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1 Introduction

In [2], working in the category of compactly generated spaces U , Elmendorf
relates the equivariant homotopy theory of G-spaces to a homotopy theory of
diagrams using fixed point sets. The diagrams are indexed by a topological
category OG with objects the orbit spaces {G/H}H for the closed subgroups
H ⊂ G. Although, his general assumption there is that G is a compact Lie
group, a formulation of Elmendorf’s Theorem can be found on page 44 in
[10] for any topological group in U . A more modern approach has been given
by Piacenza in [11] using model categories. For any topological group G in
U , he equips the category UO

op
G of continuous contravariant functors from

OG to U with a model category structure, where the weak equivalences
are the objectwise weak equivalences. Concerning equivariant homotopy
theory, a morphism f in the category of G-spaces UG is defined to be a
weak equivalence, if for all closed subgroups H ⊂ G, the map (f)H is a
weak equivalence between spaces, where (−)H : UG → U is the H-fixed
point functor. That is, for a G-space X one has

XH = {x ∈ X;hx = x for all h ∈ H}.

Piacenza’s formulation of Elmendorf’s Theorem states in particular that the
homotopy categories Ho(UO

op
G ) and Ho(UG), which are obtained by formally

inverting the weak equivalences, are equivalent. For the proof, he generalizes
the cellular theory of the category of spaces U to any category UJ op

of
continuous contravariant diagrams from a topological category J to U .

We will formulate and prove a generalization of Elmendorf’s Theorem
and reach the following two goals. First, the model category theoretical
approach will be emphasized by equipping the category of G-spaces UG with
a model category structure and by proving that there is a pair of Quillen
equivalences

Θ: UO
op
G � UG : Φ.

Thus, by the theory of model categories, the equivalence of the homotopy
categories comes for free. Secondly, we generalize this result to the case,
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where one considers not all closed subgroups of the topological group G,
but only a subset, which contains the trivial subgroup {e}.

These two results might be well known to the experts. For instance,
the generalization for a family of closed subgroups, which is closed under
conjugation, is stated in Remark 1.3 of [5]. Though, the author did not find
a published proof. In the case, where the group G is discrete, the first result
is outlined in [3] and generalized to model categories different from U .

Many terms used up to now will be introduced in the article. A nec-
essary prerequisite is familiarity with some category theory and algebraic
topology, in particular with CW-complexes and homotopy groups. Some
knowledge about model categories might be an advantage, but we introduce
the necessary definitions and results in section 2 and show a useful argu-
ment to equip a category with a model category structure in section 3. In
the next section, we list the basics of several subcategories of the category
of topological spaces, for instance of the category of compactly generated
spaces, and equip these subcategories with a model category structure. In
section 5, a theorem to lift a model category structure to another category
will be proved. It will be applied to the category of G-spaces in section 6
and to an example, which will be specialized to the category UO

op
G in the

following section. There, we state and prove the main theorem.
I would like to thank Mike Mandell, who provided me appendix A of

[8], the people involved, making my stay as an exchange student at the
University of Copenhagen possible, and my supervisor, Jesper Grodal, for
all the helpful discussions.

2 Model Categories

Model categories as we will define them, have been introduced by Quillen in
[12] under the name closed model categories. Following [1], we recall their
basics. For stating the definition of a model category and its homotopy
category, we introduce the following terms.

Definition 2.1. A morphism f : X → X ′ in a category C is called a retract
of a morphism g : Y → Y ′ of C, if there exists a commutative diagram

X
i //

f
��

Y
r //

g

��

X

f
��

X ′
i′ // Y ′

r′ // X ′

, (1)

where the compositions in the top and bottow row are the corresponding
identity morphisms.

Lemma 2.2. Let g be an isomorphism in a category C and f a retract of g.
Then f is also an isomorphism.
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Proof. By definition, there exists a commutative diagram as in (1) with
ri = idX and r′i′ = idX′ . By assumption, g has an inverse g−1. One checks
that rg−1i′ is the inverse of f .

Definition 2.3. Let i : A → B, p : X → Y be morphisms in a category C.
We say that i has the left lifting property (LLP) with respect to p and that
p has the right lifting property (RLP) with respect to i, if there exists a lift
in any commutative diagram of the form

A //

i
��

X

p

��
B // Y

. (2)

Definition 2.4. Let W be a class of morphisms of a category C. A category
D together with a functor F : C → D is called the localization of C with
respect to W , if F maps morphisms of W to isomorphisms and satisfies the
following universal property: Given any functor G from C to a category D′,
which maps morphism of W to isomorphisms, there exists a unique functor
G′ : D → D′ with G′F = G.

Definition 2.5. A model category is a category C together with three classes
of morphisms of C, the class of weak equivalences, of fibrations and of cofi-
brations, each of which is closed under composition and contains all identity
morphisms of C, such that the five axioms MC1-MC5 below hold. A mor-
phism of C is called an acyclic fibration if it is both a weak equivalence and
a fibration, it is called an acyclic cofibration if it is both a weak equivalence
and a cofibration.

MC1: Every functor from a finite category to C has a limit and a colimit.
MC2: If f and g are morphisms of C such that gf is defined and if two

out of the three morphisms f , g and gf are weak equivalences, then so is
the third.

MC3: If f is a retract of a morphism g of C and g is a weak equivalence,
a fibration or a cofibration, then so is f .

MC4:

i) Every cofibration has the LLP with respect to all acyclic fibrations.

ii) Every fibration has the RLP with respect to all acyclic cofibrations.

MC5: Any morphism f of C can be factored as

i) f = pi, where i is a cofibration and p is an acyclic fibration, and as

ii) f = pi, where i is an acyclic cofibration and p is a fibration.

In any model category, the class of weak equivalences together with an-
other class of the model category structure determines the third one. More
precisely, by Proposition 3.13 of [1], the following holds.
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Proposition 2.6. Let C be a model category.

i) The cofibrations in C are the morphisms that have the LLP with respect
to the acyclic fibrations.

ii) The acyclic cofibrations in C are the morphisms that have the LLP with
respect to the fibrations.

iii) The fibrations in C are the morphisms that have the RLP with respect
to the acyclic cofibrations.

iv) The acyclic fibrations in C are the morphisms that have the RLP with
respect to the cofibrations.

Remark 2.7. Since any isomorphism in category is a retract of an identity
morphism, it follows that in a model category, every isomorphism is a weak
equivalence, a fibration and a cofibration.

The following objects of a model category are of particular interest.

Definition 2.8. An object X of a model category C is called fibrant, if
the unique morphism from X to the terminal object is a fibration. It is
called cofibrant, if the unique morphism from the initial object to X is a
cofibration.

For instance in section 5 and 6 of [1], these objects are used to show that
the localization of a model category with respect to the weak equivalences
exists. This enables us to make the following definition.

Definition 2.9. The homotopy category Ho(C) of a model category C is the
localization of C with respect to the class of weak equivalences.

To compare model categories, the following notion is used.

Definition 2.10. Let C, D be model categories and F : C � D : G a pair of
adjoint functors. The pair (F,G) is called a pair of Quillen equivalences, if
it satisfies the following two conditions:

i) G preserves fibrations and acyclic fibrations,

ii) for each cofibrant object A of C and each fibrant object X of D, a
morphism A → G(X) is a weak equivalence in C if and only if its
adjoint F (A)→ X is a weak equivalence in D.

Remark 9.8 of [1] states the following.

Remark 2.11. For a pair (F,G) of adjoint functors between model cate-
gories, the following three conditions are equivalent.

i) G preserves fibrations and acyclic fibrations,
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ii) F preserves cofibrations and acyclic cofibrations and

iii) F preserves cofibrations and G preserves fibrations.

The term Quillen equivalence is justified by the following theorem, which
is proved in section 9 of [1].

Theorem 2.12. Let F : C � D : G be a pair of Quillen equivalences between
two model categories C and D. Then the homotopy categories Ho(C) and
Ho(D) are equivalent.

The proof of this theorem uses Lemma 9.9 of [1], i.e. the following.

Lemma 2.13 (K. Brown). Let F : C → D be a functor between model cate-
gories, that takes acyclic cofibrations between cofibrant objects to weak equiv-
alences, then F preserves all weak equivalences between cofibrant objects.

3 The small object argument

Our main tool in proving that a category together with three chosen classes
of morphisms is a model category, will be the small object argument.

Definition 3.1. Let C be a category and

X0 → X1 → X2 → · · · → Xn → · · ·

a diagram in C, which has a colimit X with natural map fk : Xk → X,
k ≥ 0. An object A of the category C is called small relatively to the
sequential colimit X if the map

colimkHomC(A,Xk)→ HomC(A,X)

induced by the maps {HomC(A, fk)}k is an isomorphism.

Roughly speaking, depending on a given set I of morphisms of the cat-
egory, whose domains are small enough, the small object argument will
provide a factorization f = p∞i∞ of any morphism f of the category, such
that p∞ and i∞ satisfy some lifting properties.

Definition 3.2. Let C be a category and let I be a set of morphisms of
C. The class of morphisms of C, which have the RLP with respect to all
morphisms in I, is called the class of I-Injectives of C and denoted by I-Inj.

Let C be a category, which has all small colimits, and let I = {fi : Ai →
Bi}i be a set of morphisms in C. Let f : X → Y be a morphism in C. Set
G0(I, f) := X and p0 := f . Inductively, for k ≥ 1, we construct an object
Gk(I, f) and morphisms pk : Gk(I, f)→ Y , ik : Gk−1(I, f)→ Gk(I, f) in C.
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For all i, let S(i) = Sk(i) be the set of pairs (g, h) of morphisms in C, which
make the diagram

Ai
g //

fi
��

Gk−1(I, f)

pk−1

��
Bi

h // Y

(3)

commute. Define the object Gk(I, f) and the morphism ik via the pushout
diagram ∐

i

∐
(g,h)∈S(i)

Ai +i+(g,h)g //

∐
fi

��

Gk−1(I, f)

ik

��∐
i

∐
(g,h)∈S(i)

Bi // Gk(I, f)

in C. One checks that ik has the LLP with respect to all morphisms in I-Inj.
Recall that for each i and each pair (g, h) ∈ S(i), the square (3) commutes.
So, these squares induce a morphism pk from the pushout Gk(I, f) to Y ,
which satisfies pkik = pk−1.

Define the Infinite Gluing Constrution G∞(I, f) to be the sequential
colimit G∞(I, f) := colimk≥0G

k(I, f). Denote the natural map G0(I, f)→
G∞(I, f) by i∞. Let p∞ : G∞(I, f) → Y be the morphism induced by the
natural transformation {pk : Gk(I, f) → Y }k≥0. So, we have factored f as
f = p∞i∞, where the morphism i∞ has the following lifting property.

Lemma 3.3. The morphism i∞ has the LLP with respect to every morphism
of I-Inj.

Proof. Let a commutative square

X //

i∞
��

X ′

p′

��
G∞(I, f) // Y ′

with p′ in I-Inj be given. To construct a lift h : G∞(I, f)→ X ′, let h0 : G0(I, f)→
X ′ be given by the morphism in the top row of the square. Inductively, for
k ≥ 1, use that ik has the LLP with respect to p′ to construct a lift hk in

Gk−1(I, f)
hk−1 //

ik
��

X ′

p′

��
Gk(I, f) // G∞(I, f) // Y ′

.

Then the morphisms {hk}k≥0 induce the desired lift h.
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The morphism p∞ also has a lifting property, assuming that some small-
ness condition for the domains of the morphisms in I holds.

Lemma 3.4. Suppose that for all i the domain Ai of fi is small relatively
to G∞(I, f), then the map p∞ : G∞(I, f)→ Y is in I-Inj.

Proof. Let a lifting problem

Ai
g //

fi
��

G∞(I, f)

p∞

��
Bi

h // Y

be given. By the smallness assumption for Ai, there exists a k ≥ 0 and a

map g′ : Ai → Gk(I, f) such that g equals the composite Ai
g′→ Gk(I, f) →

G∞(I, f). Hence, the diagram

Ai
g′ //

fi
��

Gk(I, f)
ik+1 //

pk

��

Gk+1(I, f) //

pk+1

��

G∞(I, f)

p∞

��
Bi

h // Y // Y // Y

commutes and so, the pair (g′, h) is in Sk+1(i). It follows from the construc-
tion of Gk+1(I, f) and pk+1, that the desired lift is given by the composite

Bi →
∐
i

∐
Sk+1(i)

Bi → Gk+1(I, f)→ G∞(I, f).

Summarizing, we have proved the following.

Proposition 3.5 (Small object argument). Let C be a category, which has
all small colimits. Let I be a set of morphisms of C. Suppose f is a morphism
in C such that the domains of the morphisms in I are small relatively to
G∞(I, f). Then f can be factored as f = p∞i∞, where i∞ has the LLP with
respect to every map in I-Inj and p∞ is in I-Inj.

4 Spaces

Several subcategories of the category of topological spaces Top will be given
a model category structure. Each of them will contain the following spaces
and maps. The unit interval I, the n-disk Dn and its boundary Sn−1,
n ≥ 0. Furthermore, the set of bottom inclusions {Dn → Dn×I}n≥0, which
we denote by J , and the set of inclusions {Sn−1 → Dn}n≥0, which by abuse
of notation is also denoted by I.
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4.1 Topological spaces

To equip the category Top with a model category structure, we will use the
following terms and results.

Definition 4.1. A map f in Top is called a Serre fibration if it is in J-Inj.

Remark 4.2. Using that for any n ≥ 0, the pairs (Dn × I,Dn × {0}) and
(Dn× I,Dn×{0}∪Sn−1× I) are homeomorphic, one deduces that a map f
is a Serre fibration if and only if it has the RLP with respect to any inclusion
X × {0} ∪A× I → X × I, where (X,A) is a CW-pair.

Definition 4.3. A map f : X → Y in Top is called a weak homotopy
equivalence if either both X and Y are empty or if both are non-empty and
for every point x ∈ X and every n ≥ 0, the morphism πn(f) : πn(X,x) →
πn(Y, f(x)) between homotopy groups is an isomorphism.

The following characterization holds.

Lemma 4.4. A map p : X → Y in Top is both a Serre fibration and a weak
homotopy equivalence if and only if it is in I-Inj.

Proof. For one direction, suppose that p is a Serre fibration and a weak
homotopy equivalence. Consider a lifting problem

Sn

��

f // X

p

��
Dn+1

g // Y

.

If n = −1, then the disk D0 is mapped to a point y ∈ Y . Since p is a weak
homotopy equivalence, there exists a point x ∈ X such that p(x) can be
connected to y by a path H. Since p is a Serre fibration, there exists a lift
H̃ in

D0 //

��

X

p

��
D0 × I H // Y

.

The restriction of H̃ to D0 × {1} solves our lifting problem.
If n ≥ 0, factor the inclusion of the sphere over the cylinder and the cone

as Sn → Sn × I → CSn ∼= Dn+1 and consider the commutative diagram

Sn
f //

��

X

p

��
Sn × I // Dn+1

g // Y

. (4)
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By Remark 4.2 it has a lift h since p is a Serre fibration. But since h is not
necessarily constant on the top of the cylinder, it does not directly induce
a solution of our lifting problem. We will deform it slightly. The composite
ph maps Sn × {1} to some point y ∈ Y . Hence the image of the restricted
map h | : Sn × {1} → X lies in the fiber F := p−1{y}. Denote by x ∈ F
the point to which h | maps the basepoint of the sphere. Since p is a weak
homotopy equivalence, it follows by the long exact sequence in homotopy of
a Serre fibration, that πn(F, x) is trivial. Therefore, there exists a homotopy
H : Sn × {1} × I → X from h | to the constant map cx. This map H and

the composites Sn × {0} × I → Sn
f→ X, Sn × I × {0} → Sn × I h→ X and

Sn × I × I → Sn × I → Dn g→ Y provide a commutative square

(Sn × {1} ∪ Sn × {0})× I ∪ Sn × I × {0}

��

// X

p

��
Sn × I × I // Y

.

In this diagram, there exists a lift H̃ by Remark 4.2 applied to the CW-pair
(Sn × I, Sn × {1} ∪ Sn × {0}). The restricted map H̃ |Sn×I×{1} is another
lift in (4), but which satisfies H̃ |Sn×{1}×{1} = cx. It therefore induces the
solution Dn+1 → X of the original lifting problem.

For the other direction, assume that p is in I-Inj. First we show, that
p has the RLP with respect to every inclusion A → B, where (B,A) is a
relative CW-complex. Recall that in this case, the topological space B is a
sequential colimit B = colimk≥−1B

k, where B−1 is the given space A and
inductively, for k ≥ 0, the space Bk is obtained from Bk−1 by adjoining
k-cells. Given a lifting problem

A
f //

��

X

p

��
B // Y

,

set h−1 := f : B−1 → X and inductively, for k ≥ 0, use that p is in I-Inj
and the construction of Bk to find a lift hk in

Bk−1
hk−1 //

��

X

p

��
Bk // B // Y

.

Then the maps {hk}k induce the desired lift.
Since for any n ≥ 0 the pair (Dn × I,Dn) is a relative CW-complex,

it follows that p is a Serre fibration. We show that it is also a weak ho-
motopy equivalence. Let n ≥ 0, x ∈ X. For the surjectivity of πn(p), let
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f : (Dn, Sn−1) → (Y, p(x)) be a representative of a homotopy class [f ] ∈
πn(Y, p(x)). Choose a lift h in

Sn−1
cx //

��

X

p

��
Dn

f // Y

.

Then h is a representative of a homotopy class in πn(X,x), which πn(p) maps
to [f ]. For the injectivity, consider two homotopy classes [f ] , [g] ∈ πn(X,x)
such that there exists a homotopy of pairs H : (Dn, Sn−1) × I → (Y, p(x))
between pf and pg. Since (Dn × I, Sn−1 × I ∪ Dn × {0} ∪ Dn × {1}) is a
relative CW-complex, there exists a lift H̃ in the commutative square

Sn−1 × I ∪Dn × {0} ∪Dn × {1} //

��

X

p

��
Dn × I H // Y

,

where Sn−1 × I → X is the constant map cx. The homotopy H̃ shows
[f ] = [g] ∈ πn(X,x).

Furthermore, we will need a smallness result.

Lemma 4.5. Let {An → Bn}n≥1 be a family of closed embeddings in Top
such that each Bn is a T1 space. Let X0 be a topological space. Suppose that
inductively for n ≥ 1, the space Xn is given by the pushout BntϕnXn−1 for
some attaching map ϕn : An → Xn−1. Set X := colimn≥0X

n with natural
map fn : Xn → X, n ≥ 0.

Then any compact space K is small relatively to X, that is

colimnHomTop(K,Xn)→ HomTop(K,X)

is an isomorphism.

Proof. Since An → Bn is a closed embedding, also the natural map Xn−1 →
Xn is a closed embedding, n ≥ 1. Hence, each map fn is a closed embedding.

For the surjectivity, let g ∈ HomTop(K,X) be given. It’s enough to show
that there exists an n ≥ 0 such that g(K) ⊂ fn(Xn) holds. Conversely,
suppose that there exists a set S = {xn}n≥0 of points in X such that xn ∈
g(K) ∩X\fn(Xn). We show that S ⊂ g(K) is a closed discrete subspace of
g(K), which contradicts the compactness of g(K). Let T ⊂ S be a subset.
Using that each Bn is T1, one deduces that every point x ∈ X\f0(X0) is
closed in X. For all n ≥ 0, it follows that the finite set T ∩ fn(Xn) is closed
in fn(Xn). Hence, T is closed in X and therefore also in g(K).

One shows the injectivity by using the surjectivity and that the maps
{fn}n are embeddings.
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Corollary 4.6. Suppose that in the situation of Lemma 4.5 each space Bn
deformation retracts onto the image of the embedding An → Bn. Then
f0 : X0 → X is a weak homotopy equivalence.

Proof. Since −×I preserves pushouts, it follows that for all n ≥ 1, the space
Xn deformation retracts onto the image of the embedding Xn−1 → Xn.
Therefore, this embedding is a weak homotopy equivalence. To show that
for k ≥ 0 and x ∈ X0, the morphism πk(f0) is an isomorphism, use the
surjectivity of the morphism in Lemma 4.5 with K = Sk for the surjectivity
and with K = Sk × I for the injectivity.

Using Lemma 4.5 and its corollary, the following factorization is con-
structed.

Lemma 4.7. Every map f : X → Y in Top can be factored as f = p∞i∞,
where i∞ is a weak homotopy equivalence, which has the LLP with respect
to all maps in J-Inj, and p∞ is in J-Inj.

Proof. Construct the factorization f = p∞i∞ using the Infinite Gluing Con-
struction G∞(J, f). By Corollary 4.6, it follows that i∞ is a weak homotopy
equivalence. By Lemma 4.5, the domains of the morphisms in J are small
enough to apply the small object argument, which shows the remaining
claims.

Now, we are ready to equip Top with a model category structure.

Proposition 4.8. Call a map in Top

i) a weak equivalence if it is a weak homotopy equivalence,

ii) a fibration if it is in J-Inj and

iii) a cofibration if it has the LLP with respect to every map in I-Inj.

Then with these choices Top is a model category. Furthermore, every object
in Top is fibrant.

Proof. One checks, that each of these three classes is closed unter composi-
tion and contains all identity morphisms.

To prove MC1, let a functor F from a small category D to Top be given.
The colimit of F is given by the quotient of the disjoint sum

∐
d∈D F (d) with

respect to the equivalence relation generated by (d, x) ∼ (d′, F (f)(x)), where
f : d→ d′ is a morphism of D and x ∈ F (d). The limit of F is given by the
subspace

{(xd)d;xd′ = F (f)(xd) for every morphism f : d→ d′ in D}

of the product space
∏
d∈D F (d).
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We show the interesting case of MC2. That is when f : X → Y ,
g : Y → Z are maps in Top such that f and gf are weak equivalences.
Let n ≥ 0, y ∈ Y . We want to show that πn(g) : πn(Y, y) → πn(Z, g(z))
is an isomorphism. Since by assumption π0(f) is surjective, there exists a
point x ∈ X such that y can be connected to f(x) via a path γ. The path γ
induces via concatenation an isomorphism πn(Y, f(x)) → πn(Y, y) and the
path g ◦ γ induces an isomorphism πn(Z, gf(x))→ πn(Z, g(y)), which make
the diagram

πn(Y, f(x))

∼=
��

πn(X,x)
πn(f)

∼=
oo πn(gf)

∼=
// πn(Z, gf(x))

∼=
��

πn(Y, y)
πn(g) // πn(Z, g(y))

commute. It follows that πn(g) is an isomorphism.
To show MC3, let a commutative diagram

X
i //

f

��

X ′
r //

f ′

��

X

f

��
Y

i′ // Y ′
r′ // Y

(5)

in Top with ri = idX and r′i′ = idY be given.
First, assume that f ′ is a weak equivalence. We want to prove that f

is a weak equivalence. Let n ≥ 0, x ∈ X. Applying the functor πn to the
diagram (5) shows that πn(f) : πn(X,x) → πn(Y, f(x)) is a retract of the
isomorphism πn(f ′) and hence by Lemma 2.2 an isomorphism itself. Thus
f is a weak equivalence.

Secondly, assume that f ′ is fibration. Given a lifting problem

Dn //

��

X

f

��
Dn × I // Y

in Top, one constructs the lifting problem

Dn //

��

X // X ′

f ′

��
Dn × I // Y // Y ′

,

which has a solution h, since f ′ is a fibration. The composite rh gives the
desired lift. It follows, that f is a fibration.

The third case, where f ′ is a cofibration is similar.
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Axiom MC4i) holds, since by Lemma 4.4, a map, which is both a fi-
bration and a weak equivalence, is in I-Inj. Concerning MC4ii), we show
that any acyclic cofibration f : A → B has the LLP with respect to every
fibration. Let A i∞→ A′

p∞→ B be a factorization as in Lemma 4.7. Since f
and i∞ are weak equivalences, it follows that also p∞ is a weak equivalence
by MC2. Thus p∞ is in I-Inj by Lemma 4.4. By the definition of the
cofibrations, there exists a lift g : B → A′ in

A

f

��

i∞ // A′

p∞

��
B

= // B

.

The diagram
A

= //

f

��

A
= //

i∞
��

A

f

��
B

g // A′
p∞ // B

shows that f is a retract of i∞. Using that i∞ has the LLP with respect to
fibrations, one deduces that f shares the same property.

For MC5i), let a map f : X → Y in Top be given. By Lemma 4.5,
the domains of the maps in I are small enough to apply the small object
argument, providing a factorization f = p∞i∞, where i∞ has the desired
lifting property to be a cofibration, and where p∞ is in I-Inj and hence by
Lemma 4.4 is an acyclic fibration.

Note that by Lemma 4.4 every map in I-Inj is a fibration and hence is
in J-Inj. In particular, a map in Top which has the LLP with respect to
every map in J-Inj, has also the LLP with respect to the I-Injectives. So,
Lemma 4.7 provides the desired factorization of a given map in Top to show
MC5ii).

We have shown, that Top is a model category. Since for any n ≥ 0, the
cylinder Dn × I retracts onto Dn, it follows that every topological space is
fibrant.

4.2 k-spaces and compactly generated spaces

Concerning Elmendorf’s Theorem, we will not work in the category Top,
but in a full subcategory, called the category of compactly generated spaces,
which is better behaved. For instance, it is cartesian closed. Compactly
generated spaces will be defined as weak Hausdorff k-spaces. They form a
subcategory of another categorically well-behaved subcategory of Top, the
category of k-spaces. But they have the advantage of fulfilling a separation
axiom, the weak Hausdorff condition, which is stronger than T1 but weaker
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than the Hausdorff condition T2. We summarize the for the working knowl-
edge necessary definitions and facts concering these two subcategories. For
the proofs the reader is referred to Appendix A of [8].

Definition 4.9. Let X be a topological space.

a) The space X is called weak Hausdorff if for all maps g : K → X in Top
with K compact Hausdorff, the image g(K) is closed in X.

b) A subset A ⊂ X is called compactly closed if for all maps g : K → X in
Top with K compact Hausdorff, the preimage g−1(A) is closed.

c) The space X is a k-space if every compactly closed subset is closed. Let
K denote the full subcategory of Top consisting of the k-spaces.

d) The space X is called compactly generated if it is both weak Hausdorff
and a k-space. Let U denote the full subcategory of K consisting of the
compactly generated spaces.

e) The k-space topology on X is the topology, where the closed sets are
precisely the compactly closed sets.

Let C be either the category of k-spaces K or the category of compactly
generated spaces U .

Example 4.10. The category C contains

a) locally compact Hausdorff spaces,

b) metric spaces,

c) closed and open subsets of spaces in C.

Proposition 4.11 (Limits, colimits, quotient maps). a) The inclusion func-
tor K → Top has a right adjoint and left inverse k : Top → K, which
takes a topological space to its underlying set equipped with the k-space
topology.

b) The category K has all small limits and colimits. Colimits are inherited
from Top and limits are obtained by applying k to the limit in Top.

c) If X and Y are k-spaces and Y is locally compact Hausdorff, then the
product X × Y in Top is a k-space and hence, it is also the product in
K.

d) Let p : X → Y be a quotient map in Top, where X is a k-space. Then Y
is a k-space. It is weak Hausdorff and thus in U if and only if the preimage
(p× p)−1(∆) of the diagonal ∆ ⊂ Y × Y is closed in the product X ×X
in K. In particular, X is in U if and only if the diagonal in the product
X ×X in K is closed.
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e) The inclusion functor U → K has a left adjoint and left inverse wH :
K → U , which takes a k-space X to the quotient X/R, where R ⊂ X×X
is the smallest closed equivalence relation.

f) The category U has all small limits and colimits. Limits are inherited
from K and colimits are obtained by applying wH to the colimit in K.

Proposition 4.12 (Function spaces). Let X, Y be in K. For any map
h : K → U from a compact Hausdorff space K to an open subset U of Y ,
denote the set of maps f : X → Y with f(h(K)) ⊂ U by N(h, U). Let
C(X,Y ) be the set HomK(X,Y ) with the topology generated by the subbasis
{N(h, U)}. Let Y X be the k − space kC(X,Y ).

a) For all X,Y, Z in K, there is a natural isomorphism HomK(X×Y,Z)→
HomK(X,ZY ), which sends a map f to f̃ given by f̃(x)(y) = f(x, y). In
particular, K is cartesian closed.

b) For all X,Y in K, evaluation Y X×X → Y is the counit of the adjunction
above.

c) If X is in K and Y is in U , then Y X is weak Hausdorff. Hence, for
all X,Y, Z in U , there is a natural isomorphism HomU (X × Y, Z) →
HomU (X,ZY ), which sends a map f to f̃ given by f̃(x)(y) = f(x, y). In
particular, U is cartesian closed.

Remark 4.13 (Subspace). Let Y be a space in C and A ⊂ Y a subset of
Y . We call A equipped with the topology obtained by applying k to the
subspace A ⊂ Y in Top a subspace of Y . Note, that if X is space in C and
f : X → Y is a set function with f(X) ⊂ A, then f : X → Y is in C if and
only if f : X → A is in C. Most often, the subspace A ⊂ Y in Top will be
closed and hence we won’t have to apply k to get a subspace in C.

Proposition 4.14 (Miscellaneous). We call a map f in C a closed embed-
ding, if it is a closed embedding in Top. We call f a quotient map, if it is
a qoutient map in Top.

a) An arbitrary product of closed embeddings in C is a closed embedding.

b) An arbitrary coprodut of closed embeddings in C is a closed embedding.

c) An arbitrary coproduct taken in Top of spaces in C is also the coproduct
in C.

d) The pushout taken in Top of a diagram X ← A → Y in C, where one
arrow is a closed embedding, is also the pushout in C

e) The sequential colimit taken in Top of a diagram

X0 → X1 → · · · → Xn → · · · ,

where each arrow is an injective map, is also the colimit in C.
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f) Let X,X ′, Y, Y ′ be spaces in C and p : X → Y , q : X ′ → Y ′ quotient
maps. Then p× q : X ×X ′ → Y × Y ′ in C is a quotient map.

We give C a model category structure.

Proposition 4.15. Call a morphism f in C

i) a weak equivalence if f is a weak equivalence in Top,

ii) a fibration if it is a fibration in Top.

iii) a cofibration if it is a cofibration in Top.

Then C together with these choices is a model category.

Proof. Each of the three classes is closed under composition and contains
all identity morphism by the same result in Top. Axiom MC1 holds by
Proposition 4.11. Since MC2, MC3 and MC4 hold in Top, they also hold
in C.

For MC5, we have to factor a given map f in C in two ways. The
factorization proving MC5i) can be constructed by using the Infinite Gluing
ConstructionG∞(I, f) in Top, since by Proposition 4.14, the spaceG∞(I, f)
lies in C. Similar for MC5ii) with G∞(J, f) in Top.

Proposition 4.16. In the model category C, the fibrations are precisely the
J-Injectives of C and the cofibrations are precisely the maps which have the
LLP with respect to the I-Injectives of C.

Proof. The first assertion holds by definition of the fibrations in Top. For
the second assertion, it’s enough to show that the acyclic fibrations in C are
the I-Injectives of C by Proposition 2.6. But this follows from Proposition
4.4.

5 Lifting the model category structure of spaces

Let C be either the model category Top, K or U . Let D be a category, which
has all small limits and all small colimits. Depending on a set

{Fι : C � D : Gι}ι∈F

of adjoint functors, we show how under certain assumptions, the model cate-
gory structure on C can be lifted to the category D. Set FJ :=

⋃
ι{Fι(j); j ∈

J} and FI :=
⋃
ι{Fι(i); i ∈ I}.

Theorem 5.1. Call a morphism f in D

i) a weak equivalence if Gι(f) is a weak equivalence in C for all ι,
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ii) a fibration if it is in FJ-Inj.

iii) a cofibration if it has the LLP with respect to every map in FI-Inj.

For all ι ∈ F , n ≥ 0 and any morphism f : X → Y in D, suppose that
the object Fι(Sn−1) is small relative to the Infinite Gluing Construction
G∞(FI, f), that the object Fι(Dn) is small relative to G∞(FJ, f) and that
the factor i∞ : X → G∞(FJ, f) is a weak equivalence in D.

Then with the choices made, the category D is a model category.

Proof. By functoriality, it follows that the class of weak equivalences of D is
closed under composition and contains all identity morphisms. One checks
that these two conditions are also satisfied by the class of fibrations and the
class of cofibrations.

By assumption, D satisfies MC1. Axiom MC2 holds in C and by func-
toriality also in D. The case of MC3 in D, where a morphism is a retract of
a weak equivalence, follows by functoriality and the same axiom in C. The
other two cases are shown as for Top.

For the remaining part, we show three results, where the first two are
based on the next remark. For any ι ∈ F , any morphism i : A→ B in C and
morphism p : X → Y in D, one checks that by adjointness of the functors
Fι and Gι, the lifting problems

Fι(A)

Fι(i)

��

// X

p

��
Fι(B) // Y

and A

i

��

// Gι(X)

Gι(p)

��
B // Gι(Y )

are equivalent. It follows the first result:

a) A morphism p in D is a fibration if and only if Gι(p) is a fibration in C
for every ι ∈ F .

Using a) and that a map in C is both a fibration and a weak equivalence if
and only if it is in J-Inj one deduces the second result:

b) A morphism p in D is both a fibration and a weak equivalence if and
only if it is in FJ-Inj.

By the assumptions, one can use the Infinite Gluing Construction depending
on the set FJ and apply the small object argument to conclude the third
result:

c) Any morphism f in D can be factored as f = p∞i∞, where i∞ is a weak
equivalence which has the LLP with respect to all maps in FJ-Inj and,
p∞ is in FJ-Inj.
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Using the results b), c) and the Infinite Gluing Construction depending
on the set FI for MC5i), one shows the remaining axioms as for Top.

Remark 5.2. With regard to the smallness assumptions in Theorem 5.1, it’s
worth to mention that for any ι ∈ F , any sequential colimit G∞ = colimkG

k

in D and any object A of C, the diagram

colimkHomD(Fι(A), Gk) //

∼=
��

HomD(Fι(A), G∞)

∼=
��

colimkHomC(A,Gι(Gk)) // HomC(A,Gι(G∞))

commutes, following from adjointness.

6 Lifting model category structures: Examples

From now on, concerning spaces, we will work in the category of compactly
generated spaces U . We give two examples of lifting the model category
structure from U to some category of what will be called continuous functors.
They will provide the model category structures involved in Elemendorf’s
Theorem.

Definition 6.1. A topological category (with discrete object space) is a cat-
egory C, where each hom-set HomC(X,Y ) is topologized as a space C(X,Y )
in U , such that composition C(X,Y )× C(Y,Z)→ C(X,Z) is continuous.

Definition 6.2. A functor F : C → D between topological categories is
said to be continuous if each function F : C(X,Y ) → D(F (X), F (Y )) is
continuous.

Let J be a small topological category until the end of this section. We
give examples of topological categories.

Example 6.3. a) Since the category of compactly generated spaces U is
cartesian closed, it is a topological category with U(X,Y ) = Y X for
spaces X,Y in U .

b) The category of continuous functors from J to U is a topological cat-
egory, which we denote by UJ . The space UJ (X,Y ) is a subspace of∏
j∈J U(X(j), Y (j)) in U for any diagrams X,Y in UJ .

c) Call a groupG, which is topologized as a space in U such that composition
and taking inverses is continuous, a topological group. Then a topological
group G is a topological category with only one object.
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d) Let G be a topological group and X a space in U . Call a map G×X → X,
(g, x) 7→ gx, in U with g(h(x)) = (gh)x and ex = x for all g, h ∈ G,
x ∈ X and the neutral element e ∈ G, an action of G on X or a G-
action. Call a space in U together with a G-action a G-space and a map
in U between G-spaces, which commutes with the actions, an equivariant
map. Then the category of G-spaces together with the equivariant maps
is a topological category, which can be identified with the category UG
since U is cartesian closed.

Axiom MC1 of a model category in mind, the following result will be
used in the two examples of lifting the model category structure from U .

Proposition 6.4. The category UJ has all small limits and colimits.

Proof. Let D be a small category, let S : D → UJ be a functor. The category
U has all small limits. So as objectwise constructed in [9], the composite
functor D S→ UJ op → Fun(J ,U) has a limit L. Using that U is cartesian
closed, one checks that L is a continuous functor and thus in UJ . Similarly,
one shows that UJ has all small colimits.

6.1 Lifting along a family of contravariant Hom-functors

Since J is a small topological category, its opposite category J op shares the
same property. We will use Theorem 5.1 to equip the topological category
of continuous contravariant functors UJ op

with a model category structure.
For any object j of J op, denote by j the continuous contravariant functor

U(−, j). Let evj : UJ op → U be the functor given by evaluation in the object
j. We will show that j × (−) : U � UJ op

: evj is an adjunction, where for Y
in U , we write again Y for the corresponding constant diagram in UJ op

. For

any Z in UJ op
, we denote the composite J op Z→ U (−)Y→ U by ZY . The next

lemma shows in particular that (−)×Y : UJ op
� U : (−)Y is an adjunction.

Lemma 6.5. For all X,Z in UJ op
and all Y in U , there is a natural iso-

morphism
UJ op

(X × Y, Z)
ϕ→ UJ op

(X,ZY )

in U .

Proof. Using the isomorphism from Proposition 4.12, which shows that U is
cartesian closed, define ϕ by ϕ(f)j := f̃j : X(j) → Z(j)Y in an object j of
J op and check that it satisfies the desired properties.

Another natural isomorphism comes from the Yoneda Lemma.

Lemma 6.6. Let Z be a diagram in UJ op
and let j by an object of J op.

Then there is a natural isomorphism

UJ op
(j, Z)→Z(j)
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in U .

Proof. Regarding j and Z as functors from J op to the category of sets,
the Yoneda Lemma states that the morphism ψ : Nat(j, Z)→ Z(j) given by
f 7→ fj(idj) is a natural bijection of sets. Using Proposition 4.12, one checks
that its inverse takes a point in Z(j) to a natural transformation, which
lies in HomUJ op (j, Z). It follows that Nat(j, Z) = HomUJ op (j, Z). Using
Proposition 4.12, one deduces that ψ is the desired natural isomorphism in
U .

Combining Lemma 6.5 and 6.6, one gets in particular the following.

Corollary 6.7. For any object j of J op, there is an adjunction

j × (−) : U � UJ op
: evj .

Using Theorem 5.1, we define a model category structure on UJ op
.

Proposition 6.8. Let F be a non-empty subset of the set of objects of J op.
Then UJ op

together with the adjunctions {j × (−) : U � UJ op
: evj}j∈F

satisfies the assumptions of Theorem 5.1, which therefore defines a model
category structure on UJ op

.

Proof. The category UJ op
has all small limits and colimits by Proposition

6.4.
For the smallness assumptions, let G∞ = colimkG

k be one of the Infinite
Gluing Constructions in question and corresponding to it, let the space A
be either Dn or Sn−1, n ≥ 0. By Corollary 5.2, it’s enough to show that

colimkHomC(A, evj(Gk))→ HomC(A, evj(G∞))

is an isomorphism for any j ∈ F . Recall that colimits of diagrams are
computed objectwise. Hence, for k ≥ 1, the space (Gk)(j) is a pushout in
U , which by Proposition 4.14 in fact is the pushout in Top. Furthermore,
it follows that evj(G∞) = colimk(Gk(j)) in U , which in fact is also the
sequential colimit in Top by Proposition 4.14. The smallness result follows
now from Lemma 4.5 since any space in U is T1.

To show that the factor i∞ in question is a weak equivalence in UJ op
, i.e.

that evj(i∞) is a weak equivalence in U for any j ∈ F , one uses Corollary
4.6.

6.2 Lifting to the category of G-spaces

Let G be a topological group in U . Let H ⊂ G be a closed subgroup.
Deduce from Proposition 4.11d) that the quotient space G/H of cosets gH
with g ∈ G in Top is in U . We call it an orbit space. With the action
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G×G/H → G, (g, g′H) 7→ gg′H, the orbit space G/H becomes a G-space.
Thus, one gets a functor

G/H × (−) : U → UG.

Let X be a G-space. Let XH be the subset {x ∈ X;hx = x for all h ∈ H}
of X. We call it the H-fixed point set. Using that the diagonal in X ×X is
closed, deduce that the fixed point set XH is closed in X and hence it is in
U . One obtains a functor

(−)H : UG → U,

called fixed point functor, which by the following proposition in particular
is right adjoint to G/H × (−).

Proposition 6.9. For all spaces Y in U and G-spaces Z in UG, there is a
natural isomorphism

UG(G/H × Y,Z)
ϕ→ U(Y,ZH)

in U .

Proof. Check that ϕ defined by ϕ(f)(y) = f(H, y) for y ∈ Y is the desired
natural isomorphism.

As a right adjoint, the functor (−)H preserves limits. It also preserves
some colimits.

Lemma 6.10. The functor (−)H preserves

a) arbitrary coproducts in UG,

b) pushouts of diagrams X ← A → Y in UG, where one arrow is a closed
embedding as a map in U , and

c) sequential colimits of diagrams X0 → X1 → · · · → Xn → · · · in UG,
where each arrow is injective.

Proof. Recall that the colimit in UG is calculated objectwise, hence calcu-
lated in U . To check the claims, use Proposition 4.14 and for b) and c), note
that (−)H preserves closed embeddings.

We are ready to lift the model category structure from U to UG.

Proposition 6.11. Let F be a non-empty subset of the closed subgroups of
G. Then UG = UG(F) together with the adjunctions {G/H × (−) : U �
UG : (−)H}H∈F satisfies the assumptions of Theorem 5.1, which therefore
defines a model category structure on UG = UG(F).
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Proof. The category UG has all small limits and colimits by Proposition 6.4.
For the smallness assumptions, let G∞ = colimkG

k be one of the Infinite
Gluing Constructions in question and corresponding to it, let the space A
be either Dn or Sn−1, n ≥ 0. By Corollary 5.2, it’s enough to show that

colimkHomC(A, (Gk)H)→ HomC(A, (G∞)H)

is an isomorphism for any H ∈ F . Using Lemma 6.10 and Proposition 4.14,
one deduces the smallness result from Lemma 4.5 since any space in U is T1.

To show that the factor i∞ in question is a weak equivalence in UG, i.e.
that (i∞)H is a weak equivalence in U for any H ∈ F , one uses Corollary
4.6.

7 Elmendorf’s Theorem

We will state and prove the main theorem. Let G be a topological group in
U . Let H, K be closed subgroups of G.

Definition 7.1. The subgroup H is called subconjugate to K, if there exists
an element a ∈ G such that a−1Ha ⊂ K.

If a ∈ G satisfies a−1Ha ⊂ K, then G/H → G/K, gH 7→ gaK, is an
equivariant map, which we denote by Ra. Conversely, given an equivariant
map f : G/H → G/K, choose a ∈ G such that f(H) = aK. Then a−1Ha is
contained in K. Thus, we have proved the next lemma.

Lemma 7.2. There exists an equivariant map G/H → G/K if and only if
H is subconjugate to K.

Furthermore, the following characterization holds.

Lemma 7.3. In U , there is an isomorphism

UG(G/H,G/K)
ϕ→ (G/K)H . (6)

Proof. The isomorphism ϕ is given by ϕ(f) = f(H) for f ∈ UG(G/H,G/K)
and its inverse sends aK ∈ (G/K)H to the equivariant map Ra. To check
continuity issues, use Proposition 4.12, Remark 4.13 and Proposition 4.14.

Let F be a set of closed subgroups of G containing the trivial subgroup
{e}. Depending on F , we will show how the homotopy theory of G-spaces
relates to the homotopy theory of diagrams indexed by the following cate-
gory.

Definition 7.4. The orbit category OF of G with respect to F is the full
subcategory of UG with objects the orbit spaces {G/H}H∈F .
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The orbit category is small and a topological category, as a subcategory
of a topological category. Setting J := OF in Proposition 6.8, the category
UO

op
F becomes a model category. It will turn out, that there is a pair of

Quillen equivalences between the model categories UO
op
F and UG(F).

For any G-space X, let the object X∗ of UO
op
F be defined by X∗(G/H) =

XH on objects and X∗(f) : XK → XH , x 7→ ax for any representative a of
f(H), on morphisms. Define the functor

Φ: UG → UO
op
F

by X 7→ X∗ on objects and f 7→ Φ(f), given by fH in an object G/H of
Oop
F , on morphisms.

Recall that F contains the trivial subgroup {e} by assumption. If T
is an object of UO

op
F , then T (G/{e}) becomes a G-space with the action

G × T (G/{e}) → T (G/{e}) defined by (g, x) 7→ T (Rg)(x) using that {e}
is subconjugate to {e}. Using this action on T evaluated in G/{e}, we
construct a left adjoint of Φ.

Lemma 7.5. Define the functor Θ: UO
op
F → UG by evaluation in G/{e}.

Then Θ is left inverse and left adjoint to Φ.

Proof. We show that ΘΦ = idUG . For any G-space X, one has ΘΦ(X) =
Θ(X∗) = X∗(G/{e}) = X{e} and checks that the G-action agrees with the
one on X. If f is a map in UG, then ΘΦ(f) = f{e}. Thus, Θ is left inverse
to Φ.

For the adjunction, let T be a diagram in UO
op
F and X a G-space.

Note that for Re : G/{e} → G/H in OF , the image of T (Re) : T (G/H) →
T (G/{e}) lies in theH-fixed point set of Θ(T ) = T (G/{e}), thus in Φ(Θ(T )).
Let the morphism

ηT : T → Φ(Θ(T ))

of UO
op
F be given by T (Re) in the object G/H of Oop

F . One checks that ηT
is a natural transformation by using the commutativity of the diagram

G/{e} Re //

Ra
��

G/H

Ra
��

G/{e} Re // G/K

for a ∈ G, H,K ∈ F with a−1Ha ⊂ K. If f : T → S is a morphism in UO
op
F ,

then in particular the diagram

T (G/H)
T (Re)//

fG/H
��

T (G/{e})H

fH
G/{e}

��
S(G/H)

S(Re)// S(G/{e})H
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commutes for any H ∈ F . It follows that η = {ηT }T : id→ ΦΘ is a natural
transformation. It will turn out to be the unit of the adjunction. Note that
Θ(ηT ) = idΘ(T ) and ηΦ(X) = idΦ(X). Letting ε : ΘΦ → id be the identity,
it follows that η and ε satisfy the necessary equations to determine the
adjunction and hence are the unit and counit, respectively.

Remark 7.6. For any diagram T in UO
op
F and G-space X, the natural

isomorphism
HomUG(ΘT,X)→ Hom

UO
op
F

(T,Φ(X))

of the adjunction is given by f 7→ Φ(f)ηT with inverse g 7→ Θ(g) by the
description of the unit and counit above.

As defined, the counit ε of the adjunction (Θ,Φ) is an isomorphism in
every object of Oop

F . The unit is an isomorphism in some objects of Oop
F .

Recall that for K ∈ F , we denote the contravariant functor OF (−, G/K) in
UO

op
F by G/K.

Lemma 7.7. Let Y be a space in U and K ∈ F . Then

ηG/K×Y : G/K × Y → ΦΘ(G/K × Y )

is an isomorphism in UO
op
F .

Proof. In an object G/H of Oop
F , the right-hand side is evaluated

(ΦΘ(G/K × Y ))(G/H) = (G/K(G/{e})× Y )H = (G/K(G/{e}))H × Y

and ηG/K×Y is given by

(G/K × idY )(Re) = G/K(Re)× idY .

Hence, it’s enough to show that ηG/K : G/K → ΦΘ(G/K), is an isomor-

phism in UO
op
F . In the object G/H of Oop

F , this morphism sends Ra ∈
G/K(G/H) to RaRe ∈ (G/K(G/{e}))H for a ∈ G with a−1Ha ⊂ K. One
concludes that it is an isomorphism by noting that

G/H
Ra // G/K

G/{e}

Re

OO
Ra

::vvvvvvvvv

commutes and that Ra ∈ G/K(G/{e}) is an H-fixed point if and only if
a−1Ha ⊂ K.

We are ready for the main theorem of this paper.
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Theorem 7.8 (Elmendorf). The adjunction

Θ: UO
op
F � UG(F) : Φ

is a pair of Quillen equivalences. In particular, the homotopy categories
Ho(UO

op
F ) and Ho(UG(F)) are equivalent.

Proof. By the result a) in the proof of Theorem 5.1, it follows that a mor-
phism f in UG is an (acyclic) fibration if and only if f is an (acyclic) fi-
bration for all H ∈ F and that Φ(f) is an (acyclic) fibration if and only
if evG/H(Φ(f)) = fH is an (acyclic) fibration. Thus, Φ preserves (acyclic)
fibrations.

Next, given a cofibrant object T of UO
op
F and a fibrant object X of UG,

we have to show that a map f ′ : T → Φ(X) in UO
op
F is a weak equivalence

if and only if its adjoint Θ(f ′) : Θ(T )→ X is a weak equivalence in UG. In
fact, since in Top every object is fibrant, the category UG shares the same
property. So, X can be any G-space. Set

FI :=
⋃
H∈F
{G/H × Sn−1 → G/H ×Dn}n≥0.

Factor the unique map i : ∅ → T from the initial object to T in UO
op
F as a

cofibration i∞ folllowed by an acyclic fibration p∞ using the Infinite Gluing
Construction G∞(FI, i). Note that by Remark 2.11, the functor Θ pre-
serves in particular acyclic cofibrations between cofibrant objects. Hence by
Lemma 2.13, the weak equivalence p∞ is taken to a weak equivalence by Θ.
By MC2, the map f ′ is a weak equivalence if and only if f ′p∞ is a weak
equivalence and Θ(f ′) is a weak equivalence if and only if Θ(f ′)Θ(p∞) is a
weak equivalence. Thus, it’s enough to show that a map f : G∞ → Φ(X) in
UO

op
F is a weak equivalence if and only if its adjoint Θ(f) : Θ(G∞) → X is

a weak equivalence in UG, where we abbreviated G∞ := G∞(FI, i). Simi-
larly, we write Gk := Gk(FI, i), k ≥ 0. Recall that by definition, f is a weak
equivalence if fG/H is a weak equivalence in U for all H ∈ F and that Θ(f)
is a weak equivalence if (Θ(f))H = (fG/{e})H is a weak equivalence in U for
all H ∈ F . Fix H ∈ F . Since f is a natural transformation, the diagram

G∞(G/H)
fG/H //

G∞(Re)

��

XH

X∗(Re)

��
G∞(G/{e})

fG/{e} // X{e}

commutes. It follows that fG/H = (fG/{e})H(ηG∞)G/H . Thus, by MC2 it
suffices to show that

(ηG∞)G/H : G∞(G/H)→ (G∞(G/{e}))H
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is a weak equivalence in U or more generally, that it is an isomorphism.
Using that G0 = ∅, one deduces that (ηG0)G/H is an isomorphism in U .
Recall that as a left adjoint, the functor Θ preserves colimits. Inductively,
for k ≥ 1, by using Proposition 6.10 and applying Lemma 7.7, it follows
that (ηGk)G/H is an isomorphism in U . Finally, by Proposition 6.10c), we
deduce that (ηG∞)G/H indeed is an isomorphism.

The second assertion holds by Theorem 2.12.
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