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Introduction

A p-local �nite group consists of a �nite p-group S, together with a pair of
categories ðF ;LÞ, of which F is modeled on the conjugacy (or fusion) in a Sylow
subgroup of a �nite group. The category L is essentially an extension of F and
contains just enough extra information so that its p-completed nerve has many of
the same properties as p-completed classifying spaces of �nite groups. The main
purpose of this paper is to study when the set of objects of F or L can be changed
without changing the conjugacy encoded by F or the homotopy type of the nerve
of L. The tools introduced simplify the construction and manipulation of p-local
�nite groups in many cases.

We �rst recall the fusion and linking categories associated to a �nite group. Fix
a prime p, a �nite group G, and a Sylow p-subgroup S of G. A p-fusion category
for G is a category F ¼ FHS ðGÞ, whose object set is a set H of subgroups of S, and
whose morphisms are the homomorphisms between subgroups in H induced by
conjugation in G. The associated linking category L ¼ LHS ðGÞ has the same
objects, and morphisms from P to Q are given by the formula

MorLðP;QÞ ¼ fx 2 G jxP x
1 6Qg=OpðCGðP ÞÞ:

Here, Opð
Þ is the subgroup generated by elements of order prime to p. There is a
canonical quotient functor LHS ðGÞ
!FHS ðGÞ which sends the class of x to
conjugation by x. It was shown in [4] that the homotopy theory of the nerve
jLHS ðGÞj (for the right choice of H) is closely related to the p-local homotopy
theory of BG.

Fusion and linking categories were designed to a large extent to capture the
‘p-local structure’ of �nite groups, blocks, and p-completed classifying spaces in a
way which does not depend directly on the structure of the ambient group. Many
results in group theory, such as Alperin’s fusion theorem [1] and the work by
Alperin and Brou;ee on fusion in block theory [3], can be formulated in terms of
fusion categories. One is thus led to search for an axiomatic de�nition of
these concepts. The de�nition of a saturated fusion system F over a p-group S,
generalizing p-fusion categories of �nite groups, was �rst given by Puig [15]. A
simpli�ed (but equivalent) de�nition of a saturated fusion system, along with an
axiomatic de�nition of a ‘centric’ linking system, was later given in [5, x 1]. Here,
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the word ‘centric’ refers to the set of objects in the linking system, which will be
described in x 1. A p-local �nite group is then de�ned to be a triple ðS;F ;LÞ,
where S is a �nite p-group, F is a saturated fusion system over S, and L is a
centric linking system associated to F . The classifying space of such a triple is the
p-completed nerve jLj^p . For any S6G as above, ðS;F SðGÞ;LcSðGÞÞ (where the
categories are taken for appropriate families of subgroups) is a p-local �nite group
with classifying space jLcSðGÞj^p ’ BG^p .

The main goal of this paper is to examine the role of the set H of subgroups of
S on which the fusion and linking systems are de�ned; that is, to show when the
set can be changed without changing F and L in an ‘essential’ way. Related
questions have been studied extensively when F comes from a �nite group G, both
in connection with Alperin’s fusion theorem (cf. [1, 14]) and more indirectly in
connection with the study of homology decompositions (cf. [8, 10]). In a
subsequent paper [6], we use the tools developed in this paper to study the
extension theory of fusion systems and p-local �nite groups, in part motivated by
our desire to develop more ways of constructing p-local �nite groups that do not
come from groups. Such ‘exotic’ p-local �nite groups do exist for all primes, and
examples are given in [5, x 9; 19; 13; 7], but we still have no really good tools for
constructing them, nor any sense of how frequently they occur.

We now describe the results of the paper in more detail. We refer the reader to
x 1 for the de�nitions of abstract saturated fusion systems and centric linking
systems, and also of F -centric and F -radical subgroups for a fusion system F
(analogous to the usual concepts of p-centric subgroups and radical p-subgroups of
a �nite group). However, the precise de�nitions will not be essential to follow this
introductory discussion. We also refer the reader to the end of the introduction for
a list of notation which will be used throughout the paper.

One of the most diJcult problems, when constructing exotic fusion systems, is
showing that the fusion system one has constructed satis�es the axioms of
saturation (see De�nition 1.3). This job is clearly simpler if one only needs to
check the axioms on subgroups that are centric, rather than having to do so on all
subgroups. The following theorem is used several times in our paper [6], and can
be used to shorten the proof of saturation of the exotic fusion systems in [5, x 9].

THEOREM A. Let F be a fusion system over a �nite p-group S. Let H be a
set of subgroups of S closed under F -conjugacy, with the property that each
F -centric subgroup of S not in H is F -conjugate to some subgroup P 6S such that

OutSðP Þ \OpðOutF ðP ÞÞ 6¼ 1:

Assume that all morphisms in F are composites of restrictions of morphisms between
subgroups inH. IfF satis�es the axioms of saturation (De�nition 1.3)when applied to
subgroups of S inH, then F is saturated.

This theorem is restated and proven as Theorem 2.2. When H is the set of all
F -centric subgroups of S, then it is due to Puig [15, Theorem 1.17].

The condition on H implies in particular that H contains all F -centric
F -radical subgroups of S. When F is saturated, then it is equivalent to requiring
that H contain all F -centric F -radical subgroups, but this is not the case in
general (see the example at the end of x 2).
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Theorem A can be thought of as a converse to Alperin’s fusion theorem for
abstract fusion systems (as shown in [15, 2.13] and [5, Theorem A.10]), which says
that if F is a saturated fusion system, then it is generated by restrictions of
automorphisms of F -centric F -radical subgroups.

In many applications, it is useful to construct linking systems with respect to
diKerent sets of subgroups from the F -centric subgroups of S. If G is a �nite
group, then we call a p-subgroup P 6G p-quasicentric if OpðCGðP ÞÞ has order
prime to p, or, equivalently, if BCGðP Þ^p is the classifying space of some p-group.
When F is a saturated fusion system over a p-group S, then we make an
analogous de�nition of an F -quasicentric subgroup of S in x 3. These are the
subgroups which Puig called nihilcentralis;ees in [15, x 5] (see also [16]).

Our next theorem shows that the homotopy type of the classifying space of a p-local
�nite group ðS;F ;LÞ is also determined by a linking system based on any set of
F -quasicentric subgroups of S that contains at least those which are both F -centric
and F -radical. This result can also be interpreted as a statement about homology
decompositions for p-local �nite groups, and as such is motivated by [8, 1.20]
and [10, Theorem 1.5]. It is restated and proved as Theorem 3.5, and is essential
when studying ‘extensions’ of p-local �nite groups with p-group quotient in [6].

THEOREM B. Let ðS;F ;LÞ be a p-local �nite group. Then there exists a
category Lq containing L as a full subcategory, whose objects are the
F -quasicentric subgroups of S, and such that the inclusion of nerves jLj � jLqj
is a homotopy equivalence. Furthermore, if H is any collection of F -quasicentric
subgroups of S containing all P 6S which are both F -centric and F -radical, and
LH � Lq is the full subcategory whose objects are the subgroups in H, then the
inclusions of LH and L in Lq induce homotopy equivalences

jLHj ’ jLqj ’ jLj:

We conclude this paper, in x 4, with a very specialized family of examples:
fusion systems whose entire structure is controlled by a single p-subgroup. If G is a
�nite group which has no non-trivial normal subgroup of order prime to p, then G
is called p-constrained if there is a normal p-subgroup P / G such that CGðP Þ6P ,
or, equivalently, such that G=P can be identi�ed (via conjugation) with a
subgroup of OutðP Þ. In x 4, we give an analogous de�nition of a constrained fusion
system (De�nition 4.1), and then prove the following proposition (restated as
Proposition 4.3).

PROPOSITION C. Let F be a constrained saturated fusion system over a �nite
p-group S. Then there exists a unique p 0-reduced p-constrained �nite group G
such that F ¼ FSðGÞ.

For easy reference, we end the introduction with a list of notation and
terminology which is used throughout the paper:

† SylpðGÞ denotes the set of Sylow p-subgroups of G;
† OpðGÞ is the maximal normal p-subgroup of G;
† Op 0 ðGÞ is the maximal normal subgroup of G of order prime to p;
† G is p-reduced if OpðGÞ ¼ 1, and is p 0-reduced if Op 0 ðGÞ ¼ 1;
† OpðGÞ is the minimal normal subgroup of G of p-power index;
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† NGðP;QÞ ¼ fx 2 G jxP x
1 6Qg (for P;Q6G);
† cx denotes conjugation by x (g 7!xgx
1);
† NK

S ðP Þ ¼ fx 2 NSðP Þ j cx 2 Kg (for P 6S and K6AutðP Þ);
† HomGðH;KÞ (for H;K6G) is the set of homomorphisms from H to K

induced by conjugation in G;
† AutGðHÞ ¼ HomGðH;HÞ, and OutGðHÞ ¼ AutGðHÞ=InnðHÞ;
† in a fusion system F , HomF ðP;QÞ ¼ MorF ðP;QÞ, IsoF ðP;QÞ ¼ HomF ðP;QÞ if
jP j ¼ jQj, AutF ðP Þ ¼ IsoF ðP; P Þ, and OutF ðP Þ ¼ AutF ðP Þ=InnðPÞ.

Acknowledgements. All �ve authors would like to thank the University of
Aberdeen, the University of Paris 13 and the CRM in Barcelona for giving us the
opportunity to get together on several occasions while doing this work.

1. A quick review of p-local �nite groups

We �rst recall the de�nitions of a fusion system, and a saturated fusion system,
in the form given in [5].

DEFINITION 1.1 [15; 5, De�nition 1.1]. A fusion system over a �nite p-group
S is a category F , where ObðFÞ is the set of all subgroups of S, and which
satis�es the following two properties for all P;Q6S:

† HomSðP;QÞ � HomF ðP;QÞ � InjðP;QÞ; and
† each ’ 2 HomF ðP;QÞ is the composite of an isomorphism in F followed by

an inclusion.

We next specify certain collections of subgroups relative to a given fusion system.
If F is a fusion system over a �nite p-subgroup S, then two subgroups P;Q6S are
said to be F -conjugate if they are isomorphic as objects of the category F .

DEFINITION 1.2. Let F be a fusion system over a �nite p-subgroup S.
† A subgroup P 6S is F -centric if CSðP 0Þ ¼ ZðP 0Þ for all P 06S that are
F -conjugate to P .

† A subgroup P 6S is said to be F -radical if OutF ðP Þ is p-reduced; that is, if
OpðOutF ðP ÞÞ ¼ 1.

If F ¼ F SðGÞ for some �nite group G, then P 6S is F -centric if and only if P
is p-centric in G (that is, ZðP Þ 2 SylpðCGðP ÞÞ), and P is F -radical if and only if
NGðP Þ=ðP � CGðP ÞÞ is p-reduced. Note the diKerence between F -radical subgroups
and radical p-subgroups: a p-subgroup P 6G is radical if NGðP Þ=P is p-reduced.
The family of subgroups that are F -centric and F -radical is in general smaller
than the family of p-centric radical p-subgroups. This appears, for example, in
connection with weights of the principal block in Alperin’s weight conjecture [2,
x 3], and in earlier work of the third named author [10, Theorems 1.2--1.5].

The following additional de�nitions and conditions are needed in order for these
systems to be very useful.

DEFINITION 1.3 ([15], see [5, De�nition 1.2]). Let F be a fusion system over
a p-group S.

† A subgroup P 6S is fully centralized in F if jCSðP Þj> jCSðP 0Þj for all P 06S
that are F -conjugate to P .
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† A subgroup P 6S is fully normalized in F if jNSðP Þj> jNSðP 0Þj for all P 06S
that are F -conjugate to P .

† A system F is a saturated fusion system if the following two conditions hold:
(I) for all P 6S that are fully normalized in F , P is fully centralized in F

and AutSðP Þ 2 SylpðAutF ðP ÞÞ;
(II) if P 6S and ’ 2 HomF ðP; SÞ are such that ’P is fully centralized, and if

we set

N’ ¼ fg 2 NSðP Þ j’cg’
1 2 AutSð’P Þg;

then there is ’ 2 HomF ðN’; SÞ such that ’jP ¼ ’.

If G is a �nite group and S 2 SylpðGÞ, then the category F SðGÞ de�ned in the
introduction is a saturated fusion system (see [5, Proposition 1.3]).

We now turn to linking systems associated to abstract fusion systems.

DEFINITION 1.4 [5, De�nition 1.7]. Let F be a fusion system over the p-group
S. A centric linking system associated to F is a category L whose objects are the
F -centric subgroups of S, together with a functor �:L
!F c, and ‘distinguished’
monomorphisms P 
!�P AutLðP Þ for each F -centric subgroup P 6S, that satisfy the
following conditions.

(A) The functor � is the identity on objects. For each pair of objects
P;Q 2 L, ZðP Þ acts freely on MorLðP;QÞ by composition (upon identifying ZðP Þ
with �P ðZðP ÞÞ6AutLðP Þ), and � induces a bijection

MorLðP;QÞ=ZðP Þ 
!
ffi

HomF ðP;QÞ:

(B) For each F -centric subgroup P 6S and each x 2 P ,

�ð�P ðxÞÞ ¼ cx 2 AutF ðP Þ:

(C) For each f 2 MorLðP;QÞ and each x 2 P , f � �P ðxÞ ¼ �Qð�fðxÞÞ � f.

A p-local �nite group is de�ned to be a triple ðS;F ;LÞ, where S is a �nite p-group,
F is a saturated fusion system over S, and L is a centric linking system associated
to F . The classifying space of the triple ðS;F ;LÞ is the p-completed nerve jLj^p .

For any �nite group G with Sylow p-subgroup S, the category LcSðGÞ de�ned
in the introduction is easily seen to be a centric linking system associated to
FSðGÞ. Thus ðS;FSðGÞ;LcSðGÞÞ is a p-local �nite group, with classifying space
jLcSðGÞj^p ’ BG^p (see [4, Proposition 1.1]).

The following de�nitions are somewhat more specialized, and are translations to
the setting of fusion systems of the concepts of a normal p-subgroup of a �nite
group, and of strongly and weakly closed subgroups.

DEFINITION 1.5. Let F be a saturated fusion system over a p-group S. Then
for any normal subgroup Q / S:

(a) Q is strongly closed in F if no element of Q is F -conjugate to an element of
S nQ;

(b) Q is weakly closed in F if no other subgroup of S is F -conjugate to Q; and
(c) Q is normal in F if each morphism � 2 HomF ðP; P 0Þ in F extends to some

� 2 HomF ðPQ;P 0QÞ such that �ðQÞ ¼ Q.
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Equivalently, Q / S is normal in F if and only if the normalizer fusion system
NF ðQÞ is equal to F as fusion systems over S (see [5, De�nition 6.1]). The next
proposition, which is motivated by [14, Proposition IV.2], gives two equivalent
conditions for a subgroup to be normal in F .

PROPOSITION 1.6. Let F be a fusion system over S. Then the following
conditions on a subgroup Q6S are equivalent:

(a) Q is normal in F ;
(b) Q is strongly closed in F and is contained in all F -radical subgroups of S;
(c) Q is weakly closed in F and is contained in all F -radical subgroups of S.

Proof. Assume �rst that Q is normal in F . In particular, if an element x 2 Q
is F -conjugate to an element y 2 S nQ, then the isomorphism in F from hxi to
hyi extends to a morphism Q ¼ hQ; xi
!hQ; yi. But such a morphism clearly
cannot send Q to itself. Thus Q is strongly closed in F . If P 6S does not contain
Q, then NPQðP Þ=P is a non-trivial p-subgroup of OutF ðP Þ, which is in fact
normal there. To see normality notice that if � 2 AutF ðP Þ then � extends to
� 2 AutF ðPQÞ since Q is normal in F , so for all x 2 NPQðP Þ we have

�cx�

1 ¼ ð�cx�
1ÞjP ¼ c�ðxÞ 2 AutPQðP Þ:

Hence such a subgroup P cannot be F -radical. Thus, all F -radical subgroups of S
contain Q. This shows that (a) ) (b).

Condition (b) clearly implies (c), and so it remains to show that (c)) (a).
Assume that Q is weakly closed in F , and that all F -radical subgroups contain Q.
Then by Alperin’s fusion theorem, each morphism in F is a composite of
morphisms, each of which is the restriction of a morphism between subgroups
containing Q, and which necessarily sends Q to itself (since Q is weakly closed). In
other words, each ’ 2 HomF ðP; P 0Þ extends to a morphism ’ 2 HomF ðPQ;P 0QÞ
which sends Q to itself, and hence Q is normal in F . �

2. Centric and radical subgroups determine saturation

Given a fusion system which is not known to come from a group (or a block), it
turns out to be diJcult in general to show that it is saturated when using the
de�nition directly. This is one of the obstacles one encounters when trying to
construct p-local �nite groups that do not come from groups.

The main result of this section, Theorem 2.2, says that it suJces to check the
axioms of saturation on the centric subgroups, in the sense that any fusion system
which satis�es these axioms for its centric subgroups generates a saturated fusion
system in a way made precise below. In fact, our result is stronger than that. We
prove that it suJces to check the axioms of saturation on those subgroups that
are centric and radical, and a much weaker condition on the centric subgroups
that are not radical.

Before stating the main results, we make some de�nitions.

DEFINITION 2.1. Let F be any fusion system over a �nite p-group S, and let
H be a set of subgroups of S closed under F -conjugacy. Then

(a) F is H-generated if every morphism in F is a composite of restrictions of
morphisms in F between subgroups in H;

(b) F is H-saturated if Conditions (I) and (II) hold in F for all subgroups
P 2 H.
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In terms of these de�nitions, Alperin’s fusion theorem for abstract fusion
systems (in the form shown in [5, Theorem A.10]) can be reformulated by saying
that if F is a saturated fusion system over S, and H is the family of F -centric,
F -radical subgroups of S, then F is H-generated.

Our main result in this section can be thought of as a converse to this form of
the fusion theorem. In practice, it often simpli�es the task of deciding whether a
fusion system is saturated or not. As one example, the original proof in [5] that
the fusion systems constructed there are saturated [5, Proposition 9.1] becomes far
simpler when we can use Theorem 2.2, applied with H the set of F -centric
subgroups of S.

THEOREM 2.2. Let F be a fusion system over a �nite p-group S, and let H be
a set of subgroups of S closed under F -conjugacy that contains all F -centric,
F -radical subgroups of S. Assume that F is H-generated and H-saturated, and that

(�) each F -conjugacy class of subgroups of S that are F -centric but not in H
contains at least one subgroup P such that OutSðP Þ \OpðOutF ðP ÞÞ 6¼ 1.

Then F is saturated.

Note that the condition that H contain all F -centric, F -radical subgroups of S
is implied by (�); but we keep it in the statement for the sake of emphasis.
Condition (�) might at �rst sight seem arti�cial, but we construct an example at
the end of this section showing that it is, in fact, necessary, and not implied by
the other hypotheses of the theorem.

We �rst discuss the relation between Conditions (I) and (II) in De�nition 1.3,
and certain other, similar conditions on fusion systems. We recall the de�nition of
N’ for any given ’ 2 MorF ðP;QÞ,

N’ ¼ fx 2 NSðP Þ j’cx’
1 2 AutSð’ðP ÞÞg:

LEMMA 2.3. Let F be a fusion system over a p-group S, and let H be a set of
subgroups of S closed under F -conjugacy. Consider the following conditions on F .
ðIÞH For each subgroup P 2 H fully normalized in F , P is fully centralized and

AutSðP Þ 2 SylpðAutF ðP ÞÞ.
ðI 0ÞH Each P 2 H is F -conjugate to a fully centralized subgroup P 0 2 H such

that AutSðP 0Þ 2 SylpðAutF ðP 0ÞÞ.
ðIIÞH For each P 2 H, and each ’ 2 HomF ðP; SÞ such that ’ðP Þ is fully

centralized in F , ’ extends to a morphism ’ 2 HomF ðN’; SÞ.
ðIIAÞH Each F -conjugacy class P � H contains a fully normalized subgroupbPP 2 P with the following property: for all P 2 P, there exists a morphism

’ 2 HomF ðNSðP Þ; NSð bPP ÞÞ such that ’ðP Þ ¼ bPP .
ðIIBÞH For each fully normalized subgroup bPP 2 H and each ’ 2 AutF ð bPP Þ, there

is a morphism ’ 2 HomF ðN’;NSð bPP ÞÞ that extends ’.
Then

(a) ðIÞH () ðI 0ÞH; and
(b) ðIÞH þ ðIIÞH ¼) ðIIAÞH þ ðIIBÞH ¼) ðIIÞH.

Proof. (a) Condition ðIÞH clearly implies ðI 0ÞH, since every P 6S is F -
conjugate to a fully normalized subgroup. To see the converse, assume P 2 H is
fully normalized. By ðI 0ÞH we can choose P 0 2 H that is F -conjugate to P , fully
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centralized, and satis�es AutSðP 0Þ 2 SylpðAutF ðP 0ÞÞ. Then

jAutSðP 0Þj � jCSðP 0Þj ¼ jNSðP 0Þj6 jNSðP Þj
¼ jAutSðP Þj � jCSðP Þj6 jAutSðP 0Þj � jCSðP 0Þj;

the �rst inequality holds since P is fully normalized, and the second by the
assumptions on P 0. Thus all of these inequalities are equalities, and so P is fully
centralized and AutSðP Þ 2 SylpðAutF ðP ÞÞ.

(b) Assume ðIÞH and ðIIÞH hold; we next prove that this implies ðIIAÞH and
ðIIBÞH. We �rst check Condition ðIIBÞH. Let b’’ ¼ � bPP � ’ where � bPP is the inclusion

of bPP in S. Since bPP is fully normalized, Condition ðIÞH implies that bPP is also fully
centralized. By Condition ðIIÞH, b’’ extends to ’ 2 HomF ðNb’’; SÞ, where

Nb’’ ¼ fg 2 NSð bPP Þ j b’’cgb’’
1 2 AutSðb’’ð bPP ÞÞg
¼ fg 2 NSð bPP Þ j’cg’
1 2 AutSð bPP Þg ¼ N’:

Furthermore, Imð’Þ6NSð bPP Þ, since bPP / Nb’’.
Next we check that ðIIAÞH holds. Fix an F -conjugacy class P � H, and choose

a fully normalized subgroup bPP 2 P. Since ðIÞH holds, bPP is also fully centralized,

and AutSð bPP Þ 2 SylpðAutF ð bPP ÞÞ. Thus for any P 2 P and any ’ 2 IsoF ðP; bPP Þ, there
exists � 2 AutF ðP Þ such that ’�AutSðP Þ�
1’
1 6AutSð bPP Þ. Then

N’� :¼ fg 2 NSðP Þ j’�cg�
1’
1 2 AutSð bPP Þg ¼ NSðP Þ;

and hence the morphism ’� extends to ’ 2 HomF ðNSðP Þ; SÞ by ðIIÞH. Then
’ðP Þ ¼ ’�ðP Þ ¼ bPP , and hence Imð’Þ6NSð bPP Þ.

It remains to prove the last implication. Assume ðIIAÞH and ðIIBÞH; we must
prove ðIIÞH. Fix P 2 H and ’ 2 HomF ðP; SÞ such that P 0 :¼ ’ðP Þ is fully
centralized in F . Using ðIIAÞH, choose a fully normalized subgroup bPP that is
F -conjugate to P and P 0, and morphisms

 2 HomF ðNSðP Þ; NSð bPP ÞÞ and  0 2 HomF ðNSðP 0Þ; NSð bPP ÞÞ
such that  ðP Þ ¼  0ðP 0Þ ¼ bPP . Set e’’ ¼ ð 0jP 0 Þ � ’ � ð jP Þ
1 2 AutF ð bPP Þ.

For each x 2 N’, there exists y 2 NSðP 0Þ such that ’cx’

1 ¼ cy as elements of

AutðP 0Þ. Then as automorphisms of bPP , e’’c ðxÞe’’
1 ¼ c 0ðyÞ. This shows that
 ðN’Þ6Ne’’. By ðIIBÞH, e’’ extends to a morphism b’’ 2 HomF ðNe’’;NSð bPP ÞÞ.

Now �x x 2 N’, and let y 2 NSðP 0Þ be such that ’cx’

1 ¼ cy as elements of

AutðP 0Þ. The elements b’’ ðxÞ;  0ðyÞ 2 NSð bPP Þ induce the same conjugation action

on bPP , and thus diKer by an element in CSð bPP Þ. Also, since P 0 is fully centralized,
 0ðCSðP 0ÞÞ ¼ CSð bPP Þ, and hence

b’’ ðxÞ 2  0ðyÞ � CSð bPP Þ ¼  0ðy � CSðP 0ÞÞ6 0ðNSðP 0ÞÞ:

Thus b’’ ðN’Þ6 0ðNSðP 0ÞÞ, and so b’’ �  factors through some morphism ’ 2
HomF ðN’;NSðP 0ÞÞ that extends ’. This �nishes the proof of Condition ðIIÞH. �

As an immediate consequence of Lemma 2.3, we obtain the following alternative
characterization of the conditions of saturation: a fusion system F over S is
saturated if and only if it satis�es the conditions ðI 0ÞH, ðIIAÞH and ðIIBÞH where H
is the set of all subgroups P 6S.
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NOTATION. Following the notation introduced in Lemma 2.3 for the
conditions stated there, we also write ð
ÞQ or ð
Þ>Q for ð
ÞH when H ¼ fQg
or H ¼ fP jQ� P 6Sg, respectively. Given a fusion system F over S, let S be the
set of all subgroups of S. For P 6S, let S>P ! S>P be the sets of subgroups of S
which contain, or strictly contain, P .

We will now prove two lemmas which allow us to prove Theorem 2.2 by
induction on the number of F -conjugacy classes of subgroups of S not in H.

LEMMA 2.4. Let F be a fusion system over a �nite p-group S, and let H be a
set of subgroups of S closed under F -conjugacy. Let P be an F -conjugacy class of
subgroups of S that are maximal among those not in H. Assume F is H-generated
and H-saturated. Then the following hold for any P 2 P that is fully normalized
in F :

(a) NF ðP Þ is S>P -saturated;
(b) each ’ 2 AutF ðP Þ is a composite of restrictions of morphisms in NF ðP Þ

between subgroups strictly containing P ;
(c) F is ðH [ PÞ-saturated if NF ðP Þ is S>P -saturated.

Proof. By a proper P-pair will be meant a pair ðQ;P Þ, where P �Q6NSðP Þ
and P 2 P. Two proper P-pairs ðQ;P Þ and ðQ 0; P 0Þ will be called F -conjugate if
there is an isomorphism ’ 2 IsoF ðQ;Q 0Þ such that ’ðP Þ ¼ P 0. A proper P-pair
ðQ;P Þ will be called fully normalized if jNNSðP ÞðQÞj> jNNSðP 0ÞðQ

0Þj for all ðQ 0; P 0Þ
in the same F -conjugacy class.

The proof of the lemma is based on the following statements, whose proof will
be carried out in Steps 1 to 4.

(1) If ðQ;P Þ is a fully normalized proper P-pair, then Q is fully centralized in
F and

AutNSðP ÞðQÞ 2 SylpðAutNF ðP ÞðQÞÞ:

(2) For each proper P-pair ðQ;P Þ, and each fully normalized proper P-pair
ðQ 0; P 0Þ that is F -conjugate to ðQ;P Þ, there is some morphism

 2 HomF ðNNSðP ÞðQÞ; NNSðP 0ÞðQ
0ÞÞ

such that  ðP Þ ¼ P 0 and  ðQÞ ¼ Q 0.
(3) There is a subgroup bPP 2 P which is fully centralized in F , and which has

the property that, for all P 2 P, there is a morphism ’ 2 HomF ðNSðP Þ; NSð bPP ÞÞ
such that ’ðP Þ ¼ bPP .

(4) Let ðQ;P Þ be a proper P-pair such that P is fully normalized in F . If Q is
fully normalized in NF ðP Þ, then ðQ;P Þ is fully normalized. If Q is fully centralized
in NF ðP Þ, then Q is fully centralized in F .

Note that point (3) implies that bPP is fully normalized in F , and that any other
P 0 2 P which is fully normalized in F has the same properties.

Assuming points (1)--(4) have been shown, one proves the lemma as follows.
(a) We show that Conditions (I) and (II) hold in NF ðP Þ for all Q 2 S>P . If

Q�P is fully normalized in NF ðP Þ, then the proper P-pair ðQ;P Þ is fully
normalized by (4), and hence Condition (I) holds in NF ðP Þ by (1). It remains to
show Condition (II). Also, by (4) again, if P �Q6NSðP Þ and Q is fully
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centralized in NF ðP Þ, then it is fully centralized in F . Hence (II) holds
automatically for morphisms ’ 2 HomNF ðP ÞðQ;NSðP ÞÞ, since it holds in F .

(b) Fix ’ 2 AutF ðP Þ. Since F is H-generated, there are subgroups

P ¼ P0; P1; . . . ; Pk ¼ P in P; and Pi �Qi6S; Qi 2 H;

and morphisms ’i 2 HomF ðQi; SÞ (for 06 i6 k
 1), such that ’iðPiÞ ¼ Piþ1 and
’ ¼ ’k
1jPk
1 � . . . � ’0jP0

. Upon replacing each Qi by NQi
ðPiÞ�Pi, we can assume

that Qi6NSðPiÞ. By (3), there are morphisms �i 2 HomF ðNSðPiÞ; NSðP ÞÞ for
each i such that �iðPiÞ ¼ P , where we take �0 ¼ �k to be the identity. Upon
replacing each ’i by �i � ’i � �
1i 2 HomF ð�iðQiÞ; SÞ, we can arrange that Pi ¼ P
for all i. Thus ’ is a composite of restrictions of morphisms in NF ðP Þ between
subgroups strictly containing P .

(c) Assume that NF ðP Þ is S>P -saturated. By Lemma 2.3, it is enough to check
that Conditions ðI 0ÞP , ðIIAÞP , and ðIIBÞP are satis�ed in F . Condition ðIIAÞP
follows from point (3). Since AutF ðP Þ ¼ AutNF ðP ÞðP Þ, it is clear that Condition
ðIIBÞP holds in F . Finally, since AutSðP Þ ¼ AutNSðP ÞðP Þ, and since the properties

of bPP as described in point (3) hold for every fully normalized subgroup, ðIÞP also
holds, and this proves that F is ðH [ PÞ-saturated.

In order to �nish the proof, it remains to prove points (1)--(4).
Step 1. For any proper P-pair ðQ;P Þ, let KP 6AutðQÞ be de�ned by

KP ¼ f’ 2 AutðQÞ j’ðP Þ ¼ Pg:

If the pair ðQ;P Þ is fully normalized, then Q is fully KP -normalized in F in the
sense of [5, De�nition A.1]. Hence by [5, Proposition A.2(a)], Q is fully centralized
and

AutNSðP ÞðQÞ ¼ AutSðQÞ \KP 2 Sylp
�
AutF ðQÞ \KP

�
¼ SylpðAutNF ðP ÞðQÞÞ:

More precisely, this follows from the proof of [5, Proposition A.2], where we need
only know that F satis�es the axioms of saturation on subgroups containing Q
and its F -conjugates.
Step 2. Let ðQ 0; P 0Þ be any fully normalized proper P-pair of subgroups of S

that is F -conjugate to ðQ;P Þ. Let ’ 2 IsoF ðQ;Q 0Þ such that ’ðP Þ ¼ P 0. Since
ðQ 0; P 0Þ is fully normalized, Q 0 is fully centralized and

AutNSðP 0ÞðQ
0Þ 2 SylpðAutNF ðP 0ÞðQ

0ÞÞ

by point (1).
Since ’AutNSðP ÞðQÞ’


1 is a p-subgroup of AutNF ðP 0ÞðQ
0Þ, there is a morphism

� 2 AutNF ðP 0ÞðQ
0Þ such that

�’AutNSðP ÞðQÞ’

1�
1 6AutNSðP 0ÞðQ

0Þ:

Since F is H-saturated, �’ extends to a morphism f�’�’ 2 HomF ðN�’; SÞ by ðIIÞQ,
where

N�’ ¼ fx 2 NSðQÞ j�’cx’
1�
1 2 AutSðQ 0Þg>NNSðP ÞðQÞ:

Set  ¼ f�’�’jNNS ðP ÞðQÞ
2 HomF ðNNSðP ÞðQÞ; SÞ. Then Imð Þ6NNSðP 0ÞðQ

0Þ by con-
struction. Moreover,  jQ ¼ �’jQ and  jP ¼ �’jP , and hence  ðP Þ ¼ P 0 and
 ðQÞ ¼ Q 0.
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Step 3. We �rst show, for any P; P 0 2 P, that there is a subgroup P 00 2 P, and
morphisms  2 HomF ðNSðP Þ; NSðP 00ÞÞ and  0 2 HomF ðNSðP 0Þ; NSðP 00ÞÞ, such
that  ðP Þ ¼ P 00 ¼  0ðP 0Þ.

Let T be the set of all sequences

! ¼
�
P ¼ P0; Q0; ’0;P1; Q1; ’1; . . . ;Pk
1; Qk
1; ’k
1;Pk ¼ P 0

�
such that Pi �Qi6NSðPiÞ, ’i 2 HomF ðQi;NSðPiþ1ÞÞ, and ’iðPiÞ ¼ Piþ1. Let
T r � T be the subset of those ! for which there is no 16 i6 k
 1 such that

Qi ¼ NSðPiÞ ¼ ’i
1ðQi
1Þ. Let T 
!
R T r be the ‘reduction’ map, which removes

any Pi such that Qi ¼ NSðPiÞ ¼ ’i
1ðQi
1Þ (and replaces ’i
1 and ’i by their

composite).
De�ne

Ið!Þ ¼ f06 i6 k
 1 jQi �NSðPiÞ and ’iðQiÞ�NSðPiþ1Þg:
If ! 2 T and Ið!Þ 6¼ ;, de�ne

%ð!Þ ¼ min
i2Ið!Þ
½Qi : Pi&> p:

The main observation needed to prove point (3) is that there exists an element
! 2 T r such that Ið!Þ ¼ ;. Note �rst that T 6¼ ;, since F is H-generated (and
since Q�P implies NQðP Þ�P ). Hence (by the existence of the retraction functor
R) T r 6¼ ;.

Fix an element ! 2 T r such that Ið!Þ 6¼ ;. We will construct b!! 2 T r such that
either Iðb!!Þ ¼ ;, or %ðb!!Þ > %ð!Þ. For each i 2 Ið!Þ, choose a fully normalized proper
P-pair ðQ 00i ; P 00i Þ that is F -conjugate to ðQi; PiÞ, and apply (2) to choose
homomorphisms

 i 2 HomF
�
NNSðPiÞðQiÞ; S

�
and  0i 2 HomF

�
NNSðPiþ1Þð’iðQiÞÞ; S

�
such that  iðPiÞ ¼  0iðPiþ1Þ ¼ P 00i and  iðQiÞ ¼  0iðQiþ1Þ ¼ Q 00i . SeteQQi ¼ NNSðPiÞðQiÞ�Qi and eQQ 0i ¼  0i�NNSðPiþ1Þð’iðQiÞÞ

�
�  0iðQiÞ:

Note that if ðQ;P Þ is a proper P-pair with P �Q�NSðP Þ, then NNSðP ÞðQÞ�Q.
Thus upon replacing the sequence ðPi;Qi; ’i;Piþ1Þ in ! by

ðPi; eQQi;  i;P
00
i ; eQQ 0i ; ð 0iÞ
1;Piþ1Þ

and similarly for the other components of Ið!Þ, we obtain a new element ! 0 2 T ,
such that either Ið! 0Þ ¼ ; or %ð! 0Þ > %ð!Þ (by construction ½ eQQi : Pi& > ½Qi : Pi&
and ½ eQQ 0i : P 0& > ½Qi : Pi&). Then b!! ¼ Rð! 0Þ 2 T r is also such that either Iðb!!Þ ¼ ; or
%ðb!!Þ > %ð!Þ.

Since the function % is bounded above, it follows by induction that there is
! 2 T r such that Ið!Þ ¼ ;. Write

! ¼
�
P0; Q0; ’0; . . . ;Pk
1; Qk
1; ’k
1;Pk

�
2 T r ðwith P0 ¼ P; Pk ¼ P 0Þ:

The assumption Ið!Þ ¼ ; implies that for each i, either Qi ¼ NSðPiÞ (hence
jNSðPiÞj6 jNSðPiþ1Þj), or ’iðQiÞ ¼ NSðPiþ1Þ (hence jNSðPiÞj> jNSðPiþ1Þj).

Thus when ! 2 T r, there is no 16 i6 k
 1 such that jNSðPiÞj < jNSðPi
1Þj and
also jNSðPiÞj < jNSðPiþ1Þj. So if we choose 06 j6 k such that jNSðPjÞj is maximal,
then

jNSðP Þj6 jNSðP1Þj6 jNSðP2Þj6 . . . 6 jNSðPjÞj;
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and

jNSðPjÞj> jNSðPj
1Þj> . . . > jNSðPk
1Þj> jNSðP 0Þj:
Since Ið!Þ ¼ ;, this implies thatQi ¼ NSðPiÞ for all i < j, and that’iðQiÞ ¼ NSðPiþ1Þ
for all j6 i6 k
 1. So upon setting P 00 ¼ Pj, we obtain homomorphisms

 ¼ ’j
1 � . . . � ’0 2 HomF ðNSðP Þ; NSðP 00ÞÞ
and

 0 ¼ ð’k
1 � . . . � ’jÞ
1 2 HomF ðNSðP 0Þ; NSðP 00ÞÞ

such that  ðP Þ ¼ P 00 ¼  0ðP 0Þ.
This was shown for an arbitrary pair of subgroups P; P 0 2 P. By successively

applying the above construction to the subgroups in the F -conjugacy class P, it
now follows easily that there is some bPP 2 P such that for all P 2 P, there is a
morphism ’ 2 HomF ðNSðP Þ; NSð bPP ÞÞ such that ’ðP Þ ¼ bPP . Note that bPP is fully

normalized since NSð bPP Þ contains an injective image of any other NSðP Þ for P 2 P.
For the same reason, bPP is fully centralized in F : its centralizer contains an
injective image of the centralizer of any other subgroup in the F -conjugacy class P.
Step 4. Fix a proper P-pair ðQ;P Þ such that P is fully normalized in F . By (3),

the pair ðNSðP Þ; P Þ is F -conjugate to ðNSð bPP Þ; bPP Þ. Hence for every P 0 2 P, there is

 2 HomF ðNSðP 0Þ; NSðP ÞÞ
such that  ðP 0Þ ¼ P .

Assume Q is fully normalized in NF ðP Þ. Let ðQ 0; P 0Þ be any proper P-pair
F -conjugate to ðQ;P Þ, and choose  as above. Set Q 00 ¼  ðQ 0Þ. Then  sends
NNSðP 0ÞðQ

0Þ injectively into NNSðP ÞðQ
00Þ. So

jNNSðP 0ÞðQ
0Þj6 jNNSðP ÞðQ

00Þj6 jNNSðP ÞðQÞj;

where the last inequality holds since Q is fully normalized in NF ðP Þ. This shows
that the pair ðP;QÞ is fully normalized.

Finally, assume Q is fully centralized in NF ðP Þ, and let Q 0 be any other
subgroup in the F -conjugacy class of Q. Fix ’ 2 IsoF ðQ;Q 0Þ, and set P 0 ¼ ’ðP Þ.
Again, choose  as above, and set Q 00 ¼  ðQ 0Þ. Then jCSðQ 0Þj6 jCSðQ 00Þj since  
sends the �rst subgroup injectively into the second, and jCSðQ 00Þj6 jCSðQÞj since
Q is fully centralized in NF ðP Þ and the pairs ðQ;P Þ and ðQ 00; P Þ are F -conjugate.
This shows that Q is fully centralized in F . �

Lemma 2.4 reduces the problem of proving P-saturation, for an F -conjugacy
class P, to the case where P ¼ fPg and P is normal in F . This case is handled in
the next lemma.

LEMMA 2.5. Let F be a fusion system over a p-group S. Assume that P / S is
normal in F , and that F is S>P -generated and S>P -saturated. Assume
furthermore that either P is not F -centric, or OutSðP Þ \OpðOutF ðP ÞÞ 6¼ 1.
Then F is S>P -saturated.

Proof. De�ne

P � ¼ fx 2 S j cx 2 OpðAutF ðP ÞÞg:

It follows from the de�nition that P � / S, and we claim that P � is strongly closed
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in F . Assume that x 2 P � is F -conjugate to y 2 S. Since P is normal in F , there
exists  2 HomF ðhx; P i; hy; P iÞ that satis�es  ðP Þ ¼ P and  ðxÞ ¼ y. In
particular,  � cx �  
1 ¼ cy. It follows that y 2 P �, since cx 2 OpðAutF ðP ÞÞ.

Note also that P �>P � CSðP Þ. So by the assumption

OutSðP Þ \OpðOutF ðP ÞÞ 6¼ 1

if P is F -centric, or by de�nition if P is not F -centric, P � P � in all cases.
Since F is assumed to be S>P -saturated, we need only to prove Conditions ðIÞP

and ðIIÞP . We �rst prove that these conditions follow from the following
statement:

(��) each ’ 2 AutF ðP Þ extends to some ’ 2 AutF ðP �Þ.
Since P is normal in F , it is the only subgroup in its F -conjugacy class, and hence
it is fully centralized and fully normalized. It is also clear that P � is fully
normalized in F , since P � / S. Hence AutSðP �Þ 2 SylpðAutðP �ÞÞ by ðIÞ>P . The
restriction map from AutF ðP �Þ to AutF ðP Þ is surjective by (��), and so
AutSðP Þ 2 SylpðAutF ðP ÞÞ. Therefore Condition ðIÞP holds.

Next we prove Condition ðIIÞP : that each automorphism ’ 2 AutF ðP Þ extends
to a morphism de�ned on N’. By (��), ’ extends to some  2 AutF ðP �Þ.
Consider the groups of automorphisms

K ¼
�
� 2 AutSðP �Þ

�� �jP ¼ cx for some x 2 N’

�
;

K0 ¼
�
� 2 AutF ðP �Þ

�� �jP ¼ IdP
�
/AutF ðP �Þ:

By de�nition, for all x 2 N’, we have ð cx 
1ÞjP ¼ �jP for some � 2 AutSðP �Þ. In
other words, as subgroups of AutðP �Þ,

 K 
1 6
�
 cx 


1 jx 2 N’

�
� ð K0 


1Þ6AutSðP �Þ � ð K0 

1Þ:

In general, if S 2 SylpðGÞ, H / G, and P 6SH is a p-subgroup, then there is x 2 H
such that P 6 xSx
1. Applied to this situation (with G ¼ AutF ðP �Þ, S ¼ AutSðP �Þ,
H ¼  K0 


1, and P ¼  K 
1), we see that there is � 2 K0 such that

ð �ÞKð �Þ
1 ¼ ð � 
1Þð K 
1Þð � 
1Þ
1 6AutSðP �Þ:
Also, P � is fully centralized in F by ðIÞ>P , since P � is fully normalized. So by
ðIIÞ>P ,  � 2 AutF ðP �Þ extends to a morphism ’ de�ned on NK

S ðP �Þ>N’, and
’jP ¼  jP ¼ ’ since �jP ¼ IdP .

In order to �nish the proof, it remains to prove (��). Since any ’ 2 AutF ðP Þ is
a composite of automorphisms of P which extend to strictly larger subgroups,
it suJces to show (��) when ’ itself extends to e’’ 2 IsoF ðQ1; Q2Þ, where Qi � P .
Note that e’’ðQ1 \ P �Þ ¼ Q2 \ P � ð1Þ
since P � is strongly closed in F .

We show (��) by induction on the index ½P � : P � \Q1& ¼ ½P � : P � \Q2&. If this
index is 1, that is, if Q1 >P �, then e’’ðP �Þ ¼ P � by (1), and hence ’ :¼ e’’jP � lies in
AutF ðP �Þ and extends ’.

Now assume Q1 � P �, let Q3 be any subgroup F -conjugate to Q1 and Q2 and fully
normalized in F , and �x ’ 2 IsoF ðQ2; Q3Þ. Upon replacing e’’ by  and by  � e’’, we
are reduced to proving the result when the target group is fully normalized. So
assume Q2 is fully normalized (and hence, by ðIÞ>P , fully centralized).
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This time, consider the groups of automorphisms

K ¼
�
� 2 AutF ðQ2Þ

�� �jP 2 OpðAutF ðP ÞÞ
�
;

K0 ¼
�
� 2 AutF ðQ2Þ

�� �jP ¼ IdP
�
:

Both K and K0 are normal subgroups of AutF ðQ2Þ. Also, K=K0 is a p-group,
since there is a monomorphism K=K0
!OpðAutF ðQ2ÞÞ. So any two Sylow
p-subgroups of K are conjugate by an element of K0.

By de�nition, AutP � ðQ1Þ is a p-subgroup of AutF ðQ1Þ, all of whose elements
restrict to elements of OpðAutF ðP ÞÞ. Hence e’’AutP � ðQ1Þe’’
1 is a p-subgroup of K.
Since Q2 is fully normalized, AutSðQ2Þ 2 SylpðAutF ðQ2ÞÞ, and hence AutP � ðQ2Þ ¼
K \ AutSðQ2Þ is a Sylow p-subgroup of K. Thus there is � 2 K0 such that

�e’’AutP � ðQ1Þe’’
1�
1 6AutP � ðQ2Þ:
In particular, NP �Q1

ðQ1Þ6N�e’’. Since Q2 is fully centralized, Condition ðIIÞ>P
now implies that �e’’ extends to a morphism e’’ 0 2 HomF ðQ 01; NSðQ2ÞÞ, where
Q 01 ¼ NP �Q1

ðQ1Þ. Furthermore, e’’ 0jP ¼ e’’jP since � 2 K0.
By assumption, P �Q1�Q1, and so Q 01 ¼ NP �Q1

ðQ1Þ�Q1. Also, Q 01 is generated
by Q1 and Q

0
1 \ P � since Q1 6Q 01 6P �Q1. Hence Q 01 \ P ��Q1 \ P �. This shows that

½P � : P � \Q 01& < ½P � : P � \Q1&;

and so (��) now follows by the induction hypothesis. �

We are now ready to prove Theorem 2.2.

Proof of Theorem 2.2. We are given a set H of subsets of S, closed under
F -conjugacy, such that F is H-generated and H-saturated, and such that the
following condition holds:
(�) each F -conjugacy class of subgroups of S that are F -centric but not in H

contains at least one subgroup P such that OutSðP Þ \OpðOutF ðP ÞÞ 6¼ 1.
We will prove, by induction on the number of F -conjugacy classes of subgroups of S
not in H, that F is saturated. If H contains all subgroups, then we have �nished.
Otherwise, let P be any F -conjugacy class of subgroups of S that is maximal among
those not in H. We will show that F is also ðH [ PÞ-saturated. Since F is clearly
ðH [ PÞ-generated, the result then follows by the induction hypothesis.

By Lemma 2.4, for any fully normalized subgroup P 2 P, the normalizer fusion
system NF ðP Þ is S>P -saturated, and AutF ðP Þ is generated by restrictions of
morphisms in NF ðP Þ between subgroups of NSðP Þ that strictly contain P .

Let F 0 be the fusion system over S0 :¼ NSðP Þ generated by the restriction of
NF ðP Þ to S>P , that is, the smallest fusion system over S0 for which morphisms
between subgroups in S>P are the same as those in NF ðP Þ. Then AutF 0

ðP Þ ¼
AutF ðP Þ, and F 0 is S>P -saturated and S>P -generated. Also, by the assumption
(�), either P is not centric in F (hence not centric in F 0), or

OutSðP Þ \OpðOutF 0
ðP ÞÞ 6¼ 1:

Then F 0 is S>P -saturated by Lemma 2.5, and so F is ðH [ PÞ-saturated by
Lemma 2.4 again. �

We end this section with a description of an example which shows why the
assumption (�) in Theorem 2.2 (OutSðP Þ \OpðOutF ðP ÞÞ 6¼ 1 if P is not centric) is
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needed. We use the following standard notation: if k is a �nite �eld, and n> 1,
then LLnðkÞ denotes the semidirect product of SLnðkÞ with the group of �eld
automorphisms of k. This group has an obvious action on the vector space kn and
on the projective space PðknÞ. It is not hard to see that LL2ðF4Þ ffi S5, via its
permutation action on the �ve points in PðF4

2Þ.
Let M ¼ F2

4 o S5, where S5 acts on F2
4 via the above isomorphism. Note that M can

be identi�ed with the subgroup of LL3ðF4Þ generated by matrices with bottom row
ð0; 0; 1Þ and the �eld automorphism. Therefore M acts faithfully on P ¼ F3

4.
We will de�ne a fusion system F over S ¼ P o S 0, where S 0 ¼ hð1 2Þ; ð4 5Þi �

S5 6M. Consider the following subgroups of S: Q1 ¼ P o hð1 2Þi, Q2 ¼ P o hð4 5Þi,
and Q3 ¼ P o hð1 2Þð4 5Þi. We regard all of these groups, including M, as
subgroups of P o M.

To de�ne the morphisms in the fusion system F , let x 2 O2ðMÞ ffi F2
4 be the

element of order 2 that centralizes S 0, and consider the subgroups R1 ¼ hS 0; ð3 4 5Þi,
R2 ¼ hS 0; ð1 2 3Þi, and R 02 ¼ xR2x


1. Set OutF ðSÞ ¼ 1, AutF ðQ1Þ ¼ AutPR1
ðQ1Þ,

AutF ðQ2Þ ¼ AutPR 02ðQ2Þ, and AutF ðQ3Þ ¼ AutSðQ3Þ. All other morphisms in the
fusion system are restrictions of the ones just described. Note in particular that
OutF ðQ1Þ ffi S3, OutF ðQ2Þ ffi S3, and AutF ðP Þ ¼ hR1; R

0
2i ¼ M. The last equality

holds since hP;R1; R
0
2i=P ¼ hS 0; ð1 2 3Þ; ð3 4 5Þi ¼ S5; and hR1; R

0
2i cannot be a

splitting of M=P in M since any splitting containing S 0 must be P -conjugate to the
given S5 6M; so hR1; R

0
2i \ P 6¼ 1, and hR1; R

0
2i>P since P is irreducible as an

S5-representation.
Consider the set of subgroups H ¼ fS;Q1; Q2; Q3g. It follows from the above

description of morphisms in F that the subgroups in H are the only F -centric,
F -radical subgroups. Also, F is H-generated by construction, and one can check
that F is H-saturated. But F is not saturated, since axiom ðIÞP fails:
AutSðP Þ =2 2ðAutF ðP ÞÞ since AutSðP Þ ffi C 2

2 and AutF ðP Þ ffi M. (One can also
show that ðIIÞP fails.) Note that OutSðP Þ \O2ðOutF ðP ÞÞ ¼ S 0 \O2ðMÞ ¼ 1, so
Condition (�) in Theorem 2.2 does not hold.

3. Expanding and restricting the classifying space: quasicentric subgroups

The goal of this section is to show how the centric linking system of a p-local
�nite group ðS;F ;LÞ can be extended to a larger category or restricted to a
smaller one without changing the homotopy type of the nerve of L.

One motivation for doing this is a problem which frequently occurs when trying
to construct maps between p-local �nite groups. A functor between fusion systems
need not send centric subgroups to centric subgroups, in which case it cannot be
lifted to a functor between associated centric linking systems. One could try to get
around this by extending the linking systems to include all subgroups as objects.
There is in fact a natural extension of the linking system to a category whose
objects are all subgroups of S, but in general the homotopy type of the
p-completed nerve is not preserved by this extension.

We introduce here the collection of F -quasicentric subgroups, which contains
the centric subgroups and supports an associated linking system Lq with
properties analogous to those of the centric one. The important fact proved in
this section is that the nerve of Lq is homotopy equivalent to jLj. Moreover, any
full subcategory of Lq whose object set contains all subgroups that are centric and
radical also has nerve homotopy equivalent to jLj.
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DEFINITION 3.1. Let F be a saturated fusion system over a p-group S. A
subgroup P 6S is called F -quasicentric if for each P 0 that is fully centralized in F
and F -conjugate to P , the centralizer system CF ðP 0Þ is the fusion system of the
p-group CSðP 0Þ. We let F q � F denote the full subcategory whose objects are the
F -quasicentric subgroups of S.

The simplest examples where F -quasicentric subgroups need not be F -centric
are those where F ¼ FSðSÞ is the fusion system of a p-group S: every subgroup of
S is F -quasicentric (while the trivial subgroup, at least, is not F -centric). A more
interesting example is given by considering a �nite group G with a normal
subgroup H of p-power index. Fix S 2 SylpðGÞ, and set S0 ¼ S \H 2 SylpðHÞ. It
is not too hard to see that each FS0

ðHÞ-quasicentric subgroup of S0 is also F SðGÞ-
quasicentric, something which is not true for centric subgroups (consider, for
instance, the case A6 / L6). It was this last observation that initially led us to
consider this class of subgroups.

When F is a saturated fusion system over S, a subgroup P 6S is F -quasicentric if
and only if there is no P 0 that is F -conjugate to P , and no Q6CSðP 0Þ6S and
� 2 AutF ðQP 0Þ of order prime to p with �jP 0 ¼ IdP 0 . Note that the set of
F -quasicentric subgroups of S is closed under F -conjugation and overgroups.

There is also a homotopy-theoretic characterization of F -quasicentric sub-
groups. If we de�ne a map f :X
!Y to be quasicentric if the homotopy �bre of
the map f]:MapðX;XÞIdX 
!MapðX; Y Þf is homotopically discrete, then it turns
out that P 6S is F -quasicentric in ðS;F ;LÞ if and only if the natural map
f jBP :BP 
!jLj^p is quasicentric.

PROPOSITION 3.2. For any p-local �nite group ðS;F ;LÞ and any P 6S, the
following are equivalent:

(a) P is F -quasicentric;
(b) there is a fully centralized subgroup P 06S that is F -conjugate to P and

such that

MapðBP; jLj^p Þf jBP ’ MapðBP 0; jLj^p Þf jBP 0 ’ BCSðP
0Þ;

(c) the homotopy �bre of the map MapðBP;BP ÞIdBP 
!ðBP; jLj
^
p Þf jBP is

homotopically discrete;
(d) MapðBP; jLj^p Þf jBP is an Eilenberg --MacLane space KðG; 1Þ.

Proof. The implication ((a) ) (b)) follows by de�nition of F -quasicentric and
[5, Theorem 6.3].

The implications ((b)) (c)) and ((c)) (d)) follow from the long exact sequence
of homotopy groups of the relevant �bration because MapðBP;BP ÞIdBP ’ BZðP Þ.

Finally we prove that ((d) ) (a)). Let P 0 be a fully centralized subgroup of S
that is F -conjugate to P . By [5, Theorem 6.3], we have

jCLðP 0Þj^p ’ MapðBP 0; jLj^p Þf jBP 0 ’ MapðBP; jLj^p Þf jBP ’ KðG; 1Þ:

In particular, G ffi �1ðjCLðP 0Þj^p Þ is a �nite p-group, and then the fusion system
CF ðP 0Þ coincides with the fusion system of G (see [5, Theorem 7.4]). �

We now turn to quasicentric linking systems, that is, linking systems associated
to a saturated fusion system F whose objects are the F -quasicentric subgroups.
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These are de�ned in essentially the same way as centric linking systems; there is
just one extra axiom that is needed.

DEFINITION 3.3. Let F be a saturated fusion system over a p-group S. A
quasicentric linking system associated to F consists of a category Lq whose
objects are the F -quasicentric subgroups of S, together with a functor

�:Lq
!F q, and distinguished monomorphisms P � CSðP Þ 
!
�P

AutLqðP Þ, which
satisfy the following conditions.
ðAÞq The functor � is the identity on objects and surjective on morphisms.

For each pair of objects P;Q in Lq such that P is fully centralized in F , CSðP Þ
acts freely on MorLqðP;QÞ by composition (upon identifying CSðP Þ with
�P ðCSðP ÞÞ6AutLqðP Þ), and � induces a bijection

MorLqðP;QÞ=CSðP Þ 
!
ffi

HomF ðP;QÞ:

ðBÞq For each F -quasicentric subgroup P 6S and each g 2 P , � sends �P ðgÞ 2
AutLqðP Þ to cg 2 AutF ðP Þ.
ðCÞq For each f 2 MorLqðP;QÞ and each g 2 P , the square

P
f

Q

�P ðgÞ �Qð�ðfÞðgÞÞ

P
f

Q

commutes in Lq.
ðDÞq For each F -quasicentric subgroup P 6S, there is some �P 2 MorLqðP; SÞ

such that �ð�P Þ ¼ inclSP 2 HomðP; SÞ, and such that for each g 2 P � CSðP Þ,
�SðgÞ � �P ¼ �P � �P ðgÞ in MorLqðP; SÞ.

Note that point ðDÞq follows from ðCÞq if P is F -centric. This is why it does not
appear in the de�nition of a centric linking system (De�nition 1.4).

When L and Lq are centric and quasicentric linking systems associated to the
same fusion system F , we say that Lq extends L if L is isomorphic to a full
subcategory of Lq in a way that is consistent with the projection functors and the
distinguished monomorphisms.

We �rst show how to construct a quasicentric linking system that extends a
given centric linking system. Our construction is topological, using [5, x 7]. A
purely algebraic proof was given (independently) by Puig [17].

In [5, x 7], a (discrete) category LS;fðXÞ is associated to any triple ðX;S; fÞ,
where X is a space, S is a p-group, and f :BS
!X is a map. We recall this
construction in the case where f is the natural inclusion of BS into X ¼ jLj^p
(f ¼ j.Sj^p as de�ned in the next paragraph). As we will see, LS;fðjLj^p Þ is then an
extension of L containing all subgroups of S as objects.

Let ðS;F ;LÞ be a p-local �nite group, and let �:L
!F c be the projection
functor. For each subgroup P 6S, let BðP Þ be the category with one object oP
and with EndBðP ÞðoP Þ ¼ P , and identify BP ¼ jBðP Þj. We let Ngg denote the
morphism in BðP Þ corresponding to g 2 P . Let

.P :BðP Þ 
! L

PLMS 1532---3/8/2005---SRUMBAL---150419

SUBGROUP FAMILIES CONTROLLING p-LOCAL FINITE GROUPS 341



be the functor that sends oP to P , and sends a morphism Ngg (for g 2 P ) to
�P ðgÞ 2 AutLðP Þ. This induces natural maps j.P j^p :BP 
!jLj^p . For each
’ 2 HomLðP;QÞ, we can view �ð’Þ 2 HomF ðP;QÞ as a functor BðP Þ
!BðQÞ. Let

0’: .P 
! .Q � �ð’Þ

be the natural transformation of functors given by

.P ðoP Þ ¼ P 


!
’

Q ¼ .Q
�
�ð’ÞðoP Þ

�
:

This de�nes an explicit homotopy j0’j:BP ( I
!jLj^p between j.P j^p and
j.Qj^p �B’. If for each F -centric subgroup P 6S, we choose a morphism �P 2
MorLðP; SÞ which is sent to the inclusion of P in S by the projection functor to F ,
we obtain a �xed collection of natural transformations 0�P , and induced homotopies

j0�P j:BP ( I
!jLj
^
p from j.P j^p to the restriction j.Sj^p

��
BP .

Write f ¼ j.Sj^p for short. Now LS;fðjLj^p Þ is de�ned as the category whose
objects are the subgroups of S, and where morphisms are

MorLS;f ðjLj^p ÞðP;QÞ
¼

�
ð’; ½H&Þ j’ 2 HomðP;QÞ; ½H& 2 Mor�ðMapðBP;jLj^p ÞÞðf jBP ; fjBQ �B’Þ

�
:

Here, � denotes the fundamental groupoid functor. A functor

!L:L
!LS;fðjLj^p Þ

is also de�ned as follows. On objects, !L is the inclusion. For each ’ 2 MorLðP;QÞ,
!Lð’Þ ¼

�
�P;Qð’Þ; ½H’&

�
, where H’ is the homotopy BP ( I
!jLj^p de�ned by

H’ðx; tÞ ¼
j0�P jðx; 1
 3tÞ if 06 t6 1

3 ;

j0’jðx; 3t
 1Þ if 1
3 6 t6 2

3 ;

j0�Q jðB’ðxÞ; 3t
 2Þ if 2
3 6 t6 1:

8><>:
By [5, Proposition 7.3], !L de�nes an equivalence of categories to the full

subcategory LcS;fðjLj^p Þ � LS;fðjLj^p Þ whose objects are the F -centric subgroups of
jLj^p . In this sense, we say that LS;fðjLj^p Þ is an extension of L.

PROPOSITION 3.4. Fix a p-local �nite group ðS;F ;LÞ, and let f :BS
!jLj^p
be as de�ned above. Let Lq � LS;fðjLj^p Þ be the full subcategory whose objects
are the F -quasicentric subgroups of S, and regard L as a full subcategory of Lq
via !L. Let

�:Lq
!F q

be the functor which sends an F -quasicentric subgroup to itself, and which sends
a morphism ð’; ½H&Þ to ’. For each object P in Lq, de�ne the distinguished
monomorphism

�P :P � CSðP Þ
!AutLqðP Þ
by sending g 2 P � CSðP Þ to ðcg; ½Hg&Þ, where cg is conjugation by g restricted to P ,
and Hg is the homotopy

BP ( I
j0gj

BS
f
jLj^p

induced by the natural transformation Id 
!
0g

cg which sends the unique object of
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BðP Þ to the morphism Ngg of BðSÞ. Then these structures make Lq into a
quasicentric linking system associated to F that extends L.

Proof. If P 6S is F -quasicentric and fully centralized in F , then

MapðBP; jLj^p Þf jBP ’ jCLðP Þj^p ’ BCSðP Þ;

the �rst equivalence follows from [5, Theorem 6.3] and the second follows since P
is F -quasicentric. Hence by de�nition of the category LS;fðjLj^p Þ, CSðP Þ acts freely
on MorLqðP;QÞ (for any Q) with orbit set HomF ðP;QÞ, and this proves axiom
ðAÞq. This also shows that !L embeds L as a full subcategory of Lq.

Axiom ðBÞq follows immediately from the de�nitions. The proof of ðCÞq is
identical to the argument used to prove (C) in the proof of [5, Theorem 7.5]. Point
ðDÞq follows immediately from the construction, upon setting �P ¼ ðinclSP ; ½c&Þ,
where c denotes the constant path with value f jBP 2 MapðBP; jLj^p Þ. �

We are now ready to state the main result of this section.

THEOREM 3.5. Let ðS;F ;LÞ be a p-local �nite group, and let Lq be a
quasicentric linking system associated to F which extends L. Let L0 � Lq be any
full subcategory which contains all F -radical F -centric subgroups of S. Then the
inclusions of L0 and L in Lq induce homotopy equivalences jL0j ’ jLqj ’ jLj.

Theorem 3.5 is an immediate consequence of Proposition 3.11 below. The rest of
the section is directed towards the proof of that proposition. We �rst prove some
lemmas that will provide us with a better understanding of morphism sets in Lq.

LEMMA 3.6. Fix a p-local �nite group ðS;F ;LÞ, let Lq be a quasicentric
linking system associated to F that extends L, and let �:Lq 
!F q be the
projection. Fix F -quasicentric subgroups P , Q and R in S. Let ’ 2 MorLqðP;RÞ
and  2 MorLqðQ;RÞ be any pair of morphisms such that Imð�ð’ÞÞ6 Imð�ð ÞÞ.
Then there is a unique morphism � 2 MorLqðP;QÞ such that ’ ¼  � �.

Proof. By de�nition of a fusion system (every morphism is the composite of an
isomorphism followed by an inclusion), there is a unique morphism � 2 HomF ðP;QÞ
such that �ð’Þ ¼ �ð Þ � �. Let � 0 2 MorLqðP;QÞ be any morphism such that
�ð� 0Þ ¼ �. Choose a fully centralized group P 0 in the F -conjugacy class of P and a
particular � 2 IsoLqðP 0; P Þ. Then by ðAÞq, there is a unique element g 2 CSðP 0Þ such
that ’ � � ¼  � � 0 � � � �P 0 ðgÞ, and we can de�ne � ¼ � 0 � � � �P 0 ðgÞ � �
1.

If �1 2 MorLqðP;QÞ is any other morphism such that ’ ¼  � �1, then
�ð�Þ ¼ �ð�1Þ; hence by ðAÞq again, there is a unique element h 2 CSðP 0Þ such that
� � � ¼ �1 � � � �P 0 ðhÞ; and since  � �1 � � ¼  � � � � ¼  � �1 � � � �P 0 ðhÞ, and
the action of CSðP 0Þ on MorLqðP 0; QÞ is free, we obtain h ¼ 1 and then � ¼ �1. �

LEMMA 3.7. Fix a p-local �nite group ðS;F ;LÞ. Let Lq be a quasicentric
linking system associated to F that extends L, and let �:Lq 
!F q be the
projection. Fix a choice of an inclusion morphism �P 2 MorLqðP; SÞ for each
F -quasicentric subgroup P 6S, such that �ð�P Þ ¼ incl 2 HomðP; SÞ, such that the
conclusion of ðDÞq holds if P is not F -centric, and where �S ¼ IdS. Then, there are
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unique injections

�P;Q:NSðP;QÞ
!MorLqðP;QÞ;

for all F -quasicentric subgroups P;Q6S, such that:
(a) �ð�P;QðgÞÞ ¼ cg 2 HomðP;QÞ, for all g 2 NSðP;QÞ;
(b) �P;Sð1Þ ¼ �P and �P;P ðgÞ ¼ �P ðgÞ, for all g 2 P � CSðP Þ;
(c) �Q;RðhÞ � �P;QðgÞ ¼ �P;RðhgÞ, for all g 2 NSðP;QÞ and h 2 NSðQ;RÞ.

Proof. For each P and Q, and each g 2 NSðP;QÞ, there is by Lemma 3.6 a
unique morphism �P;QðgÞ such that

�SðgÞ � �P ¼ �Q � �P;QðgÞ:

We take this as the de�nition of the maps �P;Q. Property (a) follows from ðBÞq, (b)
follows by de�nition and the assumptions about �P , and (c) follows from Lemma
3.6. (Compare with [5, Proposition 1.11] and its proof.) �

For the rest of the section, whenever we are given a p-local �nite group
ðS;F ;LÞ, we assume that we have chosen morphisms �P 2 MorLqðP; SÞ, for each
object P , such that �ð�P Þ is the inclusion and the conclusion of ðDÞq holds. Then
for each P 6Q in Lq, we let �QP 2 MorLqðP;QÞ be the unique morphism such that
�P ¼ �Q � �QP (Lemma 3.6). If ’ 2 MorLqðP;QÞ, and P 06P and Q 06Q are
quasicentric subgroups such that �ð’ÞðP 0Þ6Q 0, then we write ’jQ

0

P 0 2
MorLqðP 0; Q 0Þ for the ‘restriction’ of ’: the unique morphism such that

�QQ 0 � ’j
Q 0

P 0 ¼ ’ � �
P
P 0 (Lemma 3.6 again). We also write ’jP 0 ¼ ’jQ

0

P 0 when the

target group Q 0 is clear from the context.

LEMMA 3.8. Fix a saturated fusion system F over a p-group S, and let Q6S
be an F -quasicentric subgroup. Let P 6S be such that Q / P , and let ’; ’ 0 2
HomF ðP; SÞ be such that ’jQ ¼ ’ 0jQ, and ’ðQÞ ¼ ’ 0ðQÞ is fully centralized in F .
Then there is x 2 CSð’ðQÞÞ such that ’ 0 ¼ cx � ’.

Proof. Upon replacing P by ’ 0ðP Þ and Q by ’ðQÞ ¼ ’ 0ðQÞ, we can assume
that ’ 0 ¼ inclSP and ’jQ ¼ IdQ. We are thus reduced to the case where Q is fully
centralized and ’ 0 is the inclusion of P in S.

The idea of the proof is to show that for some x 2 CSðQÞ, we can extend ’ � cx
to some ’ 2 HomF ðP; SÞ, for some P >P , such that ’j

Q
¼ Id

Q
where Q�Q / P .

The lemma then follows by downward induction on jQj. Recall that the lemma
holds when Q is F -centric by [5, Proposition A.8].

By de�nition of an F -quasicentric subgroup, ’jCP ðQÞ is conjugation by some
element x 2 CSðQÞ. So after composing with cx, we can assume that ’jCP ðQÞ�Q ¼ Id.

Thus if CP ðQÞ �Q�Q, we have the required result, by taking P ¼ P and

Q ¼ CP ðQÞ �Q.
Assume now that CP ðQÞ6Q. Set K ¼ AutP ðQÞ. As in [5, Appendix A], we write

NK
S ðQÞ ¼ fx 2 NSðQÞ j cx 2 Kg;

and let NK
F ðQÞ be the fusion system over NK

S ðQÞ whose morphisms are de�ned (for
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P; P 06NK
S ðQÞ) by

HomNK
F ðQÞðP; P

0Þ
¼ f’ 2 HomF ðP; P 0Þ

�� jP ¼ ’;  jQ 2 K; for some  2 HomF ðPQ;P 0QÞ
�
:

Then P , ’ðP Þ, and CSðQÞ are all contained in NK
S ðQÞ. If Q is not fullyK-normalized

in F , then there is some  2 HomF ðNK
S ðQÞ; SÞ such that  ðQÞ is fully

 K 
1-normalized in F (see [5, Proposition A.2(b)]); and upon replacing all of
these subgroups by their images under  , we are reduced to the case where Q is fully
K-normalized in F . The fusion system NK

F ðQÞ is saturated by [5, Proposition A.6];
and upon replacing F by NK

F ðQÞ we can assume that S ¼ NK
S ðQÞ ¼ P � CSðQÞ and

F ¼ NK
F ðQÞ. In particular, each � 2 HomF ðR;R 0Þ extends to a morphism in

HomF ðRQ;R 0QÞ whose restriction to Q is conjugation by some element of P .
Fix  2 HomF ðP; SÞ such that  ðP Þ is fully normalized in F . Since  jQ is

conjugation by an element g 2 P , we can replace  by  � c
1g , and thus arrange
that  jQ ¼ Id. If  and  � ’
1 are both conjugation by some element of CSðQÞ,
then so is ’; so it suJces to prove the result under the assumption that ’ðP Þ is
fully normalized in F .

Now, ðCSðQÞ �QÞ=Q is a non-trivial normal subgroup of NSðQÞ=Q ¼ S=Q. So
there is an element x 2 CSðQÞ nQ such that 1 6¼ xQ 2 ZðS=QÞ. Then x 2 NSðP Þ,
and acts via the identity on Q and on P=Q. Thus

cx 2 Ker

AutF ðP Þ
!AutF ðQÞ ( AutðP=QÞ

�
;

a normal p-subgroup of AutF ðP Þ (see [9, Corollary 5.3.3]). Also, AutSð’ðP ÞÞ 2
SylpðAutF ð’ðP ÞÞÞ since ’ðP Þ is fully normalized. Hence ’cx’


1 2 AutSð’ðP ÞÞ
(after ’ is replaced by ’ � ! where ! 2 AutF ð’ðP ÞÞ if necessary). Thus, x 2 N’

andQ�N’. By (II),’ extends to’ 2 HomF ðN’; SÞ. Now setP ¼ N’ \NSðQÞ ¼ N’

and Q ¼ CP ðQÞ �Q.
By construction, x 2 Q nQ. Since Q is F -quasicentric, ’jC

P
ðQÞ is conjugation by

some element g 2 CSðQÞ. So we can replace ’ by ’ � ðcgÞ
1, and thus arrange that
’j

Q
¼ Id

Q
. Since Q�Q and Q / P , this �nishes the induction step. �

The next lemma can be thought of as a ‘lifting’ of the last one to quasicentric
linking systems. It says that all inclusions in Lq are epimorphisms in the
categorical sense.

LEMMA 3.9. Fix a p-local �nite group ðS;F ;LÞ, and let Lq be a quasicentric
linking system associated to F that extends L. Assume Q6P 6S and R6S are
F -quasicentric, and let ’; ’ 0 2 MorLqðP;RÞ be two morphisms such that
’ � �PQ ¼ ’ 0 � �PQ. Then ’ ¼ ’ 0.

Proof. Since there is always a subnormal series Q ¼ Q0 / Q1 / . . . / Qk ¼ P , it
suJces to prove the lemma when Q is normal in P . So we assume this from now on.

It will be convenient, throughout the proof, to write b�� ¼ �ð�Þ 2 MorðFÞ for any
� 2 MorðLqÞ. By Lemma 3.6, ’ ¼ ’ 0 if and only if �SR � ’ ¼ �SR � ’ 0 2 MorLqðP; SÞ,
and a similar result holds when ’ is replaced by ’ � �PQ, and ’ 0 by ’ 0 � �PQ. We can
thus replace R by any other subgroup of S which contains the images of b’’ and b’’ 0,
and in particular assume that R6NSðb’’ðQÞÞ.

The proof itself will be divided into two steps: the �rst dealing with a restricted
case, and the second reducing the general case to that in Step 1.
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Step 1. Assume �rst that Q ¼ b’’ðQÞ and is fully normalized, and that P is fully

centralized. Set ’0 ¼ ’ � �PQ ¼ ’ 0 � �PQ. By Condition (II) in De�nition 1.3 (and
since Q ¼ b’’0ðQÞ is fully centralized), there is  2 HomLðP � CSðQÞ; SÞ such thatb  jQ ¼ b’’0. Set ’ 00 ¼  jP 2 MorLqðP; SÞ. Thus b’’ 00jQ ¼ b’’0, so there is a unique
element a 2 CSðQÞ such that

 jQ ¼ ’ 00jQ ¼ �SR � ’0 � �ðaÞ:

We will show that ’ ¼ ’ 0 by comparing both to  and ’ 00; the advantage of this
is that Condition (C) can be applied more easily to  .

By Lemma 3.8, there is some x 2 CSðQÞ (where b’’ðQÞ ¼ Q) such that
cx � b’’ ¼ b’’ 00. Since P is fully centralized, by Condition ðAÞq in De�nition 3.3
there is some y 2 CSðP Þ such that

�R;SðxÞ � ’ ¼ �SR � ’ 00 � �P ðyÞ ¼  � �P �CSðQÞðyÞjP ¼ �Sðb  ðyÞÞ �  jP ¼ �Sðb  ðyÞÞ � ’ 00:
It follows that ’ 00 ¼ �R;SðzÞ � ’, where z ¼ b  ðyÞ
1 � x 2 CSðQÞ. Hence

�R;Sðb  ðaÞ
1 � zÞ � ’0 ¼ �Sðb  ðaÞÞ
1 � ’ 00jQ ¼ �Sðb  ðaÞÞ
1 �  jQ
¼  � �P �CSðQÞðaÞ


1jQ ¼  jQ � �QðaÞ
1

¼ ’ 00 � �PQ � �QðaÞ
1 ¼ �SR � ’0:

Since ’0 ¼ �RQ � ! for some ! 2 AutLqðQÞ, upon composing with !
1, this shows
that �Q;Sðb  ðaÞ
1 � zÞ ¼ �SQ, and hence that z ¼ b  ðaÞ.

After making a similar argument involving ’ 0, we now have

�ðb  ðaÞÞ � ’ ¼ ’ 00 ¼ �ðb  ðaÞÞ � ’ 0;
and this shows that ’ ¼ ’ 0.
Step 2 (general case). We �rst reduce the problem to the case in which P is

fully centralized. We choose an isomorphism ! 2 MorLqðP; P 0Þ such that b!!ðP Þ ¼ P 0
is fully centralized. Upon replacing P by P 0, ’ by ’ � !
1, and ’ 0 by ’ 0 � !
1 we
are now reduced to the case where P is fully centralized in F .

Set Q 0 ¼ b’’ðQÞ ¼ b’’ 0ðQÞ for short; we now reduce the problem to the case in
which Q ¼ Q 0 and is fully normalized. Let Q 00 be any fully normalized subgroup in
the F -conjugacy class of Q (and of Q 0). By Lemma 2.3 (Condition (IIB) holds),
there are morphisms

6 2 MorLqðNSðQÞ; NSðQ 00ÞÞ and 6 0 2 MorLqðNSðQ 0Þ; NSðQ 00ÞÞ

such that b66ðQÞ ¼ b66 0ðQ 0Þ ¼ Q 00. Set P 00 ¼ b66ðP Þ, and let 60 2 IsoLqðP; P 00Þ be
the restriction of 6 (that is, by Lemma 3.6 the unique morphism such that

�
NSðQ 00Þ
P 00 � 60 ¼ 6 � �

NSðQÞ
P ). Set

 ¼ 6 0 � �NSðQ 00Þ
R � ’ � 6
10 ;  0 ¼ 6 0 � �NSðQ 00Þ

R � ’ 0 � 6
10 2 MorLqðP 00; NSðQ 00ÞÞ:

Then  ¼  0 if and only if ’ ¼ ’ 0, and  � �P 00Q 00 ¼  0 � �P
00

Q 00 if and only if
’ � �PQ ¼ ’ 0 � �PQ. Note that P 00 isF -conjugate to P and the following inequality holds:

jCSðP Þj ¼ jCNSðQÞðP Þj6 jCNSðQ 00ÞðP
00Þj ¼ jCSðP 00Þj:

Since P is fully centralized, it follows that jCSðP Þj ¼ jCSðP 00Þj and P 00 is also
fully centralized.

PLMS 1532---3/8/2005---SRUMBAL---150419

C. BROTO, N. CASTELLANA, J. GRODAL, R. LEVI AND B. OLIVER346



Thus, upon replacing ðQ;P;RÞ by ðQ 00; P 00; NSðQ 00ÞÞ, ’ by  , and ’ 0 by  0, we
are reduced to the case where Q ¼ ’ðQÞ is fully normalized and P is fully
centralized. �

The following result is an immediate consequence of Lemmas 3.6 and 3.9.

COROLLARY 3.10. Let Lq be a quasicentric linking system associated to a
saturated fusion system F over a p-group S. Then all morphisms in Lq are
monomorphisms and epimorphisms in the categorical sense.

Proof. By the uniqueness in Lemma 3.6,  � � ¼  � � 0 in Lq implies � ¼ � 0.
Hence all morphisms in Lq are monomorphisms.

Since each morphism in Lq is the composite of an isomorphism followed by an
inclusion, it suJces to prove that inclusions �PQ are epimorphisms, and it clearly
suJces to do this when Q / P . So assume P 06S and ’; ’ 0 2 MorLqðP;RÞ are such
that ’ � �PQ ¼ ’ 0 � �PQ. Then �SP 0 � ’ ¼ �SP 0 � ’ 0 by Lemma 3.9, and so ’ ¼ ’ 0 by
Lemma 3.6. �

We are now ready to prove the following proposition, of which Theorem 3.5 is
an immediate consequence.

PROPOSITION 3.11. Let ðS;F ;LÞ be a p-local �nite group, and let Lq be a
quasicentric linking system associated to F that extends L. Let L0 � Lq be any
full subcategory such that ObðL0Þ is closed under F -conjugacy. Let P 2 ObðLqÞ
be maximal among those F -quasicentric subgroups not in L0, and let L1 � Lq be
the full subcategory whose objects are the objects in L0 together with all
subgroups F -conjugate to P . Assume furthermore that P is not F -centric or not
F -radical. Then the inclusion of nerves jL0j � jL1j is a homotopy equivalence.

Proof. Throughout the following proof, when working in any linking system,
we assume that inclusion morphisms �QP have been chosen as in Lemma 3.7. By
‘extensions’ and ‘restrictions’ of morphisms we mean with respect to these
inclusions. Also, for ’ 2 MorLqðQ;Q 0Þ, we write Imð’Þ ¼ Imð�ð’ÞÞ6Q 0 and
’ðRÞ ¼ �ð’ÞðRÞ6Q 0 if R6Q.

We must show that the inclusion functor �:L0
!L1 induces a homotopy
equivalence jL0j ’ jL1j. By Quillen’s Theorem A (see [18]), it will be enough to
prove that the undercategory Q#� is contractible (that is, jQ#�j ’ �) for each Q in
L1. This is clear when Q is not isomorphic to P (since Q#� has initial object
ðQ; IdÞ in that case), so it suJces to consider the case Q ¼ P . Since P was
arbitrarily chosen in its isomorphism class, we can also assume that P is
fully normalized.

Let

�N :L0 \NLqðP Þ
!L1 \NLqðP Þ
be the restriction of �. Consider the functor i : P#�N 
!P#� induced by the
inclusions Li \NLqðP Þ
!Li for i ¼ 0; 1. We will �rst show that jP#�j ’ jP#�N j
and then that jP#�N j ’ �.

To prove the �rst statement, we construct a retraction functor r:P#�
!P#�N
such that r � i ¼ IdP#�N , together with a natural transformation

�
i � r 
!0 IdP#i

�
.
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By Lemma 2.3 (Condition (IIB)), for each P 06S which is F -conjugate to P ,
there is a morphism in F from NSðP 0Þ to NSðP Þ which sends P 0 isomorphically to
P . Hence upon lifting this to the linking system, we can choose a morphism

QP 0 2 MorLqðNSðP 0Þ; NSðP ÞÞ

for each such P 0 that restricts to an isomorphism from P 0 to P . In particular, we
set QP ¼ IdNSðP Þ.

For each non-isomorphism ’ 2 MorLqðP;QÞ, set brrð’Þ ¼ Q’ðP ÞðNQð’ðP ÞÞÞ� P .
We can factor ’ as ’ ¼ 0ð’Þ � rð’Þ, where

rð’Þ ¼ �brrð’ÞP � ðQ’ðP Þj’ðP Þ � ’Þ 2 MorNLq ðP ÞðP; brrð’ÞÞ
and

0ð’Þ ¼ �Q
Q
� ðQ’ðP ÞjQÞ


1 2 MorL0ðbrrð’Þ; QÞ;
where Q ¼ NQð’ðP ÞÞ. We de�ne the functor r : P#�
!P#�N on objects by
setting

r
�
P

’
Q
�
¼

�
P

rð’Þ brrð’Þ�:
For any morphism 6 2 MorP#L0ððQ;’Þ; ðQ

0; ’ 0ÞÞ, that is, for any commutative
square of the form

P
’

Q

Id 6

P
’ 0

Q 0

ð1Þ

we claim there is a unique morphism brrð6Þ such that the two squares in the
following diagram commute:

P
rð’Þ brrð’Þ 0ð’Þ

Q

Id brrð6Þ 6

P
rð’ 0Þ brrð’ 0Þ 0ð’ 0Þ

Q 0

ð2Þ

To see this, note that by commutativity of the square (1), 6 sends NQð’ðP ÞÞ into
NQ 0 ð’ 0ðP ÞÞ. Hence upon de�ningbrrð6Þ :¼ Q’ 0ðP Þ � 6 � Q’ðP Þ


1;

where the three morphisms are replaced by appropriate restrictions, we get brrð6Þ such
that the right square in (2) commutes. Since the combination of the two squares
commutes by assumption, we obtain that 0ð’ 0Þ � brrð6Þ � rð’Þ ¼ 0ð’ 0Þ � rð’ 0Þ, and
therefore brrð6Þ � rð’Þ ¼ rð’ 0Þ by Lemma 3.6. By the uniqueness of brrð6Þ, it follows
that this construction de�nes a functor, as well as a natural transformation
i � r 
!0 IdP#i. Since r � i ¼ IdP#iN , this �nishes the proof that jP#�j ’ jP#�N j.

It remains to prove that jP#�N j ’ �. SetbPP ¼ fx 2 NSðP Þ j cx 2 OpðAutF ðP ÞÞg:

Note that bPP >P � CSðP Þ, and hence bPP � P if P is not centric. Moreover, bPP � P if

PLMS 1532---3/8/2005---SRUMBAL---150419

C. BROTO, N. CASTELLANA, J. GRODAL, R. LEVI AND B. OLIVER348



P is not radical, and thus bPP 2 L0 in both cases covered by the hypotheses of the
proposition. Since P is normal in bPP , this last is an object in L0 \NLqðP Þ.

Recall that �N :L0 \NLqðP Þ
!L1 \NLqðP Þ denotes the inclusion. Let i be the
functor i : bPP#�N 
!P#�N that is induced by precomposing with the inclusion

�
bPP
P 2 MorLqðP; bPP Þ. We show that i induces a homotopy equivalence jP#�N j ’ j bPP#�N j,
by de�ning a functor r:P#�N 
! bPP#�N such that r � i ¼ Id bPP#�, and such that
i � r ’ IdP#�N (such that there is a natural transformation of functors from the
identity to i � r). Then jP#�N j ’ j bPP#�N j, and the last space is contractible sincebPP 2 L0 \NLqðP Þ. This will �nish the proof.

Fix subgroups Q;Q 06NSðP Þ containing P , and let ’ 2 MorNLq ðP ÞðQ;Q
0Þ be a

morphism. Set � ¼ �ð’ÞjP 2 AutF ðP Þ for short. Since P is fully normalized,
AutSðP Þ 2 SylpðAutF ðP ÞÞ, and hence OpðAutF ðP ÞÞ6AutSðP Þ. It follows that

N� :¼
�
x 2 NSðP Þ j�cx�
1 2 AutSðP Þ

�
> bPP ;

and N�>Q since � extends to �ð’Þ 2 HomF ðQ;Q 0Þ. Thus, since P is fully

centralized, � extends to some ’ 0 2 HomF ðQ bPP;Q 0 bPP Þ by Condition (II) in
De�nition 1.3. After possibly composing this extension with �Q bPP ðxÞ for some
element x 2 CSðP Þ6Q bPP , we get a lifting b’’ 2 MorLqðQ bPP;Q 0 bPP Þ such that the
following diagram commutes in Lq:

P
�QP

Q
’

Q 0

�Q
bPP

P �Q
0 bPP

Q 0

Q bPP b’’
Q 0 bPP

Hence by Lemma 3.9, b’’ � �Q bPP
Q ¼ �Q

0 bPP
Q 0 � ’. This lifting is unique by Corollary 3.10;

and it lies in L0 \NLqðP Þ, or in L1 \NLqðP Þ if Q ¼ P .
The functor r is de�ned on objects by setting

r
�
P 
!

’
Q
�
¼

� bPP 
!b’’ Q bPP�:
If 6 : Q
!Q 0 is a morphism such that 6 � ’ ¼ ’ 0, then we de�ne rð6Þ ¼ b66.
Because of the uniqueness of the extension b66, this construction de�nes a functor.
Moreover, r � i ¼ Id bPP#�N , and i � r ’ IdP#�N , where the homotopy is induced by the

natural transformation given by the inclusions �Q
bPP

Q . �

As noted above, Theorem 3.5 follows immediately from Proposition 3.11. Another
consequence of this proposition is the uniqueness of quasicentric linking systems
associated to a given fusion system that extend a given centric linking system. In fact,
in the following proposition, we prove a slightly stronger result, by comparing a more
general ‘partial quasicentric linking system’ de�ned on smaller sets of objects with a
quasicentric linking system as constructed in Proposition 3.4, and show that the �rst
is contained in the second if they agree after restricting to centric radical subgroups.
For any p-local �nite group ðS;F ;LÞ, Lr denotes the full subcategory of L whose
objects are the subgroups that are F -radical as well as F -centric.

PROPOSITION 3.12. Fix a p-local �nite group ðS;F ;LÞ, and let Lq be the
quasicentric linking system constructed in Proposition 3.4. Let H be any set of
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F -quasicentric subgroups of S that is closed under F -conjugacy and overgroups,
and that contains all F -centric F -radical subgroups. Let L0 be a category with
ObðL0Þ ¼ H, together with a functor � 0:L0 
!F , and distinguished monomorph-
isms � 0P for all P 2 H, that satisfy axioms ðAÞq, ðBÞq, ðCÞq, and ðDÞq in De�nition
3.3. Assume L0 contains a full subcategory isomorphic to Lr in a way compatible
with the projection functors and distinguished monomorphisms. Then L0 is
isomorphic to the full subcategory of Lq with object set H, via an inclusion
functor L0 
!Lq which commutes with the projection functors and distinguished
monomorphisms for both categories.

Proof. By Theorem 3.5, jL0j ’ jLrj ’ jLj. More precisely, the second
equivalence follows directly from the theorem, and the �rst equivalence follows
from the same argument applied to L0, since we never needed to know that the
linking system was de�ned on all F -quasicentric subgroups (or even on all
F -centric subgroups).

In particular, Lq is a full subcategory of

LS;fðjLj^p Þ ffi LS;fðjL0j^p Þ:

So if we let !L0 :L0 
!LS;fðjL0j^p Þ be the functor de�ned earlier in the section (just
before Proposition 3.4), then !L0 de�nes an inclusion of L0 into Lq which is clearly
compatible with the projection functors and distinguished monomorphisms. �

4. Constrained fusion systems

We now look at a class of saturated fusion systems which have very simple,
regular behavior: the constrained fusion systems. The main results here say that
constrained fusion systems are always realized as fusion systems of �nite groups in
a predictable way, and have unique associated centric linking systems.

Let F be an arbitrary saturated fusion system over a p-group S. Recall
(De�nition 1.5) that a subgroup Q / S is normal in F if each � 2 HomF ðP; P 0Þ
extends to a morphism � 2 HomF ðPQ; P 0QÞ which sends Q to itself. If Q and Q 0

are both normal in F , then clearly QQ 0 is normal in F . Hence, there is a unique
maximal normal p-subgroup in F , which we denote OpðFÞ by analogy with the
subgroup OpðGÞ of a �nite group G. By Proposition 1.6, OpðFÞ is contained in the
intersection of all F -radical subgroups of S. We are interested in the case when
OpðFÞ is itself F -centric, or equivalently, when there is a subgroup P / S which is
both normal and centric in F .

DEFINITION 4.1. A saturated fusion system F over a p-group S is constrained
if there is some Q / S that is F -centric and normal in F .

When G is a �nite p 0-reduced group, then G is said to be p-constrained if there
exists some normal p-subgroup P / G that is centric in G (that is, CGðP Þ6P ).
(More generally, an arbitrary �nite group G is p-constrained if its p 0-reduction
G=Op 0 ðGÞ is p-constrained.) Our aim is to show that any constrained fusion
system is the fusion system of a unique p 0-reduced p-constrained group G. This
will be done by �rst showing that each constrained fusion system has a unique
associated centric linking system L, and then choosing G to be a certain
automorphism group in L.
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We �rst show that for any constrained fusion system, the obstruction groups to
the existence and uniqueness of an associated centric linking system vanish. For
any saturated fusion system F , let ZF denote the functor on OðF cÞ de�ned by
setting ZFðP Þ ¼ ZðP Þ for all F -centric P 6S. (See [5, x 3] for details.)

PROPOSITION 4.2. Let F be any constrained saturated fusion system over a
p-group S. Then

lim 

OðF cÞ

iðZFÞ ¼ 0 for all i > 0:

In particular, there is a centric linking system L associated to F which is unique
up to isomorphism.

Proof. Fix Q / S that is F -centric and normal in F . Let P1; P2; . . . ; Pm be
F -conjugacy class representatives for all F -centric subgroups P 6S such that
P �Q, arranged such that jPij6 jPiþ1j for each i. For i ¼ 0; 1; . . . ;m, let Zi � ZF
be the subfunctor

ZiðP Þ ¼
ZðP Þ if P is F -conjugate to Pj for some j > i;

0 otherwise.

�
This gives a sequence of subfunctors ZF ! Z0 ! Z1 ! . . . ! Zm ¼ 0, where for
each i ¼ 1; . . . ;m, Zi
1=Zi vanishes except on subgroups F -conjugate to Pi.
Hence by [5, Proposition 3.2],

lim 

OðF cÞ

�ðZi
1=ZiÞ ffi R�ðOutF ðPiÞ;ZðPiÞÞ:

Furthermore, since Pi �Q, NPiQðPiÞ=Pi ffi OutQðPiÞ is a non-trivial normal
p-subgroup of OutF ðPiÞ (normal by the same argument as the one used in the
proof of Proposition 1.6), R�ðOutF ðPiÞ;ZðPiÞÞ ¼ 0 by [12, Proposition 6.1(ii)].
This proves that lim 


�ðZiÞ ¼ 0 for all i, and in particular that lim 

�ðZ0Þ ¼ 0. Thus

lim 

OðF cÞ

�ðZF Þ ffi lim 

OðF cÞ

�ðZF=Z0Þ; ð1Þ

where ZF=Z0 is the quotient functor

ðZF=Z0ÞðP Þ ¼
ZðP Þ ¼ ZðQÞP if P >Q;

0 if P �Q:

(
ð2Þ

Now set M ¼ OutF ðQÞ and S0 ¼ OutSðQÞ ffi S=Q. Thus S0 2 SylpðMÞ. Set
M ¼ ZðQÞ, regarded as a ZðpÞ½M&-module. Let H0M be the �xed-point functor

on OS0
ðMÞ de�ned by H0MðP Þ ¼MP . Then H0M is acyclic by [11, Proposition

5.14] (shown more explicitly in [12, Proposition 5.2]). So by (1), we will have
�nished once we have shown that

lim 

OðF cÞ

�ðZF=Z0Þ ffi lim 

OS0 ðMÞ

�ðH0MÞ: ð3Þ

Since Q is normal and centric in F , it is easy to check that OS0
ðMÞ is isomorphic

to the full subcategory of OðF cÞ with objects the subgroups of S containing Q.
Under this identi�cation, H0M is the restriction of ZF=Z0 by (2). Isomorphism
(3) now follows since ðZF=Z0ÞðP Þ ¼ 0 for all P �Q, and since there are no
morphisms in OðF cÞ from an object in the subcategory to an object not in it.

PLMS 1532---3/8/2005---SRUMBAL---150419

SUBGROUP FAMILIES CONTROLLING p-LOCAL FINITE GROUPS 351



The existence and uniqueness of a centric linking system associated to F now
follow from [5, Proposition 3.1]. �

We are now ready to show that each constrained fusion system is the fusion
system of a group. The following proposition includes Proposition C.

PROPOSITION 4.3. Let F be a constrained saturated fusion system over a
p-group S. Then there is a unique �nite p 0-reduced p-constrained group G,
containing S as a Sylow p-subgroup, such that F ¼ FSðGÞ as fusion systems over
S. Furthermore, if L is a centric linking system associated to F , then

(a) G ffi AutLðQÞ for any subgroup Q / S which is F -centric and normal in
F , and

(b) L ffi LcSðGÞ.

Proof. Using Proposition 4.2, �x a centric linking system L associated to F .
Let �:L
!F c denote the canonical projection functor. By Lemma 3.7, any choice
of ‘inclusion’ morphisms �P 2 MorLðP; SÞ determines unique injections

�P;P 0 :NSðP; P 0Þ 
!MorLðP; P 0Þ;
for all F -centric subgroups P; P 06S, which satisfy the following conditions:

(i) �ð�P;P 0 ðgÞÞ ¼ cg 2 HomF ðP; P 0Þ for g 2 NSðP; P 0Þ;
(ii) �P;P ðgÞ ¼ �P ðgÞ 2 AutLðP Þ for g 2 P ;
(iii) �P;P 00 ðhgÞ ¼ �P 0;P 00 ðhÞ � �P;P 0 ðgÞ for g 2 NSðP; P 0Þ and h 2 NSðP 0; P 00Þ; and
(iv) �P;Sð1Þ ¼ �P .

Set �P
0

P ¼ �P;P 0 ð1Þ 2 HomLðP; P 0Þ for all P 6P 0 containing Q. We think of these as
the ‘inclusion morphisms’ in L. By construction, �SP ¼ �P and �PP ¼ IdP for all P ,

and �P
00

P ¼ �P
00

P 0 � �P
0

P whenever P 6P 06P 00.
The proposition follows from the following points, which will be proven in Steps

1 and 2.
(1) Assume Q / S is F -centric and normal in F , and G ¼ AutLðQÞ. Then G is

p 0-reduced and p-constrained; and we can identify S with a subgroup of G in such
a way that S 2 SylpðGÞ and F ¼ FSðGÞ.

(2) Assume G is p 0-reduced and p-constrained, and such that S 2 SylpðGÞ and
F ¼ F SðGÞ. Then L ffi LcSðGÞ. Also, if Q / S is any subgroup that is F -centric and
normal in F , then Q / G, and G ffi AutLðQÞ.
Step 1. Fix Q / S that is F -centric and normal in F , and set G ¼ AutLðQÞ. Via

the injection

�Q;Q:S ¼ NSðQÞ
!AutLðQÞ ¼ G;
we identify S as a subgroup of G. Since Q is fully normalized,

S=ZðQÞ ffi AutSðQÞ 2 SylpðAutF ðQÞÞ;
where AutF ðQÞ ffi G=ZðQÞ; and thus S 2 SylpðGÞ.

Let P; P 06S be any pair of subgroups that contain Q. For any
f 2 MorLðP; P 0Þ, there is (by Lemma 3.6) a unique ‘restriction’ of f to Q: a
unique element 9ðfÞ 2 G ¼ AutLðQÞ such that �SQ � 9ðfÞ ¼ f � �PQ. These restric-
tions clearly satisfy the following two conditions:

(v) 9ðf 0 � fÞ ¼ 9ðf 0Þ � 9ðfÞ for any f 0 2 MorLðP 0; P 00Þ, and any Q6P 006S; and
(vi) 9ð�P;P 0 ðxÞÞ ¼ x for all x 2 NSðP; P 0Þ.
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Furthermore, by Condition (C) in De�nition 1.4, for each g 2 P ,

�Sð�ðfÞðgÞÞ � f ¼ f � �P ðgÞ 2 MorLðP; SÞ:

Upon restriction to Q (and application of (v) and (vi)), this gives the relation

�Q;Qð�ðfÞðgÞÞ � 9ðfÞ ¼ 9ðfÞ � �Q;QðgÞ 2 AutLðQÞ ¼ G:

In other words, under the identi�cation S ¼ �Q;QðSÞ6AutLðQÞ ¼ G, this shows that
(vii) 9ðfÞ 2 NGðP; P 0Þ and c9ðfÞ ¼ �ðfÞ 2 HomF ðP; P 0Þ.
Now,

CGðQÞ ¼ Ker

AutLðQÞ 


!

�
AutF ðQÞ

�
¼ ZðQÞ;

the �rst equality follows from (vii) (applied with P ¼ P 0 ¼ Q, so 9ðfÞ ¼ f), and
the second from Condition (A) in De�nition 1.4. Thus Q is centric in G. This also
shows that Op 0 ðGÞ ¼ 1 (since ½Op 0 ðGÞ; Q& ¼ 1), and hence that G is p 0-reduced and
p-constrained.

We must show that F ¼ F SðGÞ. We �rst show that HomF ðP; P 0Þ � HomGðP; P 0Þ
for each P; P 06S. Since Q is normal in F , each morphism in HomF ðP; P 0Þ
extends to a morphism in HomF ðPQ; P 0QÞ, and hence it suJces to work with
subgroups P; P 0>Q. In particular, P and P 0 are F -centric in this case. For any
’ 2 HomF ðP; SÞ, and any f 2 MorLðP; SÞ such that �ðfÞ ¼ ’, 9ðfÞ 2 NGðP; P 0Þ
and ’ ¼ c9ðfÞ 2 HomGðP; P 0Þ by (vii), and thus HomF ðP; P 0Þ � HomGðP; P 0Þ.

Conversely, for any P; P 06S and any g 2 NGðP; P 0Þ ¼ NGðPQ;P 0QÞ, we claim
that cg 2 HomF ðP; P 0Þ. Again, we can assume that P; P 0>Q. Now, cgjQ 2
AutF ðQÞ by (vii) (applied with P ¼ P 0 ¼ Q and f ¼ g). Since Q ¼ gQg
1 is
F -centric, it is fully centralized in F , and so cgjQ extends to an F -morphism
de�ned on

NcgjQ :¼ fx 2 S j cgxg
1 2 AutSðQÞg>P;

by Condition (II) of De�nition 1.3. In particular, cgjQ extends to a morphism ’ 2
HomF ðP; SÞ � HomGðP; SÞ (where the inclusion holds by the previous paragraph).
Let h 2 NGðP; SÞ be such that ’ ¼ ch. Then chjQ ¼ ’jQ ¼ cgjQ, so h ¼ gx for some
x 2 CGðQÞ, and CGðQÞ ¼ ZðQÞ as already shown. Since x 2 P , cx 2 AutF ðP Þ, so
cg 2 HomF ðP; SÞ, and cg 2 HomF ðP; P 0Þ since cgðP Þ ¼ gPg
1 6P 0.
Step 2. Let G be any �nite p 0-reduced p-constrained group such that S 2

SylpðGÞ and F ¼ FSðGÞ. Then L ffi LcSðGÞ by the uniqueness in Proposition 4.2.
Let Q / S be any subgroup normal in F ¼ FSðGÞ. Set Q 0 ¼ OpðGÞ; thus

CGðQ 0Þ ¼ ZðQ 0Þ by assumption. Since Q is normal in FSðGÞ, for any g 2 G,
cg 2 AutGðQ 0Þ extends to some cg 0 2 AutGðQQ 0Þ; then g
1g 0 2 CGðQ 0Þ ¼ ZðQ 0Þ,
g 0 2 NGðQQ 0Þ, and so g 2 NGðQQ 0Þ. This shows that QQ 0 / G, a normal
p-subgroup, and hence Q6Q 0 ¼ OpðGÞ. Hence for any g 2 G, cg 2 AutGðQ 0Þ
restricts to an automorphism of Q (since Q is normal in F SðGÞ), so g 2 NGðQÞ,
and this shows that Q / G.

In particular, if Q is both F -centric and normal in F , then

AutLðQÞ ffi AutLc
S
ðGÞðQÞ ffi NGðQÞ=OpðCGðQÞÞ ¼ G=1 ffi G: �

�It is in general not true, for a constrained fusion system F over a p-group S and
a �nite group G such that S 2 SylpðGÞ and F ¼ FSðGÞ, that p-subgroups of S
normal in F are also normal in G. For example, if G ¼ A5, p ¼ 2, S 2 Syl2ðGÞ,
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and F ¼ F SðGÞ, then F is a constrained fusion system, with O2ðFÞ ¼ S ffi C2
2 .

Thus S is normal in F , but not in G, in this case. This shows the importance
of assuming G is p 0-reduced and p-constrained. In the given example, the unique
2 0-reduced 2-constrained group associated to F is A4.
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