : −23 ≤ a2 ≤ 27 ,
−108 ≤ a3 ≤ 108 ,
−236 ≤ a4 ≤ 260 ,

1 ≤ a5 ≤ 337 .

This gives us about 7.7 · 109 polynomials, and these polynomials are now inves-
tigated computationally through the following steps:

(A) The polynomial is eliminated, if its discriminant is not a square modulo some
prime in {3, 5, 7, 11, 13, 17, 19, 23, 29}.

(B) For the remaining polynomials the polynomial discriminant is calculated, and
the polynomial is eliminated, if this discriminant is not a square in Z.

(C) The reducible survivors from (B) are eliminated.

(D) For the remaining polynomials it is tested whether the splitting field has Galois
group isomorphic to A5 or not. If not, the polynomial is eliminated.

(E) Among the remaining polynomials, those are selected for which the field dis-
criminant of a field obtained by adjoining 1 root of the polynomial to Q is ≤ 20832.

(F) These selected polynomials are put in classes such that 2 polynomials are in
the same class, if and only if their splitting fields are identical. From each class, 1
polynomial is chosen.

We shall briefly describe the methods used to perform these steps.

(A), (B) : The discriminant (mod p or over Z) of a polynomial

f(x) = x5 + a1x
4 + a2x

3 + a3x
2 + a4x+ a5 ∈ Z[x],

is the resultant R(f, f ′), where

f ′(x) = 5x4 + 4a1x
3 + 3a2x

2 + 2a3x+ a4,

i.e., it is the determinant of the matrix:

1 a1 a2 a3 a4 a5 0 0 0
0 1 a1 a2 a3 a4 a5 0 0
0 0 1 a1 a2 a3 a4 a5 0
0 0 0 1 a1 a2 a3 a4 a5

5 4a1 3a2 2a3 a4 0 0 0 0
0 5 4a1 3a2 2a3 a4 0 0 0
0 0 5 4a1 3a2 2a3 a4 0 0
0 0 0 5 4a1 3a2 2a3 a4 0
0 0 0 0 5 4a1 3a2 2a3 a4


.

Introducing
ci = −2ai+1 + a1ai , for i = 1, 2, 3, 4,

and
c5 = a1a5 ,
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we see that the discriminant of f(x) is the determinant of:
1 a1 a2 a3 a4 a5

c4 − a1c1 c3 − a2c1 c2 − a3c1 c1 − a4c1 −a5c1 0
0 c4 − a1c1 c3 − a2c1 c2 − a3c1 c1 − a4c1 −a5c1
0 c1 c2 c3 c4 c5
0 −a1 −2a2 −3a3 −4a4 −5a5

0 5 4a1 3a2 2a3 a4


This determinant is computed using Gauß elimination to triangulize this matrix.

Of course one could also use explicit formulas expressing the polynomial dis-
criminant as a polynomial in the ai’s, but the above method is considerably faster.

In step (A) it is convenient first to generate tables of all polynomials over Z/Zp
for which the discriminant is a square in Z/Zp, for p = 3, 5, 7, 11, 13, 17, 19, 23, 29.
A polynomial f(x) ∈ Z[x] is then tested by reducing its coefficients modulo p and
checking whether this reduction occurs in the table belonging to p. If this is not
the case for one of the above primes, the polynomial is eliminated.

(C), (F) : Here the problem is to factorize a polynomial f(x) ∈ Z[x] either over
Q (for step (C)) or over an extension of degree 5 over Q (for step (F)), where of
course the latter case is the most complicated. The algorithm given in [6] was used.

(D) : The Galois group of the splitting field of any polynomial which is tested in
step (D) is isomorphic to a transitive subgroup of A5. The question is whether this
Galois group is solvable or not. Let us recall how this question can be resolved by
use of the ‘Cayley resolvent’.

Consider the symmetric group S5 on the symbols 1, 2, 3, 4, 5, and in it the per-
mutations:

σ = (1 2 3 4 5) , τ = (1 2 4 3).

Then σ and τ2 generate a subgroup of A5 isomorphic to the dihedral group of order
10. The elements

1, (1 2 5), (1 5 2), (1 4 5), (1 5 4), (2 3 5)

form a complete set of (right) coset representatives of 〈σ, τ2〉 in A5. Of course,
S5 = A5∪τA5. Consider the field Q(x1, x2, x3, x4, x5) with the action of S5 through
permutation of the xi’s. Let a1, a2, a3, a4, a5 be the elementary symmetric polyno-
mials in the xi, i.e.:∏

i

(t− xi) = t5 + a1t
4 + a2t

3 + a3t
2 + a4t+ a5 .

Let v = x1x2 + x2x3 + x3x4 + x4x5 + x1x5. Then both v and τv are invariant
under 〈σ, τ2〉. Hence the element

u1 = v−τv = x1x2 +x2x3 +x3x4 +x4x5 +x1x5−x2x4−x1x4−x1x3−x3x5−x2x5
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is also invariant under 〈σ, τ2〉. It has 6 translates under A5:

u2 = (1 2 5)u1 = x2x5 + x3x5 + x3x4 + x1x4 + x1x2

−x4x5 − x2x4 − x2x3 − x1x3 − x1x5 ,

u3 = (1 5 2)u1 = x1x5 + x1x3 + x3x4 + x2x4 + x2x5

−x1x4 − x4x5 − x3x5 − x2x3 − x1x2 ,

u4 = (1 4 5)u1 = x2x4 + x2x3 + x3x5 + x1x5 + x1x4

−x2x5 − x4x5 − x3x4 − x1x3 − x1x2 ,

u5 = (1 5 4)u1 = x2x5 + x2x3 + x1x3 + x1x4 + x4x5

−x1x2 − x1x5 − x3x5 − x3x4 − x2x4 ,

u6 = (2 3 5)u1 = x1x3 + x3x5 + x4x5 + x2x4 + x1x2

−x3x4 − x1x4 − x1x5 − x2x5 − x2x3 .

Furthermore,

τu1 = −u1 , τu2 = −u2 , τu3 = −u4 ,

τu4 = −u6 , τu5 = −u3 , τu6 = −u5 .

Define b1, b2, b3, b4, b5, b6 by:∏
i

(y − ui) = y6 + b1y
5 + b2y

4 + b3y
3 + b4y

2 + b5y + b6 .

Now, b1, b3, b5 are skew-symmetric in the xi’s, and are therefore multiples of

∆ =
∏
i<j

(xj − xi)

in Q(x1, . . . , x5). Since b1, b3, b5,∆ are homogeneous in the xi’s of degrees 2, 6, 10
and 10 respectively, we conclude that:

b1 = b3 = 0 ,
b5
∆
∈ Q .

Substituting (for example) 0, 1,−1, 2,−2 for x1, . . . , x5, one easily finds:

b5 = −32∆ .
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The elements b2, b4, b6 are symmetric in the xi’s, and they are therefore polyno-
mials in the ai’s. Using the computer-algebra system MAPLE, we found:

b2 = −3a2
2 + 8a1a3 − 20a4 ,

b4 = 3a4
2 − 16a1a

2
2a3 + 16a2

1a
2
3 + 16a2

1a2a4 − 64a3
1a5 + 16a2a

2
3 − 8a2

2a4

−112a1a3a4 + 240a1a2a5 + 240a2
4 − 400a3a5 ,

b6 = −a6
2 + 8a1a

4
2a3 − 16a2

1a
3
2a4 − 16a2

1a
2
2a

2
3 + 64a3

1a2a3a4 − 64a4
1a

2
4

−16a3
2a

2
3 + 28a4

2a4 + 64a1a2a
3
3 − 112a1a

2
2a3a4 + 48a1a

3
2a5

−128a2
1a

2
3a4 + 224a2

1a2a
2
4 − 192a2

1a2a3a5 + 384a3
1a4a5 + 224a2a

2
3a4

−64a4
3 − 176a2

2a
2
4 − 80a2

2a3a5 − 64a1a3a
2
4 + 640a1a

2
3a5

−640a1a2a4a5 − 1600a2
1a

2
5 + 320a3

4 − 1600a3a4a5 + 4000a2a
2
5 .

The conclusion is, that if a polynomial

f(x) = x5 + a1x
4 + a2x

3 + a3x
2 + a4x+ a5 ∈ Q[x]

is irreducible and has discriminant d2 with d ∈ Q, then its Galois group is isomor-
phic to A5, if and only if the polynomial:

y6 + b2y
4 + b4y

2 − 32dy + b6 ,

where b2, b4, b6 are defined in terms of the ai’s by the above formulas, does not have
a rational root.

Remark 1. The above formula for b4 does not quite coincide with the formula
given on p. 99 in [2].

(E) : To compute this field discriminant we used the computer-algebra system
SIMATH. The algorithm involved is described in [4], chap. 4. See also [1].

In all, 238 fields emerged from this process. Only one of them, namely the field
no. 176 in table 1, is real; it is marked with a star for this reason. To test whether
a given field was real, we used the following well-known method (cf. [5], p. 259 and
p. 284):

The irreducible polynomial:

f(x) = x5 + a1x
4 + a2x

3 + a3x
2 + a4x+ a5 ∈ Z[x]

has 5 real roots if and only if the matrix
4a2

4−10a3a5 3a3a4−15a2a5 2a2a4−20a1a5 a1a4−25a5

3a3a4−15a2a5 6a2
3−10a2a4−20a1a5 4a2a3−15a1a4−25a5 2a1a3−20a4

2a2a4−20a1a5 4a2a3−15a1a4−25a5 6a2
2−10a1a3−20a4 3a1a2−15a3

a1a4−25a5 2a1a3−20a4 3a1a2−15a3 4a2
1−10a2


and its principal minors all have positive determinant.

The 238 fields are listed in table 1. For each field the smallest possible conductor
of a lifting to a 2-dimensional Galois representation over Q of (one, hence any of)
the 2-dimensional projective representation(s) associated with the field, is displayed.



8 JACQUES BASMAJI, IAN KIMING

This minimal conductor can be computed from the knowledge of the structure of
the associated local projective representations of Gal(Qp/Qp), where p runs over
the ramified prime numbers, by using the theory given in I. But, as has been shown
by Buhler (cf. [2]), it may also in most cases (and in fact in all cases of table 1) be
determined alone from the knowledge of the type of factorization of the ramified
prime numbers in a root field of the field in question.

The notation of table 1 is as follows:
√
d denotes the square root of the dis-

criminant of a root field of the given A5-extension. ‘polynomial’ denotes a gener-
ating equation of the field given by its coefficients (a1, a2, a3, a4, a5). ‘conductor’
denotes the above-mentioned minimal conductor of liftings of the associated pro-
jective representations. Under ‘ramified primes’ the type of factorization of each of
the ramified prime numbers in the root field is given. The notation:

p = fe1
1 . . . fes

s

means that (p) factorizes as:
(p) = pe1

1 . . . pes
s ,

where the residue degree of the prime pi is fi.

Table 2 lists the 238 fields ordered by the size of the minimal conductor mentioned
above. The notation in table 2 is the same as for table 1.

It should be noted that the book [2] of J. P. Buhler contains also a table of
A5-fields with small discriminants of the corresponding root fields. In fact, one of
the examples occurring in his table served as a motivation for fixing the bound
D ≤ 20832 above. The main difference between his table and ours is that the above
analysis of the bounds of the polynomial coefficients is lacking in [2]; this means
that one does not know for what bound on D his table is complete (though it is
estimated in [2] that the table in [2] is complete for the bound D ≤ 2002, cf. pp.
42–43 in [2]). But for use in section 5 of I (and in VI) we must have completeness for
the bound D ≤ 20832, and for this bound the table in [2] is certainly not complete
as a comparison with our table 1 shows. Thus, for the purposes in section 5 of I
( and in VI) the table of Buhler, though it served as a starting point, would have
been insufficient.
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