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1. Introduction

The goal of this thesis is to understand the complex homotopy rep-
resentation ring (henceforth just called the representation ring) of sim-
ply connected p-compact groups of small rank. The p-completion of
any connected compact Lie group is a p-compact group and the major
part of the thesis can be understood without knowing about p-compact
groups. The representation ring Rp(X) of a p-compact group X is de-
fined as

Rp(X) := Gr(
∐
n≥0

[BX,BU(n)p̂])

where Gr is the Grothendieck group/group completion and BU(n)p̂ is
the p-completion of BU(n) as defined in [5]. Our main theorem is:

Theorem 1.1. Let X be a simply connected p-compact group of rank
1 or 2. Let T be a maximal torus of X with Weyl group W . Then the
restriction map

Rp(X)→ Rp(T )W

is an isomorphism. Here Rp(T )W is the invariants under W of the
representation ring of T .

The above theorem is analogous the following classical result: Let
G be a connected compact Lie group and let T ≤ G be a maximal
torus of G with Weyl group W = WG(T ). Then the restriction map
R(G)→ R(T ) is an isomorphism onto the invariant subring R(T )W [1,
theorem 6.20]. Here R(G) is the classical representation ring of G. We
also have the following integral result, shown in [21]:

Gr([BG,
∐
n≥0

BU(n)]) ∼= R(G)

This result motivates the definition of the homotopy representations
[BG,

∐
n≥0BU(n)p̂] of a compact Lie group G at a prime p or more

generally the definition of Rp(X).
In lemma 5.1 our main theorem is shown for all connected p-compact

groups X where p does not divide the order of the Weyl group. Since
connected p-compact groups have been classified (see [3] and [4]) we
can list all the remaining p-compact groups of rank 1 or 2 and we show
our main theorem case by case for all these. By factoring the map
Φ: Rp(X)→ Rp(T )W into two maps

Φ = (RP (G)
Gr(Φ1)−−−−→ Gr(lim Repp(P ))

Gr(Φ2)−−−−→ Rp(T )W )

(with definitions and notation to be given later) the proof for each
case is divided into two parts: To show that Gr(Φ1) is an isomorphism
we use a certain obstruction theory whereas showing that Gr(Φ2) is
an isomorphism is more combinatorial. For both parts we need to un-
derstand lim Repp(P ), but luckily this limit can be described purely
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algebraically and we can use classical representation theory (that is
character theory) to understand it.

In section 3 and 4 we survey the necessary background material
needed for our proofs of the main theorem, first for compact Lie groups
and then for general p-compact groups. In section 5 we give general
proofs not related to one specific p-compact group. The remainder of
the thesis consists of all the case by case proofs of our main theorem.
We have tried to order the proofs in terms of similarity: For example the
proof for G2 at p = 2 has similarities with the proof for Sp(1)× Sp(1)
at p = 2 and the proof for DI(2) has similarities with the proof for G2

at p = 3. With regards to proving that Gr(Φ1) is an isomorphism it
is best to read the proof for Sp(1) × Sp(1) first; this is the simplest
non-trivial proof, and it has been written in much greater detail than
the later proofs.

2. Notation

LetX be a p-compact group. We denote the (complex) n-dimensional
homotopy representations of X by

Repnp (X) := [BX,BU(n)p̂]

and define

Repp(X) :=
∐
n≥0

Repnp (X)

which is a semiring with addition and product induced by direct sum
and tensor product in

∐
n≥0 U(n). So we can write

Rp(X) := Gr(Repp(X))

Let D1 : G → U(n1) and D2 : H → U(n2) be representations of the
groups G and H. Then D1×D2 : G×H → U(n1n2) is the outer tensor
product of D1 and D2. That is (D1 ×D2)(g, h) = D1(g)⊗D2(h).
W will always denote the Weyl group of the particular p-compact

group we are discussing, that is the Weyl group of the chosen maximal
torus.

3. Background for compact Lie groups

Let G be a connected compact Lie group with maximal torus T and
Weyl group W .

3.1. Factorisation of Repp(G) → Repp(T )W . A p-toral subgroup
P ≤ G is a closed subgroup such that its one-component P1 is a torus,
and π0(P ) is a finite p-group. A p-toral subgroup P is called a p-radical
subgroup if and only if its Weyl group W (P ) := NG(P )/P is a finite
group and Op(W (P )) = 1. Let Op(G) be the category with objects
G/P for P a p-toral subgroup of G and with Mor(G/P,G/Q) being
the G-equivariant maps. Here G/P = {Pg | g ∈ G} on which G acts
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on the right. Let Rp(G) be the full subcategory of Op(G) with objects
G/P for P p-radical. In [17] it is shown that

hocolimG/P∈Rp(G) EG×G G/P → BG

is an Fp homology isomorphism, so that

Repkp(G)→ [hocolimG/P∈Rp(G) EG×G G/P,BU(k)p̂]

is a bijection (since BG is p-good and BU(k)p̂ is p-complete, cf. [5]). We
have a map [hocolimG/P∈Rp(G) EG/P,BU(k)p̂]→ limG/P∈Rp(G)[EG×G
G/P,BU(k)] ∼= limG/P∈Rp(G) Repkp(P ). So we get a factorization

Repp(G)
Φ1−→ lim

G/P∈Rp(G)
Repp(P )

Φ2−→ Repp(T )W

For descriptions ofRp(G) for the classical compact simple Lie groups,
see [23].

3.2. Describing limRp(G) Repnp (P ). Let Np ≤ G be a maximal p-toral
subgroup of G. One such can be constructed by taking the preimage of
a Sylow-p-subgroup of W in NG(T ). Then

lim
Rp(G)

Repp(P ) ↪→ Repp(Np)

is injective, since any p-toral subgroup of G conjugates into Np (see
[18, lemma A.1]).

We have an isomorphism limOp(G) Repp(P ) ∼= limRp(G) Repp(P ) in-
duced by the natural inclusion (see [17]).

Let φ : G/P → G/Q and let g ∈ G be such that φ(Px) = Pgx. Let
cg : P → Q be conjugation from the left. Then the following square
commutes up to homotopy:

BP

��

Bcg // BQ

��
EG×G G/P

1×φ // EG×G G/Q

Because of this square we use the following language:

Definition 3.1. An element of Repp(Np) is called fusion invariant if
it comes from limRp(G) Repp(P ) ∼= limOp(G) Repp(P ).

Definition 3.2. Let P be p-toral. P̆ ≤ P is a p-discrete approximation
of P if P̆ is dense in P and

P̆1 := P̆ ∩ P1 = {x ∈ P1 | xp
r

= 1 for some r ∈ N}

A p-discrete approximation of P always exists. And P̆1 is unique up
to conjugation with an element of P1 (see [20, theorem 1.1]). P̆ should

be regarded as a discrete group. P̆ is called a p-discrete toral group.
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For a group K define Rep(K,U(k)) := Hom(K,U(k))/ Inn(U(k)).
We have isomorphisms

Rep(P̆ , U(k))
B−→ [BP̆ ,BU(k)p̂]← Repkp(P )

For the proof of this see [20, theorem 1.1]: The proof is based on [10]

which shows it for finite p-groups, and on the fact that BP̆ → BP
is a mod p equivalence. Thus limRp(G) Repnp (P ) can be given a quite
algebraic description.

A p-discrete toral group is a special type of a countable locally finite
group. That G is countable locally finite means that there exists an
ascending sequence

1 = G0 ≤ G1 ≤ G2 ≤ · · · ≤ G

of finite groups such that G =
⋃
nG

n. The representation theory of a
countable locally finite group G is very similar to the representation
theory of finite groups, as explained in [29, Appendix B]: Among other
things, any representation of G splits uniquely (up to permutation)
into a finite sum of irreducible representations, and any representation
of G i determined by its character. Also Schur’s lemma holds.

3.3. Obstruction theory for Φ1. Let ρ be a k-dimensional fusion in-
variant representation of N̆p (or equivalently let ρ ∈ limRp(G) Repkp(P )).
For i ≥ 1 define Πρ

i : Rp(G)op → Grp as

Πρ
i (G/P ) := πi(Map(EG×G G/P,BU(k)p̂)Bρ

IfH i+1(Rp(G); Πρ
i ) = 0 for all i ≥ 1 then Φ1 hits ρ. And ifH i(Rp(G); Πρ

i ) =
0 for all i ≥ 1 then the element hitting ρ is unique (see [27]).

We have a natural weak equivalence

BCU(k)(ρ(P̆ ))p̂ ' Map(EG×G G/P,BU(k)p̂)Bρ

This is shown in [20, theorem 1.1] and the proof is based on [10]. Say

ρ|P̆ ∼= ρk11 ⊕ · · · ⊕ ρkrr where the ρi’s are non-isomorphic irreducible
representations. Then by Schur’s lemma

CU(k)(ρ(P̆ )) ∼= U(k1)× · · · × U(kr)

In particular, since π0(U(l)) = π2(U(l)) = 0 for all l ≥ 0 we get that

Πρ
1 = Πρ

3 = 0

3.3.1. Understanding Πρ
2. Let k be the dimension of ρ. We have natural

isomorphisms

Πρ
2(G/P ) = π2(Map(EG×G G/P,BU(k)p̂)Bρ)

∼= π2(BCU(k)(ρ(P̆ )))⊗ Zp
∼= π1(CU(k)(ρ(P̆ )))⊗ Zp
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Write ρ|P̆ = ρa11 ⊕ · · · ⊕ ρarr where the ρi’s are pairwise non-isomorphic

irreducible representations of P̆ . Say ρi has dimension ki. Then

CU(k)(ρ(P̆ )) ∼= U(a1)⊗ Ik1 ⊕ · · · ⊕ U(ar)⊗ Ikr

where Iki is the identity matrix of rank ki. Since π1(U(l)) ∼= Z for all
l ≥ 1 we get

Πρ
2(G/P ) ∼= Zp{ρ1, . . . , ρr}

This is a W (P )op-permutation representation of rank r.

Now assume Q̆ ≤ P̆ . For simplicity say ρ|P̆ = ρa11 . Assume ρ1|Q̆ =
σb11 ⊕ · · · ⊕ σbss , where the σi’s are non-isomorphic irreducible represen-

tations, so that ρ|Q̆ = (σb11 ⊕ · · · ⊕ σbss )a1 . Say σi has dimension li. We
then want to calculate the map Πρ

2(P )→ Πρ
2(Q) as a map

Zp{ρ1} → Zp{σ1, . . . , σs}

The element ρ1 ∈ Zp{ρ1} corresponds to the element in π1(CU(k)(ρ(P̆ )))
with representative f : S1 → U(a1)⊗Ik1 where f(z) = diag(z·Ik1 , Ik1 , . . . , Ik1).
Postcomposing with the inclusion CU(k)(ρ(P̆ ))→ CU(k)(ρ(Q̆)) we get a
map

S1 → U(a1)⊗ (U(b1)⊗ Il1 ⊕ · · · ⊕ U(bs)⊗ Ils)
z 7→ diag(z · Ik1 , Ik1 , · · · , Ik1)

This map represents the element b1σ1 + · · ·+ bsσs. So we get

ρ1 7→ b1σ1 + · · ·+ bsσs

3.3.2. Spectral sequence for H∗(Rp(G);F ). Fix a height function ht : Ob(Rp(G))→
Z≥0 satisfying G/P ∼= G/Q⇒ ht(G/P ) = ht(G/Q) and (G/P 6∼= G/Q
and Mor(G/P,G/Q) 6= 0) ⇒ ht(G/P ) > ht(G/Q).

Theorem 3.3. [13, theorem 1.3] There is a cohomological spectral se-
quence converging to H∗(Rp(G);F ) with E1 page given by

Es,t
1 =

⊕
ht(G/P )=s

Λs+t(W (P );F (G/P ))

Here Λ∗(Γ,M) := H∗(Rp(Γ);FM) where FM(Γ/1) = M (M is a Γop-
module) and FM(Γ/P ) = 0 for P 6= 1.

See [13] and [18] for methods for calculating the Λ∗ groups.
The height ht(C) of a category C is the maximal length of a chain of

inclusions in the category.
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3.4. Describing Repp(T ). Say T̆ = (Z/p∞)r ≤ U(1)r. Since T̆ is

abelian all irreducible representations of T̆ are 1-dimensional (see [24,
exercise 3.1]). And

Rep(T̆ , U(1)) = Hom(T̆ , U(1))
∼= Hom(Z/p∞, U(1))r

∼= Hom(colimZ/pn, U(1))r

∼= (lim Hom(Z/pn, U(1)))r

∼= (limZ/pn)r

∼= Zrp
An element (α1, . . . , αr) ∈ Zrp corresponds to the map

(t1, . . . , tr) 7→ tα1 mod pn

1 · · · tαr mod pn

r ti ∈ Z/pn ≤ U(1)

The element (α1, . . . , αr) is called a weight.
We will write Repp(T ) = Z≥0[x1, . . . , xr] (called the character lat-

tice) where an exponent of xi is in Zp. As an element of Repp(T ) the

weight (α1, . . . , αr) is written as xα1
1 · · ·xαrr . Given a N̆p representation

ρ, its restriction ρ|T̆ , as an element of Z≥0[x1, . . . , xr], is called the Lie
character of ρ (not to be confused with the character χ of ρ, that is
χ = trace ◦ρ).

We will define [xα1
1 · · ·xαrr ] to be the orbit sum of xα1

1 · · ·xαrr under
the action of the Weyl group W , that is

[xα1
1 · · · xαrr ] =

∑
y∈W.(xα11 ···x

αr
r )

y

4. Background for p-compact groups

A p-compact group (where p is a prime) is a triple (X,BX, e) where
BX is a connected pointed p-complete space, X is a space with finite-
dimensional Fp-homology and e : X → ΩBX is a homotopy equiva-
lence. p-compact groups were first defined in [11]. See [11] and [12] for
basic definitions and facts about p-compact groups, which will not be
repeated here. Recall though that P is called a p-compact toral group
if BP is the total space of a fibration with fiber the p-completed clas-
sifying space of a torus and with base the classifying space of a finite
p-group.

Now assume X is a p-compact group. Define the category O(X) as
follows: The objects are all pairs (P, iP ) where P is a p-compact toral
group and iP : P → X is a monomorphism (in the sense of p-compact
groups). A morphism α : (P, ip) → (Q, iQ) is a free (i.e. non-pointed)
homotopy class of maps Bα : BP → BQ such that BiQ ◦ Bα is freely
homotopic to BiP . Define the categoryR(X) to be the full subcategory
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of O(X) with objects (P, iP ) where P is p-radical and centric. Here p-
radical is defined in terms of the Weyl group W (P ) := AutO(X)(P )
in the same way as for compact Lie groups and centric means that
the natural map BZ(P ) → BCX(P ) is a weak equivalence (here the
centralizers are to be understood in the sense of p-compact groups). In
[8] it is shown that there exists a functor Φ: R(X) → Top such that
Φ(P, iP ) ' BP for all (P, iP ) ∈ R(X) and such that there there exists
a natural Fp-homology equivalence

hocolimR(X) Φ→ BX

Let G be a connected compact Lie group. In [8, Appendix B] it is
furthermore shown that the natural map Rp(G)→ R(Gp̂) is a equiva-
lence of categories. And it is shown that via this equivalence the above
homology decomposition is equivalent to the homology decomposition

hocolimG/P∈Rp(G) EG×G G/P → BG

of the previous section up to p-completion.
As in the previous section the above homology decomposition gives

a factorization

Repp(X)
Φ1−→ lim

(P,iP )∈R(X)
Repp(P )

Φ2−→ Repp(T )W

where T is a maximal torus of X with Weyl group W . The rest of the
previous section more or less generalizes to this context:

• Any p-compact toral group has a discrete approximation, and
any homomorphism between p-compact toral groups lifts uniquely
to a homomorphism of the chosen discrete approximation (see
[12, proposition 3.2]). So we get the same algebraic description
for lim(P,iP )∈R(X) Repp(P ) as we did for compact Lie groups.
• The obstruction theory for Φ1, including the spectral sequence

for calculating the obstruction groups, is the same as for com-
pact Lie groups.
• Choose a maximal p-compact toral subgroupNp ofX (say the p-

normalizer of the chosen maximal torus T ). Then lim(P,iP )∈R(X) Repp(P )→
Repp(Np) is injective: This is because any morphism iP : P → X
in R(X) lifts to a morphism P → Np by [12, proposition 2.14]
where we use the fact that p does not divide the Euler charac-
teristic χ(X/Np) (see [12, proposition 2.10]).

Now we again say that an element of Repp(Np) is fusion in-
variant if and only if it lies in limR(X) Repp(P ) ∼= limO(X) Repp(P )
(cf. lemma 5.2).

Connected p-compact groups have been completely classified in [3]
and [4]. If X is a connected 2-compact group not isomorphic to the
2-completion of compact Lie group then X contains DI(4) as factor by
[4, theorem 1.1] and since DI(4) has rank 3 X has rank at least 3. In the
case of odd primes p the classification says that there is a one to one
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correspondence between isomorphism classes of simply connected p-
compact groups and isomorphism classes of finite Qp-reflection groups
(see [3, theorem 1.1] and [4, theorem 8.13(2)]). Now if X is a connected
p-compact group with p not dividing the order of the Weyl group, the
main theorem (theorem 1.1) is true for X by lemma 5.1. By inspecting
a table of the irreducible Qp-reflection groups (see [14, page 4]) we see
that the remaining cases we need to prove the main theorem for are
Sp(1) at p = 2, Sp(1) × Sp(1) at p = 2, SU(3) at p = 2, 3, Sp(2) at
p = 2, G2 at p = 2, 3 and DI(2). Here DI(2) is a 3-compact group – the
only simple exotic p-compact group of rank at most 2 where p divides
the order of the Weyl group.

5. General results

5.1. When p does not divide the order of the Weyl group.

Lemma 5.1. Let X be a connected compact Lie group with maximal
torus T and Weyl group W . Let p be a prime such that p 6 | |W |. Then

Repp(X)
∼=−→ Repp(T )W

is an isomorphism.

Proof. In this case T is a p-radical subgroup and it is a maximal one
since the p-normalizer of T is T itself. Choose any P ∈ O(X) not
isomorphic to T . Then we have a monomorphism P → T and P has
rank strictly less that T . On the other hand CX(P ) has the same rank as
T by [12, proposition 4.3]. It follows that P is not centric, so P 6∈ R(X).

From this calculation ofR(X) we get that limR(X) Repp(P ) = Repp(T )W .
Since Rp(T ) has height 0, we also get that all obstructions for the map
Φ1 : Repp(X) → limR(X) Repp(P ) vanish by lemma 5.5, so that Φ1 is
an isomorphism. �

5.2. Condition for fusion invariance.

Lemma 5.2. Let X be a p-compact group and let ρ ∈ Repp(Np) where
Np is a maximal p-compact toral subgroup of X. Then ρ is fusion
invariant if and only if α∗(ρ|P ) ∼= ρ|P for all α ∈ W (P ) for all
(P, iP ) ∈ R(X).

Proof. This is an application of Alperin’s Fusion Theorem (AFT): AFT
is proven in [6, theorem 3.6] for p-local compact groups, and thus also
holds for O(X) since any p-compact group is a p-local compact group
by [6, chapter 10].

Let α : P → P ′ be a morphism in O(X). We can assume that α is an
isomorphism, since any morphism factors as an isomorphism followed
by an inclusion.

By AFT we have objects P = P0, . . . , Pk = P ′ in O(X), objects
Q1, . . . , Qk in R(X) and morphisms αi ∈ W (Qi) such that Pi−1, Pi ≤
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Qi, αi : Pi−1 → Pi is an isomorphism and α = αk ◦ · · · ◦ α1. Now
α∗i (ρ|Pi) ∼= ρ|Pi−1 for all i implying that α∗(ρ|P ′) ∼= ρ|P . So ρ lies
in limO(X) Repp(P ) and hence in limR(X) Repp(P ), that is ρ is fusion
invariant. �

5.3. Injectivity of Φ2.

Lemma 5.3. Let X be a connected p-compact group with maximal
torus T . Then Φ2 : limRp(G) Repnp (P )→ Repnp (T ) is injective.

Proof. Let N̆p ≤ Np be a p-discrete approximation of a maximal p-

toral subgroup and let T̆ be a p-discrete approximation of T . Let ρ1

and ρ2 be k-dimensional fusion invariant N̆p-representations. Assume

ρ1|T̆ ' ρ2|T̆ .

Remember that ρi is determined by its character χi. So let n ∈ N̆p;
we then have to show that χ1(n) = χ2(n). The map B〈n〉 → BNp → X
is a monomorphism and there exists a map Bφ : B〈n〉 → BT in O(X):
This follows by a proof almost identical to the proof of [11, proposition
8.11] except that one uses theorem 4.6 instead of theorem 4.7 in the
proof. Now since ρi is fusion invariant we have that χi(n) = χi(φ(n)).
So we get

χ1(n) = χ1(φ(n)) = χ2(φ(n)) = χ2(n)

�

Corollary 5.4. Gr(Φ2) is injective.

Proof. This follows from the previous lemma and the fact that Rp(T )
satisfies additive cancellation. �

5.4. Bound on non-zero obstruction groups.

Lemma 5.5. Let X be p-compact group. Then Hn(R(X);F ) = 0 for
n > ht(R(X)) for all functors F .

Proof. We want to use proposition 17.31 in [22]. First we note that
a skeleton of R(X) is a finite EI-category. Let M : R(X)op → Zp-
mod be the constant functor M(P ) = Zp. Obviously M(P ) is projec-
tive over Zp. Now by [13, theorem 1.1] Λn(W (P ), F (P )) = 0 for n >
ht(Rp(W (P ))) so by the spectral sequence converging to H∗(R(X);F )
we have that there exists anN such that ExtnZpR(X)op(M,F ) = Hn(R(X);F ) =
0 for n > N , and this N is independent of F . This implies that M has
a finite projective resolution. Now by [22, proposition 17.31] the pro-
jective dimension of M is less than or equal to ht(R(X)). This implies
that Hn(R(X);F ) = ExtnZpR(X)op(M,F ) = 0 for n > ht(R(X)). �
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5.5. Using unstable Adams operations.

Lemma 5.6. Let G be a connected compact Lie group with maximal
torus T and Weyl group W . Let Rp(T ) ∼= Z[x1, . . . , xr] be any isomor-
phism, and let α ∈ Zp. Then [xαi ] ∈ RP (T )W is hit by Φ: Rp(G) →
Rp(T )W .

Proof. Write α = kpi with i ≥ 0 and k ∈ Z∗p. Since we have an iso-

morphism R(G) → R(T )W the “integral” orbit sum [xp
i

i ] is hit by Φ.
Furthermore for all k ∈ Z∗p there exists an unstable Adams operation

ψk : BGp̂ → BGp̂ and precomposing a representation with ψk corre-
sponds on the character lattice to multiplying each exponential by k.
So by precomposing with ψk we see that also [xαi ] is hit by Φ. �

Remark 5.7. Notice that by tensoring virtual representations we see
that Φ also hits products of the above orbit sums; for example [xα1 ] · [xβ2 ]
for α, β ∈ Zp is also hit.

6. Proof of case: Sp(1)

Let G = Sp(1). Here R2(T ) = Z[x1] and the Weyl group Σ2 acts by
xα1 7→ x−α1 . By lemma 5.6 any orbit sum [xα1 ] is hit by R2(G)→ R2(T )W .
A skeleton of R2(G) is Q ↪→ N . So R2(G) has height 1, so Φ1 is an
isomorphism. So

R2(Sp(1))
∼=−→ R2(T )W

is an isomorphism.

7. Proof of case: SU(3)

Here we can use lemma 5.6 to show surjectivity. We have Rp(T ) =
Z[x1, x2, x3]/(xα1x

α
2x

α
3 , α ∈ Zp) and the Weyl group Σ3 acts by permut-

ing x1, . . . , x3. We already know that any orbit sum of the form [xα1 ] is
hit. Then, for α, β 6= 0 and α 6= β,

[xα1 ] · [xβ1 ] = [xα+β
1 ] + [xα1x

β
2 ]

so also [xα1x
β
2 ] is hit.

Both R2(SU(3)) and R3(SU(3)) have height 1 (see [23]), so Φ1 is
always an isomorphism. So

Rp(SU(3))
∼=−→ Rp(T )W

is an isomorphism for all primes p.

8. Proof of case: Sp(1)× Sp(1) at p = 2

Let G = Sp(1)×Sp(1). By using lemma 5.6 and its following remark
it is easy to see that R2(G)→ R2(T )W is surjective.
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Representatives for the conjugacy classes of groups in R2(G) ∼=
R2(Sp(1))×R2(Sp(1)) are given by the following table:

P W (P ) ht(P )
P1 = N ×N = N2(T ) 1 0
P2 = N ×Q 1× Σ3 1
P3 = Q×N Σ3 × 1 1
P4 = Q×Q Σ3 × Σ3 2

Here N = 〈U(1), j〉 and Q = 〈i, j〉, the quaternion group.

N ×N

N ×Q
+ �

99ssssssssss
Q×N
S3

eeKKKKKKKKKK

Q×Q
S3

eeKKKKKKKKKK + �

99ssssssssss

The morphisms between the Pi’s are generated by the automor-
phisms and the inclusions: This follows by the following lemma by
noting that R2(G) ∼= R2(Sp(1))×R2(Sp(1)):

Lemma 8.1. Let H ≤ N , H ∼= Q (for example H = xQ for x ∈ Sp(1)).
Then there exists n ∈ N such that H = nQ.

Proof. Assume 〈x, y〉 = H ≤ N is isomorphic to the quaternion group
via x 7→ i and y 7→ j. Since not all elements of order 4 in H can lie in
j · U(1) we must have one of the elements equal to i, say x = i. Then
y ∈ j · U(1). Write y = y′j for y′ ∈ U(1), choose n′ ∈ U(1) such that
(n′)2 = y′ and put n = n′j. Then ni = −i and nj = (n′)2j = y, so
nQ = H. �

Let N̆ = 〈Ŭ(1), j〉 ⊆ Sp(1) (a p-discrete approximation of N).

Choose discrete approximations P̆1, . . . , P̆4 of P1, . . . , P4 by replacing
any factor N by N̆ .

As R2(G) has height 2 there is just one potential obstruction group
to deal with, namely H2(R2(G),Πρ

2).

8.1. Representations of P̆1, · · · , P̆4.

Lemma 8.2. The irreducible representations of N̆ are given as follows:

• Two 1-dimensional representations φε for ε ∈ {1,−1} given by

φε(Ŭ(1)) = 1 and φε(j) = ε.

• For all α ∈ Z2 − {0} a representation ψα = IndN̆
Ŭ(1)

(α). Then

ψα(t) =

(
tα 0
0 t−α

)
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for all t ∈ Ŭ(1) and

ψα(j) =

(
0 (−1)α

1 0

)
Proof. Any irreducible representation of N̆ is contained in a repre-
sentation induced from Ŭ(1) by [24, exercise 3.4]. Let α ∈ Z2 be

an irreducible representation of Ŭ(1). Then IndN̆
Ŭ(1)

(α) is irreducible

if and only if the action of N̆/Ŭ(1) on α has trivial stabilizer (see [15,
problem 6.1] which can be proven using theorem 6.11), that is if and
only if αj 6= α. Since αj = −α, this is if and only if α 6= 0. And

IndN̆
Ŭ(1)

(0) ∼= φ1 ⊕ φ−1. �

The irreducible representations of P̆1 are exactly the products of an
irreducible representation of N̆ with an irreducible representation of N̆
(see [29, Appendix B]). So they are given as follows:

• 1-dimensional representations τε1,ε2 = φε1 × φε2 , εi ∈ {±1}.
• 2-dimensional representations θ1

α,ε = ψα × φε with character

x±α1 and θ2
β,ε = φε × ψβ with character x±β2 . Here α, β 6= 0 and

ε ∈ {±1}.
• 4-dimensional representations ρα,β = ψα × ψβ with character

x±α1 x±β2 . Here α, β 6= 0.

Q has five irreducible representations. Four 1-dimensional represen-
tations χε1,ε1 , εi ∈ {1,−1} given by

χε1,ε2(i) = ε1

χε1,ε2(j) = ε2

and one 2-dimensional representation ζ. Then P̆4 = Q × Q has 25
irreducible representations given by products of these.

To determine how representations of P̆1 restrict to P̆2, . . . , P̆4 we use
the fact that, for ρ1, ρ2 representations of R, S, the character of ρ1× ρ2

(a representation of R× S) can be calculated as

χρ1×ρ2(x, y) = χρ1(x) · χρ2(y)

And then we use the following table

Representation of N̆ Restriction to Q
ψα, α ≡ 1 (2) ζ

ψα, α ≡ 0 (2) χδ,1 ⊕ χδ,−1 δ =

{
1 α ≡ 0 (4)

−1 α ≡ 2 (4)

φε χ1,ε

So for example ρ1,2|Q×Q ∼= ζ × χ−1,1 ⊕ ζ × χ−1,−1.
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8.2. Determining fusion invariance. We will now determine fusion
invariance (see definition 3.1 and theorem 5.2).

Lemma 8.3. A representation of the discrete 2-normalizer P̆1 is fusion
invariant if and only if its character χ satisfies χ(x, i) − χ(x, j) = 0

and χ(i, x)− χ(j, x) = 0 for all x ∈ N̆ .

Proof. An P̆1-representation with character χ is fusion invariant if and
only its restriction to P̆i is invariant under the action of W (Pi) for i =
1, . . . , 4. It is invariant under W (P2) if and only if χ(x, i) = χ(x, j) =
χ(x, k) and invariant under W (P3) if and only if χ(i, x) = χ(j, x) =
χ(k, x) for all x ∈ N . Since χ(x, j) = χ(x, k) and χ(j, x) = χ(k, x)

for all representations of P̆1 this is equivalent to χ(x, i) − χ(x, j) = 0
and χ(i, x) − χ(j, x) = 0. By straightforward calculation one sees the
representation is also invariant under W (P4) if these two equations are
satisfied. �

For fusion invariance the values of χ for the irreducible representa-
tions are (where t ∈ Ŭ(1) and congruences are module 4):

Rep. Value
χ(t, i)− χ(t, j) τ±,− 2

θ1
α,− 2t±α

θ2
β,± β ≡ 2: − 2, β ≡ 0: 2
ρα,β β ≡ 2: − 2t±α, β ≡ 0: 2t±α

χ(jt, i)− χ(jt, j) τ+,− 2
τ−,− −2
θ2
β,+ β ≡ 2: − 2, β ≡ 0: 2
θ2
β,− β ≡ 2: 2, β ≡ 0: − 2

χ(i, t)− χ(j, t) τ−,± 2
θ2
β,− 2t±β

θ1
α,± α ≡ 2: − 2, α ≡ 0: 2
ρα,β α ≡ 2: − 2t±β, α ≡ 0: 2t±β

χ(i, jt)− χ(j, jt) τ−,+ 2
τ−,− −2
θ1
α,+ α ≡ 2: − 2, α ≡ 0: 2
θ1
α,− α ≡ 2: 2, α ≡ 0: − 2

For representations not listed the values are 0. Here for example τ±,−
means either τ+,− or τ−,−. And 2t±α = 2tα + 2t−α
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Studying the above table we see that the representation is fusion
invariant if and only if the following equations are all satisfied:

Equation no. Equation
(1a) For each α ∈ Z2 − {0}:

#
β≡0

ρα,β + #θ1
α,− = #

β≡2
ρα,β

(1b) #τ±,− + #
β≡0

θ2
β,± = #

β≡2
θ2
β,±

(2) #τ+,− + #
β≡0

θ2
β,+ + #

β≡2
θ2
β,− = #τ−,− + #

β≡2
θ2
β,+ + #

β≡0
θ2
β,−

(3a) For each β ∈ Z2 − {0}:
#
α≡0

ρα,β + #θ2
β,− = #

α≡2
ρα,β

(3b) #τ−,± + #
α≡0

θ1
α,± = #

α≡2
θ1
α,±

(4) #τ−,+ + #
α≡0

θ1
α,+ + #

α≡2
θ1
α,− = #τ−,− + #

α≡2
θ1
α,+ + #

α≡0
θ1
α,−

Here, for example, #
β≡0

ρα,β means the number of irreducible summands

in the representation of the form ρα′,β with α′ = α and β ≡ 0 (4).
For example the representation ρ2,2 ⊕ ρ2,4 ⊕ ρ4,2 ⊕ ρ4,4 is fusion in-

variant.

8.3. Injectivity of Gr(Φ1) : R2(G)→ Gr(lim Rep2(P )). Injectivity is
governed by the uniqueness obstruction group H2(R2(G); Πρ

2). We will
construct a specific fusion invariant representation ρ such that this
group is 0. For this particular representation the following holds: For

any other fusion invariant representation Ṽ also H2(R2(G); ΠṼ⊕ρ
2 ) = 0

(see below). Injectivity will then follow by the following lemma (noting
that Φ1 is surjective, since all existence obstruction groups are 0, since
the height of R2(G) is 2)

Lemma 8.4. Let p be a prime and let G be a connected compact Lie
group. Assume ht(Rp(G)) ≤ 3, assume Φ1 is surjective and assume that

for all Ṽ ∈ lim Repp(P ) there exists a representation X̃ ∈ lim Repp(P )

such that H2(Rp(G); ΠṼ⊕X̃
2 ) = 0. Then Gr(Φ1) is injective.

Proof. As ht(Rp(G)) ≤ 3 all uniqueness obstruction groups except H2

vanish (remember Πρ
1 = Πρ

3 = 0).

Assume Gr(Φ1)([V1− V2]) = 0 that is Φ1(V1)⊕ W̃ = Φ1(V2)⊕ W̃ for

some W̃ . Then by assumption there exists X̃ such thatH2(Rp(G); Π
Φ1(V1)⊕W̃⊕X̃
2 ) =

0. Choose W and X such that W̃ = Φ1(W ) and X̃ = Φ1(X). Since the
obstruction group vanishes for Φ1(V1⊕W ⊕X) = Φ1(V2⊕W ⊕X) we
get V1 ⊕W ⊕X = V2 ⊕W ⊕X. So [V1 − V2] = 0. �

We will show that H2(R2(G); Πρ
2) = 0 by showing that the differen-

tial in the spectral sequence

Λ1(1× Σ3; Πρ
2(P2))⊕ Λ1(Σ3 × 1; Πρ

2(P3))
∂−→ Λ2(Σ3 × Σ3; Πρ

2(P4))
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is surjective.
Let Z2R2(G)op → Z2W (P4)op be the functor T 7→ T (P4). This func-

tor has a right adjoint, a right Kan extension, which we will call Ran.
Let M = Πρ

2(P4) and put F = Ran(M). The unit of the adjunction
gives a natural transformation Πρ

2 → F . This induces a natural trans-
formation of spectral sequences giving a commutative square

Λ1(1× Σ3; Πρ
2(P2))⊕ Λ1(Σ3 × 1; Πρ

2(P3))
∂ //

��

Λ2(Σ3 × Σ3; Πρ
2(P4))

Λ1(1× Σ3;F (P2))⊕ Λ1(Σ3 × 1;F (P3))
∂̃ // Λ2(Σ3 × Σ3;M)

(8.1)

giving a factorization of ∂. First we will show that ∂̃ is surjective. To
do this we need to understand the category R2(G) and the functor F
a little better:
Q < N are 2-toral groups, so Q < NN(Q) by [18, lemma A.2]. Since

Out(Q) = Σ3 (identifying i with 1, j with 2 and k with 3) we must

have NN(Q)/Q ∼= C2. In fact NN(Q)/Q = 〈 (1+i)√
2
〉: Putting x = (1+i)√

2

we see xi = i, xj = k and xk = −j. So NN(Q)/Q = 〈τ〉 ≤ Σ3 where
τ = (2 3). Let C2 = 〈τ〉 denote this particular subgroup of Σ3.

Let O denote the following full subcategory of Σ3 × Σ3 = W (P4):

NN×N(Q×Q)/(Q×Q)

NN×Q(Q×Q)/(Q×Q)
& �

44hhhhhhhhhhhhhhhhhh
NQ×N(Q×Q)/(Q×Q)

X8

jjVVVVVVVVVVVVVVVVVV

1X8

kkVVVVVVVVVVVVVVVVVVVVVVV & �

33hhhhhhhhhhhhhhhhhhhhhhh

that is the subcategory

C2 × C2

C2 × 1
+ �

99rrrrrrrrrr
1× C2

S3

eeLLLLLLLLLL

1S3

ffLLLLLLLLLLLL + �

88rrrrrrrrrrrr

Notice that this is a skeleton of O2(Σ3 × Σ3). Let RG denote the full
subcategory (skeleton) of R2(G) with objects P1, . . . , P4. We want to
show that the obvious map O → RG on objects gives an isomorphism
of categories:

First notice that the Weyl groups are isomorphic. To determine
MorR2(G)(G/P4, G/P2) = N(P4, P2)/P2 we use that any such map is
given by an automorphism of G/P4 followed by the projection G/P4 →
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G/P2 followed by an automorphism of G/P2. And by the descrip-
tion of the Weyl groups of P4 and P2 we see that any composition
of the projection with an automorphism of G/P2 is equal to an au-
tomorphism of G/P4 followed by the projection. This implies that
W (P4)→ N(P4, P2)/P2 (mapping x̄ to x̄) is surjective. So

N(P4, P2)/P2 = W (P4)/(NP2(P4)/P4) = Σ3 × Σ3/C2 × 1

By similar calculations we get

N(P4, P3)/P3 = Σ3 × Σ3/1× C2

N(P4, P1)/P1 = Σ3 × Σ3/C2 × C2

N(P2, P1)/P1 = 1× Σ3/1× C2

N(P3, P1)/P1 = Σ3 × 1/C2 × 1

This shows that O ∼= RG.
Now,

F (P2) =

 ∏
N(P4,P2)/P2

M

W (P4)

=

 ∏
Σ3×Σ3/C2×1

M

Σ3×Σ3

= HomΣ3×Σ3(Z2, IndΣ3×Σ3
C2×1 (M))

= HomC2×1(Z2,M)

= MC2×1

where we in the first equality write up a concrete expression for F .
Similarly we calculate F (P3) and F (P1). All in all

F (P1) = MC2×C2

F (P2) = MC2×1

F (P3) = M1×C2

F (P4) = M

Restricting F to a functor O → Z2-mod we see that F is a fixed point
functor. Such functors are known to be acyclic by [18, proposition 5.2]
(the proof is to show that F is a proto-Mackey functor and then use
[16, proposition 5.14]). Looking at the spectral sequence converging to
H∗(O;F ) we see that the map

Λ1(1× Σ3;F (P2))⊕ Λ1(Σ3 × 1;F (P3))
∂̃−→ Λ2(Σ3 × Σ3;M)
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is surjective. Returning to the square 8.1 this implies that ∂ is sur-
jective if the left vertical map is surjective. We now want to find a
representation ρ where this is the case:

Put

ρ =(ρ2,2 ⊕ ρ2,4 ⊕ ρ4,2 ⊕ ρ4,4)⊕ (ρ1,2 ⊕ ρ1,4)⊕ (ρ2,1 ⊕ ρ4,1)⊕ ρ1,1

⊕ (τ−,+ ⊕ θ1
2,+)⊕ (τ+,− ⊕ θ2

2,+)⊕ θ1
1,+ ⊕ θ2

1,+

Then ρ is fusion invariant (check that the equations in section 8.2 are
satisfied).

For this ρ we have that ρ|P4 contains all irreducible representations
of P4, so M has as basis all the irreducible representations. Let M2 =
Πρ

2(P2). Then M2 has basis

{ψ2 × χε1,ε2 | εi ∈ {±1}} ∪ {ψ4 × χε1,ε2 | εi ∈ {±1}}∪
{ψ1 × χε1,ε2 | εi ∈ {±1}} ∪ {ψ2 × ζ, ψ4 × ζ, ψ1 × ζ}∪
{φ−1 × χ1,1, φ1 × χ1,−1} ∪ {φ1 × χ−1,ε | ε ∈ {±1} ∪ {φ1 × ζ}

The map M2 → M induced by the inclusion P4 ↪→ P2 is easily
determined from the table above detailing how representations of P̆2

restrict to P̆4.
We will now show that Λ1(1 × Σ3; Πρ

2(P2)) → Λ1(1 × Σ3;F (P2)) is
surjective. In general Λ1(1 × Σ3;L) = L1×C2/L1×Σ3 . So it is enough
to show that Πρ

2(P2)1×C2 → F (P2)1×C2 is surjective. That is, that
M1×C2

2 →MC2×C2 is surjective.
M1×C2

2 has basis

{ψ2 × χ1,ε2 , ψ4 × χ1,ε2 , ψ1 × χ1,ε2 | ε2 ∈ {±1}}∪
{ψ2 × χ−1,±1, ψ4 × χ−1,±1ψ1 × χ−1,±1}∪
{ψ2 × ζ, ψ4 × ζ, ψ1 × ζ}∪
{φ−1 × χ1,1, φ1 × χ1,−1, φ1 × χ−1,±1}∪
{φ1 × ζ}

Here we are using the summing convention that for example ψ2 ×
χ−1,±1 = ψ2 × χ−1,1 + ψ2 × χ−1,−1. MC2×C2 has basis

{χ1,ε2 × χ1,ε4 | εi ∈ {±1}}∪
{χ1,ε2 × χ−1,±1 | ε2 ∈ {±1}}∪
{χ−1,±1 × χ1,ε4 | ε4 ∈ {±1}}∪
{χ−1,±1 × χ−1,±1}∪
{ζ × χ1,ε, χ1,ε × ζ | ε ∈ {±1}}∪
{ζ × χ−1,±1, χ−1,±1 × ζ}∪
{ζ × ζ}
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We can now calculate that Γ: M1×C2
2 → MC2×C2 is surjective. Explic-

itly:

χ1,1 × χ1,1 = Γ(ψ4 × χ1,1 − φ−1 × χ1,1)

χ1,1 × χ1,−1 = Γ(φ1 × χ1,−1)

χ1,−1 × χ1,1 = Γ(φ−1 × χ1,1)

χ1,−1 × χ1,−1 = Γ(ψ4 × χ1,−1 − φ1 × χ1,−1)

χ1,1 × χ−1,±1 = Γ(φ1 × χ−1,±1)

χ1,−1 × χ−1,±1 = Γ(ψ4 × χ−1,±1 − φ1 × χ−1,±1)

χ−1,±1 × χ1,ε = Γ(ψ2 × χ1,ε)

χ−1,±1 × χ−1,±1 = Γ(ψ2 × χ−1,±1)

ζ × χ1,ε = Γ(ψ1 × χ1,ε)

ζ × χ−1,±1 = Γ(ψ1 × χ−1,±1)

χ1,1 × ζ = Γ(φ1 × ζ)

χ1,−1 × ζ = Γ(ψ4 × ζ − φ1 × ζ)

χ−1,±1 × ζ = Γ(ψ2 × ζ)

ζ × ζ = Γ(ψ1 × ζ)

By the symmetry in the definition of ρ we get by symmetrical calcula-
tions that also Λ1(Σ3×1; Πρ

2(P3))→ Λ1(Σ3×1;F (P3)) is surjective. So
we conclude, for this particular ρ, that the left vertical map in diagram
8.1 is surjective.

To finish the argument we note that this vertical map is surjective

for the representation Ṽ ⊕ ρ for any other fusion invariant representa-

tion Ṽ . This follows because the basis of M consists of all irreducible
representations of P̆4. We conclude that H2(R2(G); ΠṼ⊕ρ

2 ) = 0.
In conclusion

R2(Sp(1)× Sp(1))
∼=−→ R2(T )W

is an isomorphism.

9. Proof of case: G2 at p = 2

9.1. 2-radical subgroups of G2. LetG = G2. Following [19] let z ∈ G
be an element of order 2 (all these are conjugate in G). Then CG(z)
is isomorphic to Sp(1) ×C2 Sp(1) where C2 = 〈(−1,−1)〉. Then T =

U(1) ×C2 U(1) ⊆ Sp(1) ×C2 Sp(1) is a maximal torus of G and T̆ =
Z/2∞ ×C2 Z/2∞ ⊆ T is a 2-discrete approximation. The weight lattice

of T̆ is {(α, β) ∈ Z2 × Z2 | α + β ≡ 0 (2)}. The Weyl group of G acts
on the weight lattice by the two generating matrices

D =
1

2

(
1 −3
1 1

)
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(rotation) and

S =

(
1 0
0 −1

)
(reflection).

Each conjugacy class of 2-radical subgroups of G has a representative
in Sp(1) ×C2 Sp(1). The representatives are given in the following list
(copied from [19]), where N = 〈U(1), j〉 and Q = 〈i, j〉:

P W (P ) ht(P )
P1 = N ×C2 N = N2(T ) 1 0
P2 = N ×C2 Q 1× Σ3 1
P3 = Q×C2 N Σ3 × 1 1
P4 = Q×C2 Q Σ3 × Σ3 2
P5 = 〈T, (j, j)〉 Σ3 1
P6 = 〈(i, i), (j, j), (1,−1)〉 GL3(F2) 3

The morphisms between the Pi’s are generated by the automorphisms
and the inclusions (see [19]).

P1

P2

. �

>>}}}}}}}
P3
P0

``AAAAAAA

P5
U5

ggPPPPPPPPPPPPPPP

P4
P0

``AAAAAAA . �

>>}}}}}}}

P6
P0

``AAAAAAA
4�

GG���������������

9.2. Surjectivity of Φ1 : Rep2(G2) → lim Rep2(P ). Let ρ be a fu-

sion invariant representation of P̆1. Surjectivity follows if we show that
H3(R2(G); Πρ

2) = 0. By the spectral sequence this follows if we show
that Λ3(GL3(F2);M) = 0 where M = Πρ

2(P6). Since GL3(F2) is a finite
group of Lie type we have that Λ3(GL3(F2);M) ∼= HomGL3(F2)(StGL3(F2)⊗Z2,M)
(see [13]). Here StGL3(F2) is the Steinberg ZGL3(F2)op-module, a module
which is free over Z of rank 8.

Now M is a permutation module on the isomorphism classes of ir-
reducible summands of ρ|P6. We have P̆6

∼= C3
2 and the irreducible

representations can also be identified with the elements of C3
2 .

Assume ρ|P6 contains all irreducible representations of P6 as sum-

mand. Then M ∼= ZC
3
2

p where GL3(F2) acts on the basis C3
2 in the

canonical way (that is, C3
2 is identified with the vector space F3

2).
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StGL3(F2)⊗F2 belongs to a block with trivial defect group (see [9,
remark 67.13]). By standard modular representations theory this im-
plies that StGL3(F2)⊗Q2 is simple, and that its restriction to a Sylow-
2-subgroup

S =

1 ∗ ∗
0 1 ∗
0 0 1


is isomorphic to the regular module Q2S. But this is not true for the
restriction of M to S: The value on its character on1 1 0

0 1 0
0 0 1


is 4 whereas the value of the regular representation’s character on this
element is 0. Since StGL3(F2)⊗Q2 = StGL3(F2)⊗Z2⊗Q is simple this im-
plies that HomGL3(F2)(StGL3(F2)⊗Q2,M⊗Q) = 0. Now by the following
diagram

StGL3(F2)⊗Z2
//

� _

��

M� _

��
StGL3(F2)⊗Q2

0 // M ⊗Q
where the horizontal maps are inclusions, since StGL3(F2)⊗Z2 and M
are free Z2-modules, we see that also

HomGL3(F2)(StGL3(F2)⊗Z2,M) = 0

If ρ|P6 does not contain all irreducible representations of P6 as sum-
mand then M has rank strictly less that 8, and again, by similar argu-
ments as above, we get

HomGL3(F2)(StGL3(F2)⊗Z2,M) = 0

9.3. Representations of P̆1, · · · , P̆4. The description for Sp(1)×Sp(1)
above gives the necessary information for this case as well. The ir-
reducible representations of P̆1 are the irreducible representations of
N̆ × N̆ that factor through C2. That is: For ρα,β we require that

α ≡ β (2) and for θiα,ε we require that α ≡ 0 (2). And for P̆4 there
are 17 irreducible representations: The 16 1-dimensional representa-
tions χε1,ε2 × χε3,ε4 , εi ∈ {±1} and the 4-dimensional representation
ζ × ζ.

9.4. Determining fusion invariance.

Lemma 9.1. A representation of the discrete 2-normalizer P̆1 is fusion
invariant if and only if

(1) it is invariant under the action of the Weyl group W and
(2) its character χ satisfies χ(x, i) − χ(x, j) = 0 and χ(i, x) −

χ(j, x) = 0 for all x ∈ N .
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Proof. The condition on χ comes from being invariant under W (P2)
and W (P3). See the proof for Sp(1) × Sp(1) above. If this condition
is satisfied then the representation is also invariant under W (P4) and
W (P6).

Regarding invariance under W (P5): In [19] it is shown that W (P5) =
W/〈[(j, j)]〉, so invariance at P5 implies invariance at T (that is invari-
ance under W ). So we just have to worry about how W (P5) acts on
(j, j). A representative of an element of W (P5) maps (j, j) to (j, j)t

for some t ∈ T̆ . Now similar to the proof of lemma 8.2 one can show
that any irreducible representation (with character χ′) of P̆5 is either

induced from T̆ or is trivial on T̆ . In both cases χ′(j, j) = χ′((j, j)t).
So invariance under W also implies invariance at P5. �

The tables for the case Sp(1) × Sp(1) used to determine when the
condition on χ is satisfied (see above) are the same for this case.

9.5. Example: The adjoint representation. The adjoint represen-
tation of G is a 14-dimensional representation with character 2+ [x2

1]+

[x2
2]. It restricts to the P̆1-representation

τ+,− ⊕ τ−,+ ⊕ θ1
2,+ ⊕ θ2

2,+ ⊕ ρ1,1 ⊕ ρ3,1

This can be seen by noting, that this is the only way to make a fusion
invariant representation with the given character. The adjoint repre-
sentation splits as a sum of 2 fusion invariant representations, namely

τ−,+ ⊕ θ1
2,+ ⊕ ρ1,1

and

τ+,− ⊕ θ2
2,+ ⊕ ρ3,1

9.6. Injectivity of Gr(Φ1) : R2(G) → Gr(lim Rep2(P )). The proof is
basically the same as for the case Sp(1) × Sp(1). Hence we will not

repeat all the arguments. Only the fusion invariant P̆1-representation
used to stabilize with has to be changed:

Again we define F = Ran(M), M = Πρ
2(P4), where Ran is the same

right Kan extension as for Sp(1) × Sp(1). And again we get a natural
transformation of spectral sequence. Then we note that the full sub-
category of R2(G) with objects P1, . . . , P4 is isomorphic to the skeleton
O of O(Σ3 × Σ3). Then we note that the restriction F : O → Z2-mod
is a fixpoint functor and hence acyclic.

Now put

ρ′ =(ρ2,2 ⊕ ρ2,4 ⊕ ρ4,2 ⊕ ρ4,4)⊕ (τ−,+ ⊕ θ1
2,+)⊕ (τ+,− ⊕ θ2

2,+)⊕ ρ1,1

ρ′ is invariant at P1, . . . , P4 and P6 but is not invariant under the action
of the Weyl group. We note that ρ′|P̆4 contains all irreducible repre-

sentations of P̆4, which is exactly what we need to be able to use ρ′ for
stabilizing.



24 TOKE NØRGÅRD-SØRENSEN

Let

ρ = ρ′ ⊕ θ1
4,+ ⊕ (ρD·(2,4) ⊕ ρD2·(2,4))⊕ (ρD·(4,2) ⊕ ρD2·(4,2))⊕ θ1

8,+

⊕ ρ3,1 ⊕ 2(θ1
2,+ ⊕ ρ1,1)

See above for the definition of the matrix D. Then ρ is fusion invariant.
One can ignore the extra representations of ρ not in ρ′ as adding extra
representations does not hurt the argument.

Now one can check that Πρ
2(P2)1×C2 →MC2×C2 is surjective, so that

Λ1(1×Σ3; Πρ
2(P2))→ Λ1(1×Σ3;F (P2)) is surjective. And by the sym-

metry in the definition of ρ′ also Λ1(Σ3×1; Πρ
2(P3))→ Λ1(Σ3×1;F (P3))

is surjective.
The rest of the proof of injectivity of Gr(Φ1) is the same as for

Sp(1)× Sp(1).

9.7. Surjectivity of Gr(Φ2) : Gr(lim Rep2(P )) → R2(T )W . I write
R2(T )W = Z[x1, x2]W similarly to how I wrote characters above. Given

a free orbit sum x±α1
1 x±β12 +x±α2

1 x±β22 +x±α3
1 x±β32 then, calculating mod-

ulo 4, (α1, β1), (α2, β2), (α3, β3) equals one of (after possibly changing
sign on αi or βi and permuting the i’s)

(0, 0), (0, 0), (0, 0) (1)

(0, 0), (2, 2), (2, 2) (2)

(0, 2), (1, 1), (1, 1) (3)

(2, 0), (1, 1), (1, 1) (4)

Let (α, β) be a weight with α, β 6= 0. I will define the following

families of P̆1-representations: For α, β ≡ 2 (4):

Ψα,β = ρα,β ⊕ (θ1
α,− ⊕ ρα/2,α/2)⊕ (θ2

β,− ⊕ ρβ/2,β/2)⊕ τ−,−

This is almost fusion invariant, except for missing the rest of the orbit
of (α, β). The parentheses indicate which subrepresentations make up
a Weyl group invariant orbit sum.

For α, β ≡ 0 (4) let

Ψα,β = ρα,β ⊕ (ρα,2 ⊕ ρD·(α,2) ⊕ ρD2·(α,2))

⊕ (ρ2,β ⊕ ρD·(2,β) ⊕ ρD2·(2,β))

⊕ (ρ2,2 ⊕ θ1
4,+)⊕ (θ1

2,+ ⊕ ρ1,1)

Here D is the matrix defined above. This is almost fusion invariant,
except for missing the rest of the orbit of (α, β). In this regard notice
that (α, 2) and (2, β) always generate free orbits.
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Now assume that (α, β) generates a free orbit. For α ≡ 0 (4) and
β ≡ 2 (4) let

Ψα,β = (ρα,β ⊕ ρD·(α,β) ⊕ ρD2·(α,β))⊕ (ρβ,β ⊕ θ1
2β,+)

⊕ (θ1
α,− ⊕Ψα/2,α/2)⊕ (θ1

β,− ⊕ ρβ/2,β/2)⊕ (θ1
2,+ ⊕ ρ1,1)

This is fusion invariant.
For α ≡ 2 (4) and β ≡ 0 (4) let

Ψα,β = (ρα,β ⊕ ρD·(α,β) ⊕ ρD2·(α,β))⊕ (ρα,α ⊕ θ1
2α,+)

⊕ (θ2
α,− ⊕ ρ3α/2,α/2)⊕ (θ2

β,− ⊕Ψ3β/2,β/2)⊕ (θ1
2,+ ⊕ ρ1,1)

This is fusion invariant.

Lemma 9.2. Gr(Φ2) is surjective.

Proof. We have to show that all orbit sums [xα1x
β
2 ] in R2(T )W are hit

by Gr(Φ2).

(1) All non-free orbit sums are hit. This follows by lemma 5.6.
(2) Assume ν(α) = 2 and ν(β) = 1 (here ν is the valuation of the

2-adic number). The orbit sum [xα1x
β
2 ] is hit since all the other

orbit sums in Ψα,β are hit (check the definition of Ψα,β and
Ψα/2,α/2). Similarly for the case ν(α) = 1 and ν(β) = 2.

(3) Assume ν(α) > 2 and ν(β) = 1. Here we use that by induction

we can assume that the orbit sums [x
α/2
1 x2

2] and [x2
1x

α/2
2 ] are hit.

Similarly for ν(α) = 1 and ν(β) > 2. So all orbit sums of type
(3) or (4) above are hit.

(4) Assume [xα1x
β
2 ] is a free orbit sum of type (1) or type (2) above.

Then Ψα,β ⊕ ΨD·(α,β) ⊕ ΨD2·(α,β) only consists of the orbit sum

[xα1x
β
2 ] plus orbit sums of type (3) and (4) plus non-free orbit

sums. So also the orbit sum [xα1x
β
2 ] is hit.

�

We conclude that

R2(G2)
∼=−→ R2(T )W

is an isomorphism.

10. Proof of case: Sp(2) at p = 2

Let G = Sp(2). We have R2(T ) = Z[x1, x2] and the Weyl group,
the dihedral group of order 8, acts by transposing x1 and x2 and by
changing the sign of the exponent on x1 and on x2. Now by lemma 5.6
the map Φ: R2(G)→ R2(T )W hits any non-free orbit sum (that is [xα1 ]
or [(x1x2)α]). Let α, β ∈ Z2 − {0} such that α 6= ±β. Then

[xα1 ] · [xβ1 ] = [xα1x
β
2 ] + [xα+β

1 ] + [xα−β1 ]

showing that Φ also hits any free orbit sum [xα1x
β
2 ]. So Φ is surjective.
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So we just have to show that Gr(Φ1) : R2(G) → Gr(lim Rep2(P )) is
injective. We will use the same general method as we did for Sp(1) ×
Sp(1).

Representatives for the conjugacy classes of groups in R2(G) are
given by the following table (see [23]):

P W (P ) ht(P )
P1 = N o C2 1 0
P2 = N ×Q 1× Σ3 1
P3 = Q o C2 Σ3 1
P4 = Γ2 Σ3 1
P5 = Q×Q Σ3 o C2 2
P6 = Γ2 O−4 (F2) 2

N o C2

N ×Q
' �

44jjjjjjjjjjjjjjjjjjj
Q o C2

?�

OO

Γ2
U5

hhQQQQQQQQQQQQQQQ

Q×Q
R2

ddJJJJJJJJJJ , �

::tttttttttt
Γ2
Q1

bbEEEEEEEEE /�

??��������

Here

N = 〈U(1), j〉 ≤ Sp(1)

Q = 〈i, j〉 ≤ Sp(1)

Γ2 = 〈N · I, A,B〉
Γ2 = 〈Q · I, A,B〉

where I is the identity matrix and

A =

(
1 0
0 −1

)
B =

(
0 1
1 0

)

The morphisms between the Pi’s are generated by the automor-
phisms and the inclusions: This follows by the following lemma:

Lemma 10.1. Let Pj < Pi, Pi, Pj ∈ {P1, . . . , P6}. Let A ∈ Sp(2) such
that APj ≤ Pi. Then there exists n ∈ Pi such that APj = nPj.

To show this lemma we need the following lemma:

Lemma 10.2. Let K = Sp(1). Let A ∈ Sp(2) such that A(Q × Q) ≤
K o C2. Then A(Q×Q) ≤ K ×K.
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Proof. Write A =

(
a b
c d

)
and let X ∈ Q × Q, X =

(
x 0
0 y

)
. Notice

that if X is a square in Q×Q then AX is diagonal. We calculate

AX =

(
axa+ byb · · ·
· · · cxc+ dyd

)
By proof of contradiction assume AX is in

(
0 K
K 0

)
. Then all of a, . . . , d

must be non-zero. Also (AX)∗ is in

(
0 K
K 0

)
so we get

a(x+ x)a+ b(y + y)b = 0

Now assume x ∈ {±1} and y ∈ {±i,±j,±k}. Then we see that a = 0,
a contradiction. Similarly if y ∈ {±1} and x ∈ {±i,±j,±k}.

We conclude that AX is diagonal if x ∈ {±1} or y ∈ {±1}. And if
neither of x and y is in {±1} then

AX = A

(
x 0
0 1

)
A

(
1 0
0 y

)
is also diagonal. �

Proof of lemma 10.1. Case Q × Q < Q o C2: This follows immediately
by lemma 10.2.

Case Q × Q < N o C2. By lemma 10.2 A(Q × Q) ≤ N × N . And it
is easy to see that if φ : Q × Q ↪→ N × N is a monomorphism then
φ(Q × Q) ∼= H1 × H2 with Hi ≤ N , Hi

∼= Q by using that φ(x, 1)
commutes with φ(1, y) for all x, y ∈ Q. Now use lemma 8.1.

Case Q×Q < N ×Q: Here A(Q×Q) = H×Q with H ≤ N , H ∼= Q.
Now use lemma 8.1.

Case N×Q < N oC2: Since A(Q×Q) ≤ N×N also A(N×Q) ≤ N×N
(since any element of N can be written as a linear combination of
elements of Q). So A(N × Q) = N × H or A(N × Q) = H × N with
H ≤ N , H ∼= Q. Now use lemma 8.1.

Case Q o C2 < N o C2: Let φ : Q o C2 ↪→ N o C2 be a monomorphism.
We have φ(Q × Q) ∼= H1 ×H2 with Hi ≤ N , Hi

∼= Q like in the case

Q×Q < N oC2. Now φ

(
0 1
1 0

)
=

(
0 n
n 0

)
since the image has to be an-

tidiagonal and have order 2. Now by replacing φ with φ postcomposed

with conjugation by

(
n 0
0 1

)
we can assume that φ

(
0 1
1 0

)
=

(
0 1
1 0

)
.

Then we must have H1 = H2 so that φ(Q o C2) = H o C2 for H ≤ N ,
H ∼= Q. Now use lemma 8.1.

Case Γ2 < Q o C2: Let φ : Γ2 ↪→ N o C2 be a monomorphism. By
checking the possible subgroups of Q o C2 isomorphic to D4 = 〈A,B〉
(first list all elements of order 2 and then find all pairs whose product
has order 4) we see that by precomposing φ with an automorphism of Γ2



28 TOKE NØRGÅRD-SØRENSEN

(look closely at O−4 (F2)) we can assume that φ(A) = A and φ(B) = B.
Then for x ∈ Q we must have

φ

(
x 0
0 x

)
=

(
α(x) 0

0 α(x)

)

for α : Q ↪→ N a monomorphism: The two diagonal entries of the image
have to be equal, since the element commutes with B. Also we cannot

have φ

(
x 0
0 x

)
=

(
0 α(x)

α(x) 0

)
since φ

(
x 0
0 x

)
A has order 4. Now

use lemma 8.1.
Case Γ2 < N oC2: Consider Sp(2) modulo its center that is Sp(2)/{±I} ∼=

SO(5). A 2-normalizer of the standard maximal torus in SO(5) is
O(2) o C2 ≤ O(4) ≤ SO(5) and Γ2/{±I} ∼= C4

2 . We will show that
all elementary abelian subgroups of rank 4 in O(2) o C2 are conjugate
via an element of O(2) o C2. Then by lifting such an element to Sp(2)
we see that any subgroup of N oC2 isomorphic to Γ2 is conjugate to Γ2

via an element in N o C2. Let L ≤ N o C2, L ∼= C4
2 . If L ≤ O(2)×O(2)

then we are done, since all elementary abelian subgroups of rank 2 in
O(2) are conjugate by an element of O(2). By proof of contradiction

assume L 6≤ O(2) × O(2), say X ∈ L, X =

(
0 N

N−1 0

)
∈ M2(O(2))

(X must have this form since X has order 2). Then by conjugating L

by

(
N−1 0

0 1

)
we can assume that

(
0 1
1 0

)
∈ L. But since all other

elements in L have to commute with this element, we see that L can
have rank at most 3 (since we can think of L as lying in O(2)×C2), a
contradiction.

Case Γ2 < Γ2: As in the case of Γ2 < N o C2 we reduce this to a
question in SO(5), namely: Are all elementary abelian subgroups of
rank 4 in Γ2/{±I} ∼= O(2)×C2

2 conjugate by an element of O(2)×C2
2?

And the answer to this question is yes.
Case Γ2 < N o C2: Similar to the case Γ2 < N o C2: Here we use

that all subgroups of O(2) o C2 isomorphic to O(2) × C2
2 are conju-

gate by an element of O(2) o C2: Let φ : O(2) × C2
2 ↪→ O(2) o C2 be a

monomorphism. By changing φ by an automorphism of O(2)×C2
2 and

by conjugation with an element of O(2) oC2 we can assume φ(N, x, y) =

(N,α(N)

(
x 0
0 y

)
) ≤ O(2) × O(2) where α : O(2) → O(2) is a homo-

morphism. Since α(N) has to commute with

(
−1 0
0 1

)
we see that the

image of α(N) has to be a diagonal matrix. Now use that O(2) is gener-

ated by its elements of order 2 to see that Imα ≤
{(
±1 0
0 ±1

)}
. �
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10.1. Representations of P̆1, . . . , P̆6. First we will describe the irre-
ducible representations for each group:

10.1.1. N̆ × Q and Q × Q. These have already been described in the
section on Sp(1)× Sp(1).

10.1.2. N̆ oC2 and QoC2. Let G be a countable locally finite group (such
as a discrete approximation of a p-toral group). Then the irreducible
representations of G o C2 come in 2 families:

(1) Let D1 be an irreducible representation of G. We define the
representations (D1×D1)∼η := (D1×D1)∼⊗Eη, η ∈ {±1}. Here
(D1×D1)∼ is the representation equaling D1×D1 on G×G and
where the generator of C2 acts by transposing the first and the
second D1. And Eη is a representation of C2 = (GoC2)/(G×G):
E1 is the trivial one and E−1 is the nontrivial one.

(2) Let D1 and D2 be non-isomorphic irreducible representations of

G. We define the representation (D1×D2)↑ := IndGoC2

G×G(D1×D2).

Lemma 10.3. With notation as above, letting D1 run through all the
irreducible representations in family 1 and letting {D1, D2} run though
all unordered pairs of irreducible representations in family 2 gives all
the irreducible representations of G o C2 and they are pairwise non-
isomorphic.

Proof. Compare with the proof of 8.2. Any irreducible representation of
G oC2 is contained in a representation induced from G×G. (D1×D2)↑
is irreducible if and only if D1 6∼= D2. Also (D1 ×D2)↑ ∼= (D2 ×D1)↑.
And (D1 ×D1)↑ ∼= (D1 ×D1)∼1 ⊕ (D1 ×D1)∼−1. �

For N̆ o C2 we will define

ρ̃α,β := ρα,β↑ = (ψα × ψβ)↑

10.1.3. Γ2. Γ2 is an extraspecial group, so it has 16 1-dimensional rep-
resentations and 1 irreducible representation of rank 4 (see [26]).

We will denote the 1-dimensional representations by χε1,ε2,ε3,ε4 , εi ∈
{±1}. This denotes the representation of Γ2/{±I} ∼= C4

2 with

i 7→ ε1

j 7→ ε2

A 7→ ε3

B 7→ ε4

We will denote the last irreducible representation by ζ (like we denoted
the higher dimensional irreducible representation of the extraspecial
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group Q by ζ). The character χ of ζ satisfies χ(I) = 4, χ(−I) = −4
and χ(x) = 0 for x 6= ±I. We can define ζ by the map

Γ2 ↪→ Sp(2) ↪→ U(4)

10.1.4. Γ̆2. We have the following irreducible representations:
The representation ζ defined as

Γ̆2 ↪→ Sp(2) ↪→ U(4)

This is irreducible as its restriction to Γ2 is irreducible.

Let A = Γ̆2/{±I} ∼= N/{±I}×C2
2 . Then we have all the irreducible

representations of A. We will denote these by (D, ε1, ε2) where D is an
irreducible representation of N factoring through {±I} (that is D = φε
or D = ψα, α ≡ 0 (2)) and εi ∈ {±1}. By (D, ε1, ε2) we mean that
A 7→ ε1 and B 7→ ε2.

We haven’t proven that these are all the irreducible representations

of Γ̆2 though we suspect that this is the case.

10.1.5. Restricting representations. In general we determine how a rep-
resentation restricts to a subgroup by calculating its character, and de-
termining how this character decomposes into irreducible characters of
the subgroup. In this section we will notice some facts that will help
us later determine how representations restrict.

Let χ be a representation of G×G, where G = N̆ or G = Q. Then

(χ↑)
(
a 0
0 b

)
= χ

(
a 0
0 b

)
+ χ

(
b 0
0 a

)
In particular, if χ = χ1 × χ2 we get

(χ↑)|(G×G) = χ1 × χ2 + χ2 × χ1

This allows us to determine how χ restricts to N̆ ×Q or to Q×Q.
Also from the above, when G = N̆ we get

(χ↑)|(Q o C2) = (χ|Q×Q)↑

since both sides are equal on Q × Q and both are equal to 0 outside
Q×Q.

The next tables explain how ρ̃α,β restricts to Γ̆2 and to Γ2

Condition Restriction to Γ̆2

α 6≡ β (2) 2ζ

α ≡ β (2), α 6= ±β (ψα+β, δ,±1)⊕ (ψα−β, δ,±1) δ =

{
1 α ≡ 0 (2)

−1 α ≡ 1 (2)

α = β (ψ2α, δ,±1)⊕ (φ±1, δ,±1) δ =

{
1 α ≡ 0 (2)

−1 α ≡ 1 (2)
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Condition Restriction to Γ2

α 6≡ β (2) 2ζ
α ≡ β ≡ 1 (2) χ±1,±1,−1,±1

α ≡ β ≡ 0 (2) 2χδ,±1,1,±1 δ =

{
1 α + β ≡ 0 (4)

−1 α + β ≡ 2 (4)

Remember our summing convention that ±1 means summing over all
combinations of 1 and−1: For example χ±1,±1,−1,±1 = ⊕ε1,ε2,ε4∈{±1}χε1,ε2,−1,ε4 .

10.2. Relating R2(G) to orbit categories of finite groups.

10.2.1. The Q × Q-interval. Define RΣ3oC2 to be the subcategory of
R2(W (Q×Q)) with objects

NN oC2(Q×Q)/(Q×Q)

NN×Q(Q×Q)/(Q×Q)
& �

44hhhhhhhhhhhhhhhhhh
NQoC2(Q×Q)/(Q×Q)

X8

jjVVVVVVVVVVVVVVVVVV

1X8

kkVVVVVVVVVVVVVVVVVVVVVVV & �

33hhhhhhhhhhhhhhhhhhhhhhh

that is RΣ3oC2 equals

C2 o C2

C2 × 1
+ �

99sssssssss
1 o C2

R2

ddJJJJJJJJJ

1S3

eeKKKKKKKKKKK , �

99ttttttttttt

Here C2 ≤ Σ3 equals 〈(2 3)〉 that is the generator transposes j and k
(up to signs) in Q. Compare with the calculation of NN(Q)/Q in the
section on Sp(1) × Sp(1). It is easy to see that RΣ3oC2 is a skeleton of
R2(Σ3 o C2).

We claim that RΣ3oC2 is isomorphic to the full subcategory

N o C2

N ×Q
, �

99tttttttttt
Q o C2

R2

ddJJJJJJJJJ

Q×Q
S3

eeKKKKKKKKK , �

::ttttttttt

of R2(Sp(2)): First it is easy to see that the Weyl groups of both
categories agree. Then use the same calculation as in the section on
Sp(1) × Sp(1) for the remaining morphism sets to see that these also
agree.
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10.2.2. The Γ2-interval. We claim that the full subcategory

N o C2

Q o C2

, �

::uuuuuuuuu
Γ2
Q1

bbEEEEEEEEE

Γ2
R2

ddIIIIIIIIII - 


<<yyyyyyyyy

of R2(Sp(2)) is isomorphic the the subcategory RO−4 (F2) of R2(O−4 (F2))

where RO−4 (F2) is

NN oC2(Γ2)/Γ2

NQoC2(Γ2)/Γ2

) 	

66mmmmmmmmmmmmm
NΓ2

(Γ2)/Γ2

U5

hhPPPPPPPPPPPP

1V6

hhRRRRRRRRRRRRRRRR ) 	

66mmmmmmmmmmmmmm

To show this, as above, it is enough to check that the Weyl groups of
the two categories agree.

To understand RO−4 (F2) category first we will describe W (Γ2): We

have

W (Γ2) = Out(Γ2) = {φ ∈ Aut(Γ2/{±I}) | φ(x)2 = x2}

where the second equality follows because Γ2 is an extraspecial group.
We have Γ2/{±I} ∼= C4

2 and by choosing the basis (i, j, A,B) we can
identify Aut(Γ2/{±I}) with GL4(F2). Via this identification we get

W (Γ2) ∼= O−4 (F2) = {φ ∈ GL4(F2) | Q(φ(x)) = Q(x)}

where Q is the quadratic form

Q(x1, . . . , x4) = x1 + x2 + x1x2 + x3x4

Now we get

NΓ2
(Γ2)/Γ2 = 〈

[
1 + i√

2

]
〉 = 〈y〉 ∼= C2

where

y =


1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ∈ O−4 (F2)
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And we get

NQoC2(Γ2)/Γ2 =

{[(
1 0
0 1

)]
,

[(
i 0
0 1

)]
,

[(
j 0
0 1

)]
,

[(
k 0
0 1

)]}
= {I, x2, xy, x3y} ∼= C2

2

where

x2 =


1 0 0 1
0 1 0 0
0 1 1 1
0 0 0 1

 ∈ O−4 (F2)

xy =


1 0 0 0
0 1 0 1
1 0 1 1
0 0 0 1

 ∈ O−4 (F2)

x3y =


1 0 0 1
0 1 0 1
1 1 1 1
0 0 0 1

 ∈ O−4 (F2)

Now define x := (xy)y. Then

NN oC2(Γ2)/Γ2 = 〈x, y〉 = 〈x, y | x4 = y2 = 1, yxy = x3〉 ∼= D4

So we get that RO−4 (F2) equals

〈x, y〉

〈x2, xy〉
, �

::uuuuuuuuu

〈y〉
Q1

bbEEEEEEEE

1S3

eeKKKKKKKKKKK - 


<<xxxxxxxxx

Using that O−4 (F2) ∼= Σ5 is is easy to see that RO−4 (F2) is a skeleton of

R2(O−4 (F2)).
To check that the Weyl groups of the above two categories agree we

will describe W (Γ) and W (Q o C2) as subquotients of O−4 (F2).
W (Γ): In [23] it is shown that W (Γ2) ∼= Σ3 fixes U(1) ≤ Γ2 and

acts as GL2(F2) ∼= Σ3 on Γ2/N ∼= C2
2 . From this information we can

determine W (Γ2) as a subquotient of O−4 (F2). The three involutions
are given by the 3 matrices

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 ,


1 0 0 1
0 1 0 0
0 1 1 1
0 0 0 1

 ,


1 0 1 0
0 1 0 0
0 0 1 0
0 1 1 1


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W (Q o C2): This just corresponds to the subgroup Out(Q) × 1 =
GL2(F2)× 1 ≤ O−4 (F2).

We see that the above Weyl groups agree with the Weyl groups of
RO−4 (F2).

10.3. Fix point functors and spectral sequences. We want to
compare the functor Πρ

2 to 2 fix point functors. Similar to the section
on Sp(1) × Sp(1) we define Rani to be the right Kan extension of
the functor Z2R2(G)op → Z2W (Pi)

op, T 7→ T (Pi), let Mi = Πρ
2(Pi)

and let F5 = Ran5(M5) and F6 = Ran6(M6). Then we get a natural
transformation Πρ

2 → F5 ⊕ F6. As a functor F5 : RΣ3oC2 → Z2-mod we
have

F5(H) = MH
5

and as a functor F6 : RO−4 (F2) → Z2-mod we have

F6(H) = MH
6

In particular F5 and F6 are acyclic. We now get a natural transfor-
mation of spectral sequences: As we are only interested in calculating
H2(R2(G); Πρ

2) we will just write the parts of the E1-pages relevant for
doing this:

Λ1(1× Σ3;M2)
⊕

Λ1(Σ3;M3)
⊕

Λ1(Σ3;M4)

∂1 //

η
��

Λ2(Σ3 o C2;M5)
⊕

Λ2(O−4 (F2);M6)

Λ0(1;F5(P1))
⊕

Λ0(1;F6(P1))

∂̃0 //

Λ1(1× Σ3;F5(P2))
⊕

Λ1(Σ3;F5(P3))
⊕

Λ1(Σ3;F6(P3))
⊕

Λ1(Σ3;F6(P4))

∂̃1 //
Λ2(Σ3 o C2;F5(P5))

⊕
Λ2(O−4 (F2);F6(P6))

// 0

Here the lower sequence is exact. From this it follows that ∂1 is surjec-

tive if and only Im ∂̃0 + Im η equals the whole lower middle module.

10.3.1. Describing ∂̃0. The following theorem can be applied to the
case of G = Sp(2), p = 2, P = P2, P3, P4 and F = F5, F6.

Theorem 10.4. Let G be a compact Lie group, let p be a prime and let
F : Rp(G)op → Zp-mod. Fix a height function ht on Rp(G). Let S ≤ G
be a maximal p-toral subgroup and assume P < S is a p-radical sub-
group with ht(P ) = 1. Assume p divides |W (P )| exactly once. Let Cp =
NS(P )/P ≤ W (P ) (this is a Sylow-p-subgroup of W (P ) since NS(P ) >
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P ). If we identify Λ1(W (P );F (P )) ∼= F (P )NW (P )(Cp)/F (P )W (P ) in the
natural way then the differential

Λ0(1;F (S))→ Λ1(W (P );F (P ))

coming from the spectral sequence converging to H∗(Rp(G);F ) is iden-
tified with the map

F (S)→ F (P )N(Cp)/F (P )W (P )

m 7→ [F (P ↪→ S)(m)]

Proof. All the results used in the following proof can be found in [13].
For a compact Lie group G and a p-toral subgroup P ≤ G let
Bp(G)≥P (respectively Bp(G)>P ) denote the poset of p-radical sub-
groups ofG containing (respectively strictly containing) P . Let Bp(G) =
Bp(G)>1.

We have

Λ1(W (P );F (P )) ∼= H0(HomW (P )(St∗(W (P )), F (P )))

Here St∗(W ) = C̃∗(|Bp(W )|;Zp), the reduced normalized chain com-
plex. In our case Bp(W (P )) is just the discrete set of Sylow-p-subgroups
of W (P ). W (P ) acts transitively on this (via conjugation) and the sta-
bilizer of Cp is N(Cp). So St∗(W ) looks like

· · · → 0→ Zp[W (P )/N(Cp)]→ Zp → 0→ · · ·
where Zp[W (P )/N(Cp)] is in degree 0. Now

HomW (P )(Zp[W (P )/N(Cp)], F (P )) ∼= F (P )N(Cp)

and
HomW (P )(Zp, F (P )) ∼= F (P )W (P )

so HomW (P )(St∗(W (P )), F (P )) is isomorphic to

· · · ← 0← F (P )N(Cp) ← F (P )W (P ) ← 0← · · ·
giving the isomorphism

Λ1(W (P );F (P )) ∼= F (P )N(Cp)/F (P )W (P )

The map

Bp(G)>P → Bp(W (P ))

Q 7→ NQ(P )/P

induces an NG(P )-homotopy equivalence |Bp(G)>P | → |Bp(W (P ))|
which in fact is an isomorphism since both sides are discrete sets. So

Λ1(W (P );F (P )) ∼= H0(HomN(P )(C̃∗(|Bp(G)>P |;Zp), F (P )))

We have

Λ0(1;F (S)) ∼= Hom(C0(|{S}|;Zp), F (S)) ∼= F (S)
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Now the differential d : Λ0(1;F (S)) → Λ1(W (P );F (P )) can be de-
scribed as follows:

Let α ∈ Hom(C0(|{S}|;Zp), F (S)). Extend α to α̃ ∈ Hom(C0(|Bp(G)>P |;Zp), F (S))
via conjugation. Then d(α) corresponds to the map

C0(|Bp(G)>P |;Zp)
α̃−→ F (S)

F (P ↪→S)−−−−−→ F (P )

Now going through the above isomorphisms and using that S ∈ Bp(G)>P
maps to Cp ∈ Bp(W (P )) the result of the theorem follows. �

10.4. Injectivity of Gr(Φ1) : R2(G) → Gr(lim Rep2(P )). The follow-
ing lemma is actually true in the more general setting of p-local compact
groups:

Lemma 10.5. Let G be a compact Lie group and let ρ′ be a representa-
tion of a discrete approximation N̆p(T ) of a maximal p-toral subgroup.

Then there exists a fusion invariant N̆p(T )-representation ρ containing
ρ′.

Proof. Let T̆ = N̆p(T )1 be a discrete approximation of a maximal torus

T . In [7] they contruct a T̆ -representation called ψ. This representation

satisfies that if φ is any representation of T̆ which is invariant under

the Weyl group W , then ρ = Ind
N̆p(T )

T̆
(φ⊗ ψ) is fusion invariant. Also

ρ contains Ind
N̆p(T )

T̆
(φ) since ψ contains the trivial representation. Now

just choose φ′ such that Ind
N̆p(T )

T̆
(φ′) contains ρ′ (e.g. choose φ′ = ρ′|T̆ )

and let φ = ⊕w∈Ww∗φ′. �

Define

ρ′ =ρ̃2,2 ⊕ ρ̃2,4 ⊕ ρ̃4,2 ⊕ ρ̃4,4 ⊕ ρ̃1,2 ⊕ ρ̃1,4 ⊕ ρ̃1,1

⊕ (ψ2 × φ1)↑ ⊕ (ψ2 × φ−1)↑ ⊕ (ψ4 × φ1)↑ ⊕ (ψ4 × φ−1)↑

By the previous lemma we can choose a fusion invariant representa-
tion ρ containing ρ′. We will show that ρ can be used a a stabilizing
representation.

First we see that a basis of M5 consists of all irreducible representa-
tions of Q×Q and a basis of M6 consists of all irreducible representa-
tions of Γ2. Thus if we show that H2(R2(G); Πρ

2) = 0 (which we will)

then also H2(R2(G); Π
(ρ⊕Ṽ )
2 ) = 0 for any fusion invariant representa-

tion Ṽ . This implies that Gr(Φ1) is injective (lemma 8.4).
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10.4.1. Surjectivity of Γ: Λ1(1×Σ3;M2)→ Λ1(1×Σ3;F5(P2)). A basis
for Λ1(1× Σ3;F5(P2)) ∼= MC2×C2/MC2×Σ3 is

χ1,ε × χ1,−1 = −χ1,ε × χ−1,±1 ε ∈ {±1}
χ−1,±1 × χ1,−1 = −χ−1,±1 × χ−1,±1

ζ × χ1,−1 = −ζ × χ−1,±1

MC2
2 (of which Λ1(1 × Σ3;M2) is a quotient) contains the elements

ψ2 × χ1,−1, ψ1 × χ1,−1 and φε × χ1,−1, ε ∈ {±1}. Then

χ1,ε × χ1,−1 = Γ(φε × χ1,−1)

χ−1,±1 × χ1,−1 = Γ(ψ2 × χ1,−1)

ζ × χ1,−1 = Γ(ψ1 × χ1,−1)

showing that Γ is surjective.

10.4.2. Surjectivity of Γ: Λ1(Σ3;M4) → Λ1(Σ3;F6(P4)). For N = M4

or N = F6(P4) we can write Λ1(Σ3;N) ∼= N 〈z〉/NΣ3 where 〈z〉 is any
choice of Sylow-2-subgroup in W (Γ2). So let us choose

z =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


We will then show that M

〈z〉
4 → F6(P4)〈z〉 is surjective. A basis for

F6(P4)〈z〉 = M
〈y,z〉
6 is

{χ1,ε2,ε3,ε3 | εi ∈ {±1}}∪
{χ1,ε2,1,−1 ⊕ χ1,ε2,−1,1 | ε2 ∈ {±1}}∪
{χ−1,±1,ε3,ε3 | ε3 ∈ {±1}}∪
{χ−1,±1,1,−1 ⊕ χ−1,±1,−1,1}

M
〈z〉
4 contains the elements (φε, ε3, ε3), (φε, 1,−1)⊕(φε,−1, 1), (ψ2, ε3, ε3)

and (ψ2, 1,−1)⊕ (ψ2,−1, 1) with ε, ε3 ∈ {±1} and we get

χ1,ε2,ε3,ε3 = Γ(φε2 , ε3, ε3)

χ1,ε2,1,−1 ⊕ χ1,ε2,−1,1 = Γ((φε2 , 1,−1)⊕ (φε2 ,−1, 1))

χ−1,±1,ε3,ε3 = Γ(ψ2, ε3, ε3)

χ−1,±1,1,−1 ⊕ χ−1,±1,−1,1 = Γ((ψ2, 1,−1)⊕ (ψ2,−1, 1))

So Γ is surjective.
At this point we are reduced to showing that

Λ0(1;F5(P1))⊕Λ0(1;F6(P1))⊕Λ1(Σ3;M3)→ Λ1(Σ3;F5(P3))⊕Λ1(Σ3;F6(P3))

is surjective.
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10.4.3. Surjectivity of Γ: Λ0(1;F6(P1)) → Λ1(Σ3;F6(P3)). We have

Λ0(1;F6(P1)) = F6(P1) = M
〈x,y〉
6 and we have that Λ1(Σ3;F6(P3)) is a

quotient of M
〈x2,xy,C2〉
6 where C2 = NP1(P3)/P3 = 〈y〉. So 〈x2, xy, C2〉 =

〈x2, xy, y〉 = 〈x, y〉. So Γ is surjective.

10.4.4. Surjectivity of Γ: Λ0(1;F5(P1)) → Λ1(Σ3;F5(P3)). We have

Λ0(1;F5(P1)) = F5(P1) = MC2oC2

5 and

Λ1(Σ3;F5(P3)) = F5(P3)C2/F5(P3)Σ3 = M
〈C2,1oC2〉
3 /M

〈Σ3,1oC2〉
3

We calculate that M
〈C2,1oC2〉
5 /MC2oC2

5 has a basis consisting of 1 element,
namely

χ−1,1 × χ−1,1 ⊕ χ−1,−1 × χ−1,−1 = −(χ−1,1 × χ−1,−1 ⊕ χ−1,−1 × χ−1,1)

And since M
〈Σ3,1oC2〉
5 contains the element (χ1,−1 ⊕ χ1,−1) ⊕ (χ−1,1 ×

χ−1,1 ⊕ χ−1,−1 × χ−1,−1) we see that Γ is surjective.

10.4.5. Conclusion. All in all we have shown that ∂1 in diagram 10.3 is
surjective. It turned out that we didn’t even need the group Λ1(Σ3;M3)
for showing this. Hence H2(R2(G); Πρ

2) = 0 and hence Gr(Φ1) is injec-
tive. We conclude that

R2(Sp(2))
∼=−→ R2(T )W

is an isomorphism.

11. Proof of case: G2 at p = 3

Let G = G2. Each conjugacy class of 2-radical subgroups of G has a
representative in SU(3) ≤ G (here SU(3) is a centralizer in G, see [19]).
The representatives are given in the following list (copied from [19])

P W (P ) ht(P )
N3 = 〈T,B〉 C2 × C2 0
Γ = 〈A,B〉 GL2(F3) 1

Here T is the standard maximal torus in SU(3),

A =

1 0 0
0 ζ 0
0 0 ζ2

 , ζ = e2πi/3,

and

B =

0 1 0
0 0 1
1 0 0


Let T̆ ≤ T be the 3-discrete approximation of T , that is

T =


t1 0 0

0 t2 0
0 0 t3

 | ti ∈ Z/3∞, t1t2t3 = 1





HOMOTOPY REPRESENTATIONS 39

and let N̆3 = 〈T̆ , B〉 be a 3-discrete approximation of N3.
Since R3(G) has height 1 there are no obstructions, that is Gr(Φ1) is

an isomorphism. So we just have to show that Gr(Φ2) : Gr(lim Rep3(P ))→
R3(T )W is surjective.

We have R3(T ) = Z[x1, x2, x3]/(xα1x
α
2x

α
3 , α ∈ Z3). The Weyl group of

T is the dihedral group of order 12, generated by

x1 7→ x−1
3

x2 7→ x−1
1

(rotation) and

x1 7→ x2

x2 7→ x1

(reflection).

11.1. Representations of N̆3. There are two types of irreducible N̆3-
representations: Three 1-dimensional ones τ0, τ1, τ2 with τi(T̆ ) = 1 and

τi(B) = ζ i. And one 3-dimensional one ρα1,α2,α3 = IndN̆3

T̆
(α1, α2, α3) for

each non-zero weight (α1, α2, α3). ρα1,α2,α3 has Lie character xα1
1 x

α2
2 x

α3
3 +

xα3
1 x

α1
2 x

α2
3 + xα2

1 x
α3
2 x

α1
3 .

11.2. Fusion invariance.

Lemma 11.1. Let ρ be a representation of N̆3 with character χ. Then
ρ is fusion invariant if and only if

(1) it is invariant under the action of the Weyl group W ,
(2) it satisfies that χ(A)− χ(B) = 0 and
(3) the number of τ1’s in ρ equals the number of τ2’s in ρ.

Proof. ρ is fusion invariant if and only if it is invariant at N3 and at Γ.
Let χ be the character of ρ.

Regarding N3: Since W (N3) = W/〈[B]〉 if ρ is invariant at N3 then
it is invariant under W . Assume condition 3 (the condition on the τ ’s).
Then χ takes the same value on all elements in N3 − T . So invariance
under W implies invariance at N3.

Regarding Γ: The conjugacy classes of Γ are the elements of the
center Z(Γ) = 〈ζ · I〉 and the sets AiBjZ(Γ), (A,B) 6≡ (0, 0) (3). The
Weyl group W (Γ) fixes Z(Γ) and acts transitively on the remaining
conjugacy classes. Assuming ρ is invariant under the Weyl group we
have χ(A) = χ(A2). And assuming condition 3 we have χ(AiB) =
χ(B) = χ(AjB2) for all i and j. So we just need to require that χ(A) =
χ(B) to get invariance at Γ. �

The following table gives values of χ(A) − χ(B) for different Weyl

group invariant N̆3-representations. When specifying a Lie character,
we mean the (unique) N̆3-representation with the given character. For
example [xα1 ] means ρα,0,0 ⊕ ρ−α,0,0. In the following table we assume
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that the Weyl group acts freely on xα1x
β
2 . The congruences are modulo

3.

Type Representation or Lie character Condition χ(A)− χ(B)
1 τ0 0
2 τ1 ⊕ τ2 3

3 [xα1x
β
2 ] α ≡ β ≡ 0 12

4a α 6≡ 0, α + β 6≡ 0 0
4b β 6≡ 0, α + β 6≡ 0 0
5 α 6≡ 0, α + β ≡ 0 −6

11.3. Surjectivity of Gr(Φ2).

Lemma 11.2. Gr(Φ2) : Gr(lim Rep3(P ))→ R3(T )W is surjective.

Proof. (1) By the argument of unstable Adams operations (section

5.6), if the Weyl group does not act freely on xα1x
β
2 then [xα1x

β
2 ] ∈

R3(T )W is hit by Gr(Φ2).
(2) All orbit sums of type 4a and 4b (see above) are hit.

(3) Let ρ have Lie character [xα1x
β
2 ] of type 5. Then ρ ⊕ 2(τ1 ⊕ τ2)

is fusion invariant with Lie character [xα1x
β
2 ] + 2. Since the Lie

character 2 is hit, also [xα1x
β
2 ] is hit.

(4) By taking the sum of 2 representations of type 5 with a rep-
resentation of type 3 we see that all orbit sums of type 3 are
hit.

As all elements of R3(T )W are dealt with above, we conclude that
Gr(Φ2) is surjective. �

In conclusion

R3(G2)
∼=−→ R3(T )W

is an isomorphism.

12. Proof of case: DI(2)

Let X = DI(2). This is a 3-compact group of rank 2 with Weyl group
the 3-adic reflection group W = G12. Up to conjugacy G12 equals the
3-adic reflection group G′12 = 〈A,B, S, T 〉 ⊆ GL2(Z3) of order 48 where

A =

(
0 1
−1 0

)
B =

(
−z−1 z−1

z−1 z−1

)
S =

(
w 1/2
−1/2 w

)
T =

(
0 1
1 0

)
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where z ∈ Z3 satisfies z2 = −2 and w = (−1 + z)/2 (see [25, page 201
ff]. The map G′12 → GL2(F3) reducing modulo 3 is a bijection. And
since G12 = (G′12)X for some X ∈ GL2(Z3) also G12 → GL2(F3) is a
bijection.
X was first constructed in [28] and later reconstructed in [2] together

with 3 other exotic p-compact groups. Let us refresh the construction
in [2]:

Let I be the category with two objects 0 and 1 and with

Mor(0, 0) = W

Mor(0, 1) = ∅
Mor(1, 0) = W/D6

Mor(0, 0) = 1

Here D6 is the Weyl group of G2. Define the functor F ′ : I→ HoTop by
F ′(0) = BT 3̂ where T is a maximal torus in G2 and F ′(1) = (BG2)3̂.
This functor lifts to a functor F : I→ Top and we define

BX = (hocolimI F )p̂

To see that this is the same construction as in [2] notice that (BG2)3̂ '
(B SU(3)hC2)3̂. where C2 acts on SU(3) by conjugation.

We have a homomorphism

(BG2)3̂ ' F (1)→ X

and this is a monomorphism. In [7] it is shown that X has the same
centric 3-radical subgroups as SU(3). So we have the following list of
representatives of the conjugacy classes of centric 3-radical subgroups
in X.

P W (P ) ht(P )

N3 = 〈T̆ , B〉 C2 × C2 0
Γ = 〈A,B〉 GL2(F3) 1
T G12 1

Here N3 and Γ are the same groups as for G2 at p = 3 and T is the
maximal torus in G2. W (Γ) = GL2(F3) since it has to contain the Weyl
group of Γ in G2 (which is also GL2(F3)) and it can’t be any bigger
since GL2(F3) = Out(Γ), since Γ is an extra-special group. Regarding
this notice that W (Γ)→ Out(Γ) is injective since Γ is centric. Regard-
ing W (N3) notice that it has to contain WG2(N3) = WG2(T )/〈[B]〉.
In fact it has to equal WG2(N3): As abstract groups G12

∼= GL2(F3)
and the normalizer of a Sylow-3-subgroup in GL2(F3) is isomorphic to

D6
∼= WG2(T ) (the normalizer of the Sylow-3-subgroup

{(
1 ∗
0 1

)}
is{(

∗ ∗
0 ∗

)}
).
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Again, since R(X) has height 1 there are no obstructions, that is
Gr(Φ1) is an isomorphism. So we just have to show that Gr(Φ2) : Gr(lim Rep3(P ))→
R3(T )W is surjective.

12.1. Fusion invariance.

Lemma 12.1. Let ρ be a representation of N̆3 with character χ. Then
ρ is fusion invariant if and only if

(1) it is invariant under the action of the Weyl group G12,
(2) it satisfies that χ(A)− χ(B) = 0 and
(3) the number of τ1’s in ρ equals the number of τ2’s in ρ.

Proof. This is the same proof as for the case of G2 at the prime 3. �

Let ρ be an N̆3-representation with Lie character [xα1x
β
2 ]. If (α, β) 6=

(0, 0) then ρ is uniquely determined by this Lie character (namely ρ
is a sum of ρα1,α2,α3 ’s), and χ(B) = 0. First assume G12 acts freely on
(α, β), then

χ(A) =
∑
w∈G12

(α, β)(w(A))

where (α, β) : T̆ → U(1) is the map diag(t1, t2, t3) 7→ tα1 t
β
2 . Now since

ζ ∈ Z3 ⊆ U(1) and A = diag(1, ζ, ζ2) actually w(A) only depends on
w modulo 3, that is on the image of w in GL2(F3). Remember that
G12 → GL2(F3) is a bijection.

First assume (α, β) 6≡ (0, 0) (3). Then we calculate

χ(A) =
∑
w∈G12

(α, β)(w(A))

=
∑

w∈GL2(F3)

(α, β)(w(A))

= 48/8
∑

(a,b)∈F2
3−{(0,0)}

1aζb

= 6(3(1 + ζ + ζ2)− 1)

= −6

This calculation uses that GL2(F3) acts transitively on the set F2
3 −

{(0, 0)} of 8 elements, so that {(α, β)w | w ∈ G12} modulo 3 equals
F2

3 − {(0, 0)}.
Second, if (α, β) ≡ (0, 0) (3) it is clear that χ(A) = 48.
Now consider the general case where G12 does not necessarily act

freely on (α, β), but still (α, β) 6= (0, 0). Then the action has an isotropy
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group, call it I, and we get

χ(A) =
∑

w∈G12/I

(α, β)(w(A))

=

( ∑
w∈G12

(α, β)(w(A))

)
/|I|

Lemma 12.2. |I| ∈ {1, 2}.

Proof. G12 is generated by pseudoreflections. Since ±1 are the only
roots of unity in Z3 any pseudoreflection over Z3 is determined by
its hyperplane. Now (α, β) can lie in at most 1 such hyperplane since
we are in dimension 2. If (α, β) lies in a hyperplane of one of the
pseudoreflections, then |I| = 2, otherwise |I| = 1. �

This means that χ(A) = χ(A)− χ(B) ∈ {24, 48,−3,−6}.

12.2. Surjectivity of Gr(Φ2).

Lemma 12.3. Gr(Φ2) : Gr(lim Rep3(P ))→ R3(T )W is surjective.

Proof. τ0 is fusion invariant so its Lie character 1 is hit by Gr(Φ2).

Now let [(α, β)] be a non-trivial Lie character corresponding to the N̆3-
representation ρ. Say ρ has character χ. If χ(A) = −3 then ρ⊕τ1⊕τ2 is
fusion invariant with character [(α, β)] + 2 and since 2 is hit by Gr(Φ2)
also [(α, β)] is hit. If χ(A) = −6 one uses that ρ⊕ 2(τ1 ⊕ τ2) is fusion
invariant. If χ(A) ∈ {24, 48} one adds some orbits whose character on
A is negative (using that 3 divides 24 and 48), to get fusion invariance
and again one gets that [(α, β)] is hit. �

We conclude that
R3(X)

∼=−→ R3(T )W

is an isomorphism.
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