STRUCTURE AND DERIVED LENGTH OF FINITE *p*-GROUPS POSSESSING AN AUTOMORPHISM OF *p*-POWER ORDER HAVING EXACTLY *p* FIXED POINTS.

IAN KIMING

1. INTRODUCTION.

Everywhere in this paper p denotes a prime number.

In [1] Alperin showed that the derived length of a finite *p*-group possessing an automorphism of order p and having exactly p^n fixed points is bounded above by a function of the parameters p and n.

The purpose of this paper is to prove the same type of theorem for the derived length of a finite p-group possessing an automorphism of order p^n having exactly p fixed points. However, we will restrict ourselves to the case where p is odd.

A strong motivation for the consideration of this class of finite *p*-groups is induced by the fact that the theory of these groups is strongly similar to certain aspects of the theory of finite *p*-groups of maximal class. For the theory of finite *p*-groups of maximal class the reader may consult [2] or [4], pp. 361-377.

In section 3 we derive a more useful description of the groups in question and we show that the theory of these objects is similar to the theory of finite p-groups of maximal class. We illustrate the ideas in abelian p-groups.

In section 4 we study p-power and commutator structure.

Based on the results of section 4 we prove the main theorems in section 5. The method leading to the proof of our main theorems does not resemble Alperin's method. Our method may be described as a detailed analysis of commutator- and p-power-structure of the groups in question. The central method is a development of a method used by Leedham-Green and McKay in [5], and is of 'combinatorial' nature.

2. NOTATION

The letter e always denotes the neutral element of a given group.

If x and y are elements of a group we write

$$x^{y} = y^{-1}xy$$
 and $[x, y] = x^{-1}y^{-1}xy$.

Then we have the formulas

$$[x, yz] = [x, z][x, y][x, y, z]$$
 and $[xy, z] = [x, z][x, z, y][y, z]$

(where $[x_1, ..., x_{n+1}] = [[x_1, ..., x_n]_{n+1}]).$

If α is an automorphism of a group G we write x^{α} for the image of x under α .

If α is an automorphism of a group G, and if N is an α -invariant, normal subgroup of G, then we also write α for the automorphism induced by α on G/N.

IAN KIMING

For a given group G, the terms of the lower central series of G are written $\gamma_i(G)$ for $i \in \mathbb{N}$.

If G is a finite p-group, then $\omega(G) = k$ means that $G/G^p = p^k$.

3.

We now define a certain class of finite p-groups which turns out to be precisely the objects in which we are interested, that is the finite p-groups possessing an automorphism of p-power order having exactly p fixed points.

Definition 1. Suppose that G is a finite p-group. We say that G is concatenated if and only if G has:

(i) a strongly central series

$$G = G_1 \ge G_2 \ge \ldots \ge G_n = \{e\}$$

(putting $G_k = \{e\}$ for $k \ge n$, 'strongly central' means that $[G_i, G_j] \le G_{i+j}$; for all i, j),

(ii) elements $g_i \in G_i$, $i = 1, \ldots n$, and

(iii) an automorphism α

such that

(1) $|G_i/G_{i+1}| = p$, for i = 1, ..., n-1,

- (2) G_i/G_{i+1} is generated by g_iG_{i+1} , for i = 1, ..., n,
- (3) $[g_i, \alpha] := g_i^{-1} g_i^{\alpha} \equiv g_{i+1} \mod G_{i+2}, \text{ for } i = 1, \dots, n-1.$

In the situation of definition 1 we shall also say that G is α -concatenated. It is easy to see that α has p-power order whenever α is an automorphism of the finite p-group G such that G is α -concatenated.

If G is a finite p-group, then the statement 'G is α -concatenated' means that G possesses an automorphism α such that G is α -concatenated.

Whenever G is given as an α -concatenated p-group, we shall assume that a strongly central series $G = G_1 \ge G_2 \ge \ldots$ and elements $g_i \in G_i$ have been chosen so that conditions (1), (2) and (3) in definition 1 above are fulfilled; the symbols G_i and g_i then always refer to this choice.

Proposition 1. Suppose G is an α -concatenated p-group. Then for all $i \in \mathbb{N}$, G_{i+1} is the image of G_i under the mapping

$$x \mapsto x^{-1} x^{\alpha} = [x, \alpha] ,$$

and if G_i/G_{i+1} is generated by xG_{i+1} , then the group G_{i+1}/G_{i+2} is generated by $[x, \alpha]G_{i+2}$.

Proof. Suppose that G has order p^{n-1} . Then $[g_{n-1}, \alpha] = e$ and so $[g_{n-1}^a, \alpha] = e$ for all a. This shows the assertions for all $i \ge n-1$. Assume then that the enunciations have been proved for $i \ge k+1$, where $1 \le k < n-1$. If then $x \in G_k - G_{k+1}$, we write $x = g_k^a y$, where $a \in \{1, \ldots, p-1\}$ and $y \in G_{k+1}$. Then,

$$[x,\alpha] = [g_k^a,\alpha][g_k^a,\alpha,y][y,\alpha]$$

whence

$$[x, \alpha] \equiv [g_k, \alpha]^a \mod G_{k+2}$$

 $\mathbf{2}$

since it is easy to see that $[g_k^r, \alpha] \equiv [g_k, \alpha]^r \mod G_{k+2}$ for all r. Thus we deduce

 $[x,\alpha] \equiv g_{k+1}^a \mod G_{k+2} \ .$

As a consequence we have demonstrated the last enunciation for i = k and that the image of G_k under the mapping $x \mapsto [x, \alpha]$ is contained in G_{k+1} . It also follows that the group of fixed points of α in G is G_{n-1} .

Then for $x, y \in G_k$,

$$[x,\alpha] = [y,\alpha] \Leftrightarrow yx^{-1} = (yx^{-1})^a \Leftrightarrow yx^{-1}inG_{n-1}$$

and since $G_{n-1} \leq G_k$, we see that the image of the mapping $x \mapsto [x, \alpha]$ restricted to G_k has order

$$|G_k:G_{n-1}| = \frac{1}{p}|G_k| = |G_{k+1}|$$
.

Thus this image must be all of G_{k+1} .

Proposition 2. Let G be a finite p-group and let α be an automorphism of p-power order of G. Then the following statements are equivalent:

(1) G is α -concatenated.

(2) α has exactly p fixed points in G.

Proof. (1) implies (2): If G has order p^{n-1} then Proposition 1 implies that α 's group of fixed points in G is G_{n-1} ; but $|G_{n-1}| = p$.

(2) implies (1): We show by induction on |G| that G is α -concatenated. Of course we may assume that |G| > p.

If N is an α -invariant, normal subgroup of G, it is well-known that α has at the most p fixed points in G/N (xN is a fixed point if and only if $x^{-1}x^{\alpha} \in N$; $x^{-1}x^{\alpha} = y^{-1}y^{\alpha}$ if and only if yx^{-1} is a fixed point of α in G). Since the order of α is a power of p, α must then have exactly p fixed points in G/N.

Let F be the group of fixed points of α in G. Since α has p-power order, and since |F| = p, F is contained in the center of G. From the inductional hypothesis we deduce that G/F is α -concatenated. Therefore there exists a strongly central series

$$G/F = G_1/F \ge \ldots \ge G_n/F = \{e\}$$

and elements $g_i \in G_i$ such that

 G_i/G_{i+1} has order p,

 G_i/G_{i+1} is generated by g_iG_{i+1} for $i = 1, \ldots, n-1$,

and

 $[g_i F, \alpha] \equiv g_{i+1} F \mod G_{i+2}/F$ for $i = 1, \dots, n-2$.

Then

$$[g_i, \alpha] \equiv g_{i+1} \mod G_{i+2} \quad \text{for } i = 1, \dots, n-2 ,$$

and $e \neq [g_{n-1}, \alpha] \in F$. Putting $g_n := [g_{n-1}, \alpha]$, we then have that g_n generates F. Put $G_{n+i} = \{e\}$ for $i \in \mathbb{N}$. Then we only have to show that the series

$$G = G_1 \ge G_2 \ge \ldots \ge G_n = F \ge G_{n+1} = \{e\}$$

is strongly central. Consider the semidirect product $H = G < \alpha >$. Since the terms of the series are all α -invariant we get $\gamma_i(H) \leq G_i$ for $i \geq 2$.

Since $[G_1, \underbrace{\alpha, \ldots, \alpha}_{i-1}] \in G_i - G_{i+1}$ if $G_i \neq \{e\}$, we see that $\gamma_i(H) = G_i$ for $i \ge 2$.

Then

$$[G_i, G_j] \le [\gamma_i(H), \gamma_j(H)] \le \gamma_{i+j}(H) = G_{i+j}$$

for all $i, j \in \mathbb{N}$.

Corollary 1. If G is a finite, α -concatenated p-group, then the only α -invariant, normal subgroups of G are the G_i for $i \in \mathbb{N}$.

Proof. Suppose that N is an α -invariant, normal subgroup of G. Since α has p-power order, α has exactly p fixed points in N. Thus α 's group of fixed points in G is contained in N. By induction on |G| the statement follows immediately. \Box

The next proposition shows that the theory of finite, concatenated p-groups is connected to certain aspects of the theory of finite p-groups of maximal class.

Proposition 3. Let G be a finite p-group.

Then G is α -concatenated for some automorphism α of order p, if and only if G can be embedded as a maximal subgroup of a finite p-group of maximal class.

Proof. Suppose that G is α -concatenated where $O(\alpha) = p$. Then G is embedded as a maximal subgroup of the semidirect product $H = G < \alpha >$. By Proposition 1 we see that H has class n - 1 if G has order p^{n-1} . Thus H is a finite p-group of maximal class.

Suppose conversely that H is a finite p-group of maximal class and order p^n . Let U be a maximal subgroup of H. We have to show that U is α -concatenated for some automorphism α of order p and may assume that $n \geq 4$.

Put $H_i = \gamma_i(H)$ for $i \ge 2$, and $H_1 = C_H(H_2/H_4)$. It is well-known that

$$H_1 = C_H(H_i/H_{i+2})$$
 for $i = 2, ..., n-3$

this is also true for i = n - 2 if p = 2 (see [4], p. 362). Since H has p + 1 maximal subgroups, we deduce the existence of a maximal subgroup U_1 of H such that U_1 is different from U and from

$$C_H(H_i/H_{i+2})$$
 for $i = 2, ..., n-2$.

If $U = \langle u, H_2 \rangle$ and $U_1 = \langle u_1, H_2 \rangle$ then H is generated by u and u_1 . Suppose that $s \in C_H(u_1) \cap U$ and write $s = u_1^a u^b x$ with $x \in H_2$. Then u_1 commutes with $u^b x$. Since H is not abelian, we must have $b \equiv 0$ (p). Then $s = u_1^a y$ where $y \in H_2$. Since $s \in U \neq U_1$ we must have $a \equiv 0$ (p). Then $s \in H_2$. Since

$$u_1 \notin C_H(H_i/H_{i+2})$$
 for $i = 2, ..., n-2$

we deduce $s \in H_{n-1} = Z(H)$. If α denotes the restriction to U of the inner automorphism induced by u_1 , then consequently α has exactly p fixed points in U. Then U is α -concatenated according to Proposition 2. Furthermore,

$$u_1^p \in C_H(U_1) \cap H_2 \leq C_H(U_1) \cap U = Z(H)$$

so α has order p.

Next we determine the structure of finite abelian, concatenated *p*-groups. The purpose is to provide some simple examples that will display certain phenomena occurring quite generally.

Proposition 4. Let U be a finite abelian, concatenated p-group.

Then U has type

$$(\underbrace{p^{\mu+1},\ldots,p^{\mu+1}}_{s},\underbrace{p^{\mu},\ldots,p^{\mu}}_{d-s}) \quad for \ some \ \mu \in \mathbb{N}, \ s \ge 0, \ d > s \ .$$

Proof. Suppose that U is α -concatenated. Let $\omega(U) = p^d$. Now, U/U^p is α concatenated so we deduce the existence of elements $u_1, \ldots u_d \in U$ and $u \in U^p$ such that $U = \langle u_1, \ldots u_d \rangle$ and

$$u_i^{\alpha} = u_i u_{i+1}$$
 for $i = 1, \dots, d-1, \quad u_d^{\alpha} = u_d u$

If we put $p^{\mu_i} = O(u_i)$ we deduce $\mu_1 \ge \ldots \mu_d$. Let $s \ge 0$ and $\mu \in \mathbb{N}$ be determined by the conditions $\mu_1 = \ldots = \mu_s = \mu + 1$ and $\mu_s > \mu_{s+1}$; if $\mu_1 = \ldots = \mu_d$ we put s = 0 and $\mu = \mu_1$.

If s > 0 then

$$(u_s^{p^{\mu_{s+1}}})^{\alpha} = u_s^{p^{\mu_{s+1}}} u_{s+1}^{p^{\mu_{s+1}}} = u_s^{p^{\mu_{s+1}}}$$

and so $\mu_s - \mu_{s+1} = 1$, since α has exactly p fixed points in U. Then $\mu_{s+1} = \ldots = \mu_d$, since u_1, \ldots, u_d are independent generators.

Proposition 5. For integers μ , s, d with μ , $d \in \mathbb{N}$ and $d > s \ge 0$, we consider the finite, abelian p-group

$$U = U(p, \mu, s, d) := (\mathbb{Z}/\mathbb{Z}p^{\mu+1})^s \times (\mathbb{Z}/\mathbb{Z}p^{\mu})^{d-s}$$

with canonical basis $(u_1, ..., u_d)$ (so that $O(u_i) = p^{\mu+1}$ for i = 1, ..., s, and $O(u_i) = p^{\mu}$ for i > s).

For any integers b_1, \ldots, b_d with $b_1 \neq 0$ (p) we define the endomorphism α of U by

$$u_i^{\alpha} = u_i u_{i+1}$$
 for $i = 1, \dots, d-1, u_d^{\alpha} = u_d u$,

where $u := u_1^{pb_1} \dots u_d^{pb_d}$.

Then α is an automorphism of U and U is α -concatenated.

For all $i \in \mathbb{N}$ define: $u_i := [u_1, \underbrace{\alpha, \dots, \alpha}_{i-1}]$ (for $i \leq d$ this is of course not a

definition, but rather a property of α), and put $U_i := \langle u_j | j \ge i \rangle$.

The order of α is then determined as follows:

Let $v \in \mathbb{Z}$, $v \ge 0$ be least possible such that $d \le p^v(p-1)$.

Case (1). $d < p^v(p-1)$: If $d\mu + s \leq p^t$ then $O(\alpha) = p^{\sigma}$, where σ is least possible such that $p^{\sigma} \geq d\mu + s$.

Otherwise, $O(\alpha) = p^{v+k}$ where $k \ge 1$ is least possible such that

$$k \ge \frac{d\mu + s - p^v}{d}$$

Case (2). $d = p^{v}(p-1)$: If $d\mu + s < p^{v+1}$, put $r = d\mu + s$. Otherwise, there exists $r \in \{p^{v+1}, \ldots, d\mu + s\}$ least possible such that

$$X := u_2^{\binom{p^{\nu+1}}{1}} \cdots u_{p^{\nu+1}-1}^{\binom{p^{\nu+1}}{p^{\nu+1}-2}} u_{p^{\nu+1}}^{\binom{p^{\nu+1}}{p^{\nu+1}-1}} u_{p^{\nu+1}+1} \in U_{r+1} .$$

Then $O(\alpha) = p^{v+k+1}$ where $k \ge 0$ is least possible such that

$$k \ge \frac{d\mu + s - r}{d} \; .$$

Proof. It is easily verified that α is an automorphisms of U, that α has exactly p fixed points, and that α has p-power order. So, U is α -concatenated by Proposition 2.

By an easy inductional argument (on the parameter $d\mu + s$) we see that for all i,

 $u_i^p \equiv u_{i+d}^a \mod U_{i+d+1}$ with $a \not\equiv 0$ (p).

By induction on k we also see that for all i,

$$u_i^{\alpha^k} = u_i u_{i+1}^{\binom{k}{1}} \cdots u_{i+k-1}^{\binom{k}{k-1}}$$

From these facts we may conclude that

 $u_i^{\alpha^{p^{\sigma}}} \equiv u_i u_{i+p^{\sigma}} \mod U_{i+p^{\sigma}+1}$ for all i and all $\sigma \leq v$, since $d > p^{\sigma}(p-1)$ for $\sigma \leq v$.

Case (1). $d < p^v(p-1)$: By an easy induction on $k \ge 0$ we get

$$a_{i}^{p^{v+k}} \equiv u_{i}u_{i+p^{v}+kd}^{b(k)} \mod U_{i+p^{v}+kd+1}$$

where $b(k) \neq 0$ (p). Here we have used the inequality

$$(1 - k(p - 1))d < p^{v+1} - p^{v}$$

Case (2). $d = p^{v}(p-1)$: With the same technique as in Case (1) we see that

$$X \in U_{p^{v+1}+1}$$
.

If $r = d\mu + s$ the statement about the order of α is seen to be true, so we assume that $d\mu + s > p^{v+1}$, and also that $U_{r+1} \neq \{e\}$. Then we may write

$$u_1^{\alpha^{p^{v+1}}} \equiv u_1 u_{r+1}^b \mod U_{r+2}$$

where $b \neq 0$ (p). Letting $(\alpha - 1)^{i-1}$ operate on this congruence we obtain

$$u_i^{\alpha^{p^{v+1}}} \equiv u_i u_{i+r}^b \mod U_{i+r+1} \ .$$

Then, by using the inequality r+kd < p(r+(k-1)d) for $k \geq 1,$ we get by induction on $k \geq 1$

$$u_i^{\alpha^{p^{v+k}}} \equiv u_i u_{i+r+(k-1)d}^{b(k)} \mod U_{i+r+(k-1)d+1}$$

for all *i* with some $b(k) \not\equiv 0$ (*p*).

Remark 1. In Case (1) of Proposition 5 we see that the order of U is bounded above by a function of p and $O(\alpha)$. This fact is easily seen to imply the existence of functions, s(x, y) and t(x, y), such that whenever G is an α -concatenated p-group where $O(\alpha) = p^k$ then either $G_{s(p,k)}$ has order less than t(p,k) or $\omega(G_{s(p,k)})$ has form $p^v(p-1)$.

This more than indicates that the concatenated p-groups G with $\omega(G)$ of form $p^{v}(p-1)$ play an important role in the study of the derived length of finite, concatenated p-groups. In the sequel we shall get another explanation of this fact.

 $\mathbf{6}$

Definition 2. Let G be an α -concatenated p-group. Let $t \in \mathbb{Z}$, $t \ge 0$. We say that G has degree of commutativity t if

$$[G_i, G_j] \leq G_{i+j+t} \quad for \ all \ i, j \in \mathbb{N}$$
.

In the proof of our main theorem, we shall show that if G is a finite, concatenated p-group, then for sufficiently large s the group G_s has high degree of commutativity (in comparison with n if $|G_s| = p^n$). In this connection it will be useful to single out a certain class of finite, concatenated p-groups having 'straight' p-power structure.

Definition 3. Suppose that G is a finite, α -concatenated p-group with $\omega(G) = d$. We say that G is straight if the following conditions are fulfilled:

(1) $G_i^p = G_{i+d}$ for all $i \in \mathbb{N}$.

(2) $x \in G_r$ and $c \in G_s$ implies $x^{-p}(xc)^p \equiv c^p \mod G_{r+s+d}$, for all $r, s \in \mathbb{N}$.

(3) For all $i \in \mathbb{N}$ we have: If gG_{i+1} is a generator of G_i/G_{i+1} , then g^pG_{i+d+1} generates G_{i+d}/G_{i+d+1} .

We now give a criterion for straightness.

Proposition 6. Let G be a finite, α -concatenated p-group with $\omega(G) = d$.

If G is regular, or has degree of commutativity $\geq (d+1)/(p-1) - 1$, then G is straight.

Proof. For the theory of finite, regular *p*-groups the reader is referred to [3], or [4], pp. 321–335.

Let $|G| = p^{n-1}$. We prove the theorem by induction on n. Thus we may assume that G_2 is straight. Put $\omega(G_2) = d_1$. We may also assume that G does not have exponent p.

(a) We claim that if $r \leq s$, and if $x \in G_r$, $c \in G_s$, then:

 $x^{-p}(xc)^p \equiv c^p \mod G_{r+s}^p G_{r+s+d}$.

For suppose that G is regular. We then obtain

$$x^{-p}(xc)^p \equiv c^p \mod \gamma_2(\langle x, c \rangle)^p$$

and in any case we see, using the Hall-Petrescu formula (see [4], pp. 317-318), that

$$^{-p}(xc)^p \equiv c^p \mod \gamma_2(\langle x, c \rangle)^p \gamma_p(\langle x, c \rangle)$$

Now, $\gamma_2(\langle x, c \rangle) \leq G_{r+s}$, so if G has degree of commutativity $t \geq \frac{d+1}{p-1} - 1$ then

$$p(\langle x, c \rangle) \le G_{s+(p-1)r+(p-1)t}$$
.

(b) We claim that $d_1 \ge d$: We may assume $G_{d+2} = \{e\}$ and have to prove that $G_2^p = \{e\}$.

Suppose that $y \in G_i$, where $i \geq 2$. According to Proposition 1 there exists $x \in G_{i-1}$ such that $[x, \alpha] = y$.

Now, $G^p = G_{d+1}$: For G^p is an α -invariant, normal subgroup of index p^d . So, by Corollary 1 the claim follows (from now on we will use Corollary 1 without explicit reference).

In particular, $x^p \in G_{d+1}$, whence according to (a),

$$e = [x^p, \alpha] = x^{-p} (x^{\alpha})^p = x^{-p} (x[x, \alpha])^p \equiv [x, \alpha]^p = y^p \mod G_{2i-1}^p G_{2i-1+d}$$

Now, $G_{2i-1+d} = \{e\}$, and since certainly $d_1 \ge d-1$, $G_{2i-1}^p = \{e\}$. Hence, $y^p = e$

(c) We claim that $G_i^p \leq G_{i+d}$ for all $i \in \mathbb{N}$: This is clear from (b) and the inductional hypothesis.

(d) If $r \leq s$, and if $x \in G_r$, $c \in G_s$, then:

$$x^{-p}(xc)^p \equiv c^p \mod G_{r+s+d}$$

This is clear from (a) and (c).

(e) We claim that $d_1 = d$: We may assume $G_{d+2} > \{e\}$. Choose $g \in G$ such that $g^p \notin G_{d+2}$. Then

$$[g^p, \alpha] = g^{-p} (g[g, \alpha])^p \equiv [g, \alpha]^p \mod G_{d+3}$$

because of (d). Since $[g^p, \alpha] \notin G_{d+3}$, we have $[g, \alpha]^p \notin G_{d+3}$. Since $[g, \alpha] \in G_2$, this proves $d_1 \leq d$.

(f) If gG_2 generates G_1/G_2 , and if $x \in G$, we have $x = g^a y$ for some $y \in G_2$. By (a) we then have

$$g^{-pa}x^p \equiv y^p \equiv e \mod G_{d+2}$$
.

Since $G^p = G_{d+1}$, we must then have $g^p \notin G_{d+2}$. Then $g^p G_{d+2}$ generates G_{d+1}/G_{d+2} .

We shall be needing some information about $\omega(G)$ in case G is a concatenated p-group, and in particular in case G is a straight concatenated p-group. First we need some lemmas.

Lemma 1. Let $i \in \mathbb{N}$. Suppose that $\sigma \in \{0, \ldots 2^i - 1\}$. For $s \in \{0, \ldots 2^i - 1\}$, we let $\mu_{\sigma,s}$ be the integer determined by the conditions

$$\mu_{\sigma,s} + s \equiv \sigma \quad (2^i) \quad and \quad \mu_{\sigma,s} \in \{0, \dots 2^i - 1\} .$$

Then the integer

$$\nu := 2\binom{2^{i}-1}{\sigma} + \sum_{s=1}^{2^{i}-1} \binom{2^{i}}{s} \binom{2^{i}-1}{\mu_{\sigma,s}}$$

is divisible by 4.

Proof. Suppose that $s \in \{0, \ldots, 2^i - 1\}$ and that $\binom{2^i}{s}$ is not divisible by 4. Now,

$$\binom{2^{i}}{s} = \binom{2^{i}-1}{s} + \binom{2^{i}-1}{s-1} = \binom{2^{i}-1}{s-1} \left(1 + \frac{2^{i}-s}{s}\right) = \binom{2^{i}-1}{s-1} \frac{2^{i}}{s},$$

hence $2^{i-1} \mid s$, and so $s = 2^{i-1}$. We conclude that ν differs from

$$2\binom{2^{i}-1}{\sigma} + 2\binom{2^{i}-1}{2^{i-1}-1}\binom{2^{i}-1}{\mu_{\sigma,2^{i-1}}}$$

by a multiple of 4.

Now, the integer

$$\binom{2^{i}-1}{\sigma} + \binom{2^{i}-1}{2^{i-1}-1} \binom{2^{i}-1}{\mu_{\sigma,2^{i-1}}}$$

is even for the following reasons: We have

$$\begin{pmatrix} 2^{i}-1\\ \mu_{\sigma,2^{i-1}} \end{pmatrix} = \begin{cases} \begin{pmatrix} 2^{i}-1\\ \sigma-2^{i-1} \end{pmatrix} & \text{for } \sigma \ge 2^{i-1}\\ \begin{pmatrix} 2^{i}-1\\ \sigma+2^{i-1} \end{pmatrix} & \text{for } \sigma < 2^{i-1} \end{cases},$$

and from well-known facts concerning the 2-powers dividing n! for $n \in \mathbb{N}$, we see that

$$\binom{2^i - 1}{\mu_{\sigma, 2^{i-1}}}$$

is divisible by exactly the same powers of 2 as is $\binom{2^{i}-1}{\sigma}$, and also that

$$\binom{2^i - 1}{2^{i-1} - 1}$$

is odd.

Lemma 2. Let F be the free group on free generators x and y. Let p be a prime number and let n be a natural number. Then,

$$x^{p^n}y^{p^n} = (xy)^{p^n}cc_p\dots c_{p^n}$$

where $c \in \gamma_2(F)^{p^n}$ and $c_{p^i} \in \gamma_{p^i}(F)^{p^{n-i}}$ for i = 1, ..., n. Each c_{p^i} has form

$$c_{p^{i}} \equiv [y, \underbrace{x, \dots, x}_{p^{i}-1}]^{a_{i}p^{n-i}} \prod v_{\mu}^{b_{\mu}p^{n-i}} \mod \gamma_{p^{i}+1}(F)^{p^{n-i}}\gamma_{p^{i+1}}(F)^{p^{n-i-1}}\gamma_{p^{n}}(F)^{p^{n}} ,$$

for certain integers a_i and b_{μ} , and certain group elements v_{μ} which each has form:

$$w_{\mu} = [y, z_1, \dots, z_{p^i - 1}]$$

with $z_k \in \{x, y\}$, and $z_k = y$ for at least one k (in each v_{μ}).

Furthermore, $a_i \equiv -1$ (p) for $i = 1, \ldots, n$.

Proof. Let $i \in \{1, ..., n\}$. If $u, v \in \gamma_{p^i}(F)$ then the Hall-Petrescu formula ([4], pp. 317–318) implies

$$(uv)^{p^{n-i}} \equiv u^{p^{n-i}}v^{p^{n-i}} \mod \gamma_2 (\langle u, v \rangle)^{p^{n-i}} \prod_{j=1}^{n-i} \gamma_{p^j} (\langle u, v \rangle)^{p^{n-i-j}}$$

From this, and from standard, elementary facts concerning commutators the result follows immediately from the Hall-Petrescu formula, except for the fact that $a_i \equiv -1$ (p) for i = 1, ..., n.

Consider the abelian p-group U of type

$$(\underbrace{p^{n-i+1},\ldots,p^{n-i+1}}_{p^i})$$

with basis u_1, \ldots, u_{p^i} , and let G be the semidirect product $G = U < \alpha >$ where α is the automorphism of U given by

$$u_j^{\alpha} = u_{j+1}$$
, $j = 1, \dots, p^i - 1$, and $u_{p^i}^{\alpha} = u_1$.

Then α has order p^i . Put $u_s = u_r$ if $r, s \in \mathbb{N}$, $r \in \{1, \ldots, p^i\}$, and $s \equiv r$ (p). Then for $r = 1, \ldots, p^i$ we have

(*)
$$[u_r, \underbrace{\alpha, \dots, \alpha}_{p^i - 1}] = u_r^{(-1)^{p^i - 1}} u_{r+1}^{(-1)^{p^i - 2} \binom{p^i - 1}{1}} \cdots u_{r+p^i - 1}$$

and

$$(**) \qquad \qquad [u_r, \underbrace{\alpha, \dots, \alpha}_{p^i}] = u_r^{1+(-1)^{p^i}} u_{r+1}^{(-1)^{p^i-1}\binom{p^i}{1}} \cdots u_{r+p^i-1}^{(-1)\binom{p^i}{p^i-1}} \ .$$

Thus, $\gamma_{p^i+1}(G) \leq U^p$. Using the same argument with u_r replaced by $u_r^{p^{s-1}}$ we deduce

$$\gamma_{sp^i+1}(G) \le U^{p^s} \text{ for } s \in \mathbb{N}$$
.

Since $sp^i + 1 \le p^{i+s-1}$ for $s \ge 2$ except when p = 2 and s = 2, we conclude that

(***)
$$\gamma_{p^{i+s-1}}(G)^{p^{n-(i+s-1)}} = \{e\} \text{ for } s \ge 2 ,$$

except possibly when p = 2 and s = 2.

If p = 2 we use (*) and (**) to conclude that

$$[u_r, \underbrace{\alpha, \dots, \alpha}_{2^{i+1}-1}] = \prod_{\sigma=0}^{2^i-1} u_{r+\sigma}^{b(r,\sigma)}$$

where

$$b(r,\sigma) = (-1)^{\sigma+1} \left(2\binom{2^{i}-1}{\sigma} + \sum_{s=1}^{2^{i}-1} \binom{2^{i}}{s} \binom{2^{i}-1}{\mu_{\sigma,s}} \right)$$

with $\mu_{\sigma,s}$ determined by

$$\mu_{\sigma,s} \in \{0,\ldots,2^i-1\} \qquad \mu_{\sigma,s}+s \equiv \sigma \quad (2^i) \ .$$

Using Lemma 1, we then see that (***) is true also in the case p = 2 and s = 2.

Now we compute

$$x := (\alpha u_1)^{p^n} (\alpha u_1 \alpha^{-1}) \cdots (\alpha^{p^n} u_1 \alpha^{-p^n}) \alpha^{p^n} = (u_1 \cdots u_{p^i})^{p^{n-i}}$$

Using the results obtained this far we conclude

$$e = \alpha^{p^{n}} u_{1}^{p^{n}} = xc_{p^{i}} = x[u_{1}, \underbrace{\alpha, \dots, \alpha}_{p^{i-1}}]^{a_{i}p^{n-i}}$$
$$= \left((u_{1} \cdots u_{p^{i}})(u_{1}^{(-1)^{p^{i-1}}} u_{2}^{(-1)^{p^{i-2}} \binom{p^{i-1}}{1}} \cdots u_{p^{i}})^{a_{i}} \right)^{p^{n}-i},$$
$$a_{i} \equiv -1 \ (p).$$

which gives $a_i \equiv -1$ (p).

Theorem 1. Suppose that G is an α -concatenated p-group of order p^{n-1} where $O(\alpha) = p^k.$

If G centralizes
$$G_i/G_{i+2}$$
 for $i = 1, ..., p^k$, and if $n \ge p^k + 2$, then $\omega(G) \le p^k - 1$.

Proof. Put $d := \omega(G)$. The element αg_1 belonging to the semidirect product H = $G < \alpha >$ has the property that $\alpha g_1 \notin C_H(G_i/G_{i+2})$ for $i = 2, \ldots, p^k$. Since $(\alpha g_1)^{p^k}$ is an element of G_2 (confer Lemma 2 for instance) that commutes with αg_1 , we must have

$$(\alpha g_1)^{p^k} \in G_{p^k+1} .$$

Now assume that $d \ge p^k$. Then $G_1^p \le G_{p^k+1}$. By Lemma 2 we then deduce (note that $\gamma_i(H) = G_i$ for $i \ge 2$)

$$e \equiv \alpha^{p^k} g_1^{p^k} \equiv (\alpha g_1)^{p^k} c \equiv c \mod G_{p^k+1} ,$$

where c has form

$$c \equiv [g_1, \underbrace{\alpha, \dots, \alpha}_{p^k - 1}]^{-1} \prod_{\mu} v_{\mu}^{b_{\mu}} \mod G_{p^k + 1} ,$$

with each v_{μ} of the form $[g_1, z_1, \ldots, z_{p^k-1}]$, where $z_j \in \{\alpha, g_1\}$ and $z_j = g_1$ for at least one j (in each v_{μ}). Since $g_1 \in C_H(G_i/G_{i+2})$ for $i = 2, \ldots, p^k$, we deduce $v_{\mu} \in G_{p^k+1}$ for all μ . But then

$$c \equiv [g_1, \underbrace{\alpha, \dots, \alpha}_{p^k - 1}]^{-1} \not\equiv e \mod G_{p^k + 1}$$
,

a contradiction.

Corollary 2. Let G be an α -concatenated p-group where $O(\alpha) = p^k$. Then $G_{1+(1+\ldots+p^{k-1})}$ is a straight α -concatenated p-group.

Proof. Put $s = 1 + (1 + \ldots + p^{k-1})$. According to Theorem 1, either G_s has exponent p or $\omega(G_s) \leq p^k - 1$. If G_s has exponent then G_s is trivially straight. Assume then that $\omega(G_s) \leq p^k - 1$. As G_s has degree of commutativity at least

$$s-1 = (1+\ldots+p^{k-1}) = \frac{p^k-1}{p-1} \ge \frac{p^k-p+1}{p-1} = \frac{p^k}{p-1} - 1 \ge \frac{\omega(G_s)+1}{p-1} - 1 ,$$

the statement now follows from Proposition 6.

Theorem 2. Let G be an α -concatenated p-group of order p^{n-1} , where $O(\alpha) = p^k$. Suppose further that G is straight, that $n \ge p^k + 2$, and that G centralizes G_i/G_{i+2} for $i = 2, \ldots, p^k$.

Then $\omega(G) = p^{v}(p-1)$ for some $v \in \{0, ..., k-1\}$.

Proof. We wish to perform certain calculations in the semidirect product $G < \alpha >$. By the same argument as in the proof of Theorem 1 we see that the element αg_1 satisfies

$$(\alpha g_1)^{p^k} \in G_{p^k+1}$$
 .

Put $d := \omega(G)$. Assume that the minimum $\min\{p^i + (k-i) \mid i = 0, ..., k\}$ is attained for exactly one value of i, say for $i = i_0 \in \{0, ..., k\}$. Put $s = p^{i_0} + (k-i_0)d$. Consider

$$\alpha^{p^k} g_1^{p^k} = (\alpha g_1)^{p^k} c c_p \cdots c_{p^k} ,$$

where the c's have the shapes given in Lemma 2. Notice that $c_j \in G_{p^j+(k-j)d}$, and that $c \in G_{2+kd} \leq G_{s+1}$.

Suppose that $i_0 = 0$: Then s = kd, and we deduce $G_{s+1} \not\supseteq g_1^{p^k} \equiv e \mod G_{s+1}$, a contradiction.

Suppose then that $i_0 > 0$: Here we get $e \equiv g_1^{p^k} \equiv c_{p^{i_0}} \mod G_{s+1}$, and

$$c_{p^{i_0}} = [g_1, \underbrace{\alpha, \dots, \alpha}_{p^{i_0}-1}]^{-p^{k-i_0}} \equiv g_{p^{i_0}}^{-p^{k-i_0}} \mod G_{s+1}$$

but we have

$$g_{p^{i_0}}^{-p^{k-i_0}} \not\in G_{s+1}$$
,

a contradiction.

Consequently the minimum $\min\{p^i + (k-i) \mid i = 0, ..., k\}$ is attained for two different values of *i*, say for $i = i_1$, and for $i = i_2 > i_1$. Analyzing the function $p^x + (k-x)d$ for $0 \le x \le k$ we deduce $|i_1 - i_2| = 1$, whence $d = p^{i_1}(p-1)$. \Box

Our further investigations will concentrate on the analysis of certain invariants that will now be introduced.

Definition 4. Suppose that G is an α -concatenated p-group and that G has degree of commutativity t. Then we define the integers $a_{i,j}$ modulo p for $i, j \in \mathbb{N}$ thus: If $G_{i+j+t} = \{e\}$, we put $a_{i,j} = 0$. Otherwise, we let $a_{i,j}$ be the unique integer modulo p determined by the condition:

$$[g_i, g_j] \equiv g_{i+j+t}^{a_{i,j}} \mod G_{i+j+t+1}$$

We refer to the $a_{i,j}$ as the invariants of G with respect to degree of commutativity t. The $a_{i,j}$ depend on the choice of the g_i , but choosing a different system of g_i 's merely multiplies all the invariants with a certain constant incongruent to 0 modulo p.

Proposition 7. Let G be a finite, α -concatenated p-group of order p^{n-1} . Suppose that G has degree of commutativity t and let $a_{i,j}$ be the associated invariants. Then we have the following.

- (1) $a_{i,j}a_{k,i+j+t} + a_{j,k}a_{i,j+k+t} + a_{k,i}a_{j,k+i+t} \equiv 0$ (p) for $i+j+k+2t+1 \le n$.
- (2) $a_{i,j} \equiv a_{i+1,j} + a_{i,j+1}$ (p) for $i + j + t + 2 \le n$.
- (3) If $i_0 \in \mathbb{N}$ then we have for $i, j \geq i_0$:

$$a_{i,j} \equiv \sum_{s=0}^{i-i_0} (-1)^s \binom{i-i_0}{s} a_{i_0,j+s} \quad (p) \quad \text{if } i+j+t+1 \le n \; .$$

(4) For $r \in \mathbb{N}$ we have

$$a_{i,i+r} \equiv \sum_{s=1}^{[(r+1)/2]} (-1)^{s-1} \binom{r-s}{s-1} a_{i+s-1,i+s} \quad (p) \quad \text{if } 2i+r+t+1 \le n \; .$$

Proof. We shall make use of Witt's Identity

$$(*) [a, b^{-1}, c]^b [b, c^{-1}, a]^c [c, a^{-1}, b]^a = \epsilon$$

for elements a, b, and c in a group.

(1). Considering (*) modulo $G_{i+j+k+2t+1}$ with $a = g_i$, $b = g_j$, and $c = g_k$ gives us the congruence

$$g_{i+j+k+2t}^{-a_{i,j}a_{i+j+t,k}-a_{j,k}a_{j+k+t,i}-a_{k,i}a_{k+i+t,j}} \equiv e \mod G_{i+j+k+2t+1}$$

But if $i + j + k + 2t + 1 \le n$ then $g_{i+j+k+2t} \ne e$, and the claim follows.

(2). Considering (*) modulo $G_{i+j+t+2}$ with $a = g_i$, $b = \alpha^{-1}$, and $c = g_k j$ gives us the congruence

$$g_{i+j+t+1}^{-a_{i,j}+a_{i+1,j}+a_{i,j+1}} \equiv e \mod G_{i+j+t+2}$$
.

But if $i + j + t + 2 \le n$, then $g_{i+j+t+1} \ne e$, and the claim follows.

- (3). Using (2) this follows easily by induction on $i i_0$.
- (4). Using (2) this follows easily by induction on r.

The next proposition reveals part of the purpose of the introduction of the idea of straight, concatenated *p*-groups.

Proposition 8. Let G be an α -concatenated p-group of order p^{n-1} . Suppose that G is straight and put $d = \omega(G)$. Let $a_{i,j}$ be G's invariants with respect to a given degree of commutativity t. Then for all i, j we have

$$i + j + d + t + 1 \le n \Rightarrow (a_{i,j} \equiv a_{i+d,j} \quad (p))$$

Proof. If $G_{i+d} \neq \{e\}$, we have

$$g_i^p \equiv g_{i+d} \mod G_{i+d+1} ,$$

with $b_i \not\equiv 0$ (p).

Suppose that $i \in \mathbb{N}$ with $G_{i+1+1} \neq \{e\}$. Then $g_{i+1}^p = ([g_i, \alpha]y)^p$ for some $y \in G_{i+2}$. Then (by Lemma 2)

$$[g_i, \alpha]^{-p} g_{i+1}^p \equiv y^p \mod G_{2i+3+d}$$
,

 \mathbf{SO}

$$g_{i+d+1}^{b_{i+1}} \equiv g_{i+1}^p \equiv [g_i, \alpha]^p \equiv g_i^{-p} (g_i[g_i, \alpha])^p \equiv [g_i^p, \alpha] \equiv g_{i+d+1}^{b_i} \mod G_{i+d+2} ,$$

and since $g_{i+d+1} \neq e$, we deduce $b_{i+1} \equiv b_i$ (p).

Then if $i + j + d + t + 1 \le n$ we get

$$g_{i+j+d+t}^{b_i a_{i+d,j}} \equiv [g_i^p, g_j] = g_i^{-p} (g_i[g_i, g_j])^p \equiv [g_i, g_j]^p \equiv g_{i+j+d+t}^{b_{i+j+d+d,j}} \mod G_{i+j+d+t+1} ,$$

and so $a_{i+d,j} \equiv a_{i,j}$ (p).

For straight, concatenated *p*-groups we have a stronger version of Proposition 7.

Proposition 9. Let G be a straight, α -concatenated p-group of order p^{n-1} and with $\omega(G) = p^{\nu}(p-1)$. Suppose that G has degree of commutativity t and let $a_{i,j}$ be the associated invariants. Suppose that $s \in \mathbb{N}$ is such that $s + t \equiv 0$ (p^v) and define $a_{i,j}^{(r)}$ for r = 0, ..., v and $i, j \in \mathbb{Z}$ such that $s + ip^r, s + jp^r \ge 1$, by $a_{i,j}^{(r)} = a_{s+ip^r,s+jp^r}$.

$$a_{i,j}^{(r)} = a_{s+ip^r,s+jp^r} \quad .$$

Put $t(r) = (s+t)p^{-r}$ for r = 0, ..., v.

(1) Then for r = 0, ..., v we have the following congruences

 $a_{i,j}^{(r)}a_{k,i+j+t(r)}^{(r)} + a_{j,k}^{(r)}a_{i,j+k+t(r)}^{(r)} + a_{k,i}^{(r)}a_{j,k+i+t(r)}^{(r)} \equiv 0 \quad (p)$ for $3s + 2t + (i + j + k)p^r + 1 \le n$. (2) $a_{i,i+p^{v-r}(p-1)}^{(r)} \equiv a_{i,j}^{(r)}(p)$ for $2s + t + (i+j)p^r + p^v(p-1) + 1 \le n$. (3) $a_{i,j}^{(r)} \equiv a_{i+1,j}^{(r)} + a_{i,j+1}^{(r)}$ (p) for $2s + t + (i+j+1)p^r + 1 \le n$.

(4) If $i_0 \in \mathbb{N}$ then for $i, j \ge i_0$ and $2s + t + (i+j)p^r + 1 \le n$ we have:

$$a_{i,j}^{(r)} \equiv \sum_{h=0}^{i-i_0} (-1)^h \binom{i-i_0}{h} a_{i_0,j+h}^{(r)} \quad (p) \ .$$

(5) For $w \in \mathbb{N}$ and $2s + (2i + w)p^r + t + 1 \le n$,

$$a_{i,i+w}^{(r)} \equiv \sum_{h=1}^{[(w+1)/2]} (-1)^{h-1} \binom{w-h}{h-1} a_{i+h-1,i+h}^{(r)} \quad (p) \ .$$

Proof. (1). Using Proposition 7 this follows immediately from the definitions.

(2). Using Proposition 8 this follows immediately from the definitions.

(3). Let $r \in \{0, \ldots, v\}$ and let $i \in \mathbb{N}$. We first claim that

$$g_i, \alpha^{p'}] \equiv g_{i+p^r} \mod G_{i+p^r+1}$$
.

To see this we write, in accordance with Lemma 2,

$$\alpha^{p^r}[\alpha^{p^r},g_i] = (\alpha[\alpha,g_i])^{p^r} = \alpha^{p^r}[\alpha,g_i]^{p^r}c_{p^r}\cdots c_pc$$

where, with $U := < \alpha, [\alpha, g_i] > (a \text{ subgroup of the semidirect product } G < \alpha >),$

$$c \in \gamma_2(U)^{p^r}$$
, $c_{p^{\mu}} \in \gamma_{p^{\mu}}(U)^{p^{r-\mu}}$, $\mu = 1, \dots, r$,

and

$$c_{p^r} \equiv [g_i, \underbrace{\alpha, \dots, \alpha}_{r}]^{-1} \equiv g_{i+p^r}^{-1} \mod G_{i+p^r+1}$$

Furthermore, since $r \leq v$, we have

$$G_{i+1}^{p^r} \le G_{i+p^r+1}$$
 and $\gamma_{p^{\mu}}(U)^{p^{r-\mu}} \le G_{i+p^{\mu}+(r-\mu)d} \le G_{i+p^r+1}$

for $\mu = 1, \ldots, r - 1$. The claim follows from this.

Now suppose that $i, j \in \mathbb{Z}$ such that $s + ip^r$, $s + jp^r \ge 1$ and $z := 2s + t + (i + j + 1)p^r + 1 \le n$. Then by considering Witt's Identity

$$[a, b^{-1}, c]^{b}[b, c^{-1}, a]^{c}[c, a^{-1}, b]^{a} = e$$

modulo G_z with

$$a = g_{s+ip^r}$$
, $b = \alpha^{-p^r}$, and $c = g_{s+jp^r}$,

and noting that $g_{z-1} \neq e$, the result follows.

(4), (5): Using (3) these statements follow by easy inductions.

5.

We are now ready to prove the main theorems. First a simple lemma.

Lemma 3. Let n, t, and d be natural numbers. Suppose that we are given integers $a_{i,j}$ modulo p, defined for $i + j + t + 1 \leq n$. Suppose further that these integers satisfy the following relations:

Then the existence of a natural number s such that $2s+d+t \leq n$ and $a_{s+h,s+h+1} \equiv 0$ (p) for $h = 0, \ldots, [\frac{d}{2}] - 1$ implies $a_{i,j} \equiv 0$ (p) for all i, j.

Proof. As in the proof of Proposition 7 we see that

(*)
$$a_{i,i+r} \equiv \sum_{h=1}^{\lfloor (r+1)/2 \rfloor} (-1)^{h-1} {\binom{r-h}{h-1}} a_{i+h-1}i + h$$
 (p) if $2i+r+t+1 \le n$

and

(**)
$$a_{i,j} \equiv \sum_{h=0}^{i-i_0} (-1)^h {\binom{i-i_0}{h}} a_{i_0,j+h}$$
 (p) if $i+j+t+1 \le n$ and $i,j \ge i_0$.

(a) We have $a_{s,s+j} \equiv 0$ (p) for $j \ge 0$ and $2s+j+t+1 \le n$: This is clear from (*). (b) $a_{i,j} \equiv 0$ (p) for $i, j \ge s$ and $i+j+t+1 \le n$: This is clear from (**) and (a). (c) Suppose that $\sigma \in \mathbb{N}$ and $a_{i,j} \equiv 0$ (p) for $i+j+t+1 \le n$ and $i, j > s-\sigma$. Then $2(s-\sigma)+d+t+2 \le n$, and so

$$a_{s-\sigma,s-\sigma+1} \equiv -a_{s-\sigma+1,s-\sigma+d} \quad (p)$$

whence

$$a_{i,j} \equiv 0$$
 (p) for $i+j+t+1 \le n$ and $i,j \ge s-\sigma$.

We conclude that $a_{i,j} \equiv 0$ (p) for all i, j.

Theorem 3. Let p be an odd prime number and let G be a straight, concatenated p-group of order p^{n-1} and with $\omega(G) = p^{\nu}(p-1)$.

(1) If $n \ge 4p^{\nu+1} - 2p^{\nu} + 1$ then G has degree of commutativity

$$\left[\frac{1}{2}(n-4p^{\nu+1}+2p^{\nu}+1)\right] \,.$$

- (2) If $n \ge 4p^{v+1} 2p^v + 1$ then $c(G) \le 2p^{v+1} p^v$.
- (3) $c(G) \le 4p^{\nu+1} 2p^{\nu} 2$.
- (4) If $n \le 12p^{v+1} 6p^v 10$ then $c(G) \le 3$.

Proof. (1): Assume $n \ge 4p^{v+1} - 2p^v + 1$. Suppose that G has degree of commutativity t, where $t \le \frac{1}{2}(n - 4p^{v+1} + 2p^v - 1)$. Let $a_{i,j}$ be the associated invariants. We must show that $a_{i,j} \equiv 0$ (p) for all i, j.

Let $i_0 \in \{1, \ldots, p^v(p-1)\}$ be determined by the condition $i_0 + t \equiv 0$ $(p^v(p-1))$. For $r = 0, \ldots, v$ and $i, j \in \mathbb{Z}$ such that $i_0 + ip^r$, $i_0 + jp^r \ge 1$ we let $a_{i,j}^{(r)}$ be the integers modulo p introduced in Proposition 9 (with $i_0 = s$).

We show by induction on v - r that if $r \in \{0, ..., v\}$ then $a_{i,j}^{(r)} \equiv 0$ (p) for all i, j. So we suppose that $r \in \{0, ..., v\}$ is given and that $a_{i,j}^{(\rho)} \equiv 0$ (p) for all i, j whenever $\rho \in \{0, ..., v\}$ and $\rho > r$.

By Proposition 9, (1), (2), we have the congruence

$$(*) a_{i,j}^{(r)}a_{k,i+j}^{(r)} + a_{j,k}^{(r)}a_{i,j+k}^{(r)} + a_{k,i}^{(r)}a_{j,k+i}^{(r)} \equiv 0 (p)$$

when $3i_0 + 2t + (i + j + k)p^r + 1 \le n$. So, we may substitute (i, j, k) = (1, 2, 2s - 1)for $2 \le s \le \frac{1}{2}(p-1)$ in (*). If now $2 \le s \le \frac{1}{2}(p-1)$, and if we have proved

 $a_{\sigma,\sigma+1}^{(r)} \equiv 0$ (p) for $2 \leq \sigma < s$, then Proposition 9, (5), shows that:

$$\begin{aligned} a_{2s-1,3}^{(r)} &\equiv -a_{3,2s-1}^{(r)} \equiv (-1)^s \binom{s-2}{s-3} a_{s,s+1}^{(r)} \quad (p) \\ a_{2,2s-1}^{(r)} &\equiv (-1)^s a_{s,s+1}^{(r)} \quad (p) , \\ a_{1,2s+1}^{(r)} &\equiv a_{1,2}^{(r)} + (-1)^{s-1} \binom{s}{s-1} a_{s,s+1}^{(r)} \quad (p) , \\ a_{2s-1,s}^{(r)} &\equiv -a_{2,2s-1}^{(r)} \equiv -a_{1,2}^{(r)} \quad (p) , \\ a_{2,2s}^{(r)} &\equiv (-1)^s \binom{s-1}{s-2} a_{s,s+1}^{(r)} \quad (p) , \end{aligned}$$

where $a_{2s-1,3}^{(r)}$ should be interpreted as 0 if s = 2. Combining these congruences with (*) for (i, j, k) = (1, 2, 2s - 1) we obtain

$$s(a_{s,s+1}^{(r)})^2 \equiv 0 \quad (p) \; .$$

So we may conclude that $a_{s,s+1}^{(r)} \equiv 0$ (p) for $s = 2, \ldots, \frac{1}{2}(p-1)$. As $2i_0 + t + p^{v+1} + 1 \le n$, we can then use Proposition 9, (5), to deduce:

(**)
$$a_{0,p}^{(r)} \equiv a_{0,1}^{(r)} + 2a_{1,2}^{(r)}$$
 (p)

If now r = u, then $a_{0,p}^{(r)} \equiv a_{0,1}^{(r)}$ (p) according to Proposition 9, (2). Since p is odd, (**) then gives $a_{1,2}^{(r)} \equiv 0$ (p). So, $a_{s,s+1}^{(r)} \equiv 0$ (p) for $s = 1, \ldots, \frac{1}{2}(p-1)$. Then Lemma 3 (with d = p - 1) implies $a_{i,j}^{(r)} \equiv 0$ (p) for all i, j.

So assume then that r < u. Then $a_{0,p}^{(r)} \equiv a_{0,1}^{(r+1)} \equiv 0$ (p) by definition of these numbers and the inductional hypothesis. Then (**) reads:

$$a_{0,1}^{(r)} + 2a_{1,2}^{(r)} \equiv 0 \quad (p)$$

On the other hand, considering (*) with (i, j, k) = (0, 1, 3) gives us:

$$a_{1,2}^{(r)}(a_{0,1}^{(r)} + a_{1,2}^{(r)}) \equiv 0 \quad (p)$$

because $a_{1,3}^{(r)} \equiv a_{1,2}^{(r)}(p)$, $a_{0,3}^{(r)} \equiv a_{0,1}^{(r)} - a_{1,2}^{(r)}(p)$, and $a_{0,4}^{(r)} \equiv a_{0,1}^{(r)} - 2a_{1,2}^{(r)}(p)$, – again by Proposition 9, (5). So, if $a_{1,2}^{(r)} \neq 0$ (p) we would deduce $a_{0,1}^{(r)} \equiv a_{1,2}^{(r)} \equiv 0$ (p), a contradiction. Hence, $a_{1,2}^{(r)} \equiv 0$ (p), and so $a_{0,1}^{(r)} \equiv 0$ (p) (again because p is odd).

Now we substitute (i, j, k) = (0, 1, 2s) in (*) for $s = 1, \dots, \frac{1}{2}p^{v-r}(p-1) - 1$.

If $2 \le s \le \frac{1}{2}p^{v-r}(p-1) - 1$, and if we have already proved $a_{\sigma,\sigma+1}^{(r)} \equiv 0$ (p) for $1 \le \sigma < s$, we use again Proposition 9, (5), as above to obtain the congruence:

$$(-1)^{s+1} \binom{(2s-1)-s}{s-1} (-1)^s \binom{(2s+1)-(s+1)}{s} (a_{s,s+1}^{(r)})^2 \equiv 0 \quad (p) \ .$$

We conclude that $a_{s,s+1}^{(r)} \equiv 0$ (p) for $s = 1, \ldots, \frac{1}{2}p^{v-r}(p-1)-1$, and hence for $s = 0, \ldots, \frac{1}{2}p^{v-r}(p-1)-1$. Noticing that $2i_0 + t + p^r(p^{v-r}(p-1)-1) + 1 \le n$ we can again use Lemma 3 to deduce that $a_{i,j}^{(r)} \equiv 0$ (p) for all i, j. This concludes the induction step.

So, we have $a_{i,j}^{(0)} \equiv 0$ (p) for all i, j, and hence $a_{i,j} \equiv 0$ (p) for all i, j, as desired.

(2) Put $f(v) = 4p^{v+1} - 2p^v - 1$. Suppose that $n \ge 4p^{v+1} - 2p^v + 1$ and that n is odd. By (1) G has degree of commutativity $\frac{1}{2}(n - f(v))$. Then,

$$\gamma_k(G) = \{e\} \text{ if } k \ge \frac{3n - f(v) - 2}{n - f(v) + 2}$$

However,

$$\frac{3n - f(v) - 2}{n - f(v) + 2} \le 1 + \frac{1}{2}(f(v) + 1) = 1 + (2p^{v+1} - p^v) ,$$

when $n \ge f(u) + 2$.

If $n \ge 4p^{v+1} - 2p^v + 2$ and n is even, we see in a similar way that $\gamma_k(G) = \{e\}$ if $k = 2p^{v+1} - p^v + 1$.

(3) If
$$n \le 4p^{v+1} - 2p^v$$
 then $c(G) \le 4p^{v+1} - 2p^v - 2$. Since

$$4p^{v+1} - 2p^v - 2 \ge 2p^{v+1} - p^v ,$$

the statement then follows from (2).

(4)
$$n \ge 4p^{v+1} - 2p^v + 1$$
 and

$$4 \ge \frac{3n - f(v) - 3}{n - f(v) + 1}$$

where $f(u) := 4p^{v+1} - 2p^v - 1$ then we deduce along lines similar to the above reasoning that $c(G) \leq 3$. But the second inequality holds for $n \geq 12p^{v+1} - 6p^v - 10$, and it is clear that

$$12p^{\nu+1} - 6p^{\nu} - 10 \ge n \ge 4p^{\nu+1} - 2p^{\nu} + 1 .$$

The desired conclusion follows.

Theorem 4. There exist functions of two variables, u(x, y) and v(x, y), such that whenever p is an odd prime number, k is a natural number and G is a finite p-group possessing an automorphism of order p^k having exactly p fixed points, then G has a normal subgroup of index less than u(p, k) and of class less than v(p, k).

Thus there exists a function of two variables, f(x, y), such that whenever p is an odd prime number, k is a natural number and G is a finite p-group possessing an automorphism of order p^k having exactly p fixed points, then the derived length of G is less than f(p, k).

Proof. The first statement follows immediately from Proposition 6, Theorem 1, Theorem 2, and Theorem 3. The second statement follows trivially from the first.

References

[1] J. L. Alperin: 'Automorphisms of solvable groups', Proc. Amer. Math. Soc. 13 (1962), 175–180.

^[2] N. Blackburn: 'On a special class of p-groups', Acta Math. 100 (1958), 45–92.

^[3] P. Hall: 'A contribution to the theory of groups of prime power orders', Proc. London Math. Soc. 36 (1933), 29–95.

^[4] B. Huppert: 'Endliche Gruppen I', Grundlehren Math. Wiss. 134, Springer-Verlag 1967.

^[5] C. R. Leedham-Green, S. McKay: 'On p-groups of maximal class 1', Quart. J. Math. Oxford Ser. (2) 27 (1976), 297–311.

IAN KIMING

Department of Mathematics, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark.

E-mail address: kiming@math.ku.dk