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Abstract. The goal of this thesis is the calculate H∗(BG;F2), for
G a compact classical Lie group, in cases where this is a polyno-
mial algebra. I calculate H∗(BG;F2) for G equal to O(n), SO(n),
U(n), SU(n), Sp(n) and Spin(n). I start by introducing the clas-
sical Lie groups and giving some of their elementary properties. I
then construct the classifying space BG via simplicial spaces and
prove that we get a principal G-bundle G → EG → BG with EG
contractible. The calculations of the thesis are done by using the
Serre spectral sequence on this and other fiber bundles, so I intro-
duce this spectral sequence and review its basic properties. I also
introduce the Steenrod squares which play a role in the calculations
since they commute with the transgressions of the Serre spectral
sequence.

(In Danish:) Målet med dette speciale er at udregne H∗(BG;F2),
for G en kompakt klassisk Lie group, i tilfælde hvor dette er en
polynomiel algebra. Jeg udregner H∗(BG;F2) for G lig O(n), SO(n),
U(n), SU(n), Sp(n) og Spin(n). Jeg starter med at introducere de
klassiske Lie grupper og give nogle af deres grundlæggende egen-
skaber. Jeg fortsætter ved at introducere det klassificerende rum
BG via simplicielle rum og vise at vi f̊ar et principalt G-bundt
G → EG → BG, hvor EG er kontraktibelt. Udregningerne i dette
speciale foretages ved at anvende Serres spektralfølge p̊a dette
og andre fiberbundter, s̊a jeg introducerer denne spektralfølge og
gennemg̊ar dens grundlæggende egenskaber. Jeg introducerer ogs̊a
Steenrod-kvadraterne, der spiller en rolle i udregningerne, fordi de
kommuterer med transgressionerne i Serres spektralfølge.
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1. Introduction

This section discusses concepts which are only introduced later in the
thesis.

Two closely related questions:

(1) For which compact connected Lie groups G is H∗(BG;F2) a
polynomial algebra.

(2) Which polynomial algebras appear as H∗(BG;F2) for some
compact connected Lie group G.

Question (1) is the one I have focused on in this thesis. However by [1]
theorem 1.4 an answer to question (2) would give an answer to which
polynomial algebras in finitely many variables can appear as H∗(X;F2)
for any space X.

We have the following classification of the compact connected Lie
groups (see [10]):

Theorem 1.1. Any compact connected Lie group G is isomorphic to
a quotient of the form

(G1 × · · · ×Gn × U(1)k)/A

where Gi is a compact simply-connected simple Lie group, k ≥ 0, and
A is a finite subgroup of the center of the product.

Furthermore, any compact simply-connected simple Lie group is dif-
feomorphic to one of Spin(n), SU(n), Sp(n) (the classical ones), or G2,
F4, E6, E7 or E8 (the exceptional ones).

I will not mention the exceptional Lie groups in the rest of my thesis.
There are two ways to try to find an answer to the questions above.
1: Look for G for which H∗(BG;F2) is polynomial. However the cal-

culation of H∗(BG;F2) quickly becomes complicated – even for simple
Lie groups G. See for example [3] which calculates PSU(4n + 2) and
PO(4n + 2) and [4] which calculates PSp(4n + 2).

2: Look for an easy way to show that H∗(BG;F2) can not be poly-
nomial. Even if this is not possible for all G, it might be possible
to show that H∗(BG;F2) is not polynomial for large families of G’s.
Maybe this can be done by relating H∗(BG;F2) to H∗(G;F2) – [2]
for example mentions that if H∗(BG;F2) is a polynomial algebra then
H∗(G;F2) has a simple system of primitive generators. Besides the
Serre spectral sequence, there are two other spectral sequences re-
lating G to BG. One converging (if it converges) to H∗(G;F2) with
E2 = TorH∗(BG;F2)(F2,F2), and one converging to H∗(BG;F2) with
E2 = CotorH∗(G;F2)(F2,F2).

2. Conventions and notation

• The projection maps of a product X×Y are denoted by pr1 : X×
Y → X (or prX) and pr2 : X × Y → Y (or prY ).
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• The interval [0, 1] ⊆ R is written I.
• A manifold means a smooth manifold, that is a manifold with

a smooth structure.
• By a map between topological spaces (including for example a

group action) I mean a continuous map. A map between man-
ifolds is not assumed to be smooth unless explicitly written.

• If nothing else is written, a subgroup H of a group G is assumed
to act by right translation, such that G/H := {gH}.

• H∗(X) means H∗(X; R) where R is a commutative ring with
1-element.

• A map between graded or bigraded modules means a degree
preserving map.

3. Classical Lie groups

In this section I will define the compact classical Lie groups. I will
give basic results regarding these, without giving full details. See [8]
chapter 1 for more details.

Definition 3.1. A topological group G is a topological space G with
maps µ : G × G → G (the multiplication) and ι : G → G (the inverse
map) and an element e ∈ G (the identity), that satisfy the axioms of a
group. Often µ(g, h) is written gh and ι(g) is written g−1.

Definition 3.2. A Lie group G is a topological group, which is also
a manifold, such that the maps µ and ι are smooth. A smooth group
homomorphism between Lie groups is called a Lie homomorphism.

In what follows let F denote either R, C or H and let d := dimR F .
Here H denotes the quaternions – that is, H is the algebra over R
with basis 1, i, j, k and with multiplication determined by 1 being the
identity and by i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i
and ki = −ik = j. We have a conjugation map H → H given by
a + bi + cj + dk = a− bi− cj − dk, and conjugation induces an inner
product on H.

Let M(n, F ) denote the set of n × n-matrices with entries in F .

M(n, F ) becomes a manifold by identifying it with Rdn2
. The general

linear group GL(n, F ) := {A ∈ M(n, F ) | A invertible} is an open
subset, and hence a submanifold, of M(n, F ). So GL(n, F ) is a Lie
group.

Let φ : GL(n, F ) → GL(n, F ) be given by φ(A) = AA∗, where A∗

is the conjugate transpose of A. Define U(n, F ) := φ−1(I), where I
is the identity matrix. Since φ is continuous and (AB)∗ = B∗A∗, it
follows that U(n, F ) is a closed subgroup of GL(n, F ). When F = R
or F = C we can use the determinant to define SU(n, F ) := {A ∈
U(n, F ) | det(A) = 1}. This is also a closed subgroup of GL(n, F ). It
follows from the the next theorem, that U(n, F ) and SU(n, F ) are Lie
groups:
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Theorem 3.3. Let G be an Lie group and let H ⊆ G be a closed
subgroup. Then H is a submanifold of G. As a submanifold H becomes
a Lie group.

Proof. Omitted. See [8] chapter 1 theorem 5.13. The result is proved
by using the exponential map of G. ¤

It is easily seen that U(n, F ) is a bounded subset of M(n, F ), so
U(n, F ) and SU(n, F ) are compact.

Let n ≥ 1. We have a Lie monomorphism i : U(n− 1, F ) ↪→ U(n, F )
given by

i(A) =

(
A 0
0 1

)

I will suppress the i in my notation, and consider U(n − 1, F ) to be
a subgroup of U(n, F ). Similarly I will consider SU(n − 1, F ) to be a
subgroup of SU(n, F ).

Theorem 3.4. The orbit space U(n, F )/ U(n − 1, F ) is homeomor-
phic to the sphere Sdn−1 (remember d = dimR(F )). When n ≥ 2 also
SU(n, F )/ SU(n− 1, F ) is homeomorphic to Sdn−1.

Proof. U(n, F ) acts on F n ∼= Rdn by left multiplication. Since this
action preserves the norm on Rdn it restricts to an action on Sdn−1.
Put en = (0, . . . , 0, 1) ∈ F n and let φ : U(n, F ) → Sdn−1 be given
by φ(A) = Aen. This map is surjective: Let vn ∈ F n, ||vn|| = 1.
By extending vn to an orthonormal basis v1, . . . , vn we get an ele-

ment A =
(
v1 . . . vn

)
∈ U(n, F ) and Aen = vn. Furthermore the

isotropy group of en is U(n− 1, F ), so φ induces a continuous bijection
φ : U(n, F )/ U(n− 1, F ) → Sdn−1. As U(n, F ) is compact and Sdn−1 is
Hausdorff, φ is a homeomorphism.

That also SU(n, F )/ SU(n−1, F ) is homeomorphic to Sdn−1 is shown
the same way. However in this case, SU(n, F ) only acts transitively on
Sdn−1 when n ≥ 2. ¤

We’ll use the notation

O(n) = U(n,R) The orthogonal group.

SO(n) = SU(n,R) The special orthogonal group.

U(n) = U(n,C) The unitary group.

SU(n) = SU(n,C) The special unitary group.

Sp(n) = U(n,H) The symplectic group.

4. Fiber bundles and fibrations

Definition 4.1. A fiber bundle consists of a map p : E → B of spaces
E and B 6= ∅ and a space F 6= ∅ satisfying the following: There exists
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a covering
⋃

α Uα = B and homeomorphisms hα : Uα × F → p−1(Uα)
such that p ◦ hα = prUα

.
F , E and B are called the fiber, total space and base space, respec-

tively. The hα’s are called local trivializations.
A fiber bundle is often written in short form as F → E

p−→ B.

Some texts have a slightly more complicated definition of a fiber bun-
dle, since they include the notions of structure groups and equivalence
classes of sets of local trivializations – see for example [8] pages 55-57.

prB : B×F → B is called the trivial fiber bundle. A fiber bundle can
be interpreted as a generalized, or “twisted”, product.

A map f : (F → E
p−→ B) → (F ′ → E ′ p′−→ B′) of fiber bundles is a

pair of maps f : E → E ′ and f : B → B′ that satisfies p′f = fp.

Theorem 4.2. Let F → E
p−→ B be a fiber bundle with F and B

compact. The also E is compact.

Proof. This can be shown by a simple generalization of the proof in [9]
(Theorem 26.7) which shows the result for the trivial bundle.

Let U be an open covering of E. For each b ∈ B there exists an open
neighborhood B ∈ Ub such that finitely many sets in U cover p−1(Ub)
(use compactness of F ). By compactness of B, finitely many p−1(Ub)
cover E. The result follows. ¤

Fiber bundles have an important property now to be described:
A map p : E → B of spaces is said to have the homotopy lifting

property for a pair A ⊆ X of spaces if the following lift/extension
problem can always be solved: Given a square of maps as below, there
exists a map G̃ such that the resulting two triangles commute:

X × 0 ∪ A× I
G0 //

Ä _

²²

E

p

²²
X × I

G̃

55

G // B

Definition 4.3. A Serre fibration is a map p : E → B of spaces which
has the homotopy lifting property for all CW pairs (X, A). A Serre

fibration is often written F → E
p−→ B where F = p−1(b0) for a chosen

base point b0 ∈ B.
A relative Serre fibration is a map p : Ẽ → B of spaces together

with a subspace E ⊆ Ẽ such that both p and p|E : E → B are Serre

fibrations. A relative Serre fibration is written (F̃ , F ) → (Ẽ, E)
p−→ B

where (F̃ , F ) = (p−1(b), (p|E)−1(b)).

Theorem 4.4. A fiber bundle p : E → B is a Serre fibration.

Proof. See [5] page 379 proposition 4.48. ¤
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A Serre fibration F → E → B gives a long exact sequence of homo-
topy groups

· · · πn+1(B) → πn(F ) → πn(E) → πn(B) → · · ·
A map of fibrations induces a (chain) map of these long-exact se-
quences.

Definition 4.5. Let G be a topological group. A principal G-bundle
is a map of spaces p : E → B, where E has a a right G-action, that
satisfies the following: There exists an open covering

⋃
Uα = B and

local sections sα : Uα → p−1(Uα) of p (that is p ◦ sα = 1), such that the
maps φα : Uα × G → p−1(Uα) given by φα(u, g) = sα(u)g are homeo-
morphisms.

Notice that a principal G-bundle p : E → B induces a bijection
E/G → B which is a homeomorphism – locally the inverse is induced
by the local sections.

It is clear that a principal G-bundle is a fiber bundle, but many more
fiber bundles can be produced from a principal G-bundle:

Theorem 4.6. Let p : E → E/G be a principal G-bundle and let F

be a space with a left G-action. Then F → E ×G F
q−→ E/G is a fiber

bundle. Here E ×G F := E × F/((eg, f) ∼ (e, gf)), e ∈ E, g ∈ G,
f ∈ F and q(e, f) = [e].

Proof. q is clearly well defined.
A local trivialization hα : Uα×F → q−1(Uα) can be given by hα(b, f) =

[sα(b), f ] (here sα is as in definition 4.5). This has a well-defined in-
verse kα : q−1(Uα) → Uα×F given by kα([e, f ]) = (b, gf) where (b, g) =
φ−1

α (e). ¤
The following result, which I will not prove, builds upon theorem

3.3. See [8] theorem 5.17.

Theorem 4.7. Let H be a closed subgroup of a Lie group G. Then
G/H can be given a manifold structure such that p : G → G/H and
the action G × G/H → G/H of G are smooth maps. Furthermore p
has a local section around e ∈ G/H – that is there exists an open
neighborhood U around e and a smooth map s : U → p−1(U) such that
p ◦ s = 1.

With this result we can prove

Theorem 4.8. Let H be a closed subgroup of a Lie group G. Then
H → G

p−→ G/H is a principal H-bundle.

Proof. Choose U and s : U → p−1(U) as in theorem 4.7. For any x ∈ G
the set xU = {xgH | gH ∈ U} is open and we can define a local section
sx : xU → p−1(xU) by sx(gH) = xs(x−1gH): we have s(x−1gH) =
x−1gh for some h ∈ H, so p(sx(gH)) = p(xx−1gh) = gH. Now φx : Ux×
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H → p−1(Ux) from definition 4.5 has ψx : p−1(Ux) → Ux ×H given by
ψx(g) = (p(g), sx(p(g))−1g) as inverse. So φx is a homeomorphism. ¤

A particularly nice kind of fiber bundle is given in the next definition:

Definition 4.9. Let B be a connected and locally path connected
space. A covering of B is a fiber bundle F → E

p−→ B where E is
connected and F is discrete. E is called a covering space of B.

This definition of a covering space is stricter than in some texts
(compare for example with the definition in [5]).

Lemma 4.10. Let F → E
p−→ B be a covering of B. Assume B is a

manifold. Let hα : Uα×F → B,
⋃

Uα = B be a choice of trivializations.
Then E gets a unique smooth structure by declaring the hα’s to be
diffeomorphisms. Furthermore this smooth structure does not depend
on the choice of trivializations. With regards to this smooth structure p
is smooth.

Proof. A chart of Uα×F can be assumed to be given as σf
α : Rn → Vα×f

where σf
α(x) = (σα(x), f) for f ∈ F and σα(x) : Rn → Vα ⊆ Uα a chart

of B. Given two such charts σf1
α1

and σf2
α2

the transition (hα2 ◦ σf2
α2

)−1 ◦
(hα1 ◦ σf1

α1
) is given as the following composition – with the domains

and codomains appropriately restricted:

Rn σα1−−→ Vα1 ↪→ Vα1 × f1

hα1−−→ E
h−1

α2−−→ Vα2 × f2
pr2−−→ Vα2

σ−1
α2−−→ Rn

In this composition pr2 ◦h−1
α2
◦hα1 is just projection onto the second co-

ordinate. So the transition is just a restriction of the transition σ−1
α2
◦σα1

which is smooth. So E gets a smooth atlas. Furthermore the calculation
shows that a different choice of trivializations (and different choice of
atlas for each Uα × F ) gives an equivalent atlas. ¤

A universal covering B̃
p−→ B is a covering where B̃ is simply con-

nected. A universal covering is unique up to an isomorphism of fiber
bundles (c.f. [8] theorem 1.12 page 54).

Theorem 4.11. Let B is connected, locally path connected, and locally
semisimply connected (meaning that all b ∈ B has an open neighborhood
U such that π1(U, b) ↪→ π1(X, b) induced by the inclusion is the zero
map). Then B has a universal covering space.

Proof. See [8] theorem 1.13 page 54. ¤
In particular all Lie groups have universal covering spaces.

5. Covering groups

Theorem 5.1. Let p : X̃ → X be a covering of the space X. Let
f : (Y, y0) → (X, x0) be a map of spaces with Y connected and locally

path connected. Let x̃0 ∈ p−1(x0). Then a lift f̃ : (Y, y0) → (X̃, x̃0) of f
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exists if and only if f∗(π1(Y, y0)) ⊆ p∗(π1(X̃, x̃0)). Such a lift is uniquely
determined up to the choice of x̃0.

Proof. See [8] chapter 2 lemma 1.7. ¤

Remark 5.2. If X and Y in 5.1 are manifolds, f is smooth, and X̃ is
given the smooth structure from lemma 4.10, then a lift f̃ will also be
smooth: Let y ∈ Y . Choose a trivialization h : F : U → p−1(U) where

f(y) ∈ U and write h−1(f̃(y)) = (z, f(y)). Choose a path connected

open neighborhood V of y with f(V ) ⊆ U . Then f̃(v) = h(z, f(v)) for

all v ∈ V – that is, f̃ is locally a composition of smooth maps.

Let G be a topological group with multiplication µ : G × G → G,
inverse ι : G → G and unit e ∈ G. Let p : G̃ → G be a covering.
Let ẽ ∈ p−1(e). Define for u, v ∈ Ω(G) (here Ω(G) is the space of loops
based in e) u·v as (u·v)(t) = µ(u(t), v(t)). Let u∗v denote the standard
product in Ω(G), that is, u ∗ v first traverses u and then traverses v.
Then [u · v] = [u][v] in π1(G). This follows from the next calculation
(where I use a standard trick):

u ∗ v = (u · e) ∗ (e · v) = (u ∗ e) · (e ∗ v) ' u · v
Here e denotes the constant loop and ' means path homotopic. Using
this result we see that if [(u, v)] ∈ (p × p)∗(π1(G̃ × G̃, (ẽ, ẽ))), then

µ∗([(u, v)]) = [u · v] = [u][v] ∈ p∗(π1(G̃, ẽ)). So by theorem 5.1 a lift µ̃
exists in the following diagram:

(5.1) (G̃× G̃, (ẽ, ẽ))

p×p

²²

µ̃ // (G̃, ẽ)

p

²²
(G×G, (e, e))

µ // (G, e)

Furthermore a lift ι̃ exists in the next diagram:

(G̃, ẽ)

p

²²

ι̃ // (G̃, ẽ)

p

²²
(G, e)

ι // (G, e)

By using the uniqueness part of theorem 5.1, it is now easy to show
that µ̃ and ι̃ give G̃ the structure of a topological group with unit ẽ.
Associativity, for example, follows from the fact that both µ̃ ◦ (µ̃× 1)
and µ̃◦(1× µ̃) are lifts of µ◦(µ×1)◦(p×p×p) = µ◦(1×µ)◦(p×p×p)
mapping (ẽ, ẽ, ẽ) to ẽ.

Notice that diagram (5.1) says that p is a group homomorphism.

This means that we have given G̃ the structure of a covering group of
G:
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Definition 5.3. Let q : H̃ → H be a covering af a topological group
H. Then H̃ is a covering group of H if H̃ is a topological group and q
is a homomorphism.

If we had used another lift ẽ2 ∈ p−1(e) to construct µ̃ and ι̃ we would

have constructed a different group G̃, this time with unit ẽ2. But this
new group is isomorphic to G̃ with unit ẽ; the isomorphism p̃ is given
by lifting p in the following diagram:

(G̃, ẽ2)

p

²²

(G̃, ẽ)

p̃
;;vvvvvvvvv

p // (G, e)

If G is a manifold, then G̃ also becomes a manifold in a unique way,
as explained in lemma 4.10. Furthermore µ̃ and ι̃ in the construction
above become smooth – cf. remark 5.2. So G̃ becomes a Lie group, and
p becomes a Lie homomorphism.

So the universal covering group of a Lie group is essentially unique.

Theorem 5.4. Let G be a connected, locally path-connected and lo-
cally semisimply connected topological group. Let G̃

p−→ G be the uni-
versal covering. Then Ker p ⊆ Z(G) where Z(G) is the center of G.
Furthermore any covering is isomorphic to a covering of the form
Ker p/H → G̃/H → G.

Proof. See [8] theorem 4.8 page 71. ¤

6. Classical Lie groups continued

6.1. Homotopy groups.

6.1.1. Symplectic groups. Clearly Sp(1) is diffeomorphic to S3, so Sp(1)
is 2-connected. Assume inductively that Sp(n − 1) is 2-connected. In
the fiber bundle Sp(n−1) → Sp(n) → Sp(n)/ Sp(n−1) the base, which
is homeomorphic to S4n−1, is also 2-connected, so from the long exact
sequence of homotopy groups it follows that also Sp(n) is 2-connected.

6.1.2. Unitary groups. We have SU(1) = 1. For all n ≥ 1 we have an
injective Lie-homomorphism rn : Sp(n) → U(2n) given as follows: Let
X ∈ Sp(n). We can write X = A + Bj for A,B ∈ U(n) in a unique
way. Then

rn(A) =

(
A B
−B A

)

Let Y ∈ SU(2), Y = ( a c
b d ). Then Y −1 =

(
d −c
−b a

)
, so Y ∗ = Y −1 if and

only if d = a and c = −b. It follows that

SU(2) =

{(
a −b
b a

)}
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and we see that r2 gives a Lie-isomorphism Sp(1) ∼= SU(2). In particular
SU(2) is 2-connected. From the long exact sequence of homotopy groups
for the fiber bundle SU(n− 1) → SU(n) → S2n−1 we see that SU(n) is
2-connected for all n ≥ 1.

For all n ≥ 1 we have a Lie-epimorphism φ : SU(n)×R→ U(n) given
by φ(A, t) = e2πitA with kernel isomorphic to Z. This is a universal
covering, so

π0(U(n)) = 0

π1(U(n)) = Z
π2(U(n)) = 0

6.1.3. Orthogonal groups. O(n) is not connected since Im(O(n)
determinant−−−−−−→

R) = {±1} is not connected.
We have SO(1) = 1 og SO(2) ∼= SU(1). Regarding SO(3) we have

a Lie-homomorphism φ : Sp(1) → GL(3,R) given as follows: We can
identify R3 with the subspace I = Ri⊕Rj⊕Rk of H and since hIh−1 =
I for all h ∈ H we can define φ(h) to be the conjugation action i 7→
hih−1. One can now check that Im φ = SO(3) and Ker φ = Z2, so
φ induces a universal covering Z2 → Sp(1) → SO(3). It follows that
π0(SO(3)) = 0, π1(SO(3)) = Z2 and π2(SO(3)) = 0. From the long
exact sequence in homotopy groups for the fiber bundle SO(n − 1) →
SO(n) → Sn−1, n ≥ 3, we see that

π0(SO(n)) = 0

π1(SO(n)) = Z2

π2(SO(n)) = 0

Since Z2 has exactly one non-trivial subgroup, up to isomorphism
there exists exactly one non-trivial covering of SO(n) – the universal
one. The universal covering group of SO(n), n ≥ 3, is called Spin(n).

One immediate way the homotopy groups say something about the
homology is by the Hurewicz theorem (see [5] theorem 4.37) of which
the following theorem is a corollary:

Theorem 6.1. Let X be an n-connected space. Then the reduced ho-
mology H̃ i(X) = 0 for i ≤ n.

6.2. Centers. In [8] page 72-74 the following centers of classical groups
are calculated:

U(n) SU(n) Sp(n) Spin(2n + 1) Spin(4n + 2) Spin(4n)
U(1) Zn Z2 Z2 Z4 Z2 ⊕ Z2

Here the upper row are the Lie groups and the lower row are the groups
that the centers are isomorphic to. All the centers are closed subgroups.
The quotient of one of the groups above by it’s center is called a projec-
tive classical group and is written by putting a P in front of the group’s
name.
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7. The classifying space

Let C be a small category. The structure of C is given by the so-called
stucture maps :

i : Ob(C) → Mor(C)

s, t : Mor(C) → Ob(C)

m : {(β, α) ∈ Mor(C)2 | s(β) = t(α)} → Mor(C)

Here i(x) = 1x, the identity morphism on x, for α : x → y a morphism
s(α) = x and t(α) = y, and m(β, α) = β ◦ α is the composition in C.

Definition 7.1. Let C be a small category. If Ob(C) and Mor(C)
are topological spaces, and if all the structure maps are continuous,
then we say that C is a topological category. We denote the category
of topological categories by TopCat: The morphisms in TopCat are
the functors F : C → D which are continuous as maps Mor(C) →
Mor(D) (and thus also as maps Ob(C) → Ob(D)). The set of functors
HomTopCat(C,D) is given a topology by considering it to be a subspace
of HomTop(Mor(C), Mor(D)) which has the compact-open topology. A
natural transformation η : F ⇒ G is required to be continuous as a
map Ob(C) → Mor(D).

We will consider a group G to be a category as follows: Ob(G) = ∗
(a one-point set), Mor(G) = G and g ◦ h = gh. If G is a topological
group, then the category G becomes a topological category.

For n ∈ N0, define the ordered set n := {0, . . . , n}. Let ∆ denote the
category with Ob(∆) = {n | n ∈ N0} and with Hom(n,m) being the
order preserving maps from n to m.

Definition 7.2. A simplicial space is a functor ∆op → Top. We denote
the category of these functors by sTop (the morphisms of this category
are natural transformations). A cosimplicial space is a functor ∆ →
Top. The category of these functors is denoted by cTop.

A partially ordered set P can be considered to be a category with
Ob(P ) = P and Mor(P ) = {(a, b) ∈ P 2 | a ≤ b}. By giving Ob(P ) and
Mor(P ) the discrete topology P thus becomes an object of TopCat. In
this way we can consider ∆ to be a full subcategory of TopCat. Let
I : ∆ ↪→ TopCat be the inclusion functor.

Definition 7.3. Let C be a topological category. Then we define the
nerve functor to be the functor N : TopCat → sTop with NC :=
HomTopCat(I( ), C) and NF := HomTopCat(I( ), F ). We will use the
notation NCn := N(C)(n). Note that NCn can be seen as a subspace
of Mor(C)n; for n = 0 this identification is NC0 = Ob(C). We call NC
the nerve of C.
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Let ∆• denote the cosimplicial space defined as follows: ∆•(n) will
be written as ∆n, and

∆n := {(t0, . . . , tn) ∈ Rn+1 | ti ≥ 0,
n∑

i=0

ti = 1}

Given a morphism θ : n → m we let θ∗ = ∆•(θ) be the linear extension
of θ, that is

θ∗(t0, . . . , tn) =


 ∑

i∈θ−1(0)

ti, . . . ,
∑

i∈θ−1(n)

ti




For a singular simplex σ : ∆n → X I will write σ|[vr, . . . , vr+k] to mean
σ ◦ θ∗ where θ : k → n is given by θ(i) = r + i.

Definition 7.4. Let A be a simplicial space. We define the geometric
realization |A| of A as

|A| := (
∐

n≥0

An ×∆n)/((A(θ)(a), t) ∼ (a, θ∗(t)))

where θ spans the morphisms of ∆.

The geometric realization is a functor: For a morphism f : A → B
we define |f |(a, t) = (f(a), t). By naturality of f this is well defined.
|A| has a skeleton filtration

|A|0 ⊆ · · · ⊆ |A|n ⊆ · · ·
where |A|n is the image of

∐n
k=0 Ak × ∆k in |A|. Notice that |A| =

colim |A|n.

Definition 7.5. Let G be a topological group. We define the classifying
space BG of G as BG = |NG|.
7.1. Products. As a category of functors sTop inherits the product
from Top: For A,B ∈ Ob(sTop) we put (A × B)n = An × Bn and

(A×B)(n
θ−→ m) = A(θ)×B(θ).

Lemma 7.6. The nerve functor preserves products.

Proof. This is easy to show directly using the fact that HomTop(n, C ×
D) ∼= HomTop(n, C)×HomTop(n,D) as topological spaces, for topolog-
ical categories C and D. ¤
Lemma 7.7. The geometric realization preserves products.

Proof. (Sketch.) For A,B ∈ sTop it’s easy to define a map φ : |A×B| →
|A| × |B|, namely, for (a, b) ∈ (A×B)n and t ∈ ∆n

φ((a, b), t) = ((a, t), (b, t))

Finding the inverse to φ is harder - it’s a question of subdividing prod-
ucts ∆n×∆m of simplices into ∆n+m-simplices in the correct way. ¤
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Given a natural transformation η : F ⇒ G, F, G : C → D we can
define a functor E : C × 1 → D as

E(a, 0) = F (a)

E(a, 1) = G(a)

E(a
α−→ b, 0 ≤ 1) = ηb ◦ F (α) (= G(α) ◦ ηa)

which is clearly continuous. Since B preserves products E induces a
map BC ×∆1 → BD, and this is a homotopy from F to G.

Lemma 7.8. Let C be a topological category with an initial object i.
Define η : Ob(C) → Mor(C) as η(a) = (i → a) where i → a is the
unique morphism. If η is continuous then BC is contractible.

Proof. η is a natural transformation from the constant functor (a
α−→

b) 7→ (i
1−→ i) to the identity 1C. So η induces a homotopy from a

constant map to the identity on BC. ¤

7.2. Fiber bundles involving the classifying space. Let G be a
topological group. We define a new topological category G as follows:

Ob(G) = G

Mor(G) = G×G

s(g, h) = g

t(g, h) = h

1g = (g, g)

(h, k) ◦ (g, h) = (g, k)

This is the “under category” (∗ ↓ G) under the unique object in G –
the morphism (g, h) should be thought of as the commutative triangle

∗
g

ÄÄÄÄ
ÄÄ

ÄÄ
Ä

h

ÂÂ?
??

??
??

∗
hg−1

// ∗

where the horizontal morphism is uniquely determined by g and h. We
then have a canonical functor P : G → G given by P (g, h) = hg−1.
For each g ∈ G we get af functor Rg : G → G given by Rg(g0, g1) =
(g0g, g1g), that is Rg maps

∗
g0

ÄÄÄÄ
ÄÄ

ÄÄ
Ä g1

ÂÂ?
??

??
??

∗
g1g−1

0

// ∗
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to

∗
g

²²∗
g0

ÄÄÄÄ
ÄÄ

ÄÄ
Ä g1

ÂÂ?
??

??
??

∗
g1g−1

0

// ∗

It’s clear that P ◦Rg = P .
We can identify an element ((h0, h1), (h1, h2), . . . , (hn−1, hn)) ∈ NGn

with the element (h0, P (h0, h1), . . . , P (hn−1, hn)) ∈ G
n+1

– this also

works for n = 0. Thus we identify NGn = G
n+1

. We define EG := BG.

Lemma 7.9. EG is contractible.

Proof. G has (e, e) as initial element and η from lemma 7.8 is given by
η(g) = (e, g) which is clearly continuous. ¤

The collection of Rg’s above induce a right action of G on EG: For
g ∈ G and x = ((g0, . . . , gn), t) ∈ EG we get xg = ((g0g, g1, . . . , g), t).
The map p = B(P ) is given as

p((g0, . . . , gn), t) = ((g1, . . . , gn), t)

Theorem 7.10. Let G be a Lie group. Then G → EG
p−→ BG is a

principal G-bundle.

Proof. We have

BGn −BGn−1 = (Gn −W )× (∆n − ∂∆n)

EGn − EGn−1 = G× (Gn −W )× (∆n − ∂∆n)

where

W = (e×Gn−1) ∪ (G× e×Gn−2)× ∪ · · · ∪ (Gn−1 × e)

Now assume that for all n ≥ 1 there exists a retraction rn : X → (W ×
∆n)∪(Gn×∂∆n) where X ⊆ Gn×∆n is open. Let ιB : Gn×∆n → BGn

and ιE : Gn+1×∆n → EGn be induced by the inclusions. Then we can
construct local trivializations for G → EGn

p−→ BGn by induction over
n as follows:

Notice that p−1(BGn) = EGn.
n = 0: We have BG0 = ∗ and EG0 = G, so putting U = ∗ we have

p−1(U) = G and can define a local trivialization h : p−1(U) → U × G
as h(g) = (∗, g).
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Assume Un−1 ⊆ BGn−1 is an open set with local trivialization hn−1 : p−1(Un−1) →
Un−1 ×G. Put

Vn−1 = ι−1
B (Un−1) ⊆ (W ×∆n) ∪ (Gn × ∂∆n)

Vn = r−1
n (Vn−1)

Un = ιB(Vn)

Notice that BGn−1 ∩ Un = Un−1 and that ι−1
B (Un) = Vn. It follows

that Un is open in BGn. Furthermore p−1(Un) = ιE(G× Vn). Define a
retraction r̃ : p−1(Un) → p−1(Un−1) as

r̃(x) = ιE(g, rn(v)) for ιE(g, v) = x

This is well-defined: If x ∈ EGn − EGn−1 then there is only 1 choice
of (g, v). Otherwise we have x ∈ p−1(Un−1) which implies (g, v) ∈
G×Vn−1 and hence rn(v) = v. We can now define a local trivialization
hn : p−1(Un) → Un ×G as

hn(x) = (p(x), (prG ◦hn−1 ◦ r̃)(x))

It’s easy to see that if hn−1 commutes with the action of G (which we
may assume inductively) then so does hn. hn is clearly a continuous
bijection (again assuming hn−1 is). Now if hn([e, v]) = ([v], g) then
hn([g−1, v]) = ([v], e), so the section of definition 4.5 corresponding to
hn is given by

sn([v]) := h−1([v], e) = [(prG hn−1([e, rn(v)]))−1, v]

We see that sn ◦ ιB is continuous and since sn|BGn−1 may be assumed
inductively to be continuous we conclude that sn is continuous.

Extending all the local trivializations of G → EGn−1 → BGn−1 in
this way gives local trivializations of G → EGn → BGn which cover
the whole of BGn−1. The rest of BGn can be covered by the local sec-
tion s : (BGn − BGn−1) → (EGn − EGn−1) = G × (BGn − BGn−1)
given by the inclusion.

The retraction rn : X → (W ×∆n)∪ (Gn×∂∆n) can be constructed as
follows: Let σ : Rn → U ⊆ G be a chart with σ(0) = e, and identify U
with Rn via σ. Let Bε = {u ∈ U | ||u|| < ε} and define R : G×I → G as
the homotopy which (1) moves the elements of B1 towards e at constant
speed (and then becomes constant when they get there), (2) stretches
(B2−B1) linearly towards the center, and (3) is the identity outside B2.
Then R|B1 is a deformation retract onto e. R can first be combined with
itself to give a deformations retract of (B1×Gn−1)∪ · · · ∪ (Gn−1×B1)
onto (e×Gn−1)∪· · ·∪ (Gn−1× e). This deformation retract can second
be combined with a deformation retract of (∆n − (1/n, . . . , 1/n)) onto
∂∆ to give rn. ¤

G → EG → BG is called the universal G-bundle. According to [6]
(page 128) G → EG → BG is a G-bundle for any topological group
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G for which e ↪→ G is a cofibration (i.e. for which G × 0 ∪ e × I is a
retract of G× I).

From the long-exact sequence associated to G → EG → BG we see
that πn+1(BG) ∼= πn(G)

Corollary 7.11. Let G be a Lie group with closed subgroup H. Then
BH is weakly equivalent to EG/H and there exists a fiber bundle
G/H → EG/H → BG.

Proof. We have BH ∼= EH/H and we have a fiber bundle H → EG →
EG/H. Now the following commutative diagram

H //

1H

²²

EH //

f

²²

EH/H

f
²²

H // EG // EG/H

where f is induced by the inclusion H ↪→ G, gives a map of long exact
sequences of homotopy groups. Since EH ' EG ' ∗ we see that πk(f)
is an isomorphism for all k – also for k = 1.

Using theorem 4.6 we produce the bundle G/H → EG×G (G/H) →
BG from the universal bundle. And it is clear that the inclusion EG ↪→
EG× (G/H) induces a homeomorphism EG/H ∼= EG×G (G/H). ¤
Theorem 7.12. Let G be a Lie group with closed subgroup H. Then
we have a fiber bundle BH → BG → B(G/H).

8. The Serre spectral sequence

Let (F̃ , F ) → (Ẽ, E)
p−→ B be a relative Serre fibration. For each

b ∈ B let F̃b := p−1(b) and Fb := (p|E)−1(b) be the fibers over b with

ib : Fb ↪→ E and ĩb : F̃b ↪→ E the inclusions. Assume (F̃b, Fb) is a CW
pair for all b. Given a path γ in B from a to b we can construct a map
Lγ : (F̃a, Fa) → (F̃b, Fb) as follows: (See [5] page 405 for details in the
case of an absolute (Hurewich) fibration.)

First choose a lift Γ in the next diagram

Fa × 0
ia //

Ä _

²²

E

p

²²
Fa × I

Γ

77

γ◦prI // B

Then choose a lift Γ̃ in

F̃a × 0 ∪ Fa × I
ĩa∪Γ //

Ä _

²²

Ẽ

p

²²
F̃a × I

Γ

66

γ◦prI // B
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and let Lγ(f) = Γ̃(f, 1).
If γ1 and γ2 are path-homotopic then Lγ1 and Lγ2 are homotopic.

Furthermore given composable paths γ and δ we have Lγ∗δ ' Lδ ◦ Lγ.
This implies that the Lγ’s induce a so called local coefficient system

(LCS) of algebras H∗(F̃ , F ) := {H∗(F̃b, Fb) | b ∈ B} on B (see [8]

page 103 for a definition). The assumption that (F̃b, Fb) is a CW pair

is actually not needed as H∗(F̃ , F ) alternatively can be constructed by
lifting from each singular simplex instead of from the whole fiber (this
is for example done in [8] (page 107)).

In this thesis I’m only interested in the case where this system of
local coefficients is trivial:

Definition 8.1. The local coefficient system H∗(F̃ , F ) is trivial if
(Lγ)

∗ = 1
H∗(F̃ ,F )

for all [γ] ∈ π1(B).

Lemma 8.2. (1) If B is simply connected, then H∗(F̃ , F ) is trivial.

(2) If Hk(F̃ , F ;F2) ∈ {0,F2} for all k then H∗(F̃ , F ;F2) is trivial.

Proof. (1) This follows from the fact that Lc ' 1
F̃

for c the constant
loop. (2) This is obvious since in this case 1

H∗(F̃ ,F ;F2)
is the only auto-

morphism of H∗(F̃ , F ;F2). ¤

Theorem 8.3 (The Serre spectral sequence). Let (F̃ , F ) → (Ẽ, E)
p−→

B be a relative Serre fibration with trivial LCS H∗(F̃ , F ). Then there
exists a cohomological, first quadrant spectral sequence converging to
H∗(Ẽ, E) with page Ep,q

2 = Hp(B; Hq(F̃ , F )). The spectral sequence is
natural.

The case where F = E = ∅ gives the absolute version of the Serre
spectral sequence.

Explanation of expressions in the above theorem:

• Spectral sequence: A sequence {(Er, dr) | r ≥ 1} of bigraded (i.e.
Er =

⊕
p,q∈ZEp,q

r ) R-modules (called pages) with differentials
dr : Er → Er such that Er+1 = H(Er, dr). First quadrant means
that Ep,q

r = 0 when p < 0 or q < 0 and cohomological means
that dr has bidegree (r,−(r − 1)) (i.e. dr(E

p,q
r ) ⊆ Ep+r,q−(r−1)

r ).

• ...converging to H∗(Ẽ, E)...: Since the spectral sequence is a
first quadrant one, each sequence {Ep,q

r | r ≥ 1} eventually
becomes constant (up to isomorphism), and we denote this
constant value by Ep,q

∞ . This gives a bigraded module E∞ =⊕
p,q∈ZEp,q

∞ – the E∞ page. The expression means that H =

H∗(Ẽ, E) has a filtration (a sequence of submodules)

· · · ⊆ F kH ⊆ · · · ⊆ F 1H ⊆ F 0H = H
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This gives a bigraded module E0(H) with Ep,q
0 (H) = (F pH ∩

Hp+q(Ẽ, E))/(F p+1H ∩Hp+q(Ẽ, E)) and the theorem says that
we have an isomorphism E0(H) ∼= E∞.

• The spectral sequence is natural: Consider the next diagram

(F̃ , F ) //

f0

²²

(Ẽ, E) //

f
²²

B

f

²²
(F̃ ′, F ′) // (Ẽ ′, E ′) // B′

where the rows are Serre fibrations with trivial LCSs giving
spectral sequences {En} and {E ′

n} respectively. The expression
means that for any such diagram there exists a sequence of maps
{fn : En → E ′

n | n ≥ 2} satisfying the following:
– f2 is induced by f0 and f .
– fn commutes with the differentials and H(fn) = fn+1

– f induces a map E0(H(Ẽ, E)) → E0(H(Ẽ ′, E ′)) such that
the following diagram commutes

E0(H(Ẽ, E))

f∗
²²

∼= E∞

f∞
²²

E0(H(Ẽ ′, E ′)) ∼= E ′
∞

Here f∞ : E∞ → E ′
∞ is the map arising from the sequence {fn}.

Also, a Serre spectral sequence {(Er, dr)} is said to collapse if dr = 0
for all r ≥ 2.

Proof. (Sketch.) The spectral sequence is constructed by filtering the

chain complex C∗(Ẽ, E): Assuming B is a CW complex (otherwise use a

CW approximation of B) let (Ẽp, Ep) = (p−1(Bp), (p|E)−1(Bp)) where

Bp is the p-skeleton of B. Then we put F pCn(Ẽ, E) = Ker(Cn(Ẽ, E)
i∗p−→

Cn(Ẽp, Ep)) where ip : Ẽp ↪→ Ẽ is the inclusion, and thus we get a
filtration

· · · ⊆ F pCn(Ẽ, E) ⊆ · · · ⊆ F 0Cn(Ẽ, E) ⊆ Cn(Ẽ, E)

Any such filtration gives a spectral sequences, and because this partic-
ular filtration is what is called bounded the spectral sequence converges
to the homology of the total chain complex C∗(Ẽ, E) – see [7] theorem
2.6.

The central part of the proof is to now identify the E2 page of this
spectral sequence with H∗(B; H∗(F̃ , F )) – see for example [7] section
5.3. ¤
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Let F → E
p−→ B be a Serre fibration. Consider the following diagram

of homomorphisms

Hr−1(F )
∂−→ Hr(E,F )

p∗←− Hr(B, b0)
j∗−→ Hr(B)

where ∂ comes from the long exact sequence in cohomology for the
pair (E, F ), b0 is the base point of B (remember F = p−1(b0)) and j∗

is induced by the identity on B. From this diagram we get an induced
map

τr : ∂−1(Im p∗) ∂−→ Im p∗
(p∗)−1

−−−→ Hr(B, b0)/ Ker p∗
j∗−→ Hr(B)/j∗(Ker p∗)

τr is called the transgression. An element f ∈ Hr−1(F ) is called trans-
gressive if f ∈ ∂−1(Im p∗). The transgression is important because of
the next theorem:

Theorem 8.4. Assume the fibration F → E
p−→ B has trivial LCS. In

the Serre spectral sequence for the fibration we have E0,r−1
r = ∂−1(Im p∗)

(or strictly speaking only canonically isomorphic), Er,0
r = Hr(B)/j∗(Ker p∗)

and dr : E0,r−1
r → Er,0

r equals the transgression τr.

Lemma 8.5. Let (F̃ , F )
i−→ (Ẽ, E)

p−→ B be a Serre fibration with trivial

LCS. Assume H0(B) = H0(F̃ , F ) = R. Then p∗ : Hk(B) → Hk(Ẽ, E)
equals the composition

Hk(B) ∼= Hk(B; H0(F̃ , F ) = Ek,0
2 ³ · · · ³ Ek,0

∞ ↪→ Hk(Ẽ, E)

and i∗ : Hk(Ẽ, E) → Hk(F̃ , F ) equals the composition

Hk(Ẽ, E) ³ E0,k
∞ ↪→ · · · ↪→ E0,k

2 = H0(B; Hk(F̃ , F )) ∼= Hk(F̃ , F )

Proof. This follows by using the naturality of the Serre spectral se-
quences on

(F̃ , F ) //

²²

(Ẽ, E) //

p

²²

B

1

²²
∗ // B

1 // B

and

(F̃ , F )
1 //

1
²²

(F̃ , F ) //

i
²²

∗

²²
(F̃ , F ) // (Ẽ, E) // B

respectively. ¤
For spaces A ⊆ X there exists a so called cup product

H∗(X, A)⊗H∗(X)
^−→ H∗(X,A)

induced by the product

φ ^ ψ(σ) = φ(σ|[v0, . . . , vn1 ])ψ(σ|[vn1 , . . . , vn1+n2 ])
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where φ ∈ Cn1(X, A), ψ ∈ Cn2(X) and σ ∈ Cn1+n2 . See [5] chapter 3.2
for basic properties of the cup product.

Let (F̃ , F ) → (Ẽ, E) → B be a Serre fibration with trivial LCS. Then

the cup products give a product H∗(B; H∗(F̃ , F ))⊗H∗(B; H∗(F̃ )) →
H∗(B; H∗(F̃ , F )), namely the product (φ ·ψ)(σ) = φ(σ|[v0, . . . , vn1 ]) ^
ψ(σ|[vn1 , . . . , vn1+n2 ]).

Let {Er} and {Gr} be the Serre spectral sequences associated to

(F̃ , F ) → (Ẽ, E) → B and F̃ → Ẽ → B respectively. We can the

define a product E2⊗G2
·2−→ E2 by letting Ep1,q1

2 ⊗Gp2,q2
2 → Ep1+p2,q1+q2

2

equal (−1)q1p2 times the product on H∗(B; H∗(F̃ , F )).

If we inductively assume we have a product Er ⊗ Gr
·r−→ Er which

commutes with the differentials (i.e. dr(x · y) = dr(x) · y + (−1)p1+q1x ·
dr(y) for x ∈ Ep1,q1

r ) we get a well defined product Er+1⊗Gr+1 → Er+1

as the composition H(Er)⊗H(Gr)
f−→ H(Er ⊗Gr)

H(·r)−−−→ H(Er) where
f([x]⊗ [y]) = [x⊗ y].

So we get a sequence of products, and this sequence induces a product
E∞ ⊗G∞ → E∞. We have the following theorem:

Theorem 8.6 (Product on the Serre spectral sequence). The cup prod-

uct H∗(Ẽ, E) ⊗ H∗(Ẽ) → H∗(Ẽ, E) induces a well defined product

E0(H
∗(Ẽ, E))⊗E0(H

∗(Ẽ)) → E0(H
∗(Ẽ, E)). The products Er⊗Gr →

Er defined recursively above commute with the differentials and thus
exist for all r = 2, . . . ,∞. The products agree, in the sense that the
following diagram commutes:

E0(H
∗(Ẽ, E))⊗ E0(H

∗(Ẽ)) //

φ⊗ψ

²²

E0(H
∗(Ẽ, E))

φ

²²
E∞ ⊗G∞ // E∞

Here φ and ψ are the isomorphisms from theorem 8.3.

We can define a chain map α : C∗(B)⊗H∗(F̃ , F ) → Cn(B; H∗(F̃ , F ))
by αn(φ⊗ f) = (σ 7→ φ(σ)f) and this chain maps commutes with the
products, that is α((φ1 ^ φ2)⊗ (f1 ^ f2)) = α(φ1⊗ f1) ^ α(φ2⊗ f2).

In the case that Hq := Hq(F̃ , F ) is a free module of rank d the map
Cn(B)⊗Hq α−→ Cn(B; Hq) is an isomorphism – it equals the following
composition of isomorphisms:

Cn(B; R)⊗Hq ∼= Cn(B; R)⊗Rd ∼=
d⊕

i=1

Cn(B; R)⊗R

∼=
d⊕

i=1

Cn(B; R) ∼= Cn(B; Rd) ∼= Cn(B; Hq)



22 TOKE NØRGÅRD-SØRENSEN

So assume Hq is a free module of finite rank for all q; then α is a chain
isomorphism and induces an isomorphism of algebras

H(α) : H(C∗(B)⊗H∗(F̃ , F )) → H∗(B; Hq(F̃ , F ))

We further more have a product preserving map

β : H(C∗(B))⊗H∗(F̃ , F ) → H(C∗(B)⊗H∗(F̃ , F ))

given by β([x] ⊗ f) = [x ⊗ f ], and this map is also an isomorphism:

The map H(C∗(B))⊗Hq β−→ H(C∗(B)⊗Hq) equals the composition

H(C∗(B))⊗Hq ∼=
d⊕

i=1

H(C∗(B)) ∼= H(
d⊕

i=1

C∗(B)) ∼= H(C∗(B)⊗Hq)

Using these isomorphisms on the Serre spectral sequence gives the fol-
lowing lemma:

Lemma 8.7. (Same notation as in theorem 8.6.) Assume Hq(F̃ , F ) is
a free module of finite rank for all q. Then the map

ζ := H(α) ◦ β : H∗(B)⊗H∗(F̃ , F ) → E2

is an isomorphism. If also Hq(F̃ ) is a free module of finite rank for all

q we get a similar isomorphism H∗(B) ⊗ H∗(F̃ ) ∼= G2 and via these
isomorphisms the product E2 ⊗ G2 → E2 corresponds to the product
(b1⊗f1)·(b2⊗f2) = (−1)q1p2(b1 ^ b2)⊗(f1 ^ f2) where f1 ∈ Hq1(F̃ , F )
and b2 ∈ Hp2(B).

I will also be using the following result ([5] theorem 3.16) which I
will call The Künneth isomorphism for easy reference later.

Theorem 8.8. Let X and Y be spaces with H i(Y ) a free module of
finite rank for all i. Then we have an isomorphism of graded algebras
× : H∗(X)⊗H∗(Y )

∼−→ H∗(X × Y ). Here ×, called the cross product,
is defined as x× y := pr∗X(x) ^ pr∗Y (y).

9. Calculating H∗(B U(n, F );F2) and H∗(B SU(n, F );F2)

9.1. The Gysin sequence. The plan is to calculate H∗(B U(n, F )) by
induction by using the fiber bundle U(n, F )/ U(n − 1, F ) → B U(n −
1, F ) → B U(n, F ) (cf. corollary 7.11). The fiber of this bundle is a
sphere (cf. 3.4), so we need to look at this kind of fiber bundle:

Let F → E
p−→ B be a fiber bundle with F = Sn−1. Let Ẽ = (B t

E × I)/(p(e) ' (e, 0) be the mapping cylinder of p and let π : Ẽ → B
be the retraction onto B, that is π(e, t) = p(e). Identifying E with

E × 1 ⊆ Ẽ we have π|E = p. And the fibers of π are homeomorphic to

F̃ = (F × I)/(F × 0) ∼= Dn.

Lemma 9.1. Assume either B is locally compact Hausdorff or B = BG
for G a compact Hausdorff group. Then F̃ → Ẽ → B is a fiber bundle.
So (F̃ , F ) → (Ẽ, E) → B is a relative Serre fibration.
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Proof. Let hα : Uα × F → p−1(Uα), B =
⋃

Uα, be the local trivializa-

tions, with inverses φα = h−1
α . Notice that π−1(Uα) = {[e, t] ∈ Ẽ | e ∈

p−1(Uα)}.
Define extensions h̃α : Uα×F̃ → π−1(Uα) and φ̃α : π−1(Uα) → Uα×F̃

as

h̃α(u, [f, t]) = [hα(u, f), t]

φ̃α[e, t] = (u, [f, t]) where (u, f) = φα(e)

These maps are easily checked to be well-defined maps which are inverse
to each other. It is straigtforward to check that φ̃α is continuous.

h̃α is continuous: This follows by showing that the canonical bijection

θ : (Uα × F × I)/∼ → Uα × F̃

is a homeomorphism, since h̃α = ζ ◦ θ−1 where ζ : (Uα × F × I)/∼ →
π−1(Uα) is induced by hα × 1I .

In the case B is locally compact Hausdorff Uα is also locally compact
Hausdorff (cf. [9] corollary 29.3) and so the map Uα×F × I → Uα× F̃
inducing θ is a quotient map (cf. [5] A.17). Hence θ is a homeomor-
phism.

Now consider the case B = BG. In this case the skeleton BGn is
compact Hausdorff for all n so arguing as above we get that θn in the
following commutative diagram is a homeomorphism

((Uα ∩BGn)× F × I)/∼
ι1

²²

θn // (Uα ∩BGn)× F̃

ι2

²²
(Uα × F × I)/∼ θ // Uα × F̃

All the maps in the diagram are the canonical ones. Let V ⊆ (Uα ×
F × I)/∼ be open. Then θn(ι−1

n (V )) is open for all n. Now since
BG = colim BGn also Uα = colim(Uα ∩ BGn). It’s a basic category
theoretic fact, that functors that have right adjoints commute with the
colimit, and ( ) × F̃ has the right adjoint HomTop(I, ) since F̃ is lo-

cally compact (cf. [5] prop A.14). So Uα× F̃ = colim((Uα ∩BGn)× F̃ )
which means that θ(V ) is open.

Thus the h̃α’s are local trivializations.
The second part of the lemma is true since fiber bundles are Serre

fibrations (theorem 4.4). ¤

Let F → E
p−→ B be a fiber bundle with F = Sn−1 and B one

of the cases of lemma 9.1. Then the lemma gives a relative fibra-
tion (Dn, Sn−1) → (Ẽ, E)

π−→ B. Assume the local coefficient system
H∗(Dn, Sn−1) is trivial (such as if R = F2, cf. lemma 8.2). Since

Hk(Dn, Sn−1) = R for k = n and 0 otherwise we get the following
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commutative diagram

H∗(B)⊗H∗(F̃ , F )⊗H∗(B)⊗H∗(F̃ )

ζ⊗ξ∼=
²²

· // H∗(B)⊗H∗(F̃ , F )

ζ∼=
²²

H∗(B; H∗(F̃ , F ))⊗H∗(B; H∗(F̃ ))

φ⊗ψ∼=
²²

· // H∗(B; H∗(F̃ , F ))

φ∼=
²²

H∗(Ẽ, E)⊗H∗(Ẽ)
^ // H∗(Ẽ, E)

Here the top two horizontal maps are the products from lemma 8.7 and
theorem 8.6. All the vertical maps are isomorphisms; the top vertical
maps come from lemma 8.7 and the bottom vertical maps come from
the Serre spectral sequences which collapse. We have an isomorphism
H∗(B) ∼= H∗(B) ⊗ H∗(F̃ , F ) given by x 7→ (−1)n·deg(x)x ⊗ f where f

is a generator of Hn(F̃ , F ). Since (−1)n·deg(x)x⊗ f = (1⊗ f) · (x⊗ 1),
by the above diagram we get the isomorphism

θ : H∗(B) ' H∗+n(Ẽ, E)

given by θ(x) = φζ(1⊗ f) ^ ψξ(x⊗ 1). Since ψξ(x⊗ 1) = π∗(x), and
putting U := φζ(1⊗ f) we have

θ(x) = U ^ π∗(x)

Combining the isomorphisms θ and π∗ with the long exact sequence in
cohomology for the pair (Ẽ, E) results in the following diagram

· · · // H i+n−1(E)
∂ // H i+n(Ẽ, E)

j∗ // H i+n(Ẽ)
i∗ // H i+n(E) // · · ·

H i(B)

∼= θ

OO

H i+n(B)

∼= π∗
OO

which reduces to the so called Gysin sequence for the fiber bundle
Sn−1 → E

p−→ B:

· · · → H i+n−1(E)
λ−→ H i(B)

χ^( )−−−→ H i+n(B)
p∗−→ H i+n(E) → · · ·

where χ ∈ Hn(B) equals (π∗)−1j∗(U). χ is called the Euler class for
the fiber bundle.

9.2. The calculations. Now consider the fiber bundle Sdn−1 → B U(n−
1, F ) → B U(n, F ), d = dimR(F ), mentioned in the previous subsec-
tion.

Lemma 9.2. Assume F = R. Then the Euler class χ ∈ Hn(B O(n);F2)
associated to the above fiber bundle is non-zero.

Proof. See the proof of theorem 3.19 in [8] (page 124).
The proof involves constructing a sphere bundle Sn−1 → E → B (by

use of the bundle O(1) → S1 → RP 1 = S1) whose Euler class χn is
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non-zero. Then since Sn−1 → B U(n− 1, F ) → B U(n, F ) is produced
(using lemma 4.6) from the universal O(n)-bundle there exists a map
f : B → B U(n, F ) such that Sn−1 → E → B is the pullback bundle
via f of Sn−1 → B U(n − 1, F ) → B U(n, F ). By a property of the
Euler class we then have f ∗(χ) = χn 6= 0 and hence χ 6= 0. ¤

Theorem 9.3. Assume R = F2. Assume H∗(B U(n−1, F )) = F2[x1, . . . , xn−1]
with deg(xi) = di. Then H∗(B U(n, F )) = F2[y1, . . . , yn−1, χ] with deg(yi) =
di and χ ∈ Hdn(B U(n, F )) the Euler class of the above fiber bundle.

Proof. The Gysin sequence for the fiber bundle looks like

· · · → H i(B U(n, F ))
χ^( )−−−→ H i+dn(B U(n, F ))

p∗−→ H i+dn(B U(n− 1, F ))

λ−→ H i+1(B U(n, F )) → · · ·
We have λ(xi) ∈ Hd(i−n)+1 so λ(xi) = 0 for all i ≤ n − 2 and also
λ(xn−1) = 0 when d ≥ 2. In the case d = 1, i.e. F = R, lemma 9.2 plus
the fact that H0(B U(0, F )) = F2 gives that χ ^ ( ) : H0(B U(0, F )) →
Hdn(B U(0, F )) is injective. Hence λ(xn−1) ∈ Ker(χ ^ ( )) equals 0.

So in all cases all the generators x1, . . . , xn−1 are in the image of p∗

and so p∗ is surjective and hence λ = 0. This means that the Gysin
sequence gives a short exact sequence

0 → H∗(B U(n, F ))
χ^( )−−−→ H∗+dn(B U(n, F ))

p∗−→ H∗+dn(B U(n−1, F )) → 0

This sequence splits; let s be a section for p∗. Put yi := s(xi). Then the
result follows. ¤

From the above theorem we conclude:

H∗(B O(n);F2) = F2[x1, . . . , xn]

H∗(B U(n);F2) = F2[x2, . . . , x2n]

H∗(B Sp(n);F2) = F2[x4, . . . , x4n]

where deg xi = i. (Actually I have shown the last 2 equalities for more
general coefficient rings.)

Theorem 9.4. Assume R = F2. Let F = R or F = C and let d =
dimR F . Then p in the fiber bundle

U(n, F )/ SU(n, F ) → B SU(n, F )
p−→ B U(n, F )

induces an epimorphism

p∗ : H∗(B U(n, F )) → H∗(B SU(n, F ))

with kernel the ideal (xd).

Proof. By the short exact sequence 0 → SU(n, F ) → U(n, F )
determinant−−−−−−→

U(1, F ) → 0 we see that the fiber of the fiber bundle is isomorphic to
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U(n, 1) ∼= Sd−1. Thus the bundle gives a Gysin sequence

· · · λ−→ H i(B U(n, F ))
χ^( )−−−→ H i+d(B U(n, F ))

p∗−→ H i+d(B SU(n− 1, F ))

λ−→ H i+1(B U(n, F )) → · · ·
By the Hurewicz theorem Hd(B SU(n, F )) = 0 so χ ^ ( ) : H0(B U(n, F )) →
Hd(B U(n, F )) is surjective, and hence χ = xd. It follows that χ ^
( ) : H∗(B U(n, F )) → H∗+2(B U(n, F )) is injective, so that λ = 0 and
p∗ is surjective. Clearly Ker p∗ = (xd). ¤

10. Calculating H∗(B Spin(n);F2)

In this section R = F2

The stategy in this section is to calculate H∗(B Spin(n)) by using
the Serre spectral sequence on the fiber bundle BZ2 → B Spin(n) →
B SO(n). To help us determine the differentials (specifically the trans-
gressions) in this spectral sequence I will introduce another struc-
ture that exists on H∗(X;F2): the so called Steenrod squares. The
Steenrod squares on H∗(BZn−1

2 ) are known, and by finding an in-
jection H∗(B SO(n)) ↪→ H∗(BZn−1) they can then be determined on
H∗(B SO(n)).

10.1. The injection. Let G be a Lie group and let A ⊆ G be a closed
abelian subgroup. Let N := {n ∈ G | nA = An} be the normalizer of
A in G. N acts on A by conjugation: a.n := n−1an. The map a 7→ a.n
(a continuous map) induces a map on cohomology and in this way the
right action on A gives a left (left because of the contravariance of H∗)
action of N on H∗(A).

Consider the fiber bundle G/A
i−→ EG/A

p−→ BG. Here the right
action of G on EG induces an action of N on EG/A: [e].n := [en].
This action induces a left action of N on H∗(EG/A).

Let H∗(EG/A)N := {x ∈ H∗(EG/A) | x.n = x for all n ∈ N} – this
is a subalgebra.

Lemma 10.1. For the above fiber bundle we have Im p∗ ⊆ H∗(EG/A)N .

Proof. For φ ∈ Cn(EG/A) we get

(n.p∗(φ))(σ) = p∗(φ)(t 7→ σ(t).n) = φ(t 7→ p(σ(t).n))

= φ(t 7→ p(σ(t))) = p∗(φ)(σ)

¤

Now let G = SO(n) and let A = An be the diagonal matrices in G.
A is closed since A ∼= Zn−1

2 is finite.

Lemma 10.2. dim H1(SO(n)/A) = n− 1 and H∗(SO(n)/A) is multi-
plicatively generated by H1(SO(n)/A).
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Proof. We have SO(n)/An ∼= O(n)/Bn where Bn are the diagonal ma-
trices in O(n). The result is proved by induction by using the Serre

spectral sequence on the fiber bundle (O(n) × O(1))/Bn+1 j−→ O(n +
1)/Bn+1 π−→ O(n + 1)/(O(n)×O(1)) which can be shown to have triv-
ial LCS. The fiber of this bundle is homeomorphic to O(n)/Bn and
the base is homeomorphic to RP n. We have H∗(RP n) = F2[z]/(zn+1)
with deg z = 1. One can now show that (j∗)1 is surjective with ker-
nel homeomorphic to H1(RP n), which implies that j∗ is surjective and
that dim H1(SO(n + 1)/Bn+1) = n. Furthermore one can show that
H∗(SO(n + 1)/Bn+1) is a free Im π∗ = π∗(t)-module and the basis
elements for this module can be chosen as elements of H1(SO(n +
1)/Bn+1). The result follows. ¤
Lemma 10.3. i∗ : H∗(E SO(n)/A) → H∗(SO(n)/A) is surjective.

Proof. By lemma 10.2 it is enough to show that (i∗)1 : H1(EG/A) →
H1(G/A) is surjective. In the factorization of (i∗)1 through the Serre
spectral sequence of the fiber bundle (lemma 8.5)

(i∗)1 : H1(EG/A) ³ E0,1
∞ ↪→ · · · ↪→ E0,1

2
∼= H1(G/A)

the first map is an isomorphism, since E1,0
∞ ∼= H1(BG) = 0. So (i∗)1 is

injective. Now H∗(EG/A) ∼= H∗(BA) ∼= H∗(BZ2)
⊗(n−1) by corollary

7.11 and the Künneth isomorphism so dim H1(EG/A) = n − 1 – the
same dimension as H1(G/A). Hence (i∗)1 is an isomorphism. ¤
Lemma 10.4. p∗ : H∗(B SO(n)) → H∗(E SO(n)/A) is injective.

Proof. Consider the Serre spectral sequence for SO(n)/A
i−→ E SO(n)/A

p−→
B SO(n). Since i∗ is surjective (lemma 10.3), then in the factorization

of i∗ from lemma 8.5 we must have E0,k
∞ = E0,k

2 . So d0,k
r = 0 for all r and

k. It follows from lemma 10.2 that Hk(SO(n)/A) has finite dimension
for all k, so by lemma 8.7 E2

∼= H∗(B SO(n))⊗H∗(SO(n)/A). By this
isomorphism d2 is determined by it’s values on E0,∗

2 , so d2 = 0 and
E3 = E2. Repeating this argument inductively we get dr = 0 for all r
– that is, the spectral sequence collapses.

In the factorization of p∗ from lemma 8.5 we therefore have Ep,0
2 =

· · · = Ep,0
∞ , so p∗ is injective. ¤

Lemma 10.5. The action of an n ∈ N on H∗(E SO(n)/A) = F2[x1, . . . , xn]/(x1+
· · ·+ xn) is given by a permutations of x1, . . . , xn and all such permu-
tations occur.

Proof. See [8] corollary 4.19. ¤
Definition 10.6. A polynomial f ∈ R[x1, . . . , xn] that satisfies f(x1, . . . , xn) =
f(xτ(1), . . . , xτ(n) for all permutations tau ∈ Σn is called a symmetric
polynomial. Of these we have the elementary symmetric polynomials

σi = σi(x1, . . . , xn) :=
∑

{k1,...,ki}⊆{1,...,n}
xk1 · · · xkn
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Lemma 10.7. The algebra A of symmetric polynomials in R[x1, . . . , xn]
equals R[σ1, . . . , σn].

Proof. More precisely we should show that the homomorphism φ : R[y1, . . . , yn] →
R[x1, . . . , xn] given by φ(g) = g(σ1, . . . , σn) satisfies Im φ = A and
Ker φ = 0.

To show this we introduce an ordering on the monomials in R[x1, . . . , xn]:
We define xk1

1 · · · xkn
n > xl1

1 · · · xln
n if

(1) k1 + · · ·+ kn > l1 + · · ·+ ln, or
(2) k1 + · · · + kn = l1 + · · · + ln and (k1, . . . , kn) comes before

(l1, . . . , ln) in the lexicographical ordering.

Ker φ = 0: Assume g ∈ R[y1, . . . , yn] is non-zero. Write g =
∑

gj

as a sum of distinct monomials. Choose gj0 such that φ(gj0) contains
the largest monomonial m of all the monomials of all the φ(gj)’s. Then
φ(gj0) is actually the only polynomial of the φ(gj)’s which contains m.
So m is a non-zero monomial of φ(g), which therefore is non-zero.

Clearly Im φ ⊆ A. Conversely let f ∈ A. The fact that f ∈ Im φ can
be shown by giving a recursive algorithm which returns a g such that
f = φ(g):

If f = 0 we are done. Otherwise let rxk1
1 · · ·xkn

n be the largest
monomial of f . By symmetry we must have k1 > · · · > kn. Let
h = rykn

n y
kn−1−kn

n−1 · · · yk1−k2
1 . Repeat the procedure on f − φ(h) to get

f − φ(h) = φ(g′). Then f = φ(h + g′).
The above algorithm terminates since the largest monomial of φ(h)

is also rxk1
1 · · · xkn

n and hence the largest monomial of f − h is strictly
smaller than that of f . ¤
Theorem 10.8. p∗ induces an algebra isomorphism H∗(B SO(n))

∼−→
F2[σ1, . . . , σn]/(σ1).

Proof. Combining lemma 10.5 and lemma 10.7 we get H∗(EG/A)N =
F2[σ1, . . . , σn]/(σ1).

We see that dim H∗(E SO(n)/A)N = dim H∗(B SO(n)) so the injec-
tion p∗ : H∗(B SO(n)) → H∗(E SO(n)/A)N (c.f. lemmas 10.1 and 10.4)
is actually an isomorphism. ¤

Let wi ∈ H i(B SO(n)) be the element corresponding to σi under the
above isomorphism. wi is called the i’th Stiefel-Whitney class ([8] page
140).

10.2. The Steenrod Squares. I repeat the following result from [8]
page 102:

Theorem 10.9. There exists a family Sqi : Hn(X,A) → Hn+i(X,A),
n, r ∈ N0, of natural transformations called the Steenrod Squares (re-
member here that Hn( ) = Hn( ;F2)). They satisfy the following:

(1) Stability: For any pair (X,A) of spaces and ∂ : Hn(A) → Hn(X,A)
the boundary map we have Sqi ∂ = ∂ Sqi.
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(2) Sq0(x) = x and Sqn(x) = x2 for x ∈ Hn(X,A).
(3) Instability: For x ∈ Hn(X, A) and i > n we have Sqi(x) = 0.
(4) The Cartan formula: Sqi(xy) =

∑i
j=0 Sqj(x) Sqn−j(y).

The Steenrod Squares are characterized by properties (1) and (2) above.

Since the isomorphism H∗(B SO(n)) ∼= F2[σ1, . . . , σn]/(σ1) from the-
orem 10.8 is induced by a continuous map, by naturality Sqj(wi) can
be calculated by calculating Sqj(σi). Since deg xk = 1 for all k we get

Sqj(σi) =
∑

{k1,...,ki}⊆{1,...,n}
Sqj(xk1 · · · xki

)

=
∑

{k1,...,ki}⊆{1,...,n}


 ∑

(ε1,...,εi)∈{0,1}i, ε1+···+εi=j

xε1+1
k1

· · · xεi+1
ki




Now we want to apply the algorithm in the proof of lemma 10.7. We
see that the largest monomial of Sqj(σi) is x2

1 · · · x2
jxj+1 · · · xi (assum-

ing j ≤ i). So the first term in the expression of Sqj(σi) in terms of
σ1, . . . , σn is σiσj which I therefore want to calculate. We get

σiσj =
j∑

k=0

(
i− j + 2k

k

)
Sqj−k(σi+k)

Explanation for the coefficients: When multiplying out σiσj exactly(
i−j+2k

k

)
of the terms will equal x2

1 · · ·x2
j−kxj−k+1 · · · xi+k: One term for

each monomial x1 · · ·xj−kxl1 · · ·xlk , {l1, . . . , lk} ⊆ {j−k +1, . . . , i+k}
of σj.

This equation for σiσj can be used to determine Sqj(σi) – and hence
Sqj(wi). However the general expression might not be pretty – a nice
expression for Sqj(wi) is proven in [8] (page 141) by induction on the
number of variables n:

Lemma 10.10. For the Stiefel Whitney classes wi ∈ H i(B SO(n)) we
have for j = 0, . . . , i the formula

Sqj(wi) =
j∑

k=0

(
i− k − 1

j − k

)
wi+j−kwk

with the conventions that wk = 0 for k > n and
(−1

0

)
= 1.

Lemma 10.11. Let F → E → B be a Serre fibration. Let f ∈
Hr−1(F ) be transgressive. Then also Sqj(f) is transgressive, and we
have τr+j(Sqj(f)) = Sqj(τr(f)) (the right hand side is well-defined)
where τr and τr+j are the transgressions.
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Proof. This follows from considering the commutative diagram

Hr−1(F )
∂ //

Sqj

²²

Hr(E, F )

Sqj

²²

Hr(B, b0)
p∗oo j∗ //

Sqj

²²

Hr(B)

Sqj

²²
Hr+j−1(F )

∂ // Hr+j(E, F ) Hr+j(B, b0)
p∗oo j∗ // Hr+j(B)

By this diagram if, say, ∂(f) = p∗(b) then ∂(Sqj(f)) = p∗(Sqj(b)) and
τr+j(Sqj(f)) = [Sqj(j∗(b))]. ¤
Theorem 10.12. Let n ≥ 3. Then as a graded algebra

H∗(B Spin(n)) ∼= F2[x]⊗ F2[w2, . . . , wn]/(a0, . . . , ak−1)

where a0 = w2, al+1 = Sq2l−1

(al) (hence deg al = 2l +1), k is the small-
est number such that ak lies in the ideal (a0, . . . , ak−1), and deg x = 2k.

In particular H∗(B Spin(n)) is polynomial for n = 3, . . . , 9.

Proof. I will use the Serre spectral sequence on the fiber bundle BZ2 →
B Spin(n) → B SO(n), which has trivial LCS since π1(B SO(n)) =
π0(SO(n)) = 0. We can use lemma 8.7 which gives that

E2 = H∗(BZ2)⊗H∗(B SO(n)) = F2[z]⊗ F2[w2, . . . , wn]

where deg z = (0, 1) and deg wi = (i, 0). Since Spin(n) is 1-connected,
B Spin(n) is 2-connected, so by the Hurewicz theorem H2(B Spin(n) =
0. Therefore d2(z) = w2 as w2 can only be “killed” by z. From this we
get

E3 = F2[z
2]⊗ F2[w2, . . . , wn]/(w2)

Notice that z is transgressive.
Now assume inductively (for k ≥ 1) that

E2k−1+2 = F2[z
2k

]⊗ F2[w2, . . . , wn]/(a0, . . . , ak−1)

with al+1 = Sq2l−1

(al) and all the al’s non-zero, that ak−1 = d2k−1+1(z
2k−1

),

and that z2k−1
is transgressive. By the last assumption also z2k

=

Sq2k−1

(z2k−1
) is transgressive (c.f. lemma 10.11) so for all 2k−1 + 2 ≤

i ≤ 2k we have di(z
2k

) = 0 and hence E2k+1 = E2k−1+2. Now

d2k+1(z
2k

) = d2k+1(Sq2k−1

(z2k−1

)) = Sq2k−1

(d2k−1+1(z
2k−1

)) = Sq2k−1

(ak−1) = ak

(here I have used lemma 10.11 in combination with lemma 8.4). If
ak 6= 0 the induction step “repeats”. Assume ak = 0 (there will be a
k for which this is the case, since F2[w2, . . . , wn] is Noetherian). Then

E∞ = E2k+1 since for i > 2k +1 we have di(z
r2k

) = rdi(z
2k

)z(r−1)2k
= 0.

Now E∞ ∼= H∗ := H∗(B Spin(n)) as graded vector spaces; we get such
an isomorphism by choosing sections sp,q : Ep,q

∞ ∼= F pH/F p+1Hp+q →
F pHp+q for all p and q. We can choose all these by just choosing a
section s0,2k

, putting x = s0,2k
(z2k

), and defining sp,r2k
(zr2k

b) = xr ^ b
where b ∈ Ep,0

∞ ↪→ Hp on the right hand side is considered to be an
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element of Hp. The isomorphism determined by these sections is seen
to be an algebra isomorphism by using commutativity of H∗.

That H∗(B Spin(n)) is polynomial for n = 3, . . . , 9 follows from
the following calculations of the Steenrod Squares: By lemma 10.10

Sqj(wj+1) =
∑j

k=0

(
j−k
j−k

)
w2j+1−kwk =

∑j
k=0 w2j+1−kwk so

Sq1(w2) = w3 + w2w1 = w3 on the E3 page.

Sq2(w3) = w5 + w4w1 + w3w2 = w5 on the E5 page.

Sq4(w5) = w9 on the E9 page.

And Sq8(w9) = 0 in H∗(B SO(9)). ¤

11. Other calculations

In this section R = F2

In [2] the following is proven:

Theorem 11.1. Let n ≥ 0. Then

H∗(B PSp(2n + 1)) = F2[x2, x3, x8, x12 . . . , x8n+4]

Lemma 11.2. In H∗(B PSp(m)) we have Sq1(x2) = x3.

Proof. In the Serre spectral sequence for BZ2 → B Sp(m) → B PSp(m)
we have E2 = F2[z]⊗F2[x2, x3, x8, x12 . . . , x8n+4]. Since H2(B Sp(m)) =
H3(B Sp(m)) = 0 we must have d2(z) = x2 and d3(z

2) = x3. Then
Sq1(x2) = Sq1(d2(z)) = d2(Sq1(z)) = d2(z

2) = x3. ¤

Consider the following diagram

H∗(X) Â Ä ( )⊗1
//

Sqj

²²

H∗(X)⊗H∗(Y )
× // H∗(X × Y )

Sqj

²²
H∗(X) Â Ä ( )⊗1

// H∗(X)⊗H∗(Y )
× // H∗(X × Y )

where X and Y are path-connected. We have x× 1 = pr∗X(x) pr∗Y (1) =
pr∗X(x), that is, composing the horizontal maps gives pr∗X . So by natu-
rality of Sqj the diagram commutes. This gives a way to calculate the
Steenrod squares on H∗(X×Y ) in terms of the squares on H∗(X) and
H∗(Y ) in the cases where the Künneth isomorphism holds.

Theorem 11.3. Let A ∼= Z2 be a subgroup of the center of G =
Sp(2n1 + 1)× Sp(2n2 + 1). Then

H∗(B(G/A)) ∼= H∗(B PSp(2n1 + 1))⊗H∗(B Sp(2n2 + 1))



32 TOKE NØRGÅRD-SØRENSEN

Proof. Let Z be the center of G. Then Z/A ∼= Z2 and G/Z = PSp(2n1+
1)×PSp(2n2+1). Using the Serre spectral sequence on the fiber bundle
B(Z/A) → B(G/A) → B(G/Z)) we therefore get

E2 = F2[z]⊗ F2[x2, y2, x3, y3, . . . ]

(where I have used the Künneth isomorphism). Since H1(B(G/A)) = 0
we must have d2(z) 6= 0, say d2(z) = εxx2 + εyy2. Then d3(z

2) =
Sq1(d2(z)) = εxx3+εyy3. Next, on E5 = E4 we get d5(z

4) = εx Sq2(x3)+
εy Sq2(y3). There are now two possible cases: Either Sq2(x3) = Sq2(y3) =
0 or Sq2(x3) = x2x3 and Sq2(y3) = y2y3. In all cases d5(z

4) = 0 – also
when εx = εy = 1 in the second case, where d5(z

4) = x2x3 + y2y3 =
x2x3 + x2x3 = 0. Then E∞ = E5 and the result follows. ¤
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