STRUCTURE AND DERIVED LENGTH OF FINITE p-GROUPS POSSESSING AN AUTOMORPHISM OF p-POWER ORDER HAVING EXACTLY p FIXED POINTS.

IAN KIMING

1. Introduction.

Everywhere in this paper p denotes a prime number.
In [1] Alperin showed that the derived length of a finite p-group possessing an automorphism of order p and having exactly p^{n} fixed points is bounded above by a function of the parameters p and n.

The purpose of this paper is to prove the same type of theorem for the derived length of a finite p-group possessing an automorphism of order p^{n} having exactly p fixed points. However, we will restrict ourselves to the case where p is odd.

A strong motivation for the consideration of this class of finite p-groups is induced by the fact that the theory of these groups is strongly similar to certain aspects of the theory of finite p-groups of maximal class. For the theory of finite p-groups of maximal class the reader may consult [2] or [4], pp. 361-377.

In section 3 we derive a more useful description of the groups in question and we show that the theory of these objects is similar to the theory of finite p-groups of maximal class. We illustrate the ideas in abelian p-groups.

In section 4 we study p-power and commutator structure.
Based on the results of section 4 we prove the main theorems in section 5 . The method leading to the proof of our main theorems does not resemble Alperin's method. Our method may be described as a detailed analysis of commutator- and p-power-structure of the groups in question. The central method is a development of a method used by Leedham-Green and McKay in [5], and is of 'combinatorial' nature.

2. NOTATION

The letter e always denotes the neutral element of a given group.
If x and y are elements of a group we write

$$
x^{y}=y^{-1} x y \quad \text { and } \quad[x, y]=x^{-1} y^{-1} x y .
$$

Then we have the formulas

$$
[x, y z]=[x, z][x, y][x, y, z] \quad \text { and } \quad[x y, z]=[x, z][x, z, y][y, z]
$$

(where $\left[x 1, \ldots, x_{n+1}\right]=\left[\left[x 1, \ldots, x_{n}\right]_{{ }_{n+1}}\right]$).
If α is an automorphism of a group G we write x^{α} for the image of x under α.
If α is an automorphism of a group G, and if N is an α-invariant, normal subgroup of G, then we also write α for the automorphism induced by α on G / N.

For a given group G, the terms of the lower central series of G are written $\gamma_{i}(G)$ for $i \in \mathbb{N}$.

If G is a finite p-group, then $\omega(G)=k$ means that $G / G^{p}=p^{k}$.

3.

We now define a certain class of finite p-groups which turns out to be precisely the objects in which we are interested, that is the finite p-groups possessing an automorphism of p-power order having exactly p fixed points.
Definition 1. Suppose that G is a finite p-group. We say that G is concatenated if and only if G has:
(i) a strongly central series

$$
G=G_{1} \geq G_{2} \geq \ldots \geq G_{n}=\{e\}
$$

(putting $G_{k}=\{e\}$ for $k \geq n$, 'strongly central' means that $\left[G_{i}, G_{j}\right] \leq G_{i+j}$; for all $i, j)$,
(ii) elements $g_{i} \in G_{i}, i=1, \ldots n$, and
(iii) an automorphism α
such that
(1) $\left|G_{i} / G_{i+1}\right|=p$, for $i=1, \ldots, n-1$,
(2) G_{i} / G_{i+1} is generated by $g_{i} G_{i+1}$, for $i=1, \ldots, n$,
(3) $\left[g_{i}, \alpha\right]:=g_{i}^{-1} g_{i}^{\alpha} \equiv g_{i+1} \bmod G_{i+2}$, for $i=1, \ldots, n-1$.

In the situation of definition 1 we shall also say that G is α-concatenated. It is easy to see that α has p-power order whenever α is an automorphism of the finite p-group G such that G is α-concatenated.

If G is a finite p-group, then the statement ' G is α-concatenated' means that G possesses an automorphism α such that G is α-concatenated.

Whenever G is given as an α-concatenated p-group, we shall assume that a strongly central series $G=G_{1} \geq G_{2} \geq \ldots$ and elements $g_{i} \in G_{i}$ have been chosen so that conditions (1), (2) and (3) in definition 1 above are fulfilled; the symbols G_{i} and g_{i} then always refer to this choice.

Proposition 1. Suppose G is an α-concatenated p-group. Then for all $i \in \mathbb{N}, G_{i+1}$ is the image of G_{i} under the mapping

$$
x \mapsto x^{-1} x^{\alpha}=[x, \alpha],
$$

and if G_{i} / G_{i+1} is generated by $x G_{i+1}$, then the group G_{i+1} / G_{i+2} is generated by $[x, \alpha] G_{i+2}$.

Proof. Suppose that G has order p^{n-1}. Then $\left[g_{n-1}, \alpha\right]=e$ and so $\left[g_{n-1}^{a}, \alpha\right]=e$ for all a. This shows the assertions for all $i \geq n-1$. Assume then that the enunciations have been proved for $i \geq k+1$, where $1 \leq k<n-1$. If then $x \in G_{k}-G_{k+1}$, we write $x=g_{k}^{a} y$, where $a \in\{1, \ldots, p-1\}$ and $y \in G_{k+1}$. Then,

$$
[x, \alpha]=\left[g_{k}^{a}, \alpha\right]\left[g_{k}^{a}, \alpha, y\right][y, \alpha]
$$

whence

$$
[x, \alpha] \equiv\left[g_{k}, \alpha\right]^{a} \quad \bmod G_{k+2},
$$

since it is easy to see that $\left[g_{k}^{r}, \alpha\right] \equiv\left[g_{k}, \alpha\right]^{r} \bmod G_{k+2}$ for all r. Thus we deduce

$$
[x, \alpha] \equiv g_{k+1}^{a} \quad \bmod G_{k+2}
$$

As a consequence we have demonstrated the last enunciation for $i=k$ and that the image of G_{k} under the mapping $x \mapsto[x, \alpha]$ is contained in G_{k+1}. It also follows that the group of fixed points of α in G is G_{n-1}.

Then for $x, y \in G_{k}$,

$$
[x, \alpha]=[y, \alpha] \Leftrightarrow y x^{-1}=\left(y x^{-1}\right)^{a} \Leftrightarrow y x^{-1} i n G_{n-1}
$$

and since $G_{n-1} \leq G_{k}$, we see that the image of the mapping $x \mapsto[x, \alpha]$ restricted to G_{k} has order

$$
\left|G_{k}: G_{n-1}\right|=\frac{1}{p}\left|G_{k}\right|=\left|G_{k+1}\right|
$$

Thus this image must be all of G_{k+1}.
Proposition 2. Let G be a finite p-group and let α be an automorphism of p-power order of G. Then the following statements are equivalent:
(1) G is α-concatenated.
(2) α has exactly p fixed points in G.

Proof. (1) implies (2): If G has order p^{n-1} then Proposition 1 implies that α 's group of fixed points in G is G_{n-1}; but $\left|G_{n-1}\right|=p$.
(2) implies (1): We show by induction on $|G|$ that G is α-concatenated. Of course we may assume that $|G|>p$.

If N is an α-invariant, normal subgroup of G, it is well-known that α has at the most p fixed points in $G / N\left(x N\right.$ is a fixed point if and only if $x^{-1} x^{\alpha} \in N$; $x^{-1} x^{\alpha}=y^{-1} y^{\alpha}$ if and only if $y x^{-1}$ is a fixed point of α in G). Since the order of α is a power of p, α must then have exactly p fixed points in G / N.

Let F be the group of fixed points of α in G. Since α has p-power order, and since $|F|=p, F$ is contained in the center of G. From the inductional hypothesis we deduce that G / F is α-concatenated. Therefore there exists a strongly central series

$$
G / F=G_{1} / F \geq \ldots \geq G_{n} / F=\{e\}
$$

and elements $g_{i} \in G_{i}$ such that

$$
G_{i} / G_{i+1} \quad \text { has order } p
$$

$$
G_{i} / G_{i+1} \quad \text { is generated by } g_{i} G_{i+1} \quad \text { for } i=1, \ldots, n-1
$$

and

$$
\left[g_{i} F, \alpha\right] \equiv g_{i+1} F \quad \bmod G_{i+2} / F \quad \text { for } i=1, \ldots, n-2
$$

Then

$$
\left[g_{i}, \alpha\right] \equiv g_{i+1} \quad \bmod G_{i+2} \quad \text { for } i=1, \ldots, n-2
$$

and $e \neq\left[g_{n-1}, \alpha\right] \in F$. Putting $g_{n}:=\left[g_{n-1}, \alpha\right]$, we then have that g_{n} generates F. Put $G_{n+i}=\{e\}$ for $i \in \mathbb{N}$. Then we only have to show that the series

$$
G=G_{1} \geq G_{2} \geq \ldots \geq G_{n}=F \geq G_{n+1}=\{e\}
$$

is strongly central. Consider the semidirect product $H=G<\alpha>$. Since the terms of the series are all α-invariant we get $\gamma_{i}(H) \leq G_{i}$ for $i \geq 2$.

Since $[G_{1}, \underbrace{\alpha, \ldots, \alpha}_{i-1}] \in G_{i}-G_{i+1}$ if $G_{i} \neq\{e\}$, we see that $\gamma_{i}(H)=G_{i}$ for $i \geq 2$.
Then

$$
\left[G_{i}, G_{j}\right] \leq\left[\gamma_{i}(H), \gamma_{j}(H)\right] \leq \gamma_{i+j}(H)=G_{i+j}
$$

for all $i, j \in \mathbb{N}$.
Corollary 1. If G is a finite, α-concatenated p-group, then the only α-invariant, normal subgroups of G are the G_{i} for $i \in \mathbb{N}$.

Proof. Suppose that N is an α-invariant, normal subgroup of G. Since α has p power order, α has exactly p fixed points in N. Thus α 's group of fixed points in G is contained in N. By induction on $|G|$ the statement follows immediately.

The next proposition shows that the theory of finite, concatenated p-groups is connected to certain aspects of the theory of finite p-groups of maximal class.

Proposition 3. Let G be a finite p-group.
Then G is α-concatenated for some automorphism α of order p, if and only if G can be embedded as a maximal subgroup of a finite p-group of maximal class.

Proof. Suppose that G is α-concatenated where $O(\alpha)=p$. Then G is embedded as a maximal subgroup of the semidirect product $H=G<\alpha>$. By Proposition 1 we see that H has class $n-1$ if G has order p^{n-1}. Thus H is a finite p-group of maximal class.

Suppose conversely that H is a finite p-group of maximal class and order p^{n}. Let U be a maximal subgroup of H. We have to show that U is α-concatenated for some automorphism α of order p and may assume that $n \geq 4$.

Put $H_{i}=\gamma_{i}(H)$ for $i \geq 2$, and $H_{1}=C_{H}\left(H_{2} / H_{4}\right)$. It is well-known that

$$
H_{1}=C_{H}\left(H_{i} / H_{i+2}\right) \quad \text { for } i=2, \ldots, n-3 ;
$$

this is also true for $i=n-2$ if $p=2$ (see [4], p. 362). Since H has $p+1$ maximal subgroups, we deduce the existence of a maximal subgroup U_{1} of H such that U_{1} is different from U and from

$$
C_{H}\left(H_{i} / H_{i+2}\right) \quad \text { for } i=2, \ldots, n-2 .
$$

If $U=<u, H_{2}>$ and $U_{1}=<u_{1}, H_{2}>$ then H is generated by u and u_{1}. Suppose that $s \in C_{H}\left(u_{1}\right) \cap U$ and write $s=u_{1}^{a} u^{b} x$ with $x \in H_{2}$. Then u_{1} commutes with $u^{b} x$. Since H is not abelian, we must have $b \equiv 0(p)$. Then $s=u_{1}^{a} y$ where $y \in H_{2}$. Since $s \in U \neq U_{1}$ we must have $a \equiv 0(p)$. Then $s \in H_{2}$. Since

$$
u_{1} \notin C_{H}\left(H_{i} / H_{i+2}\right) \quad \text { for } i=2, \ldots, n-2
$$

we deduce $s \in H_{n-1}=Z(H)$. If α denotes the restriction to U of the inner automorphism induced by u_{1}, then consequently α has exactly p fixed points in U. Then U is α-concatenated according to Proposition 2. Furthermore,

$$
u_{1}^{p} \in C_{H}\left(U_{1}\right) \cap H_{2} \leq C_{H}\left(U_{1}\right) \cap U=Z(H)
$$

so α has order p.
Next we determine the structure of finite abelian, concatenated p-groups. The purpose is to provide some simple examples that will display certain phenomena occurring quite generally.

Proposition 4. Let U be a finite abelian, concatenated p-group.
Then U has type

$$
(\underbrace{p^{\mu+1}, \ldots, p^{\mu+1}}_{s}, \underbrace{p^{\mu}, \ldots, p^{\mu}}_{d-s}) \text { for some } \mu \in \mathbb{N}, s \geq 0, d>s
$$

Proof. Suppose that U is α-concatenated. Let $\omega(U)=p^{d}$. Now, U / U^{p} is α concatenated so we deduce the existence of elements $u_{1}, \ldots u_{d} \in U$ and $u \in U^{p}$ such that $U=<u_{1}, \ldots u_{d}>$ and

$$
u_{i}^{\alpha}=u_{i} u_{i+1} \quad \text { for } i=1, \ldots, d-1, \quad u_{d}^{\alpha}=u_{d} u
$$

If we put $p^{\mu_{i}}=O\left(u_{i}\right)$ we deduce $\mu_{1} \geq \ldots \mu_{d}$. Let $s \geq 0$ and $\mu \in \mathbb{N}$ be determined by the conditions $\mu_{1}=\ldots=\mu_{s}=\mu+1$ and $\mu_{s}>\mu_{s+1}$; if $\mu_{1}=\ldots=\mu_{d}$ we put $s=0$ and $\mu=\mu_{1}$.

If $s>0$ then

$$
\left(u_{s}^{p^{\mu_{s+1}}}\right)^{\alpha}=u_{s}^{p^{\mu_{s+1}}} u_{s+1}^{p^{\mu_{s+1}}}=u_{s}^{p^{\mu_{s+1}}}
$$

and so $\mu_{s}-\mu_{s+1}=1$, since α has exactly p fixed points in U. Then $\mu_{s+1}=\ldots=\mu_{d}$, since u_{1}, \ldots, u_{d} are independent generators.

Proposition 5. For integers μ, s, d with $\mu, d \in \mathbb{N}$ and $d>s \geq 0$, we consider the finite, abelian p-group

$$
U=U(p, \mu, s, d):=\left(\mathbb{Z} / \mathbb{Z} p^{\mu+1}\right)^{s} \times\left(\mathbb{Z} / \mathbb{Z} p^{\mu}\right)^{d-s}
$$

with canonical basis $\left(u_{1},, \ldots, u_{d}\right)$ (so that $O\left(u_{i}\right)=p^{\mu+1}$ for $i=l, \ldots, s$, and $O\left(u_{i}\right)=$ p^{μ} for $i>s$).

For any integers b_{1}, \ldots, b_{d} with $b_{1} \not \equiv 0(p)$ we define the endomorphism α of U by

$$
u_{i}^{\alpha}=u_{i} u_{i+1} \quad \text { for } i=1, \ldots, d-1, \quad u_{d}^{\alpha}=u_{d} u
$$

where $u:=u_{1}^{p b_{1}} \ldots u_{d}^{p b_{d}}$.
Then α is an automorphism of U and U is α-concatenated.
For all $i \in \mathbb{N}$ define: $u_{i}:=[u_{1}, \underbrace{\alpha, \ldots, \alpha}_{i-1}] \quad$ (for $i \leq d$ this is of course not a definition, but rather a property of α), and put $U_{i}:=\left\langle u_{j} \mid j \geq i\right\rangle$.

The order of α is then determined as follows:
Let $v \in \mathbb{Z}, v \geq 0$ be least possible such that $d \leq p^{v}(p-1)$.
Case (1). $d<p^{v}(p-1)$: If $d \mu+s \leq p^{t}$ then $O(\alpha)=p^{\sigma}$, where σ is least possible such that $p^{\sigma} \geq d \mu+s$.

Otherwise, $O(\alpha)=p^{v+k}$ where $k \geq 1$ is least possible such that

$$
k \geq \frac{d \mu+s-p^{v}}{d}
$$

Case (2). $d=p^{v}(p-1)$: If $d \mu+s<p^{v+1}$, put $r=d \mu+s$. Otherwise, there exists $r \in\left\{p^{v+1}, \ldots, d \mu+s\right\}$ least possible such that

$$
X:=u_{2}^{\binom{p^{v+1}}{1}} \cdots u_{p^{v+1}-1}^{\left(\begin{array}{c}
p^{v+1}-2
\end{array}\right)} u_{p^{v+1}}^{\left(\begin{array}{c}
p^{v+1}-1
\end{array}\right)} u_{p^{v+1}+1} \in U_{r+1}
$$

Then $O(\alpha)=p^{v+k+1}$ where $k \geq 0$ is least possible such that

$$
k \geq \frac{d \mu+s-r}{d}
$$

Proof. It is easily verified that α is an automorphisms of U, that α has exactly p fixed points, and that α has p-power order. So, U is α-concatenated by Proposition 2.

By an easy inductional argument (on the parameter $d \mu+s$) we see that for all i,

$$
u_{i}^{p} \equiv u_{i+d}^{a} \quad \bmod U_{i+d+1} \quad \text { with } a \not \equiv 0 \quad(p)
$$

By induction on k we also see that for all i,

$$
u_{i}^{\alpha^{k}}=u_{i} u_{i+1}^{\binom{k}{1}} \cdots u_{i+k-1}^{\binom{k}{k}}
$$

From these facts we may conclude that

$$
u_{i}^{\alpha^{p^{\sigma}}} \equiv u_{i} u_{i+p^{\sigma}} \quad \bmod U_{i+p^{\sigma}+1} \quad \text { for all } i \text { and all } \sigma \leq v,
$$

since $d>p^{\sigma}(p-1)$ for $\sigma \leq v$.
Case (1). $d<p^{v}(p-1)$: By an easy induction on $k \geq 0$ we get

$$
u_{i}^{\alpha^{p^{v+k}}} \equiv u_{i} u_{i+p^{v}+k d}^{b(k)} \quad \bmod U_{i+p^{v}+k d+1}
$$

where $b(k) \not \equiv 0(p)$. Here we have used the inequality

$$
(1-k(p-1)) d<p^{v+1}-p^{v} .
$$

Case (2). $d=p^{v}(p-1)$: With the same technique as in Case (1) we see that

$$
X \in U_{p^{v+1}+1} .
$$

If $r=d \mu+s$ the statement about the order of α is seen to be true, so we assume that $d \mu+s>p^{v+1}$, and also that $U_{r+1} \neq\{e\}$. Then we may write

$$
u_{1}^{\alpha^{p^{v+1}}} \equiv u_{1} u_{r+1}^{b} \quad \bmod U_{r+2}
$$

where $b \not \equiv 0(p)$. Letting $(\alpha-1)^{i-1}$ operate on this congruence we obtain

$$
u_{i}^{\alpha^{p^{v+1}}} \equiv u_{i} u_{i+r}^{b} \quad \bmod U_{i+r+1}
$$

Then, by using the inequality $r+k d<p(r+(k-1) d$) for $k \geq 1$, we get by induction on $k \geq 1$

$$
u_{i}^{\alpha^{p^{v+k}}} \equiv u_{i} u_{i+r+(k-1) d}^{b(k)} \quad \bmod U_{i+r+(k-1) d+1}
$$

for all i with some $b(k) \not \equiv 0(p)$.
Remark 1. In Case (1) of Proposition 5 we see that the order of U is bounded above by a function of p and $O(\alpha)$. This fact is easily seen to imply the existence of functions, $s(x, y)$ and $t(x, y)$, such that whenever G is an α-concatenated p-group where $O(\alpha)=p^{k}$ then either $G_{s(p, k)}$ has order less than $t(p, k)$ or $\omega\left(G_{s(p, k)}\right)$ has form $p^{v}(p-1)$.

This more than indicates that the concatenated p-groups G with $\omega(G)$ of form $p^{v}(p-1)$ play an important role in the study of the derived length of finite, concatenated p-groups. In the sequel we shall get another explanation of this fact.

4.

Definition 2. Let G be an α-concatenated p-group. Let $t \in \mathbb{Z}, t \geq 0$. We say that G has degree of commutativity t if

$$
\left[G_{i}, G_{j}\right] \leq G_{i+j+t} \quad \text { for all } i, j \in \mathbb{N}
$$

In the proof of our main theorem, we shall show that if G is a finite, concatenated p-group, then for sufficiently large s the group G_{s} has high degree of commutativity (in comparison with n if $\left|G_{s}\right|=p^{n}$). In this connection it will be useful to single out a certain class of finite, concatenated p-groups having 'straight' p-power structure.

Definition 3. Suppose that G is a finite, α-concatenated p-group with $\omega(G)=d$.
We say that G is straight if the following conditions are fulfilled:
(1) $G_{i}^{p}=G_{i+d}$ for all $i \in \mathbb{N}$.
(2) $x \in G_{r}$ and $c \in G_{s}$ implies $x^{-p}(x c)^{p} \equiv c^{p} \bmod G_{r+s+d}$, for all $r, s \in \mathbb{N}$.
(3) For all $i \in \mathbb{N}$ we have: If $g G_{i+1}$ is a generator of G_{i} / G_{i+1}, then $g^{p} G_{i+d+1}$ generates G_{i+d} / G_{i+d+1}.

We now give a criterion for straightness.
Proposition 6. Let G be a finite, α-concatenated p-group with $\omega(G)=d$.
If G is regular, or has degree of commutativity $\geq(d+1) /(p-1)-1$, then G is straight.

Proof. For the theory of finite, regular p-groups the reader is referred to [3], or [4], pp. 321-335.

Let $|G|=p^{n-1}$. We prove the theorem by induction on n. Thus we may assume that G_{2} is straight. Put $\omega\left(G_{2}\right)=d_{1}$. We may also assume that G does not have exponent p.
(a) We claim that if $r \leq s$, and if $x \in G_{r}, c \in G_{s}$, then:

$$
x^{-p}(x c)^{p} \equiv c^{p} \quad \bmod G_{r+s}^{p} G_{r+s+d}
$$

For suppose that G is regular. We then obtain

$$
x^{-p}(x c)^{p} \equiv c^{p} \quad \bmod \gamma_{2}(<x, c>)^{p}
$$

and in any case we see, using the Hall-Petrescu formula (see [4], pp. 317-318), that

$$
x^{-p}(x c)^{p} \equiv c^{p} \quad \bmod \gamma_{2}(<x, c>)^{p} \gamma_{p}(<x, c>)
$$

Now, $\left.\gamma_{2}(<x, c\rangle\right) \leq G_{r+s}$, so if G has degree of commutativity $t \geq \frac{d+1}{p-1}-1$ then

$$
\gamma_{p}(<x, c>) \leq G_{s+(p-1) r+(p-1) t}
$$

(b) We claim that $d_{1} \geq d$: We may assume $G_{d+2}=\{e\}$ and have to prove that $G_{2}^{p}=\{e\}$.

Suppose that $y \in G_{i}$, where $i \geq 2$. According to Proposition 1 there exists $x \in G_{i-1}$ such that $[x, \alpha]=y$.

Now, $G^{p}=G_{d+1}$: For G^{p} is an α-invariant, normal subgroup of index p^{d}. So, by Corollary 1 the claim follows (from now on we will use Corollary 1 without explicit reference).

In particular, $x^{p} \in G_{d+1}$, whence according to (a),

$$
e=\left[x^{p}, \alpha\right]=x^{-p}\left(x^{\alpha}\right)^{p}=x^{-p}(x[x, \alpha])^{p} \equiv[x, \alpha]^{p}=y^{p} \quad \bmod G_{2 i-1}^{p} G_{2 i-1+d}
$$

Now, $G_{2 i-1+d}=\{e\}$, and since certainly $d_{1} \geq d-1, G_{2 i-1}^{p}=\{e\}$. Hence, $y^{p}=e$
(c) We claim that $G_{i}^{p} \leq G_{i+d}$ for all $i \in \mathbb{N}$: This is clear from (b) and the inductional hypothesis.
(d) If $r \leq s$, and if $x \in G_{r}, c \in G_{s}$, then:

$$
x^{-p}(x c)^{p} \equiv c^{p} \quad \bmod G_{r+s+d}
$$

This is clear from (a) and (c).
(e) We claim that $d_{1}=d$: We may assume $G_{d+2}>\{e\}$. Choose $g \in G$ such that $g^{p} \notin G_{d+2}$. Then

$$
\left[g^{p}, \alpha\right]=g^{-p}(g[g, \alpha])^{p} \equiv[g, \alpha]^{p} \quad \bmod G_{d+3}
$$

because of (d). Since $\left[g^{p}, \alpha\right] \notin G_{d+3}$, we have $[g, \alpha]^{p} \notin G_{d+3}$. Since $[g, \alpha] \in G_{2}$, this proves $d_{1} \leq d$.
(f) If $g G_{2}$ generates G_{1} / G_{2}, and if $x \in G$, we have $x=g^{a} y$ for some $y \in G_{2}$. By (a) we then have

$$
g^{-p a} x^{p} \equiv y^{p} \equiv e \quad \bmod G_{d+2}
$$

Since $G^{p}=G_{d+1}$, we must then have $g^{p} \notin G_{d+2}$. Then $g^{p} G_{d+2}$ generates G_{d+1} / G_{d+2}.

We shall be needing some information about $\omega(G)$ in case G is a concatenated p-group, and in particular in case G is a straight concatenated p-group. First we need some lemmas.

Lemma 1. Let $i \in \mathbb{N}$. Suppose that $\sigma \in\left\{0, \ldots 2^{i}-1\right\}$. For $s \in\left\{0, \ldots 2^{i}-1\right\}$, we let $\mu_{\sigma, s}$ be the integer determined by the conditions

$$
\mu_{\sigma, s}+s \equiv \sigma \quad\left(2^{i}\right) \quad \text { and } \quad \mu_{\sigma, s} \in\left\{0, \ldots 2^{i}-1\right\}
$$

Then the integer

$$
\nu:=2\binom{2^{i}-1}{\sigma}+\sum_{s=1}^{2^{i}-1}\binom{2^{i}}{s}\binom{2^{i}-1}{\mu_{\sigma, s}}
$$

is divisible by 4.
Proof. Suppose that $s \in\left\{0, \ldots 2^{i}-1\right\}$ and that $\binom{2^{i}}{s}$ is not divisible by 4. Now,

$$
\binom{2^{i}}{s}=\binom{2^{i}-1}{s}+\binom{2^{i}-1}{s-1}=\binom{2^{i}-1}{s-1}\left(1+\frac{2^{i}-s}{s}\right)=\binom{2^{i}-1}{s-1} \frac{2^{i}}{s}
$$

hence $2^{i-1} \mid s$, and so $s=2^{i-1}$. We conclude that ν differs from

$$
2\binom{2^{i}-1}{\sigma}+2\binom{2^{i}-1}{2^{i-1}-1}\binom{2^{i}-1}{\mu_{\sigma, 2^{i-1}}}
$$

by a multiple of 4 .
Now, the integer

$$
\binom{2^{i}-1}{\sigma}+\binom{2^{i}-1}{2^{i-1}-1}\binom{2^{i}-1}{\mu_{\sigma, 2^{i-1}}}
$$

is even for the following reasons: We have

$$
\binom{2^{i}-1}{\mu_{\sigma, 2^{i-1}}}= \begin{cases}\binom{2^{i}-1}{\sigma-2^{i-1}} & \text { for } \sigma \geq 2^{i-1} \\ \binom{2^{i}-1}{\sigma+2^{i-1}} & \text { for } \sigma<2^{i-1}\end{cases}
$$

and from well-known facts concerning the 2-powers dividing n ! for $n \in \mathbb{N}$, we see that

$$
\binom{2^{i}-1}{\mu_{\sigma, 2^{i-1}}}
$$

is divisible by exactly the same powers of 2 as is $\binom{2^{i}-1}{\sigma}$, and also that

$$
\binom{2^{i}-1}{2^{i-1}-1}
$$

is odd.
Lemma 2. Let F be the free group on free generators x and y. Let p be a prime number and let n be a natural number. Then,

$$
x^{p^{n}} y^{p^{n}}=(x y)^{p^{n}} c c_{p} \ldots c_{p^{n}}
$$

where $c \in \gamma_{2}(F)^{p^{n}}$ and $c_{p^{i}} \in \gamma_{p^{i}}(F)^{p^{n-i}}$ for $i=1, \ldots, n$.
Each $c_{p^{i}}$ has form

$$
c_{p^{i}} \equiv[y, \underbrace{x, \ldots, x}_{p^{i}-1}]^{a_{i} p^{n-i}} \prod v_{\mu}^{b_{\mu} p^{n-i}} \bmod \gamma_{p^{i}+1}(F)^{p^{n-i}} \gamma_{p^{i+1}}(F)^{p^{n-i-1}} \gamma_{p^{n}}(F)^{p^{n}}
$$

for certain integers a_{i} and b_{μ}, and certain group elements v_{μ} which each has form:

$$
v_{\mu}=\left[y, z_{1}, \ldots, z_{p^{i}-1}\right]
$$

with $z_{k} \in\{x, y\}$, and $z_{k}=y$ for at least one k (in each v_{μ}).
Furthermore, $a_{i} \equiv-1(p)$ for $i=1, \ldots, n$.
Proof. Let $i \in\{1, \ldots, n\}$. If $u, v \in \gamma_{p^{i}}(F)$ then the Hall-Petrescu formula ([4], pp. 317-318) implies

$$
(u v)^{p^{n-i}} \equiv u^{p^{n-i}} v^{p^{n-i}} \quad \bmod \gamma_{2}(<u, v>)^{p^{n-i}} \prod_{j=1}^{n-i} \gamma_{p^{j}}(<u, v>)^{p^{n-i-j}}
$$

From this, and from standard, elementary facts concerning commutators the result follows immediately from the Hall-Petrescu formula, except for the fact that $a_{i} \equiv$ $-1(p)$ for $i=1, \ldots, n$.

Consider the abelian p-group U of type

$$
(\underbrace{p^{n-i+1}, \ldots, p^{n-i+1}}_{p^{i}})
$$

with basis $u_{1}, \ldots, u_{p^{i}}$, and let G be the semidirect product $G=U<\alpha>$ where α is the automorphism of U given by

$$
u_{j}^{\alpha}=u_{j+1}, j=1, \ldots, p^{i}-1, \quad \text { and } \quad u_{p^{i}}^{\alpha}=u_{1}
$$

Then α has order p^{i}. Put $u_{s}=u_{r}$ if $r, s \in \mathbb{N}, r \in\left\{1, \ldots, p^{i}\right\}$, and $s \equiv r(p)$. Then for $r=1, \ldots, p^{i}$ we have

$$
\begin{equation*}
[u_{r}, \underbrace{\alpha, \ldots, \alpha}_{p^{i}-1}]=u_{r}^{(-1)^{p^{i}-1}} u_{r+1}^{(-1)^{p^{i}-2}\binom{p^{i}-1}{1} \cdots u_{r+p^{i}-1}} \tag{*}
\end{equation*}
$$

and

$$
[u_{r}, \underbrace{\alpha, \ldots, \alpha}_{p^{i}}]=u_{r}^{1+(-1)^{p^{i}}} u_{r+1}^{(-1)^{p^{i}-1}\binom{p^{i}}{1}} \cdots u_{r+p^{i}-1}^{(-1)\left(\begin{array}{c}
p^{i}-1 \tag{**}
\end{array}\right)}
$$

Thus, $\gamma_{p^{i}+1}(G) \leq U^{p}$. Using the same argument with u_{r} replaced by $u_{r}^{p^{s-1}}$ we deduce

$$
\gamma_{s p^{i}+1}(G) \leq U^{p^{s}} \quad \text { for } s \in \mathbb{N}
$$

Since $s p^{i}+1 \leq p^{i+s-1}$ for $s \geq 2$ except when $p=2$ and $s=2$, we conclude that $(* * *) \quad \gamma_{p^{i+s-1}}(G)^{p^{n-(i+s-1)}}=\{e\} \quad$ for $s \geq 2$,
except possibly when $p=2$ and $s=2$.
If $p=2$ we use $(*)$ and $(* *)$ to conclude that

$$
[u_{r}, \underbrace{\alpha, \ldots, \alpha}_{2^{i+1}-1}]=\prod_{\sigma=0}^{2^{i}-1} u_{r+\sigma}^{b(r, \sigma)}
$$

where

$$
b(r, \sigma)=(-1)^{\sigma+1}\left(2\binom{2^{i}-1}{\sigma}+\sum_{s=1}^{2^{i}-1}\binom{2^{i}}{s}\binom{2^{i}-1}{\mu_{\sigma, s}}\right)
$$

with $\mu_{\sigma, s}$ determined by

$$
\mu_{\sigma, s} \in\left\{0, \ldots, 2^{i}-1\right\} \quad \mu_{\sigma, s}+s \equiv \sigma \quad\left(2^{i}\right) .
$$

Using Lemma 1, we then see that $(* * *)$ is true also in the case $p=2$ and $s=2$.

Now we compute

$$
x:=\left(\alpha u_{1}\right)^{p^{n}}\left(\alpha u_{1} \alpha^{-1}\right) \cdots\left(\alpha^{p^{n}} u_{1} \alpha^{-p^{n}}\right) \alpha^{p^{n}}=\left(u_{1} \cdots u_{p^{i}}\right)^{p^{n-i}}
$$

Using the results obtained this far we conclude

$$
\begin{aligned}
e & =\alpha^{p^{n}} u_{1}^{p^{n}}=x c_{p^{i}}=x[u_{1}, \underbrace{\alpha, \ldots, \alpha}_{p^{i}-1}]^{a_{i} p^{n-i}} \\
& =\left(\left(u_{1} \cdots u_{p^{i}}\right)\left(u_{1}^{(-1)^{p^{i}-1}} u_{2}^{(-1)^{p^{i}-2}\left(p_{1}^{p^{i}-1}\right)} \cdots u_{p^{i}}\right)^{a_{i}}\right)^{p^{n}-i}
\end{aligned}
$$

which gives $a_{i} \equiv-1(p)$.
Theorem 1. Suppose that G is an α-concatenated p-group of order p^{n-1} where $O(\alpha)=p^{k}$.

If G centralizes G_{i} / G_{i+2} for $i=1, \ldots p^{k}$, and if $n \geq p^{k}+2$, then $\omega(G) \leq p^{k}-1$.
Proof. Put $d:=\omega(G)$. The element αg_{1} belonging to the semidirect product $H=$ $G<\alpha>$ has the property that $\alpha g_{1} \notin C_{H}\left(G_{i} / G_{i+2}\right)$ for $i=2, \ldots, p^{k}$. Since $\left(\alpha g_{1}\right)^{p^{k}}$ is an element of G_{2} (confer Lemma 2 for instance) that commutes with αg_{1}, we must have

$$
\left(\alpha g_{1}\right)^{p^{k}} \in G_{p^{k}+1}
$$

Now assume that $d \geq p^{k}$. Then $G_{1}^{p} \leq G_{p^{k}+1}$. By Lemma 2 we then deduce (note that $\gamma_{i}(H)=G_{i}$ for $i \geq 2$)

$$
e \equiv \alpha^{p^{k}} g_{1}^{p^{k}} \equiv\left(\alpha g_{1}\right)^{p^{k}} c \equiv c \quad \bmod G_{p^{k}+1}
$$

where c has form

$$
c \equiv[g_{1}, \underbrace{\alpha, \ldots, \alpha}_{p^{k}-1}]^{-1} \prod_{\mu} v_{\mu}^{b_{\mu}} \quad \bmod G_{p^{k}+1}
$$

with each v_{μ} of the form $\left[g_{1}, z_{1}, \ldots, z_{p^{k}-1}\right]$, where $z_{j} \in\left\{\alpha, g_{1}\right\}$ and $z_{j}=g_{1}$ for at least one j (in each v_{μ}). Since $g_{1} \in C_{H}\left(G_{i} / G_{i+2}\right)$ for $i=2, \ldots, p^{k}$, we deduce $v_{\mu} \in G_{p^{k}+1}$ for all μ. But then

$$
c \equiv[g_{1}, \underbrace{\alpha, \ldots, \alpha}_{p^{k}-1}]^{-1} \not \equiv e \quad \bmod G_{p^{k}+1}
$$

a contradiction.
Corollary 2. Let G be an α-concatenated p-group where $O(\alpha)=p^{k}$.
Then $G_{1+\left(1+\ldots+p^{k-1}\right)}$ is a straight α-concatenated p-group.
Proof. Put $s=1+\left(1+\ldots+p^{k-1}\right)$. According to Theorem 1, either G_{s} has exponent p or $\omega\left(G_{s}\right) \leq p^{k}-1$. If G_{s} has exponent then G_{s} is trivially straight. Assume then that $\omega\left(G_{s}\right) \leq p^{k}-1$. As G_{s} has degree of commutativity at least

$$
s-1=\left(1+\ldots+p^{k-1}\right)=\frac{p^{k}-1}{p-1} \geq \frac{p^{k}-p+1}{p-1}=\frac{p^{k}}{p-1}-1 \geq \frac{\omega\left(G_{s}\right)+1}{p-1}-1
$$

the statement now follows from Proposition 6.
Theorem 2. Let G be an α-concatenated p-group of order p^{n-1}, where $O(\alpha)=p^{k}$. Suppose further that G is straight, that $n \geq p^{k}+2$, and that G centralizes G_{i} / G_{i+2} for $i=2, \ldots, p^{k}$.

Then $\omega(G)=p^{v}(p-1)$ for some $v \in\{0, \ldots, k-1\}$.
Proof. We wish to perform certain calculations in the semidirect product $G<\alpha>$. By the same argument as in the proof of Theorem 1 we see that the element αg_{1} satisfies

$$
\left(\alpha g_{1}\right)^{p^{k}} \in G_{p^{k}+1}
$$

Put $d:=\omega(G)$. Assume that the minimum $\min \left\{p^{i}+(k-i) \mid i=0, \ldots, k\right\}$ is attained for exactly one value of i, say for $i=i_{0} \in\{0, \ldots, k\}$. Put $s=p^{i_{0}}+\left(k-i_{0}\right) d$. Consider

$$
\alpha^{p^{k}} g_{1}^{p^{k}}=\left(\alpha g_{1}\right)^{p^{k}} c c_{p} \cdots c_{p^{k}}
$$

where the c^{\prime} 's have the shapes given in Lemma 2. Notice that $c_{j} \in G_{p^{j}+(k-j) d}$, and that $c \in G_{2+k d} \leq G_{s+1}$.

Suppose that $i_{0}=0$: Then $s=k d$, and we deduce $G_{s+1} \not \supset g_{1}^{p^{k}} \equiv e \bmod G_{s+1}$, a contradiction.

Suppose then that $i_{0}>0$: Here we get $e \equiv g_{1}^{p^{k}} \equiv c_{p^{i} 0} \bmod G_{s+1}$, and

$$
c_{p^{i_{0}}}=[g_{1}, \underbrace{\alpha, \ldots, \alpha}_{p^{i_{0}}-1}]^{-p^{k-i_{0}}} \equiv g_{p^{i_{0}}}^{-p^{k-i_{0}}} \quad \bmod G_{s+1}
$$

but we have

$$
g_{p^{i} 0}^{-p^{k-i_{0}}} \notin G_{s+1}
$$

a contradiction.
Consequently the minimum $\min \left\{p^{i}+(k-i) \mid i=0, \ldots, k\right\}$ is attained for two different values of i, say for $i=i_{1}$, and for $i=i_{2}>i_{1}$. Analyzing the function $p^{x}+(k-x) d$ for $0 \leq x \leq k$ we deduce $\left|i_{1}-i_{2}\right|=1$, whence $d=p^{i_{1}}(p-1)$.

Our further investigations will concentrate on the analysis of certain invariants that will now be introduced.

Definition 4. Suppose that G is an α-concatenated p-group and that G has degree of commutativity t. Then we define the integers $a_{i, j}$ modulo p for $i, j \in \mathbb{N}$ thus: If $G_{i+j+t}=\{e\}$, we put $a_{i, j}=0$. Otherwise, we let $a_{i, j}$ be the unique integer modulo p determined by the condition:

$$
\left[g_{i}, g_{j}\right] \equiv g_{i+j+t}^{a_{i, j}} \quad \bmod G_{i+j+t+1}
$$

We refer to the $a_{i, j}$ as the invariants of G with respect to degree of commutativity t. The $a_{i, j}$ depend on the choice of the g_{i}, but choosing a different system of g_{i} 's merely multiplies all the invariants with a certain constant incongruent to 0 modulo p.

Proposition 7. Let G be a finite, α-concatenated p-group of order p^{n-1}. Suppose that G has degree of commutativity t and let $a_{i, j}$ be the associated invariants. Then we have the following.
(1) $a_{i, j} a_{k, i+j+t}+a_{j, k} a_{i, j+k+t}+a_{k, i} a_{j, k+i+t} \equiv 0$ (p) for $i+j+k+2 t+1 \leq n$.
(2) $a_{i, j} \equiv a_{i+1, j}+a_{i, j+1}$ (p) for $i+j+t+2 \leq n$.
(3) If $i_{0} \in \mathbb{N}$ then we have for $i, j \geq i_{0}$:

$$
a_{i, j} \equiv \sum_{s=0}^{i-i_{0}}(-1)^{s}\binom{i-i_{0}}{s} a_{i_{0}, j+s} \quad(p) \quad \text { if } i+j+t+1 \leq n
$$

(4) For $r \in \mathbb{N}$ we have

$$
a_{i, i+r} \equiv \sum_{s=1}^{[(r+1) / 2]}(-1)^{s-1}\binom{r-s}{s-1} a_{i+s-1, i+s} \quad(p) \quad \text { if } 2 i+r+t+1 \leq n
$$

Proof. We shall make use of Witt's Identity

$$
\begin{equation*}
\left[a, b^{-1}, c\right]^{b}\left[b, c^{-1}, a\right]^{c}\left[c, a^{-1}, b\right]^{a}=e \tag{*}
\end{equation*}
$$

for elements a, b, and c in a group.
(1). Considering ($*$) modulo $G_{i+j+k+2 t+1}$ with $a=g_{i}, b=g_{j}$, and $c=g_{k}$ gives us the congruence

$$
g_{i+j+k+2 t}^{-a_{i, j} a_{i+j+t, k}-a_{j, k} a_{j+k+t, i}-a_{k, i} a_{k+i+t, j}} \equiv e \quad \bmod G_{i+j+k+2 t+1}
$$

But if $i+j+k+2 t+1 \leq n$ then $g_{i+j+k+2 t} \neq e$, and the claim follows.
(2). Considering (*) modulo $G_{i+j+t+2}$ with $a=g_{i}, b=\alpha^{-1}$, and $c=g_{k} j$ gives us the congruence

$$
g_{i+j+t+1}^{-a_{i, j}+a_{i+1, j}+a_{i, j+1}} \equiv e \quad \bmod G_{i+j+t+2}
$$

But if $i+j+t+2 \leq n$, then $g_{i+j+t+1} \neq e$, and the claim follows.
(3). Using (2) this follows easily by induction on $i-i_{0}$.
(4). Using (2) this follows easily by induction on r.

The next proposition reveals part of the purpose of the introduction of the idea of straight, concatenated p-groups.

Proposition 8. Let G be an α-concatenated p-group of order p^{n-1}. Suppose that G is straight and put $d=\omega(G)$. Let $a_{i, j}$ be G 's invariants with respect to a given degree of commutativity t. Then for all i, j we have

$$
i+j+d+t+1 \leq n \Rightarrow\left(a_{i, j} \equiv a_{i+d, j} \quad(p)\right)
$$

Proof. If $G_{i+d} \neq\{e\}$, we have

$$
g_{i}^{p} \equiv g_{i+d} \quad \bmod G_{i+d+1}
$$

with $b_{i} \not \equiv 0(p)$.
Suppose that $i \in \mathbb{N}$ with $G_{i+1+1} \neq\{e\}$. Then $g_{i+1}^{p}=\left(\left[g_{i}, \alpha\right] y\right)^{p}$ for some $y \in G_{i+2}$. Then (by Lemma 2)

$$
\left[g_{i}, \alpha\right]^{-p} g_{i+1}^{p} \equiv y^{p} \quad \bmod G_{2 i+3+d}
$$

so

$$
g_{i+d+1}^{b_{i+1}} \equiv g_{i+1}^{p} \equiv\left[g_{i}, \alpha\right]^{p} \equiv g_{i}^{-p}\left(g_{i}\left[g_{i}, \alpha\right]\right)^{p} \equiv\left[g_{i}^{p}, \alpha\right] \equiv g_{i+d+1}^{b_{i}} \quad \bmod G_{i+d+2}
$$

and since $g_{i+d+1} \neq e$, we deduce $b_{i+1} \equiv b_{i}(p)$.
Then if $i+j+d+t+1 \leq n$ we get

$$
g_{i+j+d+t}^{b_{i} a_{i+d, j}} \equiv\left[g_{i}^{p}, g_{j}\right]=g_{i}^{-p}\left(g_{i}\left[g_{i}, g_{j}\right]\right)^{p} \equiv\left[g_{i}, g_{j}\right]^{p} \equiv g_{i+j+d+t}^{b_{i+j+t} a_{i, j}} \quad \bmod G_{i+j+d+t+1}
$$ and so $a_{i+d, j} \equiv a_{i, j}(p)$.

For straight, concatenated p-groups we have a stronger version of Proposition 7.
Proposition 9. Let G be a straight, α-concatenated p-group of order p^{n-1} and with $\omega(G)=p^{v}(p-1)$. Suppose that G has degree of commutativity t and let $a_{i, j}$ be the associated invariants. Suppose that $s \in \mathbb{N}$ is such that $s+t \equiv 0\left(p^{v}\right)$ and define $a_{i, j}^{(r)}$ for $r=0, \ldots, v$ and $i, j \in \mathbb{Z}$ such that $s+i p^{r}, s+j p^{r} \geq 1$, by

$$
a_{i, j}^{(r)}=a_{s+i p^{r}, s+j p^{r}}
$$

Put $t(r)=(s+t) p^{-r}$ for $r=0, \ldots, v$.
(1) Then for $r=0, \ldots, v$ we have the following congruences

$$
\begin{equation*}
a_{i, j}^{(r)} a_{k, i+j+t(r)}^{(r)}+a_{j, k}^{(r)} a_{i, j+k+t(r)}^{(r)}+a_{k, i}^{(r)} a_{j, k+i+t(r)}^{(r)} \equiv 0 \tag{p}
\end{equation*}
$$

for $3 s+2 t+(i+j+k) p^{r}+1 \leq n$.
(2) $a_{i, j+p^{v-r}(p-1)}^{(r)} \equiv a_{i, j}^{(r)}(p)$ for $2 s+t+(i+j) p^{r}+p^{v}(p-1)+1 \leq n$.
(3) $a_{i, j}^{(r)} \equiv a_{i+1, j}^{(r)}+a_{i, j+1}^{(r)}$ (p) for $2 s+t+(i+j+1) p^{r}+1 \leq n$.
(4) If $i_{0} \in \mathbb{N}$ then for $i, j \geq i_{0}$ and $2 s+t+(i+j) p^{r}+1 \leq n$ we have:

$$
a_{i, j}^{(r)} \equiv \sum_{h=0}^{i-i_{0}}(-1)^{h}\binom{i-i_{0}}{h} a_{i_{0}, j+h}^{(r)} \quad(p)
$$

(5) For $w \in \mathbb{N}$ and $2 s+(2 i+w) p^{r}+t+1 \leq n$,

$$
a_{i, i+w}^{(r)} \equiv \sum_{h=1}^{[(w+1) / 2]}(-1)^{h-1}\binom{w-h}{h-1} a_{i+h-1, i+h}^{(r)} \quad(p)
$$

Proof. (1). Using Proposition 7 this follows immediately from the definitions.
(2). Using Proposition 8 this follows immediately from the definitions.
(3). Let $r \in\{0, \ldots, v\}$ and let $i \in \mathbb{N}$. We first claim that

$$
\left[g_{i}, \alpha^{p^{r}}\right] \equiv g_{i+p^{r}} \quad \bmod G_{i+p^{r}+1}
$$

To see this we write, in accordance with Lemma 2,

$$
\alpha^{p^{r}}\left[\alpha^{p^{r}}, g_{i}\right]=\left(\alpha\left[\alpha, g_{i}\right]\right)^{p^{r}}=\alpha^{p^{r}}\left[\alpha, g_{i}\right]^{p^{r}} c_{p^{r}} \cdots c_{p} c
$$

where, with $U:=<\alpha,\left[\alpha, g_{i}\right]>$ (a subgroup of the semidirect product $G<\alpha>$),

$$
c \in \gamma_{2}(U)^{p^{r}}, \quad c_{p^{\mu}} \in \gamma_{p^{\mu}}(U)^{p^{r-\mu}}, \mu=1, \ldots, r,
$$

and

$$
c_{p^{r}} \equiv[g_{i}, \underbrace{\alpha, \ldots, \alpha}_{p^{r}}]^{-1} \equiv g_{i+p^{r}}^{-1} \quad \bmod G_{i+p^{r}+1}
$$

Furthermore, since $r \leq v$, we have

$$
G_{i+1}^{p^{r}} \leq G_{i+p^{r}+1} \quad \text { and } \quad \gamma_{p^{\mu}}(U)^{p^{r-\mu}} \leq G_{i+p^{\mu}+(r-\mu) d} \leq G_{i+p^{r}+1}
$$

for $\mu=1, \ldots, r-1$. The claim follows from this.
Now suppose that $i, j \in \mathbb{Z}$ such that $s+i p^{r}, s+j p^{r} \geq 1$ and $z:=2 s+t+(i+$ $j+1) p^{r}+1 \leq n$. Then by considering Witt's Identity

$$
\left[a, b^{-1}, c\right]^{b}\left[b, c^{-1}, a\right]^{c}\left[c, a^{-1}, b\right]^{a}=e
$$

modulo G_{z} with

$$
a=g_{s+i p^{r}}, \quad b=\alpha^{-p^{r}}, \quad \text { and } \quad c=g_{s+j p^{r}}
$$

and noting that $g_{z-1} \neq e$, the result follows.
(4), (5): Using (3) these statements follow by easy inductions.

5.

We are now ready to prove the main theorems. First a simple lemma.
Lemma 3. Let n, t, and d be natural numbers. Suppose that we are given integers $a_{i, j}$ modulo p, defined for $i+j+t+1 \leq n$. Suppose further that these integers satisfy the following relations:

$$
\begin{array}{lll}
a_{i, j} & \equiv-a_{j, i} \quad(p) & \text { for } i+j+t+1 \leq n \\
a_{i, i} & \equiv 0 \quad(p) & \text { for } 2 i+t+1 \leq n \\
a_{i, j} & \equiv a_{i+1, j}+a_{i, j+1} & (p) \\
a_{i+d, j} & \equiv a_{i, j}(p) & \text { for } i+j+t+2 \leq n \\
\text { for } i+j+d+t+1 \leq n .
\end{array}
$$

Then the existence of a natural number s such that $2 s+d+t \leq n$ and $a_{s+h, s+h+1} \equiv$ $0(p)$ for $h=0, \ldots,\left[\frac{d}{2}\right]-1$ implies $a_{i, j} \equiv 0(p)$ for all i, j.

Proof. As in the proof of Proposition 7 we see that

$$
\begin{equation*}
a_{i, i+r} \equiv \sum_{h=1}^{[(r+1) / 2]}(-1)^{h-1}\binom{r-h}{h-1} a_{i+h-1} i+h \quad(p) \quad \text { if } \quad 2 i+r+t+1 \leq n \tag{*}
\end{equation*}
$$

and
$(* *) a_{i, j} \equiv \sum_{h=0}^{i-i_{0}}(-1)^{h}\binom{i-i_{0}}{h} a_{i_{0}, j+h} \quad(p) \quad$ if $\quad i+j+t+1 \leq n \quad$ and $\quad i, j \geq i_{0}$.
(a) We have $a_{s, s+j} \equiv 0(p)$ for $j \geq 0$ and $2 s+j+t+1 \leq n$: This is clear from $(*)$.
(b) $a_{i, j} \equiv 0(p)$ for $i, j \geq s$ and $i+j+t+1 \leq n$: This is clear from ($* *$) and (a).
(c) Suppose that $\sigma \in \mathbb{N}$ and $a_{i, j} \equiv 0(p)$ for $i+j+t+1 \leq n$ and $i, j>s-\sigma$. Then $2(s-\sigma)+d+t+2 \leq n$, and so

$$
a_{s-\sigma, s-\sigma+1} \equiv-a_{s-\sigma+1, s-\sigma+d}
$$

whence

$$
a_{i, j} \equiv 0 \quad(p) \quad \text { for } \quad i+j+t+1 \leq n \quad \text { and } \quad i, j \geq s-\sigma
$$

We conclude that $a_{i, j} \equiv 0(p)$ for all i, j.
Theorem 3. Let p be an odd prime number and let G be a straight, concatenated p-group of order p^{n-1} and with $\omega(G)=p^{v}(p-1)$.
(1) If $n \geq 4 p^{v+1}-2 p^{v}+1$ then G has degree of commutativity

$$
\left[\frac{1}{2}\left(n-4 p^{v+1}+2 p^{v}+1\right)\right]
$$

(2) If $n \geq 4 p^{v+1}-2 p^{v}+1$ then $c(G) \leq 2 p^{v+1}-p^{v}$.
(3) $c(G) \leq 4 p^{v+1}-2 p^{v}-2$.
(4) If $n \leq 12 p^{v+1}-6 p^{v}-10$ then $c(G) \leq 3$.

Proof. (1): Assume $n \geq 4 p^{v+1}-2 p^{v}+1$. Suppose that G has degree of commutativity t, where $t \leq \frac{1}{2}\left(n-4 p^{v+1}+2 p^{v}-1\right)$. Let $a_{i, j}$ be the associated invariants. We must show that $a_{i, j} \equiv 0(p)$ for all i, j.

Let $i_{0} \in\left\{1, \ldots, p^{v}(p-1)\right\}$ be determined by the condition $i_{0}+t \equiv 0\left(p^{v}(p-1)\right)$. For $r=0, \ldots, v$ and $i, j \in \mathbb{Z}$ such that $i_{0}+i p^{r}, i_{0}+j p^{r} \geq 1$ we let $a_{i, j}^{(r)}$ be the integers modulo p introduced in Proposition 9 (with $i_{0}=s$).

We show by induction on $v-r$ that if $r \in\{0, \ldots, v\}$ then $a_{i, j}^{(r)} \equiv 0(p)$ for all i, j. So we suppose that $r \in\{0, \ldots, v\}$ is given and that $a_{i, j}^{(\rho)} \equiv 0(p)$ for all i, j whenever $\rho \in\{0, \ldots, v\}$ and $\rho>r$.

By Proposition 9, (1), (2), we have the congruence

$$
\begin{equation*}
a_{i, j}^{(r)} a_{k, i+j}^{(r)}+a_{j, k}^{(r)} a_{i, j+k}^{(r)}+a_{k, i}^{(r)} a_{j, k+i}^{(r)} \equiv 0 \quad(p) \tag{*}
\end{equation*}
$$

when $3 i_{0}+2 t+(i+j+k) p^{r}+1 \leq n$. So, we may substitute $(i, j, k)=(1,2,2 s-1)$ for $2 \leq s \leq \frac{1}{2}(p-1)$ in $(*)$. If now $2 \leq s \leq \frac{1}{2}(p-1)$, and if we have proved
$a_{\sigma, \sigma+1}^{(r)} \equiv 0(p)$ for $2 \leq \sigma<s$, then Proposition 9, (5), shows that:

$$
\begin{aligned}
a_{2 s-1,3}^{(r)} & \equiv-a_{3,2 s-1}^{(r)} \equiv(-1)^{s}\binom{s-2}{s-3} a_{s, s+1}^{(r)} \quad(p), \\
a_{2,2 s-1}^{(r)} & \equiv(-1)^{s} a_{s, s+1}^{(r)} \quad(p), \\
a_{1,2 s+1}^{(r)} & \equiv a_{1,2}^{(r)}+(-1)^{s-1}\binom{s}{s-1} a_{s, s+1}^{(r)} \quad(p), \\
a_{2 s-1, s}^{(r)} & \equiv-a_{2,2 s-1}^{(r)} \equiv-a_{1,2}^{(r)} \quad(p), \\
a_{2,2 s}^{(r)} & \equiv(-1)^{s}\binom{s-1}{s-2} a_{s, s+1}^{(r)} \quad(p),
\end{aligned}
$$

where $a_{2 s-1,3}^{(r)}$ should be interpreted as 0 if $s=2$. Combining these congruences with $(*)$ for $(i, j, k)=(1,2,2 s-1)$ we obtain

$$
s\left(a_{s, s+1}^{(r)}\right)^{2} \equiv 0 \quad(p) .
$$

So we may conclude that $a_{s, s+1}^{(r)} \equiv 0(p)$ for $s=2, \ldots, \frac{1}{2}(p-1)$. As $2 i_{0}+t+$ $p^{v+1}+1 \leq n$, we can then use Proposition 9, (5), to deduce:

$$
\begin{equation*}
a_{0, p}^{(r)} \equiv a_{0,1}^{(r)}+2 a_{1,2}^{(r)} \quad(p) \tag{**}
\end{equation*}
$$

If now $r=u$, then $a_{0, p}^{(r)} \equiv a_{0,1}^{(r)}(p)$ according to Proposition 9, (2). Since p is odd, $(* *)$ then gives $a_{1,2}^{(r)} \equiv 0(p)$. So, $a_{s, s+1}^{(r)} \equiv 0(p)$ for $s=1, \ldots, \frac{1}{2}(p-1)$. Then Lemma 3 (with $d=p-1$) implies $a_{i, j}^{(r)} \equiv 0(p)$ for all i, j.

So assume then that $r<u$. Then $a_{0, p}^{(r)} \equiv a_{0,1}^{(r+1)} \equiv 0(p)$ by definition of these numbers and the inductional hypothesis. Then $(* *)$ reads:

$$
a_{0,1}^{(r)}+2 a_{1,2}^{(r)} \equiv 0 \quad(p) .
$$

On the other hand, considering $(*)$ with $(i, j, k)=(0,1,3)$ gives us:

$$
a_{1,2}^{(r)}\left(a_{0,1}^{(r)}+a_{1,2}^{(r)}\right) \equiv 0 \quad(p),
$$

because $a_{1,3}^{(r)} \equiv a_{1,2}^{(r)}(p), a_{0,3}^{(r)} \equiv a_{0,1}^{(r)}-a_{1,2}^{(r)}(p)$, and $a_{0,4}^{(r)} \equiv a_{0,1}^{(r)}-2 a_{1,2}^{(r)}(p),-$ again by Proposition 9, (5). So, if $a_{1,2}^{(r)} \not \equiv 0(p)$ we would deduce $a_{0,1}^{(r)} \equiv a_{1,2}^{(r)} \equiv 0(p)$, a contradiction. Hence, $a_{1,2}^{(r)} \equiv 0(p)$, and so $a_{0,1}^{(r)} \equiv 0(p)$ (again because p is odd).

Now we substitute $(i, j, k)=(0,1,2 s)$ in $(*)$ for $s=1, \ldots, \frac{1}{2} p^{v-r}(p-1)-1$.
If $2 \leq s \leq \frac{1}{2} p^{v-r}(p-1)-1$, and if we have already proved $a_{\sigma, \sigma+1}^{(r)} \equiv 0(p)$ for $1 \leq \sigma<s$, we use again Proposition 9, (5), as above to obtain the congruence:

$$
(-1)^{s+1}\binom{(2 s-1)-s}{s-1}(-1)^{s}\binom{(2 s+1)-(s+1)}{s}\left(a_{s, s+1}^{(r)}\right)^{2} \equiv 0 \quad(p) .
$$

We conclude that $a_{s, s+1}^{(r)} \equiv 0(p)$ for $s=1, \ldots, \frac{1}{2} p^{v-r}(p-1)-1$, and hence for $s=0, \ldots, \frac{1}{2} p^{v-r}(p-1)-1$. Noticing that $2 i_{0}+t+p^{r}\left(p^{v-r}(p-1)-1\right)+1 \leq n$ we can again use Lemma 3 to deduce that $a_{i, j}^{(r)} \equiv 0(p)$ for all i, j. This concludes the induction step.

So, we have $a_{i, j}^{(0)} \equiv 0(p)$ for all i, j, and hence $a_{i, j} \equiv 0(p)$ for all i, j, as desired.
(2) Put $f(v)=4 p^{v+1}-2 p^{v}-1$. Suppose that $n \geq 4 p^{v+1}-2 p^{v}+1$ and that n is odd. By (1) G has degree of commutativity $\frac{1}{2}(n-f(v))$. Then,

$$
\gamma_{k}(G)=\{e\} \quad \text { if } \quad k \geq \frac{3 n-f(v)-2}{n-f(v)+2}
$$

However,

$$
\frac{3 n-f(v)-2}{n-f(v)+2} \leq 1+\frac{1}{2}(f(v)+1)=1+\left(2 p^{v+1}-p^{v}\right)
$$

when $n \geq f(u)+2$.
If $n \geq 4 p^{v+1}-2 p^{v}+2$ and n is even, we see in a similar way that $\gamma_{k}(G)=\{e\}$ if $k=2 p^{v+1}-p^{v}+1$.
(3) If $n \leq 4 p^{v+1}-2 p^{v}$ then $c(G) \leq 4 p^{v+1}-2 p^{v}-2$. Since

$$
4 p^{v+1}-2 p^{v}-2 \geq 2 p^{v+1}-p^{v}
$$

the statement then follows from (2).
(4) $n \geq 4 p^{v+1}-2 p^{v}+1$ and

$$
4 \geq \frac{3 n-f(v)-3}{n-f(v)+1}
$$

where $f(u):=4 p^{v+1}-2 p^{v}-1$ then we deduce along lines similar to the above reasoning that $c(G) \leq 3$. But the second inequality holds for $n \geq 12 p^{v+1}-6 p^{v}-10$, and it is clear that

$$
12 p^{v+1}-6 p^{v}-10 \geq n \geq 4 p^{v+1}-2 p^{v}+1 .
$$

The desired conclusion follows.
Theorem 4. There exist functions of two variables, $u(x, y)$ and $v(x, y)$, such that whenever p is an odd prime number, k is a natural number and G is a finite p-group possessing an automorphism of order p^{k} having exactly p fixed points, then G has a normal subgroup of index less than $u(p, k)$ and of class less than $v(p, k)$.

Thus there exists a function of two variables, $f(x, y)$, such that whenever p is an odd prime number, k is a natural number and G is a finite p-group possessing an automorphism of order p^{k} having exactly p fixed points, then the derived length of G is less than $f(p, k)$.

Proof. The first statement follows immediately from Proposition 6, Theorem 1, Theorem 2, and Theorem 3. The second statement follows trivially from the first.

References

[1] J. L. Alperin: 'Automorphisms of solvable groups', Proc. Amer. Math. Soc. 13 (1962), 175-180.
[2] N. Blackburn: 'On a special class of p-groups', Acta Math. 100 (1958), 45-92.
[3] P. Hall: 'A contribution to the theory of groups of prime power orders', Proc. London Math. Soc. 36 (1933), 29-95.
[4] B. Huppert: 'Endliche Gruppen I', Grundlehren Math. Wiss. 134, Springer-Verlag 1967.
[5] C. R. Leedham-Green, S. McKay: 'On p-groups of maximal class 1', Quart. J. Math. Oxford Ser. (2) 27 (1976), 297-311.

Department of Mathematics, University of Copenhagen, Universitetsparken 5, DK2100 Copenhagen \varnothing, Denmark.

E-mail address: kiming@math.ku.dk

