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Abstract

The goal of this project is the construction of a spectral sequence

for computing KR-theory. The setting is equivariant homotopy theory

and KR-theory is a variant of K-theory for spaces with an action of

the group Z/2. The spectral sequence starts at a certain equivariant

version of cohomology and converges to KR-theory. We introduce

equivariant homotopy theory and review all the concepts which are

needed for the construction. As an application, we use the spectral

sequence to compute KR-theory for a single point space and we give a

proof of the fact that the homotopy fixed-points of the spectrum KR

coincide with KO.

Resumé

Målet med dette speciale er konstruktionen af en spektralfølge, som

udregner KR-teori. Vi arbejder i ækvivariant homotopiteori, og KR-

teori er en variant af K-teori for rum med en gruppevirkning af Z/2.

Spektralfølgen begynder fra ækvivariant kohomologi og konvergerer til

KR-teori. Vi introducerer ækvivariant homotopiteori, og vi gennemg̊ar

alle de koncepter, som vi har brug for i konstruktionen af spektralføl-

gen. Derefter anvender vi spekralfølgen til at udregne KR-teori af et

enkelt punkt, og vi beviser at homotopi-fikspunkter af spektret KR er

spektret KO.
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Introduction

The main topic of this thesis is the construction of an Atiyah-Hirzebruch

spectral sequence for computing KR-theory of spaces. The setting is equiv-

ariant homotopy theory, which deals with topological spaces endowed with

a (continuous) action of a group. KR-theory is a variant of K-theory for

equivariant spaces with an involution or, in other terms, an action of the

group Z/2. The purpose of this thesis is to describe in detail Dugger’s

[6] construction of the spectral sequence, which computes KR-theory of an

equivariant space from its equivariant cohomology.

We fix a groups G; often this will simply be Z/2. The first sections of

the thesis contain a brief introduction to equivariant homotopy, including

the definition of equivariant homotopy groups and Bredon homology and

cohomology. Then we introduce a generalization of Bredon cohomology

theories, the so-called RO(G)-graded cohomology theories, denoted H∗G(−),

which are graded on the virtual representations of G, instead of the integers.

To construct these cohomology theories, we define Mackey functors, which

work as coefficients for these theories, in an algebraic way. A more extensive

treatment of these topics can be found in [12].

The first step towards the construction of the spectral sequence is the

computation of H∗G(G) and H∗G(pt) when G = Z/2 (see 4.8). The result

of this computation is stated by Dugger [6], and here we give a proof, us-

ing basic properties of RO(G)-graded cohomology. This computation will

be useful to understand the homotopy of one of the main ingredients for

the construction of the spectral sequence: equivariant Eilenberg-MacLane

spaces.

Then, we will construct an equivariant version of Postnikov section func-

tors. These functors are constructed similarly to the non-equivariant ones,

but one has to take care of the fact that, in equivariant setting, the indexing

of homotopy groups is no longer a total order, and one must decide what to

mean by “killing higher homotopy groups“. In practice we define Postnikov

section functors in two ways: one of them has in general better properties,

similar to the non-equivariant one, while the other one has the good property

that when we compute it for certain G-spheres it has the homotopy type of

an Eilenberg-MacLane space. Postnikov sections are used to build certain

towers of homotopy fibrations, which are the main input for the construction

of the spectral sequence.

In particular we work on the tower obtained from the space Z × BU ,

equipped with the involution coming from complex conjugation on BU . We

show that the fibers of successive Postnikov sections are Eilenberg-MacLane
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spaces, and this requires a certain amount of work, and to do this we need to

understand the Bott element in the KR-theory of a representation sphere.

The tower of homotopy fibrations constructed this way gives rise to the

wanted spectral sequence, which, under mild conditions, converges to KR-

theory.

We also translate the construction of the spectral sequence to the stable

setting: in this case one has to work with G-spectra rather than with G-

spaces. This is contained in Section 8.2.

We have tried to make the topics presented here as clear as possible,

including the proofs for almost all the results. It turns out in fact that there

are several facts and lemmas in this subject, often used by many authors,

whose proofs are very difficult to find in literature.
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Notation and conventions

To comply with the use of several texts in equivariant homotopy theory

[12], we will use a notation for category names that diverges from the one

commonly used in algebraic topology.

T The category of basepointed topological spaces and basepoint preserving

continuous maps (otherwise denoted by T OP∗).
U The category of (non basepointed) topological spaces and continuous

maps (otherwise denoted by T OP).

G The orbit category of a group G, with objects the orbits G/H for H ≤ G
and G-maps between objects.

Throughout the thesis, G denotes a finite group; often we will look at

the case G = Z/2.

As usual in algebraic topology, we will assume all the spaces to be com-

pactly generated weak Hausdorff. This is not a very restrictive hypothesis

and it is satisfied, for instance, by CW -complexes.
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Another standard assumption in equivariant homotopy theory is that

the subgroups of G are closed. As mentioned, we will only work with finite

groups, and points are closed by the weak Hausdorff assumption, hence this

requirement is automatically satisfied by any subgroup.

The reader should be aware that two different conventions for the in-

dexing of Z/2-representations are present in literature, and this can lead to

confusion. We will stick to the one for which Sp+q,q denotes the represen-

tation sphere of topological dimension p + q, with q sign components. The

reader is referred to the first Chapter for the definitions of the terms of the

last sentence and to Remark 1.5.4 for further details on this issue.
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1 Equivariant homotopy

1.1 G-spaces

The central objects in equivariant homotopy are topological spaces with the

action of a group.

Definition 1.1.1. A G-space, or equivariant space is topological space

with a continuous (left) action of a topological group G. The action is a

continuous map:

G×X → X

(g, x) 7→ g · x,

with the properties that g1 · (g2 · x) = (g1g2) · x and e · x = x, for every

g1, g2 ∈ G and x ∈ X.

We will soon begin to omit the dot when writing the action of a group

element on a point of the space.

A good notion of map between G-spaces should take in account for the

group action.

Definition 1.1.2. A continuous map f : X → Y is a G-map (or an equiv-

ariant map) if f(g · x) = g · f(x) for every g ∈ G and x ∈ X.

G-spaces and G-maps form the category GU of the non-basepointed G-

spaces. The group G is itself a G-space, with the action given by the group

operation. Moreover we can give a G-space structure to the product of two

G-spaces X and Y , via the diagonal action of G on X × Y .

If X and Y are G-spaces, the space U(X,Y ) of continuous maps X → Y

(not necessarily equivariant) is a G-space, where G acts by conjugation: for

f : X → Y , we have g · f defined by (g · f)(x) = g · f(g−1 · x).

Often it will be more convenient to work in the basepointed setting.

Analogous definitions can be given for that case:

Definition 1.1.3. A basepointed G-space is a G-space with a basepoint

which is fixed by the G-action. A G-map of basepointed G-space is a G-

map which preserves the basepoint.

We can turn a G-space X into a basepointed one, by taking the topo-

logical sum of the space with a basepoint where G acts trivially: the space

we obtain is denoted X+. As usual, in the basepointed case, we will con-

sider smash products as products. Given basepointed G-spaces (X,x0) and

(Y, y0), their smash product is:

X ∧ Y = (X × Y )/(X × {y0} ∪ {x0} × Y ),
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and the action is induced by the diagonal action of G on the quotient. The

category formed by basepointed G-spaces and basepoint preserving G-maps

is denoted by GT .

1.2 Homotopies of G-maps

To define homotopies of G-maps X → Y , we consider the product of X × I
(or X ∧I+ in the basepointed case) where the interval I is seen as a G-space

with trivial action.

Two G-maps f0, f1 : X → Y are G-homotopic if there exists a G-map

X × I → Y whose compositions with the inclusions of X ×{0} and X ×{1}
are f0 and f1. Similarly, two basepointed G-maps f0, f1 : X → Y are G-

homotopic if there exists a G-map X ∧ I+ → Y whose compositions with

the inclusions of X ∧ {0}+ and X ∧ {1}+ are f0 and f1.

The set of the G-homotopy classes of G-maps is denoted by [X,Y ]G, or

[X,Y ]∗G in the basepointed case. We will omit the indication of the group

G if it is clear from the context.

Note that G-spaces (and G-maps) are in particular H-spaces for every

subgroup H of G. Hence we write [X,Y ]H for the set of the homotopy classes

of H-maps X → Y . [X,Y ]e denotes the homotopy classes of continuous

(non-equivariant) maps.

1.3 Fixed points

Let H ≤ G be a subgroup. We define the fixed point space of X to be:

XH = {x ∈ X | h · x = x for all h ∈ H}.

For a fixed H ≤ G, we have the fixed point functor GU → T OP: a G-

map f : X → Y is sent to the continuous map fH : XH → Y H , defined by

restriction of f to XH . Fixed points are central in the development of the

theory of equivariant stable homotopy. In particular, many results about

the equivariant homotopy of a space can be reduced to ordinary homotopy

theory of its fixed point space.

Lemma 1.3.1. If K is a space regarded as a G-space with trivial action and

X is a G-space, we have the isomorphisms (of sets):

(a) GU(K,X) ∼= U(K,XG)

(b) GU(X,K) ∼= U(X/G,K).

Proof. (a) We can simply associate to a G-map f : K → X its restriction to

K → XG. In fact, since G acts trivially on K, we have g · f(k) = f(g · k) =
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f(k), i.e. f(k) ∈ XG for all k ∈ K. This association has clearly an inverse,

so it is a bijection.

(b) Given f : X → K G-map, by the triviality of the action on K, all the

points of the same G-orbit in X are mapped to the same point in K. Hence

we get a continuous map f̄ : X/G → K. Conversely, a map X/G → K can

be extended in a unique way to X to respect the fact that G acts trivially

on K. One can easily check that this gives a bijection.

1.4 Representations of G

Recall that a representation of a group G on a real vector space V is a group

homomorphism:

ρ : G→ GLR(V ),

that is a map such that

ρ(g1g2) = ρ(g1)ρ(g2) for any g1, g2 ∈ G.

The dimension of the representation is the dimension of V : it is denoted by

dimV or |V |. Even though a representation has extra structure in addition

to its associated vector space, often, by abuse of notation, the representation

itself is denoted by V .

In this project we will only consider finite dimensional real representa-

tions, in which the representation space V is a finite dimensional real vector

space. We will be mostly concerned with orthogonal representations: the

space V for such representations is an inner-product space and the map ρ

has target O(V ), the group of the orthogonal automorphisms of V .

A representation is said to be trivial if the action induced on V is the

trivial action, i.e. if ρ(g)(v) = v for all g ∈ G and v ∈ V .

Given two G-representations (V, ρ) and (V ′, ρ′) we can form their sum

V ⊕ V ′, which is a representation of G on the vector space V ⊕ V ′, with the

action

ρ⊕ ρ′ : G→ GLR(V ⊕ V ′)

defined by

(ρ⊕ ρ′)(g)(v, v′) = ρ(g)(v)⊕ ρ′(g)(v′)

for all v ∈ V and v′ ∈ V ′.
We can do similarly for the tensor product of two representations: the

product of V ⊗ V ′ is a representation of G over V ⊗ V ′, with the action:

ρ⊗ ρ′ : G→ GLR(V ⊗ V ′)



1.5 Spheres and discs 7

defined (on the basis elements of V ⊗ V ′) by

(ρ⊗ ρ′)(g)(v ⊗ v′) = ρ(g)(v)⊗ ρ′(g)(v′).

A subspace of a representation that is preserved by the action of G is called a

subrepresentation. A representation V is irreducible if its only subrepresen-

tations are 0 and V . A result of representation theory (Maschke’s theorem)

guarantees that, if the characteristic of the field K does not divide the order

of the group G, the representation can be decomposed as a sum of irreducible

subrepresentations. As said, we work with fields of characteristic 0, hence

this always holds.

1.5 Spheres and discs

It will be useful to consider spheres with a non-trivial G-action: to do so,

we associate to a representation V of G the representation sphere SV , which

is defined as the one-point compactification of V . It is a G-space, with

the action associated to the representation and with trivial action on the

basepoint ∞.

If we denote with n the trivial representation of G on Rn, we recover as

Sn the usual n-dimensional sphere (with trivial action).

Notation 1.5.1. When considering the sum of an orthogonal representation

V with a trivial representation k, we use the symbol + to denote the sum,

rather than ⊕, not to make the notation too heavy. Similarly, if V contains

k as a subrepresentation, we write V − k to denote the complement of k in

V .

Definition 1.5.2. For an orthogonal representation V , the unit disc in the

representation is the space:

D(V ) = {v ∈ V | ‖v‖ ≤ 1}

and the unit sphere is:

S(V ) = {v ∈ V | ‖v‖ = 1}.

The spaces D(V ) and S(V ) are clearly unbased G-spaces, restricting the

action on V . We have a homeomorphism

D(V )/S(V ) ∼= SV ,
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induced by the map:

D(V )→ SV

v 7→

{
v

1−‖v‖ if ‖v‖ < 1,

∞ if ‖v‖ = 1.

This homeomorphism gives a cofibration sequence of basepointed G-

spaces:

S(V )+ → D(V )+ → SV , (1.5.1)

which will be useful in several arguments.

Example 1.5.3. When G = Z/2 = {e, g}, there are only two irreducible

real representations.

• The 1-dimensional trivial representation, usually denoted R:

Z/2→ O(R)

e 7→ idR

g 7→ idR.

• The 1-dimensional sign representation, denoted R− or σ:

Z/2→ O(R)

e 7→ idR

g 7→ −idR.

Therefore, any Z/2-representation V can be written as Rp⊕ (R−)q, for some

p, q ≥ 0. The representation sphere of V is denoted as:

SV = Sp+q,q,

where the first index is the topological dimension of the sphere and the

second one is called the weight, that is the number of sign components.

Remark 1.5.4. When considering Z/2-representations, other authors (for

example Caruso [4]) use a different indexing and write (m,n) to mean Rm⊕
(R−)n (and Sm,n for the associated representation sphere), so that the first

index is the dimension of the fixed-point subspace and the second is the

weight. Instead, we stick to the convention described in the example above,

following Dugger [6] and others.
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1.6 Induced and coinduced spaces

Let H be a subgroup of G. Note that the group G is both a left and a right

G-space, in the sense that the group operation can be seen both as a left

and a right action. If we are given a H-space Y , we can form the induced

G-space:

G×H Y = (G× Y )/ ∼,

where (gh, y) ∼ (g, hy) for every g ∈ G, h ∈ H and y ∈ Y . The action of G

on G×H Y is defined by: q · [g, y] = [qg, y], for q ∈ G and [g, y] ∈ G×H Y .

Similarly, we have the coinduced G-space:

mapH(G, Y ) = {f : G→ Y | f(gh−1) = hf(g) for h ∈ H and g ∈ G},

with the G-action defined by:

(γf)(g) = f(γ−1g) for γ ∈ G.

The following lemma relates these two constructions with the previous def-

initions:

Lemma 1.6.1. If X is a G-space and H ≤ G, we have the following two

G-homeomorphisms:

G×H X ∼= (G/H)×X, mapH(G,X) ∼= U(G/H,X).

Proof. For the first one, we define two maps:

G×H X → (G/H)×X
[(g, x)] 7→ ([g], gx),

(G/H)×X → G×H X

([g], x) 7→ [(g, g−1x)].

One checks immediately that they are well-defined and G-maps. Moreover

they are inverse to each other, so the thesis is proved.

As to the other homeomorphism, we can define the maps:

mapH(G,X)→ U(G/H,X)

f 7→ ([g] 7→ g(f(g))),

U(G/H,X)→ mapH(G,X)

f 7→ (g 7→ g−1f([g])).

Also in this case, one can easily check that the two maps satisfy the needed

properties.
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The constructions of induced and coinduced spaces are functorial and

give us a pair of adjunctions:

GU U // HU

G×H−

cc

mapH(G,−)

{{

Lemma 1.6.2. For H ≤ G, the induced and the coinduced G-space functors

are respectively left and right adjoint to the forgetful functor GU → HU . We

have then the isomorphisms:

GU(G×H Y,X) ∼= HU(Y,X), HU(X,Y ) ∼= GU(X,mapH(G, Y )),

for every G-space X and H-space Y .

Proof. We can show the first adjunction by exhibiting the unit and counit

maps: the unit is the H-map:

Y → G×H Y

y 7→ [e, y],

while the counit is the G-map:

G×H X → X

[g, x] 7→ gx.

We do similarly for the second adjunction. The unit is the G-map:

X → mapH(G,X)

x 7→ (g 7→ x),

and the counit is the H-map:

mapH(G, Y )→ Y

f 7→ f(e).

Remark 1.6.3. If we combine the previous two lemmas with the result of

Lemma 1.3.1, we get the following isomorphism, which will be very useful

soon and gives a hint about the usefulness of fixed points. Let H ≤ G, X a

G-space and K a space, regarded as a trivial G-space. Then:

GU(G/H ×K,X) ∼= GU(G×H K,X) ∼= HU(K,X) ∼= U(K,XH). (1.6.1)
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Note that this isomorphism is natural, and that, for every H ≤ G, it ex-

presses an adjunction between the functors:

GU → U X 7→ XH

U → GU X 7→ G/H ×X.

All the arguments here mentioned work equally well if we work with

basepointed spaces. In this case the adjunction is between the functors:

GT → T X 7→ XH

T → GT X 7→ G/H+ ∧X,

and gives the isomorphism:

GT (G/H+∧K,X) ∼= GT (G+∧HK,X) ∼= HT (K,X) ∼= T (K,XH). (1.6.2)

1.7 G-CW complexes

The notion of CW complex can be translated to the equivariant setting.

The main difference is given by 0-cells, or points: in equivariant context the

orbits G/H have the role of points and so every cell has an orbit type.

The first stage in the construction of a G-CW complex X, the 0-skeleton

X0, is given by a disjoint union of orbits G/H, for different subgroups H of

G. Then, each skeleton Xn+1 is obtained from the previous skeleton Xn by

attaching G-cells G/H ×Dn+1 along the boundaries via attaching G-maps

G/H × Sn → Xn.

Let us be more precise about this definition.

Definition 1.7.1. A relative G-CW complex is a pair of G-spaces (X,A),

together with a filtration (Xn)n∈Z of X such that:

(a) A ⊆ X0 and · · · = X−2 = X−1 = A.

(b) X = ∪n∈ZXn.

(c) For each n ≥ 0, Xn+1 is obtained by Xn by attaching equivariant n-cells,

via the pushout square (in the category GU):

∐
j∈J G/Hj × Sn−1

∐
ϕj

//

��

Xn−1

��∐
j∈J G/Hj ×Dn g

// Xn

where Sn−1 and Dn have the trivial G-action and Hj ≤ G is a closed sub-

group.
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(d) X = colimXn, so that X has the colimit topology.

The definition immediately specializes to the non-relative case:

Definition 1.7.2. A G-space X, together with a filtration (Xn)n∈Z is a

G-CW complex if the pair (X,∅) is a relative G-CW complex.

Now we can make use of the isomorphism (1.6.1): the attaching G-maps

G/H×Sn−1 → Xn−1 are determined by the non-equivariant maps given by

their restrictions to Sn−1 → (Xn−1)H .

Example 1.7.3. Let us describe the G-CW structure on the sphere

S2 = {(x, y, z) | x2 + y2 + z2 = 1} ⊂ R3

with different actions of the group Z/2. In the different cases listed below,

the map α : S2 → S2 is the involution associated with the group action.

Note that this example is somewhat easy, because when G = Z/2, cells have

orbit type either Z/2 or (Z/2)/(Z/2) = e, or in other words, they are either

free or fixed.

• α(x, y, z) = (−x, y, z). In this case the fixed subspace is the 1-sphere

{y2 + z2 = 1} and we have a G-CW structure with a fixed 0-cell, a fixed

1-cell and a free 2-cell, attached via the identity map. The fixed cells have

orbit type (Z/2)/(Z/2) (the trivial group), while the free ones have orbit

type Z/2. The G-CW structure can be written as:(
(Z/2)/(Z/2)×D0

)
∪
(
(Z/2)/(Z/2)×D1

)
∪
(
(Z/2)×D2

)
.

• α(x, y, z) = (−x,−y, z). In this case only the two poles of the sphere,

(0, 0, 1) and (0, 0,−1), are fixed and they are two 0-cells of trivial orbit

type in the G-CW structure. Then we have a free 1-cell with the two ends

attached to the 0-cells and a free 2-cell attached to the 1-cell (which can be

thought as a 1-sphere with the sign with the flip action on one coordinate).

The G-CW structure can be written as:(
(Z/2)/(Z/2)×D0

)
∪
(
(Z/2)/(Z/2)×D0

)
∪(

(Z/2)×D1
)
∪
(
(Z/2)×D2

)
.

• α(x, y, z) = (−x,−y,−z). Now the action has no fixed points, so all the

cells are free. We can see very easily that the G-CW decomposition is:(
(Z/2)×D0

)
∪
(
(Z/2)×D1

)
∪
(
(Z/2)×D2

)
,

with the obvious attaching maps.
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Recall that, in non-equivariant homotopy theory, a map f : X → Y is

said to be n-connected if πq(f) : πq(X)→ πq(Y ) is a bijection for q < n and

a surjection for q = n.

Let ν : {H ≤ G | H closed subgroup} → {−1, 0, 1, . . . } be a function,

constant on conjugacy classes of subgroups of G.

Definition 1.7.4. A G-map f : X → Y is a ν-equivalence if fH : XH → Y H

is ν(H)-connected for all closed subgroups H ≤ G.

Definition 1.7.5. We say that a G-CW complex X has dimension ν if all

the cells of orbit type G/H have dimension less or equal to ν(H).

We have the following proposition, about extension and lifting of homo-

topies for G-CW complexes.

Proposition 1.7.6 (HELP: Homotopy Extension and Lifting Property).

Let X,Y, Z be G-CW complexes and A a finite subcomplex of X of dimension

ν. Let e : Y → Z be a ν-equivalence. If we have maps:

g : A→ Y,

h : A× I → Z,

f : X → Z,

such that, in the following diagram, eg = hi1 and fi = hi0:

A
i0 //

i

��

A× I

��

h
{{xxxxxxxxx

A
i1oo

i

��

g
~~}}}}}}}}

Z Y
eoo

X
i0

//

f
??~~~~~~~~

X × I

h̃

ccF
F

F
F

F

X.
i1

oo

g̃
``A

A
A

A

(1.7.1)

Then there are maps f̃ and g̃ making the diagram commute.

This proposition is proved in a very similar way to the non-equivariant

case. We sketch the proof here, referring the reader to [12] or [14] for more

details. One can prove the result for the case

(X,A) = (G/H ×Dn, G/H × Sn−1),

for n ≤ ν(H). For this one can pass to fixed points and use the fact that f is

a ν-equivalence, reducing this way to the non-equivariant statement. Then

one can use this case to show the result for a general G-CW complex, by

doing induction on cells, considering their attaching maps.
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Remark 1.7.7. The previous proposition is stated in this form by May in

[11] and in [12], respectively in the ordinary and in the equivariant versions.

It has the quality of summing up concisely in a unique diagram the two

properties of extension and lifting of homotopies, but it might not be im-

mediate to see where these two properties appear in the diagram, especially

for the lifting part.

• For the extension property, we have to look at the left square in the

diagram (1.7.1): the homotopy that gets extended is h : A × I → Z and

the map f : X → Z is one end of the extension. We assume that the upper

triangle is commutative and the extension property says that the two other

triangles are also commutative. The next diagram shows just the homotopy

extension property: we assume that the square is commutative and deduce

that there exists h̃ making the two triangles commute.

A
i0 //

i

��

A× I

h

��

X
f

//

h̃

<<z
z

z
z

z
z

z
Z

• By definition, we say that e : Y → Z has the homotopy lifting property

with respect to a space V if, for any homotopy F : V × I → Z and any

F̃0 : V × {0} → Y making the following solid square commute:

V × {0} F̃0 //

i

��

Y

e

��

V × I F //

F̃

<<x
x

x
x

x
x

x
Z,

there exists F̃ : V ×I → Y making the two triangles commute. This property

is a special case of the lift extension property for a pair (X,A): we assume

that the outer square commutes and the property says that there exists a

dashed map making the two triangles commute.

A
g

//

i

��

Y

e

��

X
f
//

g̃

>>}
}

}
}

}
}

Z.

The homotopy lifting property is the case (X,A) = (V × I, V × {0}). In

the HELP Proposition, if we take h to be the constant homotopy (so that
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hit = fi for all t ∈ I), then the square on the right in (1.7.1) shows that e

has the lift extension property for the pair (X,A) and so, in particular, the

homotopy lifting property.

As non-equivariantly [11], the HELP proposition can be used to prove

Whitehead theorem, in its equivariant version.

Theorem 1.7.8 (Equivariant Whitehead). Let f : Y → Z be a ν-equivalence

and X a G-CW complex. Then the induced map:

f∗ : [X,Y ]G → [X,Z]G

is a bijection if X has dimension less than ν and a surjection if X has

dimension ν.

Proof. We can apply Proposition 1.7.6 to the pair (X,∅) to show surjec-

tivity. To prove injectivity, we can apply the same proposition to the pair

(X × I,X × {0, 1}).

1.8 Equivariant homotopy groups

We would like to give an equivariant definition of homotopy groups. Let

X be a basepointed G-space. Taking [Sn, X]∗G as definition is not what we

need: in fact, Sn has trivial G-action, hence any equivariant map Sn → X

maps into the G-fixed points of X. Hence we need to consider spheres with

a G-action: to do this we smash a sphere with a G-orbit. For n ∈ N and

H ≤ G, we define the nth equivariant homotopy group:

πHn (X) = [Sn ∧G/H+, X]∗G.

Since Sn ∧G/H+ is H-fixed, the every G-map Sn ∧G/H+ → X has image

contained in XH .

Remark 1.8.1. The adjunction of Remark 1.6.3 can be proved in the ho-

motopy categories, giving an isomorphism:

[G/H+ ∧K,X]∗G
∼= [K,X]∗H

∼= [K,XH ]∗.

In our case, when taking K = Sn, one has an isomorphism of groups (for

n ≥ 1):

πHn (X) = [Sn ∧G/H+, X]∗G
∼= [Sn, X]∗H

∼= πn(XH), (1.8.1)

for any H ≤ G. This result is very useful because allows us to reduce

many questions about equivariant homotopy groups to questions about non-

equivariant homotopy groups of fixed points.
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It does not take long to slightly generalize our definition, replacing n by

any orthogonal G-representation V :

πHV (X) = [SV ∧G/H+, X]∗G
∼= [SV , X]∗H .

This way we get the V th equivariant homotopy group. The isomorphism is

a consequence of Lemma 1.6.2, in its basepointed version.

1.9 V -connectedness and weak equivalences

In ordinary homotopy theory, one has the notion of n-connected space, that

is a connected space whose first n homotopy groups are zero. It is reasonable

to try to generalize this to the equivariant setting, where we can map into

spaces not only from spheres Sn, but also from representation spheres SV .

Let V be an orthogonal G-representation and X a G-space. If we con-

sider [SV+k ∧G/H+, X]∗, we note that we can give a meaning to this writ-

ing also for negative values of k ≥ −dim(V H). In fact V can be written

as V (H) ⊕ V H , where V H is the subspace fixed by H and V (H) its or-

thogonal complement. So, for any subgroup H ≤ G, we can regard V as

a H-representation that has a fixed subspace of dimension dim(V H) and

so V H + k is still a genuine representation as long as k satisfies the bound

k ≥ −dim(V H).

In more detail, recall that we have the G-homeomorphism1 G+ ∧H X ∼=
G/H+∧X and the following isomorphism, as a consequence of Lemmas 1.6.1

and 1.6.2:

[SV+k ∧G/H+, X]∗G
∼= [SV+k ∧H G+, X]∗G

∼= [SV+k, X]∗H .

The last term can be also written as [SV (H)⊕V H+k, X]∗H , since V H is fixed

by H. We are now ready to give our definition:

Definition 1.9.1. Let V be an orthogonal G-representation and X a G-

space. X is said to be V -connected if [SV+k ∧G/H+, X]∗ = 0 for all H ≤ G
and all 0 ≥ k ≥ −dim(V H).

As in ordinary homotopy theory, we say that a map is a weak equiva-

lence if it induces isomorphisms on the homotopy groups, in this case the

equivariant ones.

Definition 1.9.2. A G-map f : X → Y is an (equivariant) weak equivalence

if fH : XH → Y H is a weak homotopy equivalence (in the sense of ordinary

homotopy theory) for every H ≤ G.

1G+ ∧H X is the basepointed version of the induced G-space and the homeomorphism

is proved as done in Lemma 1.6.1 for the non-basepointed case
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Equivalently, by (1.8.1), we can say that f is an equivariant weak equiv-

alence if it induces isomorphisms:

πHn (X) = [Sn ∧G/H+, X]∗G
f∗−→ [Sn ∧G/H+, Y ]∗G = πHn (Y ),

for all n ≥ 0 and H ≤ G. The next lemma, which is stated by Lewis [10],

gives an equivalent condition for being an equivariant weak equivalence. We

give a proof in the case G = Z/2.

Proposition 1.9.3. Let V be an orthogonal Z/2-representation containing

at least one copy of the trivial representation and let X, Y be (V − 1)-

connected spaces. Let f : X → Y be an equivariant map. Then f is an

equivariant weak equivalence if it induces isomorphisms:

[SV+k ∧G/H+, X]∗G
f∗−→ [SV+k ∧G/H+, Y ]∗G

for all k ≥ 0 and all H ≤ G.

To prove this result we need a preliminary lemma.

Lemma 1.9.4. Let V be a G-representation such that 1 ⊆ V . Let X be a

(V −1)-connected G-space and F be a free G-CW-complex of dimension not

greater than dim(V − 1).Then:

[F,X]∗H = {∗}

for any H ≤ G.

Proof. G acts freely on F , hence all the cells of F are free, i.e. they are discs

of the form Dn ∧ G+. We will prove the claim by induction on the cells of

F . It is clearly true when F is a single 0-cell. Let F (i−1) be a stage in the

construction of F by attaching cells, and let us assume the claim for it. Let

F (i) be the sub-complex obtained by attaching a free cell Dn+1 ∧ G+. We

have a homotopy cofiber sequence:

F (i−1) → F (i) → Sn ∧G+.

If we map it into the the space X (we consider homotopy classes of H-maps),

we get the following exact sequence of pointed sets:

[F (i−1), X]∗H ← [F (i), X]∗H ← [Sn ∧G+, X]∗H .

Recall that [Sn∧G+, X]∗H
∼= [Sn∧G+∧G/H+, X]∗G, and the wedge product

G+ ∧G/H+ can be written as a union of G-orbits. Thus [Sn ∧G+, X]∗H = 0

because X is (V − 1)-connected. By induction we have that [F (i−1), X]∗H =

{∗}, therefore, by exactness, [F (i), X]∗H = {∗}.
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Proof of Proposition 1.9.3. Let l > 0 and H ≤ G. If we take k such that

l = dim((V − 1)H) + k ≥ 0, we look at the inclusion Sl → SV+k−1 and form

the cofiber sequence:

Sl → SV+k−1 → Z,

where Z is a free G-space, since we are quotienting out all the trivial compo-

nents of the representation V + k− 1. Note that the inclusion Sl → SV+k−1

is actually the l-suspension of the map S0 → SV+k−1−l, since V +k−1 con-

tains the l-dimensional trivial representation. Now we consider homotopy

classes of pointed H-maps mapping into X and Y from the sequence, which

give the following diagram, with exact rows:

. . . [Sl, X]oo

��

[SV+k−1, X]oo

∼=
��

[Z,X]oo

��

. . .oo

. . . [Sl, Y ]oo [SV+k−1, Y ]oo [Z, Y ]oo . . .oo

The central vertical arrow is an isomorphism: if k ≤ 0, this is a consequence

of the fact that X and Y are (V − 1)-connected, so domain and target are

trivial. If k − 1 ≥ 0, it is an isomorphism by assumption.

The vertical map to the right is also an isomorphism: to see this, we use

the fact that Z is a free G-space, and so in particular a free H-space, and it

has a G-CW structure with dimension not greater than dim(V − 1). Se we

can apply Lemma 1.9.4.

Since our map Sl → SV+k−1 is a suspension for l ≥ 1, the diagram

extends to the left with other two maps that are isomorphisms, hence we

can apply the five-lemma, obtaining that [Sl, X]H → [Sl, Y ]H , i.e. πHl (X)→
πHl (Y ) is an isomorphism.

It remains to show the same for l = 0. In this case we cannot apply the

five-lemma, because the diagram does not extend two steps to the left (and,

moreover, we don’t have abelian groups, but just sets). For l = 0, we have

k = −dim((V − 1)H), and so the cofibration has the form:

S0 → Snσ → Snσ/S0,

where σ is the sign representation of Z/2. The representation sphere can be

easily seen as the unreduced suspension of the unit sphere in the represen-

tation:

Snσ ∼= susp(S(nσ)),

and the sphere S0 sits into this space as the two collapsed bases of the

cylinder. This identifies

S(nσ)+ → S0 → Snσ
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as a cofiber sequence.

If we map it into the space X, we get the exact sequence of pointed sets:

[S(nσ)+, X]∗H ← [S0, X]∗H ← [Snσ, X]∗H .

The set to the left is a trivial, by the previous lemma. The set to the right

is trivial too, because of the hypothesis of (V − 1)-connectedness on X.

Therefore [S0, X]∗H = 0. The same holds for the space Y , hence the proof is

complete also for l = 0.

The following corollary does not add anything new to what we know, but

is just a restatement of the lemma for G = Z/2 and V = Rn ⊕ (R−)n = Cn,

that is the case where the result will be mostly used.

Corollary 1.9.5. Let V be the Z/2-representation Rn⊕ (R−)n, with n ≥ 1.

Let X and Y be Z/2-spaces verifying the conditions:

• [Si,0 ∧ Z/2+, X]∗Z/2 = [Si,0 ∧ Z/2+, Y ]∗Z/2 = 0, for 0 ≤ i < 2n,

• [Si,0, X]∗Z/2 = [Si,0, Y ]∗Z/2 = 0, for 0 ≤ i < n.

If f : X → Y is a Z/2-map which induces isomorphisms:

• [Sn+i,n ∧ Z/2+, X]∗Z/2
f∗−→∼= [Sn+i,n ∧ Z/2+, Y ]∗Z/2, for i ≥ 0,

• [Sn+i,n, X]∗Z/2
f∗−→∼= [Sn+i,n, Y ]∗Z/2, for i ≥ 0,

then f is a weak equivalence.

2 Bredon homology and cohomology

We are interested in a suitable notion of cohomology in equivariant context.

There are different approaches to this and Bredon’s proposal gives coho-

mology theories graded on the integers, by constructing suitable “coefficient

systems”. This notion has later been extended to what is called Mackey func-

tors, which are used to define more general cohomology theories, graded on

representations rather than on integers.

2.1 Coefficient systems

Recall that we denote with G the orbit category of a group G. If H,K ≤ G,

note that we have a map G/H → G/K in this category if and only if H is

conjugate to a subgroup ofK, i.e. there is some g ∈ G such that g−1Hg ≤ K.

Let hG be the homotopy category of G.
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In this section we define the Bredon homology and cohomology. They

are defined on G-CW complexes and then the definition can be extended on

every G-space via CW approximation (see [12] for details on this). The func-

tors we obtain satisfy an equivariant version of the axioms for (co)homology.

Definition 2.1.1. A contravariant coefficient system M is a functor hGop →
AB. A covariant coefficient system N is a functor hG → AB.

Homology and cohomology of equivariant spaces are defined to take co-

efficients in coefficient systems. Let us give an example of this notion:

Example 2.1.2. Let X be a G-space. We define:

πn(X) : hGop → AB
G/H 7→ πn(XH).

For a G-space X we have a contravariant fixed-point functor hG →
hT OP defined by:

G/H 7→ XH ,

which sends a map f : G/H → G/K such that f(eH) = gK to f̃ : XK → XH

with f̃(x) = gx. We can define a coefficient system by composing it with

Hn: let X be a G-CW complex. and n an integer. We define a contravariant

coefficient system Cn(X) = Hn(Xn, Xn−1;Z) by:

Cn(X) : hGop → AB
G/H 7→ Hn

(
(Xn)H , (Xn−1)H

)
.

We want to define a map of coefficient systems (i.e. a natural transforma-

tion of functors) Hn(Xn, Xn−1;Z) → Hn(Xn−1, Xn−2;Z). To do this, we

observe that, for each H ≤ G, we have the long exact sequence in homol-

ogy for the triple of spaces
(
(XH)n, (XH)n−1, (XH)n−2

)
, which contains the

differential:

Hn

(
(XH)n, (XH)n−1

) dH−−→ Hn−1

(
(XH)n−1, (XH)n−2

)
.

The homomorphisms dH define the components of the natural transforma-

tion d and so we get the chain complex:

· · · → Cn(X)
d−→ Cn−1(X)

d−→ Cn−2(X)→ . . . .

One can easily check that it is actually a chain complex, by verifying that

d2 = 0.
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Given two coefficient systems M,M ′, we denote with HomG(M,M ′) the

set of the maps of coefficient systems M →M ′. Let

CnG(X;M) = HomG(Cn(X),M).

C∗G(X;M) is a cochain complex, with the maps:

δ = HomG(d, id) : Cn(X;M)→ Cn+1(X;M).

2.2 Definition of homology and cohomology

Definition 2.2.1. Let X be a G-CW complex and M : hGop → AB a

contravariant coefficient system. The Bredon cohomology of X with coeffi-

cients M is the homology of the cochain complex C∗G(X;M). It is denoted

H∗G(X;M).

The definition of homology will be in terms of a covariant coefficient

system N : hG → AB. We want to tensor our chain complex Cn(X) on the

right with N . To do this, we use the following “coend” construction:

If M and N are respectively a contravariant and a covariant coefficient

system, we form the abelian group:

M ⊗G N =
∑
H≤G

(M(G/H)⊗N(G/H))/ ≈,

where (mf∗, n) ≈ (m, f∗n) for aG-map f : G/H → G/K andm ∈M(G/K),

n ∈M(G/H).

Our cellular chain complex is then:

CGn (X;N) = Cn(X)⊗G N,

with boundary maps ∂ = d⊗ 1.

Definition 2.2.2. Let X be a G-CW complex and N : hG → AB a covariant

coefficient system. The homology of the chain complex CG∗ (X;N) is called

the Bredon homology of X with coefficients N and is denoted by HG
∗ (X;N).

3 Equivariant spectra

3.1 The non-equivariant definition

In non-equivariant context, we have the usual notion of prespectrum: a

sequence of (basepointed) spaces (En)n∈N with structure maps σn : ΣEn →
En+1 for all n ∈ N, going from the suspension of one space to the next
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space in the sequence. A spectrum is a prespectrum such that the adjoint

structure maps σ̃n : Xn+1 → ΩXn are homeomorphisms.

To get an equivariant version of these definitions, we might just require

the spaces to be G-spaces and the structure maps to be equivariant, but this

does not exploit completely our equivariant structure: in fact, this way we

would only consider spheres with trivial G-action, as ΣnX = Sn ∧ X, and

we have no reason to restrict our attention only to them, when we know SV

as a G-space for every representation V of G.

3.2 Definition

To get a notion of equivariant spectrum with spaces indexed on representa-

tions, we need first a definition:

Definition 3.2.1. A G-universe U is a real inner product space of count-

able infinite dimension with a G-action such that:

(a) U contains the trivial representation of G.

(b) U contains infinitely many copies of each of its finite dimensional sub-

representation.

If every subrepresentation of U is trivial, i.e. U = R∞ with trivial G-

action, then U is said to be trivial. A G-universe is complete if it contains

every irreducible representation of G, i.e. up to isomorphism it is a direct

sum of (Vi)
∞, where {Vi}i is the set of all the irreducible representations of

G.

The finite dimensional subrepresentation of U work as indexing spaces

for equivariant spectra:

Definition 3.2.2. A G-prespectrum E on a G-universe U is a collection

of basepointed G-spaces EV for each finite dimensional indexing space (i.e.

subrepresentation) V ⊆ U together with basepoint-preserving structure G-

maps:

σV,W : ΣW−VEV → EW,

whenever V ⊆ W ⊆ U , where W − V denotes the orthogonal complement

of V in W . The structure maps are also required to make the appropriate

transitivity diagram commute when V ⊆W ⊆ X ⊆ U .

Definition 3.2.3. A G-spectrum E on a G-universe U is a G-prespectrum

such that the adjoint structure maps:

σ̃V,W : EV → ΩW−VEW,

for V ⊆W ⊆ U are homeomorphisms.
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A G-spectrum indexed on a complete G-universe is called genuine. If

the G-universe is trivial, the G-spectrum is called naive. Note that a naive

G-spectrum is equivalent to a sequence of G-spaces En with G-maps ΣEn →
En+1, i.e. a usual spectrum with a G-action on every space.

A map of G-spectra indexed on U E → E′ is a collection of basepoint-

preserving G-maps fV : EV → E′V for every subrepresentation V ⊆ U ,

commuting with the structure maps:

ΣW−VEV //

σV,W

��

ΣW−VE′V

σ′V,W
��

EW // E′W

for every W ⊆ U .

G-spectra indexed on a G-universe U and maps between them form a

category, denoted GSU .

Given a G-space X we can form the suspension G-prespectrum π∞X of

X indexed on U , defined by

(π∞X)V = ΣVX = SV ∧X

for every finite dimensional V ⊆ U . The forgetful functor from G-spectra

to G-prespectra has an adjoint, the “spectrification” functor. Applying it

to π∞X, we get the suspension spectrum of X, denoted Σ∞X, as one does

non-equivariantly.

Remark 3.2.4. This functor produces a G-spectrum from a G-space:

GU Σ∞−−→ GSU .

It has an adjoint:

GSU
Ω∞−−→ GU

E 7→ E0,

which takes a spectrum to its 0th space, i.e. the space corresponding to the

representation 0.

A map of G-spectra f : E → E′ is said to be a weak equivalence if

every fV : EV → E′V is an equivariant weak equivalence, i.e. it induces

isomorphisms π∗(EV
H)→ π∗(E

′V H) for every closed subgroup H ≤ G.
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3.3 Different interpretation when G = Z/2

In the case G = Z/2, any real representation V is contained in Cn (with the

conjugation action) for n large enough. Hence we can simplify the definition

of Z/2-spectrum by giving only a map:

Cn 7→ E2n,n = En

and structure maps

S2,1 ∧ En → En+1.

This way we get a simplified definition of equivariant spectra in the case we

are most interested in.

4 RO(G)-graded cohomology

4.1 Introduction

The non-equivariant notion of suspension and loop-space are defined in terms

of the trivial spheres Sn. Since we want to look at those operations in

our equivariant settings, we will define them in terms of the representation

spheres SV , for an orthogonal G-representation G→ O(V ):

ΣV (X) = SV ∧X
ΩV (X) = T (SV , X),

for any basepointedG-spacesX. The groupG acts on ΩV (X) by conjugation

(as seen in 1.1). Equivariant suspension and loop-space functors are adjoint,

just as in the non-equivariant case. In particular, ΣV is left adjoint to ΩV

([12, IX.1]), and the unit of the adjunction is the map:

ηY : Y → ΩV ΣV Y.

It is possible to prove a Freudenthal suspension theorem for G-CW com-

plexes. We will only give the statement here, the proof can be found in

[14].

Theorem 4.1.1. The map η : Y → ΩV ΣV Y is a ν-equivalence if:

(a) ν(H) ≤ 2c(Y H) + 1 for all H ≤ G with |V H | > 0,

(b) ν(H) ≤ c(Y K) for all the pairs of subgroups H,H ≤ G with V K > V H .
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The cited adjunction gives the following commutative diagram:

[X,Y ]∗G
ΣV //

η∗
''NNNNNNNNNNN

[ΣVX,ΣV Y ]∗G

∼=
��

[X,ΩV ΣV Y ].

Combining the previous result and Whitehead theorem, we get a sufficient

condition for the map ΣV to be a bijection.

4.2 Grading cohomology on representations

The goal of this section is to define a suitable notion of cohomology for

G-equivariant spaces, graded on G-representations rather than on integers.

In literature, this takes the name of RO(G)-graded cohomology. RO(G)

is the ring of the isomorphism classes of orthogonal G-representations. To

construct it, we consider at first the semi-ring of isomorphism classes of real

orthogonal G-representations, with the direct sum as sum and the tensor

product as product. Then we make the Grothendieck construction to obtain

a ring from it. The elements of RO(G) can be described as formal differences

V −W of isomorphism classes of representations.

As pointed out by Adams in [1], what is usually called RO(G)-graded

cohomology is not actually graded on the ring RO(G). In fact, if we take two

representations which are isomorphic, the cohomology is the same for both

on spaces, but it is not in general the same on the maps between spaces.

4.3 Mackey functors

It is possible to give a convenient algebraic description of Mackey functors,

as done in [12, XIX.3]. We say that a Mackey functor for a finite group G is

a pair of functors M∗ and M∗ from G-sets to abelian groups, M∗ covariant

and M∗ contravariant, which are identical on objects and convert disjoint

unions to direct sums. Moreover, they are such that, for any pullback square

of G-sets:

P
δ //

γ

��

X

α
��

Y
β
// Z,

we have M∗(α) ◦M∗(β) = M∗(δ) ◦M∗(γ).

In what follows we will be interested in the values assumed by Mackey

functors on the orbit category G, subcategory of the G-sets. If we take
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G = Z/2, we get a very simple orbit category G. The diagram shows the

maps different from the identity:

G/e
i //

t

VV
G/G

The maps satisfy the relations: it = i and t2 = id. Therefore, giving

a Mackey functor for Z/2 amounts to giving abelian groups M(Z/2) and

M(e) satisfying the following conditions. To simplify the notation, we write

f∗ and f∗ in place of M∗(f) and M∗(f).

(a) (t∗)2 = id, t∗i∗ = i∗;

(b) (t∗)
2 = id, i∗t∗ = i∗;

(c) t∗t
∗ = id;

(d) i∗i∗ = id+ t∗.

The first two conditions come from contravariant and covariant functoriality.

The third condition can be deduced by considering the pullback square:

Z/2 t //

t
��

Z/2

id
��

Z/2
id
// Z/2.

Note that this is a pullback, since t is an isomorphism in the category G.

The last condition comes from the axioms for Mackey functors in a less

immediate way. To check it, we consider the pullback square:

Z/2× Z/2 p2 //

p1
��

Z/2

i

��
Z/2

i
// e.

In the category of G-sets, we have that Z/2 × Z/2 is isomorphic to the

disjoint union Z/2
∐

Z/2, via the map:

Z/2× Z/2 → Z/2
∐

Z/2

(0, 0) 7→ 0

(1, 1) 7→ 1

(0, 1) 7→ 0

(1, 0) 7→ 1
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When giving this isomorphism, we are making a choice in the values of the

last two elements: we would have also gotten an isomorphism flipping the

two; this choice introduces the asymmetry in the formula we are trying to

prove. Under this identification, we can apply the Mackey functor M to the

previous pullback square, obtaining:

M(Z/2)⊕M(Z/2)
id+t∗

//M(Z/2)

Z/2

id+id

OO

i∗
//M(e).

i∗

OO

The last axiom for Mackey functors says that this square commutes, proving

the relation (d).

We can represent a Mackey functor for Z/2 with a diagram of the form:

M(Z/2)
i∗ //

t∗

VV
M(e)

i∗
oo

Example 4.3.1. One of the Mackey functors we will use most often is the

constant Mackey functor Z:

Z
2 //

id

XX Z
id

oo
(4.3.1)

The functor Zop:

Z
id //

id

XX Z
2

oo

is closely related to the previous one.

4.4 Transfer maps

Let us show how to understand the induced maps i∗ and i∗ of a Mackey

functor M on Z/2. As noted above, i : Z/2 → ∗ is the G-map in the orbit

category.

In general, for a finite covering space π : E → B, with B compact, we

can do the following construction: we can find an embedding E ↪→ B × Rn

for some n, such that the following diagram commutes:

E
� � //

π

��

B × Rn

p1
zzvvvvvvvvv

B.

(4.4.1)
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This fact is not immediate to see: we will sketch here the argument to see

it. Let π : E → B be a m-fold covering. Since it is a covering map, for

every point x ∈ B we can find an open neighbourhood of x, Ux ⊂ B, such

that π−1(Ux) ∼= Ux × {1, . . . ,m}. The set {Ux}x∈B is an open covering of

B, which is compact, so we can take a finite sub-covering U1, . . . , Un. Let

e : {1, . . . ,m} → R be the inclusion map. For 1 ≤ i ≤ n, let

fi : π
−1(Ui) ∼= Ui × {1, . . . ,m}

I×e−−→ Ui × R p2−→ R.

We can take {ϕ1, . . . , ϕn} to be a partition of unity associated to U1, . . . , Un
and define the map:

F : E → Rn

x 7→ (f1(x)ϕ1(π(x)), . . . , fn(x)ϕn(π(x))),

which is continuous and defined on the entire E, if we understand each fi as

the zero map outside of π−1(Ui). Finally we define the wanted embedding:

F̃ : E → B × Rm

x 7→ (π(x), F (x)).

We can see easily that F̃ is injective: if e, e′ ∈ E are such that F̃ (e) = F̃ (e′),

then in particular π(e) = π(e′). We know that U1, . . . , Un form a covering

of B, hence there is some i such that π(e) ∈ Ui and so e, e′ ∈ π−1(Ui). By

the definition of F̃ , we have that fi(e) = fi(e
′): the map fi : π

−1(Ui) → R
identifies the sheet of the covering in which a point is. Therefore e and e′

are in the same sheet and so e = e′.

Once we have the embedding E ↪→ B × Rn, we can proceed with the

construction of the transfer maps. Let U be a fiberwise tubular neighbour-

hood of E in B × Rn, U ∼= E × Rn. We have the following map, collapsing

B × Rn \ U , where (−)+ denotes the 1-point compactification:

(B × Rn)+ //

∼=
��

U+
∼= // (E × Rn)+

∼=
��

Σn(B+)
trfπ // Σn(E+)

Equivariantly, we replace the embedding F̃ of (4.4.1) by an equivariant

embedding into some representation:

E
� � //

π

��

B × V

p1
{{wwwwwwwww

B.
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If we start with our i : Z/2→ ∗, we can embed equivariantly Z/2 into R−

(Z/2 acts by sign) as {−1, 1} and take two disjoint open intervals around the

two points as the neighbourhood U . The 1-point compactification of R− is

Sσ where σ is the sign-representation and the collapsing map above maps it

to the wedge Sσ ∨ Sσ where the G-action also swaps the two factors. Using

the fact Σσ∗+ = Σ1Z/2, we have

trfi : Σσ(∗)+ → Σσ(Z/2)+.

The suspension of the transfer map i∗ of the Mackey functor M is the map

induced on degree zero cohomology by trfi, while i∗ in the Mackey functor

is the map induced by i:

M(Σσ(Z/2)+)
Σσi∗ //

=
��

M(Σσ(∗)+)
Σσi∗ //

=
��

M(Σσ(Z/2)+)

=
��

H0,0
G (Σσ(Z/2)+)

(trfi)
∗
// H0,0

G (Σσ(∗)+)
Σσi∗ // H0,0

G (Σσ(Z/2)+).

4.5 Eilenberg-MacLane spaces

The equivariant version of Eilenberg-MacLane spaces is defined in terms of

representations and Mackey functors. The definition we use here is found

originally in [10].

Definition 4.5.1. Let V be a G-representation and M a Mackey functor.

An equivariant Eilenberg-MacLane space of type M ,V , denoted K(M,V ), is

a basepointed G-space with the G-homotopy type of a G-CW complex such

that K(M,V ) is (V − 1)-connected and

πV+k(K(M,V )) =

{
M if k = 0,

0 if k > 0.

Recalling the definition of the Mackey functor π, we can unwind the last

condition in the definition: we require that

πHV+k(K(M,V )) = [SV+k ∧G/H+,K(M,V )] = 0 for k > 0 and H ≤ G,

πHV (K(M,V )) = [SV ∧G/H+,K(M,V )] = M(G/H) for all H ≤ G,

It can be proved that, for any G-representation V ⊇ 1 and any Mackey

functor M , there exists an associated equivariant Eilenberg-MacLane space

K(M,V ) ([10, Theorem 1.5]).
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4.6 Definition of RO(G)-graded cohomology

Given a Mackey functor M , we have a RO(G)-graded cohomology theory

associated to it:

V 7→ HV (−;M),

for every virtual representation V of G. The theory is characterized by the

two properties:

• The cohomology groups of the orbit spaces G/H:

Hn(G/H;M) =

{
M(G/H) if n = 0

0 if n 6= 0.

with the usual convention that n denotes the n-dimensional trivial real rep-

resentation of G.

• The restriction map:

H0(G/K;M)
i∗−→ H0(G/H;M),

induced by i : G/H → G/K is the transfer map i∗ of the Mackey functor.

4.7 Representing cohomology with equivariant spectra

Having the notion of G-spectra, which we have introduced in 3.2.1, we can

also view RO(G)-graded cohomology on the represented level: in fact, G-

spectra represent such cohomology theories. Let E be a G-spectrum: the

cohomology theory associated to it is defined by:

EνG(X) = [S−ν ∧X,E]G,

where ν = V −W is a virtual representation of G and X is a G-spectrum.

Note that, since we are in stable setting, we can rewrite this as EνG(X) =

[SW ∧X,SV ∧ E]G.

If we start with a Mackey functorM , we can associate to it an equivariant

spectrum HM , so that the cohomology theory represented by this spectrum

is the same to the one associated to M. In particular, for G = Z/2, if we take

M = Z, the constant Mackey functor that we have defined in Example 4.3.1,

we get the Eilenberg-MacLane spectrum HZ, representing the cohomology

theory we use in this project to construct the spectral sequence.

Remark 4.7.1. In the case of HZ, we can write down the cohomology

in represented way on the level of G-spaces and G-maps, by means of the

equivariant Eilenberg-MacLane spaces. If V is a Z/2-representation and X

is a Z/2-space, we have the formula:

HV
Z/2(X,Z) = HZ V

Z/2(X) = [X,K(Z, V )]Z/2.
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4.8 A computation of RO(G)-graded cohomology

We will now compute the RO(G)-graded cohomology of a point, over the

constant Mackey functor Z, defined i (4.3.1), in the case G = Z/2 = {−1, 1}.
This is not as trivial as it may appear thinking at the non-equivariant case.

A representation V of Z/2 can be written as (R)p ⊕ (R−)q, i.e. as a direct

sum of a number of copies of the trivial representation R and a number of

copies of the sign representation R−, as we have observed earlier. We will

write HV
G (−;M) as Hp+q,q

G (−;M).

The following result is stated by Dugger in [6, 2.7]: the author refers to

[4, Appendix] for the proof, where the computation is carried out for the

cohomology with coefficients in Z/p. Here we include a complete proof.

Theorem 4.8.1. Let G = Z/2. The cohomology groups of a point over the

constant Mackey functor Z are:

Ha,b
G (pt,Z) =


Z/2 if a− b is even and b ≥ a > 0,

Z if a = 0 and b is even,

Z/2 if a− b is odd and b+ 1 < a ≤ 0,

0 otherwise.

The graded multiplication in H∗,∗G (pt,Z) is commutative.

Lemma 4.8.2. Let G = Z/2. H∗,∗G (G;Z) is a graded commutative polyno-

mial algebra on the generator t ∈ H0,1
G (G;Z).

Proof. Note that, for every G-space X, we have a G-homeomorphisms G+∧
X ∼= G+ ∧Xe, where, Xe is X with trivial G-action. From this, we get the

chain of isomorphisms:

Ha,b
G (G)

suspension−−−−−−→∼=
H̃a+n,b+n
G (Σn,n(G+)) −→∼=
H̃a+n,b+n
G (Σn,0(G+))

suspension←−−−−−−∼=
Ha,b+n
G (G). (4.8.1)

This is an isomorphism of graded H∗,∗G (G)-modules, so it is given by multipli-

cation by an invertible element tn ∈ H0,n
G . In other words, the cohomology

groups associated to representations with the same dimension are all iso-

morphic.

By the cohomology axioms, we have H0,0
G (G) = Z and Hm,0

G (G) = 0 if

m 6= 0, so we can use the above isomorphism to get:

Ha,b
G (G) =

{
Z if a = 0,

0 if a 6= 0.
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Proof of Theorem 4.8.1. Let G = Z/2 and let σ denote the Z/2 sign repre-

sentation, as usual. From the cofiber sequence

Z/2 = S(σ)
i−→ pt

r−→ Sσ,

we get the following exact triangle. The maps are labeled with their degree.

H̃∗,∗G (Sσ)
(0,0)

r∗ // H∗,∗G (pt)

(0,0)

i∗yyssssssssss

H∗,∗G (G)

(1,0)
eeLLLLLLLLLL

We can change degrees via the suspension isomorphism, with the purpose

of obtaining H∗,∗G (pt) also in the top-left entry of the diagram: to do this we

replace the map r∗, in every degree, by the compositions:

Ha+1,b+1
G (Sσ)

r∗ //

∼=
��

Ha+1,b+1
G (pt)

Ha,b
G (pt)

77nnnnnnnnnnnn

and similarly for the connecting homomorphism of the exact triangle. This

way we obtain the following exact triangle, where two maps have non-zero

degree. Again we label each map with its degree in the chart:

H̃∗,∗G (pt)
(1,1)

·τ // H∗,∗G (pt)

(0,0)

ϕ
yyssssssssss

H∗,∗G (G)

(0,−1)

ψ

eeKKKKKKKKKK

By the module structure, one can see that the map on the top row of the

diagram is given by multiplication by an element τ ∈ H1,1
G (Z/2).

Now we can combine the information we have about H∗,∗G (G) with this

exact sequence to compute Hp,q
G (pt) for certain degrees. The following dia-

gram shows the generators for the cohomology of G. Recall that we write the

representation Rp⊕ (R−)q as (p+q, q); the diagram has the p+q coordinate

on the horizontal axis and the q coordinate on the vertical one.
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−2 −1 0 1 2

−3

−2

−1

0

1

2

3

t3
t2

t

1

t−1

t−2

t−3q ↑

−−→
p+q

This implies that multiplication by τ is an isomorphism of the groups:

Ha,b
G (pt)→ Ha+1,b+1

G (pt),

except when Ha,b+1
G (Z/2) or Ha+1,b+1

G (Z/2) are non-zero. By the dimension

axiom, Ha,0
G (pt) = 0 for a 6= 0 and H0,0

G (pt) = Z. So we have already

some information about H∗,∗G (pt) (the axes are as indexed as in the previous

diagram): the 0’s in the diagram indicate cells which we know correspond

to the trivial group. The empty cells are the ones for which we do not know

yet.

−5 −4 −3 −2 −1 0 1 2 3 4 5

−5

−4

−3

−2

−1

0

1

2

3

4

5 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 Z
0 0 0 0

0 0 0

0 0

0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0000

000

00

0

q ↑

−−→
p+q

The next step is to identify the map ψ in the exact sequence:

0→ H0,1
G (pt)

ϕ−→ H0,1
G (G)

ψ−→ H0,0
G (pt)

·τ−→ H1,1
G (pt)→ 0. (4.8.2)

Substituting:

0→ H0,1
G (pt)

ϕ−→ Z〈t−1〉 ψ−→ Z〈1〉 ·τ−→ H1,1
G (pt)→ 0.
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Modulo the suspension isomorphism, the map ψ is the map induced on

cohomology by r : Sσ → ΣZ/2, under the identification S(σ) = Z/2:

H̃1,1
G (ΣZ/2+)

r∗ //

∼=
��

H̃1,1
G (Sσ)

∼=
��

H̃0,1
G (Z/2+) //

∼=
��

H̃0,0
G (S0)

∼=
��

H0,1
G (Z/2)

ψ
//

∼= (4.8.1)
��

H0,0
G (pt)

∼= // Z

H0,0
G (Z/2)

i∗

77ppppppppppp

∼=
��

Z

Our interpretation of the transfer maps of Mackey functor shows that the

map ψ in the degree shown by the diagram can be identified with the transfer

map i∗ of the Mackey functor, i.e. multiplication by 2. Hence, by the exact

sequence (4.8.2), we get:

H0,1
G (pt) = 0 H1,1

G (pt) ∼= Z/2〈τ〉.

By the exact sequence (4.8.2), in different degrees, we get that the map

H0,1
G (pt)→ H1,2

G (pt)

is a surjection, therefore the continuation of the diagonal b = a+ 1 has zero

groups everywhere. Again by the exact sequence, Hb,b
G (pt) → Hb+1,b+1

G (pt)

is an isomorphism for b ≥ 1 and it is multiplication by τ . Hence we have

Hb,b
G (pt) ∼= Z/2〈τ b〉, for b > 0.

The next step is to compute H0,2
G (pt): let us write the involved part of

the exact sequence:

0 = H−1,1
G (pt)

·τ−→ H0,2
G (pt)

ϕ−→ H0,2
G (Z/2) ∼= Z〈t−2〉 ψ−→ H0,1

G (pt) = 0.

Hence H0,2
G (pt) ∼= Z: let x be a generator of it such that i∗(x) = ϕ(x) = t−2.

Let us consider the map

ψ : Z〈t−3〉 = H0,3
G (Z/2)→ H0,2

G (pt) = Z〈x〉.

We have the following relation, as a consequence of the module structure of

H∗G(pt):

i∗(i
∗(x)y) = xi∗(y). (4.8.3)
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So, in our case we can compute:

i∗(t
−3) = i∗(i

∗(x)t−1) = xi∗(t
−1) = 2x

and, using the exact sequence once again, we get:

H0,3
G (pt) = 0 H1,3

G (pt) ∼= Z/2〈xτ〉.

Then the argument repeats and we get that, for b > 0 and a ≥ 0, the

diagonals b = a+ k are all zero for k odd and they have a copy of Z in the

position (0, k) and an infinite tower of Z/2 above that for k even.

The argument to compute Ha,b
G (pt) for the remaining quadrant (b < 0

and a ≤ 0) is similar: the first observation is that i∗ = ϕ : H0,0(pt) →
H0,0
G (Z/2) is an isomorphism, because it coincides with the restriction map

i∗ in the Mackey functor Z. Hence:

0→ H−1,−1
G (pt)

·τ−→ H0,0
G (pt)

ϕ−→∼= H0,0
G (Z/2)

ψ−→ H0,−1
G (pt)→ H1,0

G (pt).

Recall that H1,0
G (pt) by the initial observation; the sequence implies that:

H−1,−1
G (pt) = 0 H0,−1

G (pt) = 0.

Moreover, by the exact sequence (4.8.2), H0,−1(Z/2)
ψ−→→ H0,−2(pt) is an

isomorphism, and so ψ(t) = y, where H0,−2(pt) ∼= Z〈y〉. One can check with

a geometric argument that the diagram:

H0,−1
G (Z/2) ∼=

ψ
//

∼= ·t
��

H0,−2
G (pt)

H0,−2
G (Z/2)

i∗

88qqqqqqqqqqq

is commutative and so i∗(t
2) = y. Hence:

i∗(y) = ϕ(y) = i∗i∗(t
2) = (1 + t∗)(t

2) = 2t2.

In fact, the map t∗ in the Mackey functor is the identity. Thus, by the same

argument with the exact sequence used before, we have:

H−1,−3
G (pt) = 0 H0,−3

G (pt) ∼= Z/2.

To compute H−1,−4
G (pt) we proceed as follows: by the exact sequence we

have

0
ψ−→ H−1,−4

G (pt) ↪→ H0,−3
G (pt)

ϕ−→ H0,−3
G (Z/2).
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Hence H−1,−4
G (pt) is either 0 or Z/2, as it is isomorphic to a subgroup of

Z/2. If it was the former, then we would have that Z/2 injects in Z. This is

not possible, hence we have H−1,−4
G (pt) ∼= Z/2.

Now the argument repeats, as it happened in the other quadrant. We

get that, in the quadrant we are considering, the diagonal b = a and b =

a− 1 have only trivial cohomollogy groups. If k > 1 and odd, the diagonal

b = a − k has a single copy of Z at the coordinates (0,−k). If k > 1 is

even, we have a tower of groups Z/2 beginning at (0,−k) and infinite to

the bottom left. All isomorphisms between consecutive elements along the

diagonals are given by multiplication by τ .

Let us still check something about the multiplicative structure: we can

write H0,−4(pt) ∼= Z〈u〉, for some generator u, such that ψ : H0,−3
G (Z/2) →

H0,−4
G (pt) maps t3 to u. Then:

y = i∗(t) = i∗(t
3t−2) = i∗(t

3i∗(x)) = ux,

which means that multiplication by x gives an isomorphism H0,−4
G (pt) →

H0,−2
G (pt). In general, a generator of H0,−2k

G (pt) is obtained from a gen-

erator of H0,−2k−2
G (pt) by multiplying by x ∈ H0,2

G (pt). The rest of the

multiplicative structure can be obtained easily with similar computations.

The following diagram shows the structure of H∗,∗G (pt): for typographical

reasons, we use a circle to indicate the group Z, and a dot to indicate Z/2.

The solid arrows are multiplication by τ , while the curved dashed arrows are

multiplication by x. This time all the empty cells indicate trivial groups.

−5 −4 −3 −2 −1 0 1 2 3 4 5

−5

−4

−3

−2

−1

0

1

2

3

4

5

τ
x

y

q ↑

−−→
p+q
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This theorem allows us to get easily some information about the (non-

equivariant) homotopy of the equivariant Eilenberg-MacLane spaces.

Corollary 4.8.3. (a) K(Z, (2n, n)) is (non-equivariantly) homotopy equiv-

alent to K(Z, 2n).

(b) K(Z, (2n, n))Z/2 is (non-equivariantly) homotopy equivalent to a product

of Eilenberg-MacLane spaces and has the homotopy of:

K(Z, 2n)×K(Z/2, 2n− 2)×K(Z/2, 2n− 4)× · · · ×K(Z/2, n) (for n even)

K(Z/2, 2n− 1)×K(Z/2, 2n− 3)× · · · ×K(Z/2, n) (for n odd).

Proof. Let G = Z/2 and X = K(Z, (2n, n)). Then X and XZ/2 are products

of Eilenberg-MacLane spaces as a consequence of a theorem of dos Santos

[5]. We can compute the homotopy groups, using the fact that Eilenberg-

MacLane spaces represent RO(G)-graded cohomology:

πi(X) = [Si, X]∗ ∼= [Si ∧G+,K(Z, (2n, n))]∗G
∼= H̃2n,n(Si ∧G+) ∼= H2n−i,n

G (G).

And the thesis follows reading the groups in the previous theorem.

For the second part:

πi(X
Z/2) = [Si, XZ/2]∗ ∼= [Si,K(Z, (2n, n))]G ∼= H̃2n,n(Si) ∼= H2n−i,n

G (pt).

5 KR-theory

5.1 Definition

KR-theory is a variant of K-theory for spaces with an involution or, in other

words, an action of Z/2. It was introduced first by Atiyah in [2]. It shares

many features with K-theory, including periodicity.

KR-theory is represented by an Ω-spectrum, whose spaces are all equal

to Z×BU . This space has a Z/2-action coming from the complex conjuga-

tion on the infinite unitary group U .

On the represented level, we have:

KR(X) = [X,Z×BU ]∗Z/2,

and the other groups are defined as one does for K-theory. For p + q ≤ 0,

q ≥ 0 we set:

KRp+q,q(X) = [Σ−p−q,qX,Z×BU ]∗Z/2,
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and for the remaining values of the indices, we can extend the definition

by periodicity. In fact, we have a Bott periodicity also for KR-theory: this

is shown, for instance, in [2]. The periodicity gives an equivariant weak

equivalence:

Z×BU '−→ Ω2,1(Z×BU).

KR-theory is graded on the representations of Z/2: each of them can be

written uniquely as Rp ⊕ (R−)q, which we denote with the pair (p + q, q),

and the periodicity is expressed by the isomorphism:

KRp+2,q+1(X) ∼= KRp,q(X).

5.2 The Z/2-spectrum KR

Of course we can view the spectrum representing KR-theory as a Z/2-

spectrum, by using the interpretation of equivariant spectra we have for

the case G = Z/2. The Z/2-spectrum KR is defined by the assignment:

Cn 7→ Z×BU

with the structure maps

S2,1 ∧ Z×BU → Z×BU,

that are adjoint to the Bott map.

6 Postnikov systems

6.1 Relations with the non-equivariant case

In the non-equivariant setting, one defines the Postnikov tower of a con-

nected CW complex X: the nth space of the tower, PnX, is a space such

that:

πi(PnX) =

{
πi(X) if i ≤ n,
0 if i > n,

equipped with a natural map X → PnX, which realizes the isomorphism on

homotopy group of order less or equal than n.

To construct PnX, one at first kills πn+1, by building a CW complex

Y = X ∪ϕα Dn+2
α in which we attach n + 2 cells to Y via the maps ϕα,

which generate the groups πn+1(X). The complex Y has the same homotopy

groups of X up to degree n, by cellular approximation, and πn+1(Y ) =

0. Then one builds a new complex by attaching n + 3 cells to Y via the
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generators of πn+2 and so on, until we obtain a space with the properties of

PnX.

This construction works because, for non-equivariant spaces, there are

no non-trivial homotopy classes of maps Sk → Sn if k < n: this can be

proved by cellular approximation. This is not true for G-spaces, where one

can have a non G-homotopically trivial G-map SV → SW for V ⊆ W (V

subrepresentation of W ).

Example 6.1.1. Consider the map of Z/2-spaces:

S1,1 → S2,2,

which embeds the 1-dimensional sign sphere S1,1 as an equator of the 2-

dimensional sphere S2,2 with the sign action on two coordinates (the repre-

sentations sphere for R− ⊕ R−). This map is not homotopically trivial. To

see this, note that S1,1 has only two fixed-points, the north and the south

pole, and the same is true for S2,2. The inclusion map sends the north pole

to the north pole and the south pole to the south pole: to make it nullho-

motopic we should move one of the poles to the other, but this is cannot be

done equivariantly, since fixed-points are always mapped to fixed-points.

The situation would be different if we had an extra G-fixed coordinate in

the larger sphere, because we could build a homotopy moving the included

sphere along this coordinate and push it to a single point.

When defining equivariant Postnikov section one has to take care of the

property highlighted by this example. We are going to define two different

versions of them, with different behaviours with respect to this property.

6.2 Definition of Postnikov section

A G-space A is small with respect to closed inclusion if, for any sequence of

closed inclusions:

Z0 ↪→ Z1 ↪→ Z2 ↪→ . . . ,

the canonical map colimiGU(A,Zi)→ GU(A, colimi Zi) is an isomorphism.

One can check that any Hausdorff space has this property. Recall that a

basepointed G-space (X,x0) is well-pointed if {x0} → X is a cofibration.

Let A be a set of well-pointed compact Hausdorff G-spaces. We say that

a G-space Z is A-null if the maps

[∗, Z]→ [ΣnA,Z],

induced by ΣnA→ ∗, are isomorphisms for every n ≥ 0 and A ∈ A. For Z

connected, this is the same of saying [ΣnA,Z] = 0.
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The Postnikov section that we are going to define are particular nullifi-

cation functors, as defined by Farjoun [7]:

Definition 6.2.1. Given a G-space X and A as above, PA : GU → GU is

a nullification functor if, for every G-space X, we have:

(a) there exists a natural map i : X → PA(X),

(b) PA(X) is A-null,

(c) If Z is A-null, for every f : X → Z there is an extension:

X
f
//

i
��

Z

PA(X)

;;x
x

x
x

x

Our equivariant Postnikov section functors will be defined as nullification

functors PA for certain families A. Let us see how we can construct PA: for

a given G-space Y , we define another G-space FAY as the pushout:∐
σ ΣnA

∐
σ
//

��

Y

��
�
�
�

∐
σ C(ΣnA) //___ FAY

where σ is a map ΣnA→ Y , for all A ∈ A and n ≥ 0.

Denoting the composition of FA for n-times by FnA, we have the inclu-

sions:

X → FA(X)→ F 2
A(X)→ . . . .

We take as PA(X) the colimit of colimn F
n
A(X). One can check that this

PA satisfies the properties of nullification functors: we refer the reader to

[7] for the proof of this. The following proposition gives certain properties

of the functors PA: we omit the proof here, it can be found for example in

[9].

Proposition 6.2.2. (a) Let f : X → Z be a G-map and g : X → Y a cofi-

bration. If the space Z is A-null and

g∗ : PA(X)→ PA(Y )

is a weak equivalence, then there exists a map f̄ , making the following dia-

gram commute:

X
f
//

g

��

Z

Y.
f̄

>>~
~

~
~



6.3 Properties 41

Moreover f̄ is unique up to homotopy equivalence.

(b) Let X : C → T be a functor. We denote by Xα the value of the functor

at α ∈ C. The natural map

PA(hocolimαXα)→ PA(hocolimα PA(Xα))

is a weak equivalence.

(c) If X → Y → Z is a homotopy cofiber sequence and PA(X) is con-

tractible, then

PA(Y )→ PA(Z)

is a weak equivalence.

Remark 6.2.3. We can obtain the non-equivariant Postnikov sections by

this construction: for G the trivial group and

An = {Si | i ≥ n+ 1},

then PAn(X) is the nth Postnikov section of X.

We will now define two different kinds of Postnikov sections for equiv-

ariant spaces. Let

ÃV = {SW ∧G/H+ |W ⊇ V + 1, H ≤ G}. (6.2.1)

We define PV (X) = PÃV (X).

The second choice is:

AV = {SW ∧G/H+ |W ) V,H ≤ G}, (6.2.2)

and we define PV (X) = PAV (X).

The former functor, P, has better properties and resembles the ordinary

Postnikov section. In particular, PV (X) has the lower homotopy groups

isomorphic to the ones of X, in the sense which will be made precise by the

following proposition, while this is not true for PV .

6.3 Properties

The following proposition lists the main properties we are interested in.

Dugger [6] states those properties in the case where G is any finite group,

but here we prove them for G = Z/2.

Proposition 6.3.1. Let G = Z/2. If X is a basepointed G-space and V a

G-representation. Then:
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(a) The map X → PV (X) induces an isomorphism

πHk (X) = [Sk ∧G/H+, X]∗G → [Sk ∧G/H+,PV (X)]∗G = πHk (PV (X)),

for 0 ≤ k ≤ dimV H and an epimorphism for k = dimV H + 1.

(b) If W is a representation such that dimWH ≤ dimV H for all H ≤ G,

then the map [SW , X]∗ → [SW ,PV (X)]∗ is an isomorphism.

(c) The homotopy fiber of the map

PV+1X → PVX

is an equivariant Eilenberg-MacLane space K(πV+1X,V + 1).

(d) The homotopy limit of the sequence · · · → PV+2X → PV+1X → PVX
is weakly equivalent to X.

Proof. (a) Let H ≤ G be a subgroup. Let us consider how we have con-

structed PV (X): starting from the space X, we attached on it cones along

all the maps

SW ∧G/J+ → X,

for any W ∈ ÃV and J ≤ G. Let Z be any step of this construction: when

attaching the cone on one of the maps SW ∧G/J+ → Z, we get a new space

Z1 and we have an inclusion Z → Z1. Note that the fixed point (Z1)H is

obtained by ZH by attaching a cone on the map (SW ∧ G/J+)H → ZH .

The space (SW ∧ G/J+)H is a wedge of spheres S|W
H |, and so it is |WH |-

connected (non-equivariantly). Since we know that W ⊇ V + 1, the map

is (|V H | + 1)-connected. This is true for every step of the construction of

PV (X), hence we have that X → PV is (|V H | + 1)-connected on the H-

fixed points, and this is what we wanted to prove, by the usual isomorphism

πk(X
H) ∼= πHk (X).

(b) W can be written as Rp ⊕ (R−)q and so we can write SW as

S1 ∧ · · · ∧ S1 ∧ Sσ ∧ · · · ∧ Sσ,

with p copies of S1 and q of Sσ, where σ is the sign representation. It is true

in general that the representation sphere SW has a G-CW structure, but

the above exhibits one in this case. Suppose that Sk ∧G/H+ is a cell in this

structure: then it is a product of k 1-cells. Let l be the number of 1-cells

fixed by the action and (k − l) the number of free 1-cells. If k − l > 0, then

the entire cell Sk ∧ G/H+ has to be free, because it has a positive number

of free factors. Thus H is the trivial group, and so k ≤ |WH | = |W |. If

k − l = 0, we have that Sk ∧ G/H+ is a cell fixed by G, hence it cannot

be bigger than the G-fixed subspace of W and we have k ≤ |WG|. In both
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cases we have proved that, for any cell of SW of the form Sk ∧ G/H+, we

have k ≤ |WH |.
A k-cell is attached via push-out diagrams of the following form, where S′

and S′′ are subcomplexes of SW :

Sk−1 ∧G/H+
//

� _

��

S′

��

Dk ∧G/H+
// S′′,

with k ≤ dim(WH) ≤ dim(V H). Recall that the disc Dk ∧ G/H+ is con-

tractible. We proceed by induction: we assume that

[S′, X]∗G → [S′,PV (X)]∗G

is an isomorphism and want to prove that

[S′′, X]∗G → [S′′,PV (X)]∗G

also is. Note that we do not have a group structure on domain and target:

we are dealing with pointed sets.

To prove surjectivity, consider f ∈ [S′′,PV (X)]∗G.

Sk−1 ∧G/H+
α //

� _

β

��

u

$$

;
<

=
>

?
A

B
C

D
E

F
G

H

S′

��
f̂

��
,

,
,

,
,

,
,

,
,

,

��<<<<<<<<<<<<<<<<<<<<<<<<

Dk ∧G/H+
// S′′

f

&&NNNNNNNNNNNNNNNN

X
i
// PV (X)

The inductive hypothesis gives us a unique (up to homotopy) map f̂ fac-

toring f through X. The square is commutative, and we can compose f

with its edges getting a map Sk−1 ∧G/H+ → PV (X). This composition is

null-homotopic, and we can factor it through X using part (a): this way we

get again a null-homotopic map, labeled with u in the diagram. Since the

disc Dk ∧G/H+ is contractible, we can get a map

û : Dk ∧G/H+ → X
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such that ûβ = u, as shown in the following diagram:

Sk−1 ∧G/H+
α //

� _

β

��
u

&&

?
B

D
G

I
K

M

S′

��
f̂

��
/

/
/

/
/

/
/

/

l

  BBBBBBBBBBBBBBBBBBBBB

Dk ∧G/H+
//

û
))SSSSSSSSS S′′

f

((QQQQQQQQQQQQQQQ

X
i
// PV (X)

By construction, f̂α = ûβ, and so, by the universal property of the push-out,

there exists a unique map f̃ : S′′ → X such that f̂ and û factor through this

map. Now we have built two maps: if̃ , f : S′′ → PV (X); the maps iû and

l factor through both of them. By the universal property of the push-out,

there exists a unique map S′′ → PV (X) with this property: therefore if̃ and

f must coincide, and this proves surjectivity.

As to injectivity, one can do a similar argument: let f, g : S′′ → X be two

maps which become homotopic when post-composing with i : X → PV (X).

We can make a map:

(f, g) : {0, 1} × S′′ → X,

by mapping one copy of S′′ with f and the other with g. The claim is that

there is a homotopy S′′× I → X between f and g: this can be expressed by

saying that the above map can be extended to I × S′′, which is shown as a

dashed arrow in the following diagram:

{0, 1} × S′ //

��

{0, 1} × S′′
(f,g)

//

��

X

i
��

I × S′ //

33ggggggggggggggggggggggggggg
I × S′′ //

88q
q

q
q

q
q

PV (X).

We already know that they are homotopic when restricted to S′, by the

inductive hypothesis, and this gives the solid diagonal arrow in the diagram.

To get the wanted homotopy, we can consider the push-out square:

I × (Sk−1 ∧G/H+)
α //

� _

β
��

I × S′

��

��
2

2
2

2
2

2
2

2
2

""EEEEEEEEEEEEEEEEEEEEEE

I × (Dk ∧G/H+) //

**VVVVVVVVVVV
I × S′′

))RRRRRRRRRRRRRR

X
i
// PV (X).
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The same argument used for surjectivity gives us a map I × S′′ → X with

the wanted properties: we leave to the reader to check this. This map is a

homotopy between f and g, and this shows that [S′′, X]∗G → [S′′,PV (X)]∗G
is injective.

(c) Let FVX be the homotopy fiber of the map PV+1X → PVX. As usual

we write V = Rq ⊕ (R−)q. We shall check the properties listed in Definition

4.5.1 for the space FVX.

• FVX is (V − 1)-connected. We have to check that

πHV−1+k(FVX) = [SV−1+k ∧G/H+, FVX]∗G = 0,

for 0 ≥ k ≥ |(V − 1)H | and H ≤ G = Z/2. If we map the space SV−1+k ∧
G/H+ into the homotopy fiber sequence, we get a long exact sequence:

· · · → [SV+k ∧G/H+,PVX]∗G → [SV−1+k ∧G/H+, FVX]∗G

→ [SV−1+k ∧G/H+,PV+1X]∗G → . . .

If H = Z/2, by (b) we have that:

[SV−1+k,PV+1X]∗G
∼= [SV−1+k, X]∗G

∼= [SV−1+k,PVX]∗G

and

[SV+k,PV+1X]∗G
∼= [SV+k, X]∗G

∼= [SV+k,PVX]∗G

for k ≤ 0. Hence π
Z/2
V−1+k(FVX) = 0, because it is enclosed between two

isomorphisms in the exact sequence. In the other case, H = 0, we shall

prove that

[SV−1+k∧Z/2+,PV+1X]∗G
∼= [SV−1+k∧Z/2+, X]∗G

∼= [SV−1+k∧Z/2+,PVX]∗G

and

[SV+k ∧ Z/2+,PV+1X]∗G
∼= [SV+k ∧ Z/2+, X]∗G

∼= [SV+k ∧ Z/2+,PVX]∗G.

To do that, one can use the Z/2-homeomorphism (4.8.1)

SV+k ∧ Z/2+
∼= S|V |+k ∧ Z/2+,

which untwists the action, and then apply (a). This shows that FVX is

(V − 1)-connected.

• To prove that FVX is the wanted Eilenberg-MacLane space, we need to

show that:

πHV+1(FVX) ∼= πHV+1(X).
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We can use again the long exact sequence:

· · · → [SV+2 ∧G/H+,PVX]∗G → [SV+1 ∧G/H+, FVX]∗G

→ [SV+1 ∧G/H+,PV+1X]∗G → [SV+1 ∧G/H+,PVX]∗G → . . .

The first and the last groups are trivial, by definition of P, since V +2, V +1 ∈
ÃV . Then

[SV+1 ∧G/H+, FVX]∗G
∼= [SV+1 ∧G/H+,PV+1X]∗G,

and, by the same argument used to show that FVX is (V − 1)-connected,

we get that

[SV+1 ∧G/H+,PV+1X]∗G
∼= [SV+1 ∧G/H+, X]∗G,

for any H ≤ G = Z/2. Hence πHV+1(FVX) ∼= πHV+1(X) = πV+1(X)(H).

• To complete the proof, we have to show that the higher homotopy groups

of FVX are trivial:

[SV+k ∧G/H+, FVX]∗G = 0 for k > 1.

This can be checked immediately using again the long exact sequence, using

the fact that:

πV+1+k(PV+1X) = 0 = πV+k(PVX) for k > 1.

(d) X maps to each PV+iX, hence there is a map X → holim(PV+iX).

Note that dim(V +n)H = dimV H +n. By (a), for every k and H, if n is big

enough, we have dim(V +n)H ≥ k and so πHk (X) ∼= πHk (PV+nX). It follows

that πHk (X) ∼= πHk (holim(PV+iX)).

Corollary 6.3.2. Non-equivariantly, PVX is weakly equivalent to the ordi-

nary Postnikov section PdimVX.

Proof. Taking as H the trivial group in Proposition 6.3.1 (a), we get that

[Sk ∧ G+, X]∗G
∼= [Sk ∧ G+,PVX]∗G for 0 ≤ k ≤ dim(V ). By (1.6.1) (for

basepointed spaces), we have that [Sk∧G+, X]∗ coincides with the set of the

non-equivariant homotopy classes of maps Sk → X, and similarly for PVX.

So the lower homotopy groups of X and PVX coincide. For k > dimV ,

πk(PVX) is in bijection with the set of the equivariant homotopy classes of

maps [Sk ∧G+,PVX]∗G = 0, because k (as a representation) lies in ÃV .

The construction of the spectral sequence will make use both of P and

of P. In particular, we will prove a result connecting the two for the space

we are interested in to construct the spectral sequence. As said, the latter

functor has better properties, but we are also interested in the former be-

cause of an useful property of it. The next section is devoted to the proof

of this property.
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7 The V -th Postnikov section of SV

The result we are aiming at is the following:

Theorem 7.0.3. Let G = Z/2 and let V ⊇ 1. Then the space PV (SV ) has

the equivariant weak homotopy type of K(Z, V ).

The proof of this result is quite involved and we are going to split the

process in several steps.

7.1 The infinite symmetric product

The main idea behind the proof of our theorem is a clever use of the infinite

symmetric product Sp∞. Let us introduce briefly this object: let X be a

space with a basepoint and k > 0. We denote by Σk the symmetric group

of the permutations of k objects. The k-fold symmetric product of X is the

space:

Spk(X) = Xk/ ∼,

where (x1, . . . , xk) ∼ (x′1, . . . , x
′
k) if and only if there is a permutation σ ∈ Σk

which sends the coordinates of the first point to the second. In other words,

we consider the action of Σk on Xk given by permuting coordinates and we

quotient it out. Note that Sp1(X) is naturally isomorphic to X. There is a

natural map Spk(X)→ Spk+1(X), given by

(x1, . . . , xk) 7→ (e, x1, . . . , xk),

where e is the basepoint of X. This gives us a sequence:

X → Sp2(X)→ Sp3(X)→ Sp4(X)→ . . . .

The colimit of the sequence is the infinite symmetric product of X and is

denoted by Sp∞(X).

Remark 7.1.1. The the symmetric group Σk of the permutations of k ele-

ments has a standard representation R, with Rk as representation space, and

Σk-action given by permuting the coordinates of the points of Rk. Clearly

R has a subrepresentation, i.e. a fixed subspace, given by the vectors:

(x, . . . , x) ∈ Rk, for x ∈ R,

which can be written as 〈(1, . . . , 1)〉. If we take the quotient of R by this

subspace, we get the reduced standard representation of Σk, denoted R̃.

As for any representation, we may look at R and R̃ as representations

of Z/2, with a trivial action of this group.
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Remark 7.1.2. We are going to use the fact that Sp∞(SV ) is equivalent

to K(Z, V ), for any representation V ⊇ 1. This fact is known in the non-

equivariant context, as a consequence of the Dold-Thom theorem. It is also

true when we consider G-spaces, for any finite group G, and one can prove it

showing that both spaces are equivalent to AG(SV ), the free abelian group

on the points of SV . A reference for the equivalence of K(Z, V ) and AG(SV )

is [5], while the other part is worked out in [6, Appendix A]. We state the

result we will use in the following proposition.

Proposition 7.1.3. Let V be a Z/2-representation such that V ⊇ 1. Then

Sp∞(SV ) is weakly equivalent to K(V,Z).

7.2 The Postnikov section of Sp∞

Lemma 7.2.1. Let V ⊇ 1 be an orthogonal representation. Then the natural

map i : Sp∞(SV )→ PV (Sp∞(SV )) is an equivariant weak equivalence.

Proof. Let r, s ≥ 0 and let W denote the Z/2-representation Rr ⊕ (R−)s.

By Lemma 4.8.2 and Theorem 4.8.1, we have the following isomorphisms:

[SV⊕W ,K(Z, V )]∗G
∼= HV (SV+W ;Z) ∼= H−r−s,−s(pt;Z),

[SV⊕W ∧ Z/2+,K(Z, V )]∗G
∼= HV (SV+W ∧ Z/2+;Z) ∼= H−r−s,−s(Z/2;Z),

where the groups to the right in both lines are zero, unless r = s = 0.

The representations V + W , with r and s not both zero, are precisely the

representations strictly containing V , which are used to define AV (compare

with (6.2.2)). Hence, the isomorphisms above say that K(Z, V ) ' Sp∞(SV )

is AV -null. Hence, by the universal property of PV , we get a map

t : PV (Sp∞(SV ))→ Sp∞(SV ),

such that ti = id. Hence πHn (Sp∞(SV )) → πHn (PV (Sp∞(SV ))) is injective

and this implies that i is an equivariant weak equivalence.

Remark 7.2.2. During the proof of the next proposition, we are going to

use the fact that there is an homeomorphism between the spaces:

V ⊕ · · · ⊕ V︸ ︷︷ ︸
k times

∼= V ⊗R,

both as Z/2- and as Σk-spaces. Let us say a few words about the actions

we have on the two spaces. Z/2 acts on V ⊕ · · · ⊕ V via the diagonal action
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and Σk acts by permuting coordinates. This means that, for σ ∈ Σk and

(w1, . . . , wk) ∈ V ⊕ · · · ⊕ V , we have:

(w1, . . . , wk) · σ = (wσ−1(1), . . . , wσ−1(k)).

In other words, the entry in coordinate 1 goes to coordinate σ(1) and so on.

Note that Σk acts on the right via this action.

If V , as a vector space, has basis (v1, . . . , vn) and (e1, . . . , ek) is the

standard basis of R ∼= Rk, the actions of the two groups on a generating

vector vi ⊗ ej of V ⊗R is defined by:

g · (vi ⊗ ej) = (g · vi)⊗ ej , for g ∈ Z/2,
σ · (vi ⊗ ej) = vi ⊗ eσ(j), for σ ∈ Σk.

We can explicitly write the map defining the homeomorphism:

V ⊕ · · · ⊕ V → V ⊗R
(w1, . . . , wk)→ w1 ⊗ e1 + · · ·+ wk ⊗ ek.

One can easily check that this map is an isomorphism of vector spaces and

that is preserves the actions of the two groups.

Proposition 7.2.3. The map Spk−1(SV )→ Spk(SV ) is part of a homotopy

cofibration of the form:

SV ∧ ([V ⊗ R̃]− 0)/Σk → Spk−1(SV )→ Spk(SV ).

Proof. Let B = B(V ) and S = S(V ) denote respectively the ball and the

sphere inside the representation V . Then we have the usual relative home-

omorphism:

(B,S)
∼=−→ (SV , ∗),

given by collapsing the subspace S. By relative homeomorphism we mean

that it maps B \ S onto SV \ ∗ homeomorphically. Now we can apply Spk

to the pairs and get:

(Spk(B), Spk(S))
∼=−→ (Spk(SV ),Spk(∗)).

We can replace the two subspaces of the pairs with bigger subspaces, choos-

ing them so that the map is still a relative homeomorphism:

(Spk(B), Z/Σk)
∼=−→ (Spk(SV ), Spk−1(SV )). (7.2.1)

Let us try to explain what we mean with this writing:
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(a) Z is the space:

(S ×B × · · · ×B) ∪ (B × S ×B × · · · ×B) ∪ · · · ∪ (B × · · · ×B × S) ⊆ Bk.

and it can be described by saying that (b1, . . . , bk) ∈ Bk is a point of Z/Σk

if at least one of the bi’s is in S. Clearly Z/ΣK ⊇ Spk(S).

(b) Doing the same process for the pair (Spk(SV ),Spk(∗)), we consider the

subspace of Spk(SV ) containing the k-tuples of points for which at least one

coordinate is in Spk(∗) = {∗}. This is the same of choosing k − 1 points of

SV , modulo the action, so we get the subspace Spk−1(SV ).

Z/Σk is mapped to Spk−1(SV ), and the map (7.2.1) is still a relative homeo-

morphism. One can easily verify that, in general, a relative homeomorphism

gives a push-out square. In our case we get the push-out:

Z/Σk
//

��

Spk−1(SV )

��

Spk(B) // Spk(SV ).

Note that the space Spk(B) is contractible, since the ball B is, hence we

have a homotopy cofiber sequence:

Z/Σk → Spk−1(SV ) ↪→ Spk(SV ),

and so, to show our claim, it is enough to show that

Z/Σk ' SV ∧ ([V ⊗ R̃]− 0)/Σk.

We can include Z into (V ⊕· · ·⊕V )\0 and this last space can be identified

with (V ⊗R)\0, as shown in Remark 7.2.2. Moreover, we have the following

homeomorphism, which is Z/2- and Σk-equivariant:

Z → S(V ⊕ · · · ⊕ V )

z 7→ v

‖v‖
.

Hence we have that Z/Σk
∼= S(V ⊗R)/Σk. As observed earlier, R has a

trivial subrepresentation and we can write it as R = 1 + R̃. Therefore,

V ⊗R = V ⊗ (1 + R̃) = V ⊕ (V ⊗ R̃).

Now we can apply Lemma A.1.3 to get the following Z/2-homeomorphism:

S(V ⊕ (V ⊗ R̃))/Σk
∼= S(V ) ∗ (S(V ⊗ R̃)/Σk),
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where the symbol ∗ denotes the join of the two spaces, whose definition is

recalled in Appendix A.1.

We want to apply Lemma A.1.2 to conclude. Note that we are assuming

that 1 ⊆ V , then the two spaces S(V ) and S(V ⊗R̃)/Σk both have a subspace

fixed by Z/2 and so they can be made basepointed (this is needed since the

group has to act trivially on basepoints). Our lemma about the join and

the suspension deals with basepointed spaces and one can easily check that

it works equally well when we take G-spaces. Hence we have:

Z/Σk
∼= S(V ⊗R)/Σk

∼= S(V ⊕ (V ⊗ R̃))/Σk

' S(V ) ∗ (S(V ⊗ R̃)/Σk) ' Σ(S(V ) ∧ (S(V ⊗ R̃)/Σk)

' Σ1 ∧ S(V ) ∧ (S(V ⊗ R̃)/Σk) ' SV ∧ ((V ⊗ R̃) \ 0)/Σk.

In the last passage we have used the fact that Σ1 ∧ S(V ) ' SV : the reader

can easily check that this is true in general.

The next step in order to prove Theorem 7.0.3 is to show that applying

the functor PV to the space SV ∧ ((V ⊗ R̃)\0)/Σk we get a Z/2-contractible

space.

Proposition 7.2.4. Let V be the Z/2-representation Rp⊕(R−)q, with p ≥ 1

and let X = ((V ⊗ R̃) \ 0)/Σk. Then:

(a) If k ≥ 3, then XZ/2 is path-connected.

(b) If k = 2, then the fixed point XZ/2 has one of the following homotopy

types:

XZ/2 '


RP p−1 if q = 0,

RP p−1
∐
∗ if q = 1,

RP p−1
∐

RP q−1 if q ≥ 2.

When q ≥ 1, there exists a map S1,1 → X, which induces an isomorphism

on π0 of the fixed sets.

Proof. As usual, we can decompose the representation V as a sum of irre-

ducible representations in a unique way:

V = U0 ⊕ U1 ⊕ · · · ⊕ Un−1,

with n = p + q. Of course, since G = Z/2, every factor Ui will be either

a trivial or a sign representation. In particular, let us order the factors so

that U0 is a trivial representation. Each point of X can be written as

[(u0, . . . , un−1)],

where ui ∈ Ui ⊗R for every i, and not all the ui’s are zero.
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(a) Let k ≥ 3. If [(u0, . . . , un−1)] ∈ XZ/2 is a fixed point with u1 6= 0, then

we can make the following path:

t ∈ [0, 1] 7→ [(tu0, . . . , tui−1, ui, tui+1, . . . , tun−1)],

connecting it to [(0, . . . , ui, . . . , 0)]. Here we exploit the underlying structure

of real vector spaces of V and R̃. Note that all the points in the path are

fixed by Z/2, since each uj is fixed. This means that we can connect every

point of X with a point of either

(R⊗ R̃) ∼= (R⊗ R̃)⊕ 0 · · · ⊕ 0 ⊆ V × R̃ or

(R− ⊗ R̃) ∼= (R⊗ R̃)⊕ 0 · · · ⊕ 0 ⊆ V × R̃.

If we check the two following conditions, the proof of (a) is complete.

(i) The subspace [((R ⊗ R̃) \ 0)/Σk]
Z/2 is path connected. Since the Z/2-

action is trivial, we have that R⊗ R̃ ∼= R̃ and R̃ is path connected, being a

real vector space. If we remove the origin to get R̃ \ 0 we do not disconnect

the space, since dim(R̃) = dim(R)− 1 = k − 1 ≥ 2.

(ii) The subspace [((R⊗ R̃ ⊕ R− ⊗ R̃) \ 0)/Σk]
Z/2 is path connected. Note

that, since V ⊇ 1, this subspace is always contained in X, if V is not trivial.

In case V is trivial, every point is connected by a path to a point of the

subspace analysed in (i).

Let V ′ = R⊕ R− and X ′ = ((V ′ ⊗ R̃) \ 0)/Σk. We are trying to show that

(X ′)Z/2 is path connected. We can identify V ′ with C, with the conjugation

action and, as noted earlier, (V ′⊗R) \ 0 ∼= V ′⊕· · ·⊕V ′ ∼= Ck. The space R̃

is a quotient of R in which we quotient out the the subspace of the vectors

having the same component on each basis vector. In this view, (V ′ ⊗R) \ 0

is identified with

{(z1, . . . , zk) ∈ Ck |
∑

zi = 0},

since we can subtract from any vector (z1, . . . , zk) the vector (
∑
zi
k , . . . ,

∑
zi
k ).

The class of (z1, . . . , zk) in X ′ is denoted [z1, . . . , zk]. The space (X ′)Z/2 has

the subspace of the real vectors, which are fixed under conjugation:

X ′′ = {[a1, . . . , ak] | ai ∈ R} ∼= {[z1, . . . , zk] | zi ∈ Ck,
∑

zi = 0, Im(zi) = 0}

This subspace is path connected: in fact it corresponds to the subspace

analysed in (i). Hence it will be sufficient to show that any point of (X ′)Z/2

can be connected with a path of a point in X ′′. Let us consider a point

[z1, . . . , zk] ∈ (X ′)Z/2. The fact that is is fixed by Z/2 means that

[z1, . . . , zk] = [z1, . . . , zk].
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This is equivalent to saying that there exists a permutation σ ∈ Σk for

which:

(zσ(1), zσ(k)) = (z1, . . . , zk).

The permutation σ decomposes as a product of disjoint cycles. If we have a

cycle of length l, it means that (up to a change of indices):

z1 = z2, z2 = z3, zl = z1.

These relations imply that either {z1, . . . , zl} ⊆ {w,w} for some w ∈ C (in

case l is even), or that all the zi’s are real. In any case, this argument shows

that, modulo permutation, (z1, . . . , zk) can be written as

(w1, w1, . . . , wu, wu, r1, . . . , rv),

for certain wi ∈ C and ri ∈ R. If all the wi’s are real, then the point is

already contained in X ′′, so we are done. Else, we can assume Im(w1) 6= 0.

We want to build a path in (X ′)Z/2 connecting our point with

[w1 − Re(w1), w1 − Re(w1), 0, . . . , 0].

Let us define a path γ : I → (X ′)Z/2 by:

t 7→ [w1 + α(t), w1 + α(t), w2, w2, . . . , wu, wu, r1, . . . , rv].

We have not defined α yet: we are going to use it to impose the condition of

having the sum of the components equal to zero. The sum of the components

of a point in our path at t is:

2 Re(w1) + 2t
u∑
i=2

Re(wi) + t
v∑
j=0

rj + 2α(t) = 0.

We can use this relation to define α(t): clearly α(t) ∈ R, and this implies

that the points of the path are still fixed by Z/2. We have:

γ(0) = [w1 − Re(w1), w1 − Re(w1), 0, . . . , 0],

γ(1) = [w1, w1, . . . , wu, wu, r1, . . . , rv].

So this is actually a the path we wanted. Let us note that the components

of γ(0) are pure imaginary numbers, so we can write it as

[bi,−bi, 0, . . . , 0]

for some b ∈ R\0. The last step to complete the proof of (a) is to show how

to connect this point with a point of X ′′. We define another path:

t ∈ [0, 1] 7→ [t+ (1− t)bi, t− (1− t)bi,−2t, 0, . . . , 0].
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It connects our point [bi,−bi, 0, . . . , 0] with [1, 1,−2, 0, . . . , 0] and is con-

tained in (X ′)Z/2. Note that here we are using 3 coordinates to build the

path, hence the assumption k ≥ 3. Composing the paths we have connected

the initial point with [1, 1,−2, 0, . . . , 0] ∈ X ′′, showing that (X ′)Z/2 is path

connected.

(b) Now we take k = 2. In this case R = R2, with the action of Σ2 = {e, σ}
in which σ exchanges coordinates. To get R̃ we quotient out the subspace

〈(1, 1)〉 and so we have that R̃ ∼= R and σ acts by changing sign. We are

considering a representation Rp ⊕ (R−)q. Then we have:

X = [(V ⊗ R̃) \ 0]/Σ2 = [(Rp ⊕ (R−)q) \ 0]/Σ2.

As said, Σ2 acts changing sign on each coordinate, in other words we have

the antipodal action on (Rp⊕(R−)q)\0 and so, by quotienting out the action,

we obtain a space homotopy equivalent to P(Rp ⊕ (R−)q) = RP p+q−1. A

homotopy equivalence to RP p+q−1 can be obtained by collapsing each the

(contractible) open half-lines based at the origin to one point. A point in

the projective space can be written, in homogeneous coordinates, as:

[x1, . . . , xp, xp+1, xp+q],

and the Z/2-action maps this point to

[x1, . . . , xp,−xp+1,−xp+q].

Thus, a point is fixed if

(x1, . . . , xp, xp+1, xp+q) = λ(x1, . . . , xp,−xp+1,−xp+q),

and this can happen either if x1 = · · · = xp = 0 and λ = −1, or if xp+1 =

· · · = xp+q = 0 and λ = 1. Hence we have:

XZ/2 = {[x1, . . . , xp, 0, . . . , 0] | xi ∈ R not all zero}∐
{[0, . . . , 0, xp+1, . . . , xp+q] | xi ∈ R not all zero}

= RP p−1
∐

RP q−1.

The last thing to show is the existence of a map S1,1 → X which induces

a bijection on π0 of the fixed-points, under the assumption q ≥ 1. Let us

define:

((R⊕ R−) \ 0)/ ∼ → X

[a, b] 7→ [a, 0, . . . , b, 0, . . . , 0],
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where ∼ is the antipodal action and b is mapped in the (p+ 1)th coordinate.

As noted earlier, the domain of the map is equivalent to RP 1. This space

is, non-equivariantly, homeomorphic to the sphere S1; the Z/2-action is

trivial on the first coordinate and changes the sign on the second one, hence

((R⊕ R−) \ 0) ' S1,1. Clearly the map is well defined, because in both the

domain and the target we quotient out the antipodal action. With the same

reasoning used before, one can see that the fixed point space [((R ⊕ R−) \
0)/ ∼]Z/2 is made by two path components. We can write it as:

{[a, 0] | a ∈ R \ 0}
∐
{[0, b] | b ∈ R \ 0}.

The two path components are sent to the two fixed-points of S1,1 via the

homotopy equivalence. It is immediate to check that, on the fixed points, the

map defined above induces a bijection on the set of the path components.

Lemma 7.2.5. Let A be the family containing the objects:

Sn,0 n ≥ 1,

Sn,0 ∧ Z/2+ n ≥ 1,

S1,1.

Let X be the space defined in the previous proposition. Then PA(X) is

contractible.

Proof. By the Whitehead theorem, it is enough to show:

[Sn,0, PA(X)]∗G = 0, [Sn,0 ∧ Z/2+, PA(X)]∗G = 0,

for n ≥ 0. This is clear for n ≥ 1, because of the choice of the elements in

A, by the definition of the functor PA. So it remains to check the claim for

n = 0: the statement is equivalent to say that both PA(X) and PA(X)Z/2

are path-connected.

We have that the space X is connected, therefore PA(X) is too: in fact

PA attaches cones on the maps from elements of A, and this operation does

not disconnect the space. As to the fixed-points, we know by the previous

proposition that it is path-connected when k ≥ 3 or when k = 2 and q = 0:

if we attach to the space cones on maps we do not disconnect the fixed-

points. In the remaining cases, i.e. for K = 2 and q ≥ 1, the space X is

not connected, but has two path-components and we know that there is a

map S1,1 → X inducing an isomorphism on π0 of the fixed point set. This

map hits the two path components of the fixed point: when we construct

PA(XZ/2) we attach the cone on this map, so we get a connected space

again.
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Proposition 7.2.6. Let X be again the space of Proposition 7.2.4. Then

PV (SV ∧X) is contractible.

Proof. Let us consider any map S1,0 → X. We can make it into a homotopy

fibration:

S1,0 → X → X ′

and then smash it with SV , obtaining the homotopy fiber sequence:

SV+1 → X ∧ SV → X ′ ∧ SV .

By Proposition 6.2.2(c), it follows that we have an equivalence:

PV (SV ∧X) ' PV (SV ∧X ′).

In other words, if we attach the cone on any map S1,0 → X we don’t change

the homotopy type of P (SV ∧ X). We can repeat the argument with any

map Sn,0 → X (n ≥ 1), Sn,0∧Z/2+ → X (n ≥ 1) and S1,1 → X. The space

PA(X) considered in the previous lemma is, by definition, built from X by

attaching cones on all such maps. Then we obtain a homotopy equivalence:

PV (SV ∧X) ' PV (SV ∧ PA(X)).

The previous proposition showed that PA(X) ' ∗, hence the smash product

SV ∧ PA(X) is also contractible. Applying PV we get again a contractible

space, so the claim is proved.

Proof of Theorem 7.0.3. Combining the previous propositions, we have that

the map

PV (Spk−1(SV ))→ PV (Spk(SV ))

is a weak equivalence for all k. These maps form a sequence:

PV (SV )→ PV (Sp2(SV ))→ PV (Sp3(SV ))→ . . .

of equivalences, giving that PV (SV )→ hocolimPV (Spi(SV )) is also a weak

equivalence.

By Proposition 6.2.2(b), we have that

PV (hocolimi(Spi(SV ))) ' PV (hocolimi PV (Spi(SV ))).

It is possible to see that the second term of the equivalence is weakly equiv-

alent to hocolimi PV (Spi(SV )): in fact, when we apply PV to the hocolim,

we are applying it to the homotopy colimit of a sequence of spaces which
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are already PV of something, hence we are not killing any new homotopy

group. Thus we have the composition of maps:

PV (SV )
'−→ hocolimPV (Spi(SV )) ' PV (hocolimi(Spi(SV )))

→ PV (colimi(Spi(SV ))) = PV (Sp∞(SV )).

We have that the natural map hocolimi(Spi(SV )) → colimi(Spi(SV )) is a

weak equivalence: this is true because the inclusions

Spi−1(SV )→ Spi(SV )

are cofibrations, since the spaces are well pointed. Then the last map in the

composition is also a weak equivalence, and finally we get the equivalence

PV (SV ) ' PV (Sp∞(SV )).

8 The construction of the spectral sequence

8.1 Unstable case

We are constructing an Atiyah-Hirzebruch spectral sequence to compute

KR-theory. From now on, we will just be concerned with spaces with an

action of G = Z/2. We will often consider the representation nC, i.e. the

complex space Cn seen as a 2n-dimensional real vector space, with the action

given by complex conjugation. In the notation of the previous sections,

this would correspond to (2n, n). To simplify the notation, following [6],

we will write P2n and P2n for the Postnikov functors associated to this

representation. This choice introduces a possible ambiguity of notation,

because 2n also denotes the 2n-dimensional trivial representation. We are

not going any more to consider trivial representations in what follows: this

should avoid the confusion.

The aim of this section is to construct a tower of homotopy fibrations:

. . . // P4(Z×BU) // P2(Z×BU) // P0(Z×BU) // ∗

K(Z, (4, 2))

OO

K(Z, (2, 1))

OO

Z

OO

(8.1.1)

The reason for which we are concentrating on the space Z×BU is that we

are interested in KR-theory, which is represented by such spaces. Let us

explain what are the maps in the diagram above. Let β : S2,1 → Z×BU be
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the Bott map in K̃R
0,0

(S2,1) and let βn : S2n,n → Z×BU be its nth power.

The homotopy fiber sequence is:

P2n(S2n,n)
βn−→ P2n(Z×BU)→ P2n−2(Z×BU),

where P2n(Z×BU)→ P2n−2(Z×BU) is the structure map of the Postnikov

section.

The next goal is to show that the homotopy fiber

Fn → P2n(Z×BU)→ P2n−2(Z×BU)

is weakly equivalent to P2n(S2n,n), It turns out that, in order to show this

result, it is more convenient to show an intermediate result for P and then

try to connect P and P .

Proposition 8.1.1. The homotopy fiber of P2n(Z×BU)→ P2n−2(Z×BU)

is homotopy equivalent to K(Z, (2n, n)).

Proof. Let Fn be the homotopy fiber. By Proposition 6.3.1(a),

πGk (P2n(Z×BU)) ∼= πGk (X) ∼= πGk (P2n−2(Z×BU))

for k ≤ n− 1 and πn(P2n−2(Z× BU)) = 0. So, by the long exact sequence

for equivariant homotopy groups, we get that πGk (Fn) = 0 for k ≤ n −
1. Moreover, using the fact that the equivariant homotopy group πek(−) is

isomorphic to the non-equivariant one πk(−) and since, by Corollary 6.3.2,

P2n is equivalent to the non-equivariant Postnikov section P2n, we get that

πek(Fn) = 0 for k ≤ 2n − 1. These two facts combined mean that Fn is

(nC− 1)-connected.

By construction, looking at the definition of ÃV , we have that

[S2n+k,n+l ∧G/H+,P2n(Z×BU)]∗G = 0

for all k > 0, l ≥ 0 and H ≤ G. Then, by the long exact sequence, we get

that [S2n+k,n ∧ G/H+,Fn]∗ = 0 for all k > 0 and H ≤ G. To conclude,

we still need to show that the Mackey functor π2n,n(Fn) coincides with Z,

and this is proved true using again the long exact sequence of homotopy

groups.

Proposition 8.1.2. (a) Let X be a Z/2-space for which the forgetful map:

[S2n,n, X]∗Z/2 → [S2n,n, X]∗e

is injective. Then P2n(X) is weakly equivalent to P2n(X).
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(b) The space X = Z×BU satisfies the hypothesis of (a).

Proof. (a) Recall that [S2n,n, X]e denotes the non-equivariant homotopy

classes of maps. We have in general a map P2nX → P2nX. By definition,

AV and ÃV differ by the elements of the form S2n+k,n+k ∧G/H+ for k > 0,

i.e. the representation spheres that strictly containing V = (2n, n), but with

the same number of trivial components. Then, to prove the weak equiva-

lence between P2n(X) and P2n(X), it is enough to show the two following

conditions:

[S2n+k,n+k ∧ Z/2+,P2nX]∗Z/2 = 0 for all k > 0,

[S2n+k,n+k,P2nX]∗Z/2 = 0 for all k > 0.

The first one is easily verified: we have the isomorphism

[S2n+k,n+k ∧ Z/2+,P2nX]∗Z/2
∼= [S2n+k,n+k,P2nX]∗e,

and the second group is trivial: in fact it is the same as the homotopy classes

of non-equivariant maps S2n+k → P2nX. By Corollary 6.3.2 it is the trivial

group.

Now we need to check the second condition: this case is more involved than

the previous one. We begin with the case k = 1: we can take the cofibration

sequence

Z/2+ → S0,0 → S1,1 → Z/2+ ∧ S1,0 → . . . , (8.1.2)

and smash it with S2n,n, so that we get

Z/2+ ∧ S2n,n → S2n,n → S2n+1,n+1 → Z/2+ ∧ S2n+1,2n.

If we map the sequence into P2nX we get the top exact row of four terms in

the diagram, in which it is understood that we consider basepoint-preserving

G-homotopy classes of equivariant maps:

[S2n+1,n+1,P2nX]

��

[Z/2+ ∧ S2n+1,n,P2nX] = 0oo

[Z/2+ ∧ S2n,n,P2nX] [S2n,n,P2nX]oo

[Z/2+ ∧ S2n,n, X]

∼=

OO

[S2n,n, X]

∼=

OO

oo

The two vertical maps in the lower square are isomorphisms, because of

Proposition 6.3.1. The bottom map in the square corresponds to the for-

getful map [S2n,n, X]∗Z/2 → [S2n,n, X]∗e, as [G+ ∧ SV , X]∗G
∼= [SV , X]∗e, hence
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the top map in the square is injective. We already know that

[G+ ∧ S2n+1,n,P2nX]∗G

is trivial, because S2n+1,n ∈ Ã(2n,n), then we deduce by exactness that

[S2n+1,n+1,P2nX]∗Z/2 = 0.

To get the thesis for k > 1, we proceed by induction. Assume that

[S2n+k,n+k,P2nX]∗Z/2 = 0.

We can smash the cofibration sequence (8.1.2) with S2n+k,n+k, getting:

S2n+k,n+k → S2n+k+1,n+k+1 → Z/2+ ∧ S2n+k+1,n+k.

If we map into P2nX, we obtain the exact sequence:

[Z/2+ ∧S2n+k+1,n+k,P2nX]→ [S2n+k+1,n+k+1,P2nX]→ [S2n+k,n+k,P2nX].

We know that the first term is zero, because of the properties of P, and that

the third one also is, by inductive hypothesis. Hence our thesis follows.

(b) We have to check that the forgetful map

[S2n,n,Z×BU ]∗Z/2 → [S2n,n,Z×BU ]∗e

is injective. The domain of the map is precisely K̃R
0,0

(S2n,n), because

equivariantly Z×BU represents K̃R
0,0

and the target is K̃0,0(S2n,n), since

non-equivariantly Z×BU represents K̃0,0. Hence we are checking that the

forgetful map

Z ∼= K̃R
0,0

(S2n,n)→ K̃0,0(S2n,n) ∼= Z

is injective. And this is true, because this map is even an isomorphism, since

the Bott element β is a generator for both groups.

The two previous propositions imply that we have the tower of homotopy

fiber sequences (8.1.1). By Proposition 6.3.1, we have that the homotopy

limit of the tower is Z×BU . The homotopy spectral sequence associated to

the tower (8.1.1) is the one we are interested in. For a Z/2-space X, it has

the form:

H
p,− q

2
G (X;Z)⇒ [S−p−q,0 ∧X+,Z×BU ]∗G.

Our tower of homotopy fibrations is bounded below: in this case the spectral

sequence is conditionally convergent (see Boardman [3]). Moreover, if the

condition “RE∞ = 0”, where RE∞ is the derived E∞ term, holds, then the

spectral sequence converges strongly, by [3, 7.4].
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Remark 8.1.3. There is a multiplicative structure on the pages of the

homotopy spectral sequence, which can be useful for computations. The

proof and the details of this fact are out of the scope of this project. The

reader is referred to [6, 5.6] for more details about the multiplication in our

spectral sequence.

8.2 The stable case

The spectral sequence that we have built in the previous section is fringed,

meaning that the entries close to p = 0 and q = 0 are not abelian groups

and so things work well only away from the axes. This can be fixed easily,

producing a stable version of the spectral sequence, with G-spectra in place

of G-spaces.

We are going to create a G-spectrum kr representing connective KR-

theory, in analogy to the ordinary spectrum ku represents connective com-

plex K-theory. More in detail, we are aiming at constructing a homotopy

cofiber sequence:

Σ2,1kr
β−→ kr → HZ,

that will allow us to get the stable version of the spectral sequence.

Let Wn be the homotopy fiber of the map:

Z×BU → P2n−2(Z×BU).

These spaces come equipped with natural maps Wn+1 → Wn connecting

them, given by the corresponding maps P2n(Z × BU) → P2n−2(Z × BU).

Recall that Ω2,1 denotes the loop-space functor with respect to the repre-

sentation R⊕ R−.

The next proposition will be the key to build the wanted G-spectrum.

Proposition 8.2.1. Let Wn be the homotopy cofiber:

Wn → Z×BU → P2n−2(Z×BU). (8.2.1)

There exists a weak equivalence ϕ : Wn → Ω2,1Wn+1, which commutes with

the Bott map β in the following diagram:

Wn
ϕ

//

��

Ω2,1Wn+1

��

Z×BU
β
// Ω2,1(Z×BU).

Moreover, ϕ is unique up to homotopy.
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Proof. Let us consider the natural inclusion map α : Z×BU → Pn(Z×BU)

and apply to it the functor Ω2,1.

Note that, if X ∈ A(2n−2,n−1), then S2,1 ∧ X ∈ A(2n,n). By definition

P2n(Z × BU) is A2n,n-null, and so, by the adjunction of loop-space and

suspension, we deduce that Ω2,1Pn(Z × BU) is A(2n−2,n−1)-null. By one

property of nullification functors (see Proposition 6.2.2), this implies that

there is a lift, unique up to homotopy:

Ω2,1(Z×BU)
Ω2,1α //

� _

��

Ω2,1P2n(Z×BU)

P2n−2(Ω2,1(Z×BU))

ψ

44jjjjjjjj

This lift fits into the following diagram:

Wn
//

��
�
�
�
�
�
�
� Z×BU //

β
��

P2n−2(Z×BU)

P2n−2(β)
��

Ω2,1(Z×BU) //

id
��

P2n−2(Ω2,1(Z×BU))

ψ

��

Ω2,1Wn+1
// Ω2,1(Z×BU) // Ω2,1P2n(Z×BU).

By general properties of fibrations, it follows that there is a map Wn →
Ω2,1Wn+1 between the homotopy fibers, making the diagram commute. Now

the goal is to show that this map is a weak homotopy equivalence, and we

will do this using Corollary 1.9.5. We have check the following.

(a) [Sk,0,Wn]∗G = 0 for 0 ≤ k < n. To see this we can use the long exact

sequence that we get by mapping Sk,0 into (8.2.1). By Propositions 6.3.1

and 8.1.2, we know that

[Sk,0,Z×BU ]∗G → [Sk,0, P2n−2(Z×BU)]∗G

is an isomorphism for k ≤ |V Z/2| = n − 1 and an epimorphism for k = n.

This implies the claim.

(b) [Sk,0 ∧ Z/2+,Wn]∗G = 0 for 0 ≤ k < 2n. As in the previous case, we

use the analogous long exact sequence, but now we have an isomorphism for

k ≤ |V e| = 2n − 2 and an epimorphism for k = 2n − 1, hence the claim is

proved only for k ≤ 2n− 1. However, we know that

[S2n,0 ∧ Z/2+, P2n−2(Z×BU)]∗G = 0 = [S2n−1,0 ∧ Z/2+, P2n−2(Z×BU)]∗G,
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by the properties of P2n−2, hence the long exact sequence gives us an iso-

morphism:

[S2n−1 ∧ Z/2+,Wn]∗G
∼= [S2n−1 ∧ Z/2+,Z×BU ]∗G

∼=
∼= [S2n−1,Z×BU ]∗ = π2n−1(Z×BU) = 0;

in fact πi(Z×BU) = 0 for i odd, as a consequence of Bott periodicity.

(c) [Sk,0,Ω2,1Wn+1]∗G = 0 for 0 ≤ k < n. Via the adjunction, we have

isomorphisms:

[Sk,0,Ω2,1X]∗G
∼= [Sk+2,1, X]∗G,

and we can use again the long exact sequence, as done in (a).

(d) [Sk,0 ∧ Z/2+,Ω
2,1Wn+1]∗G = 0 for 0 ≤ k < 2n. By the isomorphism

(4.8.1), we can write:

[Sk ∧Z/2+,Ω
2,1Wn+1]∗G

∼= [Sk+2,1∧Z/2+,Wn+1]∗G
∼= [Sk+2∧Z/2+,Wn+1]∗G,

and, by (b), the last group is zero for k+ 2 < 2n+ 2, so our claim is proved.

We have that [S2n+k,n ∧ (Z/2)/H+, P2n−2(Z × BU)]∗G = 0 for k ≥ 0 and

H ≤ Z/2, and so, by the long exact sequence associated to the homotopy

fiber sequence

Wn → Z×BU → P2n−2(Z×BU),

we have the two isomorphisms:

[S2n+k,n,Wn]∗G
∼= [S2n+k,n,Z×BU ]∗G

[S2n+k,n ∧ Z/2+,Wn]∗G
∼= [S2n+k,n ∧ Z/2+,Z×BU ]∗G.

Now we can use the square obtained before:

Wn
//

��

Z×BU

' β
��

Ω2,1Wn+1
// Ω2,1(Z×BU)

Now, if we map S2n+k,2n or S2n+k,n ∧ Z/2+ (for k ≥ 0) into the square and

use the isomorphisms we have just obtained, we get isomorphisms:

[S2n+k,n,Wn]∗G
∼= [S2n+k,n,Ω2,1Wn+1]∗G

[S2n+k,n ∧ Z/2+,Wn]∗G
∼= [S2n+k,n ∧ Z/2+,Ω

2,1Wn+1]∗G,

for k ≥ 0. The hypotheses of Corollary 1.9.5 are now verified and so we can

conclude that Wn → Ω2,1(Wn+1) is a weak equivalence.
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The previous lemma gives us the structure map for our G-spectrum of

connective KR-theory:

Definition 8.2.2. The connective KR-spectrum kr is a G-spectrum with

spaces Wn and the structure maps Wn → Ω2,1Wn+1 obtained in Lemma

8.2.1.

As usual, we have a Ω-spectrum associated to kr, whose nth space is Wn.

The functor Ω∞ associates to a G-spectrum the 0th space of the associated

Ω-spectrum, and so we have:

Ω∞(Σ2,1kr) = W1, Ω∞(Σ4,2kr) = W2.

The maps Wn+1 → Wn, which we have constructed for every n ≥ 1, glue

together to form a map β : Σ2,1kr → kr; in fact, the nth space of the

Ω-spectrum associated to Σ2,1kr is Wn+1.

To produce the stable spectral sequence, we want a homotopy cofiber

sequence of the form:

Σ2,1kr
β−→ kr → HZ. (8.2.2)

The map of G-spectra β : Σ2,1kr → kr can be turned in a homotopy cofi-

bration with the stable version of the usual construction for spaces. Let C

be the homotopy cofiber G-spectrum; we want to show that C is equivalent

to HZ. We can apply suspension:

Σ4,2kr
Σ2,1β−−−→ Σ2,1kr → Σ2,1C

Since our objects are spectra, we can continue the sequence to the left by

desuspending:

Σ−1Σ2,1C → Σ4,2kr
Σ2,1β−−−→ Σ2,1kr → Σ2,1.

And we can switch to spaces by applying Ω∞:

Ω∞(Σ1,1C)→W2 →W1.

Let us consider the following diagram:

Z //

��

W2
//

��

W1

��

∗ //

��

Z×BU = //

��

Z×BU

��

K(Z, (2, 1)) // P2(Z×BU) // P0(Z×BU),
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in which rows and columns are all homotopy cofiber sequences. The space

Z can be identified easily, since it is the fiber of ∗ → K(Z, (2, 1)): it is the

loop-space Ω1K(Z, (2, 1)). Hence we have:

Ω∞(Σ1,1C) ' Ω1K(Z, (2, 1)).

One can check easily the weak equivalence Ω1K(Z, (2, 1)) ' K(Z, (1, 1)).

This implies that C ' HZ, which was our claim. We can paste together

all the homotopy cofiber sequences (8.2.2) getting the following diagram:

. . . // Σ2,1kr
β

//

��

kr
Σ−2,−1β

//

��

Σ−2,−1kr //

��

. . .

Σ2,1HZ HZ Σ−2,−1HZ.

(8.2.3)

This tower of cofibration is what we need to produce the stable version

of the spectral sequence: in fact, we build the Bockstein spectral sequence

associated to this diagram. For details about this spectral sequence, we refer

the reader to [13].

The upper row in our diagram has homotopy colimit KR, essentially by

definition of KR. Moreover we can also see that the homotopy inverse limit

is contractible. To see this, note that, for every i, πi(Wj) = 0 if j is big

enough: this implies that lim←−j(πi(Wj)) = 0. The same holds for lim←−
1, hence,

by the Milnor exact sequence:

0→ lim←−
1 πi−1(Wj)→ πi holim(Wj)→ lim←−

j

(πi(Wj))→ 0,

we get that πi holim(Wj) = 0.

This shows that we have a Bockstein spectral sequence, corresponding

to the exact couple:

[X, kr]∗G
(2,1)

// [X, kr]∗G

xxrrrrrrrrrr

[X,HZ]∗G

ffMMMMMMMMMM

The spectral sequence goes from RO(G)-graded cohomology to KR-theory:

Hp,− q
2 (X;Z)⇒ KRp+q,0(X),

for any Z/2-space X. We can make considerations on the convergence sim-

ilarly to the unstable case: the tower (8.2.3) has a contractible homotopy

limit, so the spectral sequence is conditionally convergent Also in this case, if

the condition RE∞ = 0 holds, then the spectral sequence converges strongly,

by [3, 8.10].
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9 Computations

9.1 The spectral sequence for X = ∗

If we take X to be a single point, the spectral sequence has the form:

Ep,q2 = Hp,− q
2 (pt;Z)⇒ KRp+q(pt) = KOp+q(pt).

In fact, for a space with trivial Z/2-action, KR-theory coincides with KO.

The following chart shows the E2 page of the spectral sequence. The

indexing is chosen so that the entry of coordinates (r, s) is H
s, r+s

2
G (pt). The

result of Theorem 4.8.1 gives us the groups on the page E2.

−14 −12 −10 −8 −6 −4 −2 0 2 4 6 8 10 12 14
−7

−5

−3

−1

1

3

5

7

η

x

s ↑

−→
r

Let β2 = x denote the generator of E4,0
2
∼= Z and η the generator of

E1,1
2
∼= Z/2.

To determine the differentials, we will use the fact that we know the

groups KO∗(∗):

i (mod 8) 0 1 2 3 4 5 6 7

KO−i(∗) Z Z/2 Z/2 0 Z 0 0 0

In particular, in the page E2, we would like to know if one of the possibly

non-trivial differential is actually not trivial:

d2 : E4,0
2 → E3,3

2 .

The target of this differential is E3,3
2
∼= Z/2, and we know that this cell in

the spectral sequence has to be killed, because it converges to KO−3(∗) = 0.
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The only differential in the spectral sequence that hits this cell is the one

we are looking at, hence we deduce that d2 is surjective:

d2(x) = η3 ∈ E3,3
2 ,

and ker(d2) ∼= Z〈2x〉. We can now compute the differential originating at

the elements in the diagonal which begins at E4,0
2 , using the multiplicative

structure and the derivation rule:

d2(xηj) = d2(x)ηj + xd2(ηj) = ηj+3.

The value of the differential at E8,0
2 can be deduced similarly:

d2(x2) = 2xd2(x) = 2xη3 = 0 ∈ E7,3
2
∼= Z/2.

The generators for the groups in the diagonal beginning at E4,0
2 have the

form x2ηj (j ≥ 0). We can apply the derivation rule and compute:

d2(x2ηj) = x2d2(ηj) + d2(x2)ηj = 0.

The things change for the next diagonal:

d2(x3) = 3x2d2(x2) = 3x2η3 = x2η3.

This means that the differential E12,0
2 → E11,3

2 is surjective and, by the same

computation done before, so are the differential originating at the groups in

the diagonal beginning at E12,0
2 .

This way we know all the differentials on the page E2. The next pages

have no non-trivial differentials, so the spectral sequence collapses at the

page E3.

9.2 Comparing fixed-points

Note 9.2.1. The treatment of G-spectra in this project has been limited to

the most basic definitions. This last section presents an interesting (in our

opinion) computation which is an aside from the main topic of the project,

and uses some notions of stable equivariant homotopy theory which we have

not introduced before. We refer the reader to [12] and [8] for a complete

treatment of G-spectra.

The previous calculation allows us to compute rather easily the homotopy

fixed-points of KR. To do this, we show that, for the spectrum KR, the

homotopy fixed-points coincide with the actual fixed-points, which we know

are the spectrum KO. Here we sketch the main points of the argument.
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Let us start in more generality, taking X to be any G-spectrum. By

definition, the homotopy fixed-points of X, denoted XhG, are the actual

fixed-points of F (EG+, X), the G-space of the basepoint-preserving G-maps

EG+ → X:

XhG = F (EG+, X)G,

where EG is the universal free G-space.

The space EG+ fits into the cofibration sequence:

EG+ → S0 → ẼG,

where the first map comes from the map EG → ∗ by adding a basepoint,

and ẼG is the mapping cone of this map. If we map the sequence into the

space X and take fixed-points, we obtain the following exact sequence:

XhG ← XG ← F (ẼG,X)G.

In fact, basepointed maps S0 → X choose one point in X and so, the fixed-

points of the space of these maps are the fixed-points of X.

To show the weak equivalence XG → XhG we need to show that the

space F (ẼG,X)G is contractible. We are going to show this in our case,

where G = Z/2 and X = KR. By Whitehead theorem, it is enough to show

that the (non-equivariant) homotopy groups of F (ẼG,X)G are trivial or,

equivalently, that the equivariant homotopy groups of F (ẼG,X) are trivial.

We shall prove that:

πGn (F (ẼG,X)) = 0 for any n ≥ 0.

For G = Z/2, the space EG can be modelled as S∞, with the antipodal

action of the group. The space ẼG is the mapping cone of the map EG+ →
S0 and one can easily see that it is homotopy equivalent to the suspension

of EG. Hence we have

ẼG = hocolim(S0,0 ↪→ S1,1 ↪→ S2,2 ↪→ . . . ),

and so: F (ẼG,X) = holimn(F (Sn,n, X)). Then, for any p, q ≥ 0, we have

a Milnor short exact sequence (we omit 0 from each end):

lim←−
n

1(πp+q+n−1,q+n−1(X)) � πp+q,q(F (ẼG,X)) � lim←−
n

(πp+q+n,q+n(X)).

In fact we have obtained F (ẼG,X) as the homotopy limit of:

F (Sn,n, X)← F (Sn+1,n+1, X)← F (Sn+2,n+2, X)← . . . .
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In the exact sequence, we have the limit of the sequence:

[Sn,n, X]∗G ← [Sn+1,n+1, X]∗G ← [Sn+2,n+2, X]∗G ← . . . ,

and the maps are given by composition with a suspension of the map e :

S0,0 → S1,1, which includes the two points as the north and south poles of

S1,1.

Let us take X = KR. If we look at the diagram showing the homotopy

groups πp+q,q(KR), we see that, for any value of p and q, if we go along the

diagonal (p + i, q + i), we find trivial groups. Moreover, by the periodicity

of the homotopy groups, any diagonal contains an infinite number of trivial

groups and this implies that the lim←− and lim←−
1 terms of the exact sequence are

zero. Hence F (ẼG,X) is equivariantly contractible and our claim follows.

A Topological matters

A.1 The topological join

In this section we recall the definition and some properties of the topological

join of two spaces.

Definition A.1.1. Let X and Y be topological spaces. Their join, denoted

X ∗ Y , is the quotient space of the cartesian product X × Y × I by the

equivalence relation (x, y1, 0) ∼ (x, y2, 0) and (x1, y, 1) ∼ (x2, y, 1).

This can be interpreted as the space of the line segments connecting a

point of X and a point of Y . X ∗ Y contains a copy of X, sitting as the

subspace X×{y}×{0} (for any y ∈ Y , in view of the identity relation) and

a copy of Y as {x} × Y × {1}.
One can show that, if the two spaces have a CW structure, then also

their join is a CW complex.

It is possible to describe nicely the points of X ∗ Y as formal linear

combinations

tx+ (1− t)y x ∈ X, y ∈ Y, 0 ≤ t ≤ 1,

where 0x+ y is identified with y and x+ 0y is identified with x.

Even if we start with two basepointed spaces (X,x0) and Y are base-

pointed, for their join X ∗ Y there is not a canonical choice of a basepoint:

in fact, in view of the above interpretation, X ∗Y contains an entire segment

connecting the basepoints. Then we can make a basepointed version of the

join, the reduced join, by collapsing this segment {x0} ∗ {y0}.
The following lemma shows one property of the join which we use during

the proof of Proposition 7.2.3.
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Lemma A.1.2. Let (X,x0) and (Y, y0) be basepointed CW-complexes. Then

X ∗ Y ' Σ(X ∧ Y ).

Proof. We will consider the reduced join, which is homotopy equivalent to

the non-reduced one, since it is obtained by collapsing the contractible sub-

complex {x0} ∗ {y0}. The first thing to observe is that we have a homeo-

morphism:

(X ∗ Y )/(X ∗ {y0} ∪ {x0} ∗ Y ) ∼= Σ(X ∧ Y ),

as one can check by looking at the identifications brought by the different

equivalence relations that are in play.

Now we note that the subcomplexes X ∗ {y0} and {x0} ∗ Y of X ∗ Y are

the cones on the copies of X and of Y contained in the join and, moreover,

their intersection is the basepoint of the reduced join, {x0}∗{y0}. Therefore

their union is a contractible subcomplex: quotienting that out, we get the

wanted homotopy equivalence.

Lemma A.1.3. Let V and W be orthogonal Z/2-representations and let G

be a finite group. If G acts orthogonally via Z/2-automorphisms on W , and

it acts trivially on V , then there exists a Z/2-homeomorphism:

S(V ) ∗ (S(W )/G) ∼= S(V ⊕W )/G.

Proof. By saying that G acts on W via Z/2-automorphisms, we mean that

we have an action

G→ O(W ) g 7→ αg

for which αg is a Z/2-equivariant map for all g.

As observed earlier, a point in the join corresponds to a formal linear

combination tx + (1 − t)y for x ∈ S(V ), y ∈ S(W )/G and 0 ≤ t ≤ 1,

identifying 0x and 0y with 0. Let v ∈ S(V ), w ∈ S(W ) and 0 ≤ t ≤ 1. We

denote with square brackets the G-orbit of a point. We define the following

map:

S(V ) ∗ (S(W )/G)→ S(V ⊕W )/G

tv + (1− t)[w] 7→ [(
√
tv,
√

1− tw)]

The map is well defined with respect to the G-action on S(W ), since the

action is trivial on V and the target is actually S(V ⊕W )/G, since v and w

are both unitary vectors. The reader can easily check that this map defines

a Z/2-homeomorphism.
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