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Abstract. We show that almost any category suitably cotensored over the

full subcategory of topological spaces consisting of disjoint unions of direct
products of unit intervals admits a Baues fibration category structure. This

has applications to categories occurring in functional analysis, where it shows

that e.g. the category of C∗-algebras and the category of Banach algebras
admit fibration category structures.

We look at the case of C∗-algebras in some more detail, examining how the

fibration category structure on C∗-algebras relates to the cofibration category
structure on pointed compact Hausdorff spaces. The analysis for instance

reveals that the fibration category structure on C∗-algebras cannot be extended

to a Quillen model category structure.

1. Introduction

Axiomatic homotopy theory, usually in the form of the homotopical algebra of
Quillen [28] (cf. also [16, 19]) have recently had an increasing importance out-
side homotopy theory, with new categories satifying the axioms appearing yielding
important results.

In this paper we demonstrate how many categories occurring in functional analy-
sis (e.g. Banach algebras, C∗-algebras, topological *-algebras, pro-C∗-algebras and
various subcategories thereof) naturally satisfies a weaker set of axioms than those
of Quillen, namely those of a fibration category in the sense of Baues [1].

Slightly more precisely, let I be the (symmetric monoidal [23]) full subcategory
of topological spaces, with objects spaces homeomorphic to finite disjoint unions of
products, In, of unit intervals I (I0 = ∗). If a category C is ‘cotensored’ over I, i.e.
if we for A ∈ I and X ∈ C in a natural way can define an object map(A,X) ∈ C,
compatible with the structures of the two categories, then the assignment PX =
map(I,X) endows C with a natural ‘path object’ (cf. Section 3). We show that this
gives C the structure of a P -category (Theorem 3.7) in the sense of Baues [1]. A
P -category structure on C then automatically gives a fibration category structure
on C, with weak equivalences being the ones induced by the path object.

If for instance C is one of the categories mentioned above, then the topological
space of maps, map(In, X) is again an object in C via ‘pointwise operations’ and
this assignment satisfies the technical requirements.
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Stated briefly, a Baues fibration category structure is an axiomatic framework
which allows one to do ‘one half’ of homotopy theory. In a fibration category one
is for instance able to talk about fibrations and construct loop functors, Puppe se-
quences and various homotopy (invariant) limits (but not the ‘dual’ constructions).
A fibration category structure is roughly one half of the structure of a (proper)
model category in the sense of Quillen (cf. [28, 16]) and similar to structures pro-
posed earlier by K. S. Brown [3] and F. Waldhausen [32] among others.

For the category of C∗-algebras the definition of a fibration category structure
formalizes an analogy to topology previously treated in a somewhat ad hoc manner
(cf. e.g. [30, 29]), and makes an array of results and techniques from homotopy
theory readily available (cf. [1]).

The above results raise the question of when the above fibration category struc-
tures on C can be extended to a model category structure in the sense of Quillen.
We consider this question in the case of C∗-algebras, where the question of the ex-
istence of a model category structure has been raised by Schochet [30]. An adjoint
functor argument reduces the question to the case of commutative C∗-algebras, or
dually pointed compact Hausdorff spaces, which we then answer it in the negative
(Corollary 4.7). Our conclusion just builds on the category of C∗-algebras con-
tains (a suiable subcategory of) the opposite category of the category of pointed
compact Hausdorff spaces as a reflective subcategory, and hence remains valid in
greater generality (Theorem 4.5).

The analysis indicates that the problem with obtaining a model category struc-
ture on the category of C∗-algebras stems not from it, like category of pointed
compact Hausdorff spaces, being ‘too small’. We conclude by discussing how this
problem might possibly be overcome.

2. Notation, prerequisites and relationship with other work

This paper arose out of an attempt to understand the ‘topological constructions’
used by C∗-algebraists. We hope that it helps tie together the C∗-algebra literature
on ‘non-commutative topology’ (cf. e.g. [30, 29, 25, 26]) and the axiomatic homo-
topy theory and category theory literature (cf. e.g. [28, 16, 1, 21]). From searching
the literature it seems that there is a tendency amongst topologists to overlook
examples coming from functional analysis as examples of axiomatic homotopy cat-
egories. Conversely it seems like many results from category theory and axiomatic
homotopy theory have been partially overlooked by the C∗-algebra community, or
at least deserves to be better known.

In our study of non-commutative topology we take the viewpoint of axiomatic
homotopy theory, but try to keep the treatment accesible to people outside the
field, supplementing with, we hope, pertinent references to the literature. The
main prerequisite is basic category theory as describe in the book of Mac Lane [23].

Readers not familiar with the language of axiomatic homotopy theory are how-
ever strongly encouraged to take a look in the excellent introduction [16]. Also, for
the sake of brevity we shall not try to systematically list the all consequences of
a fibration category structure—we refer the reader to the book of Baues [1]. Very
recently a new book by Kemps and Porter on axiomatic homotopy has appeared
[21], to which we also direct the reader.

There is a tradition in C∗-algebra theory to denote objects constructed analo-
gously to topological constructions by the same name, disregarding the fact that
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the functor from pointed compact Hausdorff spaces to C∗-algebras is contravari-
ant. This causes objects and maps constructed axiomatically to be called by their
‘dual’ name of what is standard in C∗-algebra theory. However in all the cases that
we are aware of our analysis shows that, after dualizing, old and new definitions
coincide—a reassuring fact in itself.

Unless otherwise specified, all topological spaces will be pointed, although we as
customary suppress this from the notation. Also C∗-algebras are complex and not
assumed to be unital. We refer the reader to Section 4 for a discussion explaining
these conventions.

3. A P -category structure on a category C

In this section we show that a category C which is ‘cotensored’ over I as sketched
in the introduction can be given the structure of a P -category. (We will only use
the word ‘cotensored’ as an ad hoc term, for the conditions stated in Theorem 3.7,
however in many cases of interest, e.g. for many types of topological algebras in-
cluding C∗-algebras, the category will in fact be enriched over compactly generated
Hausdorff spaces (cf. [14]) or quasitopological spaces (cf. [15]), and in those cases
our ‘cotensor’ will be a cotensor in the sense of enriched category theory [22, 13]
(cf. [15, p. 119] for a discussion of this).)

To motivate the constructions to readers unfamiliar with axiomatic homotopy
theory we start out by briefly discussing some basic concepts from homotopy theory.
Consider the category of pointed spaces. In the pointed category a homotopy
between maps f0, f1 : X → Y is a map F : XoI → Y such that Fi0 = f0 and
Fi1 = f1, where XoI = X × I/ ∗ ×I is the half-smash product and i0, i1 : X →
XoI are the natural inclusions. By adjunction F corresponds to a pointed map
F̃ : X → Y I , (where Y I denotes the space of maps I → Y endowed with the

compact-open topology) such that p0F̃ = f0 and p1F̃ = f1 where p0, p1 : Y I → Y
are the natural projections. In the language of homotopical algebra (cf. [28, 16])
XoI is what is known as a cylinder object for X, and Y I is a path object for Y .

We now abstractly define what we mean by a natural path object. We follow
the definition of Baues [1], which is slightly different from the one of Quillen [28]
(see however Remark 3.3).

Definition 3.1. A natural path object on a category C with finite products is a
functor P : C → C together with natural transformations p0, p1 : P → Id, i : Id→ P

such that for all X ∈ C we have that X
i→ PX

(p0,p1)→ X ×X is a factorization of
the diagonal. Dualizing this definition we get the definition of a natural cylinder
object on a category.

We are now ready to state the definition of a P -category.

Definition 3.2. [1, p. 27] Let C be a category with a terminal object ∗ which has
all pullbacks. Assume that C has a natural path object P which preserves pullbacks
and takes ∗ to ∗. Assume furthermore that C has a distinguished class of morphisms
called fibrations.

We say that C is a P -category if it satisfies the following axioms:

(1) The pullback of a fibration along an arbitrary map is again a fibration.
(2) The unique map X → ∗ is fibration for all X. Isomorphisms in C are

fibrations, and fibrations are closed under composition.
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(3) (Homotopy lifting property) Let q : X → Y be any fibration, and let A be
any object in C. Assume that we have maps f : A→ X, H : A→ PY such
that the solid arrow part of the following diagram commute.

X

q

��

PX
p0

oo

Pq

��

A

f

``

H

!!

H̃

==

Y PY
p0

oo

Then there exists a map H̃ : A→ PX making the whole diagram commute.
(4) For any fibration q : X → Y the canonical map PX → PY ×Y×Y (X ×X)

is a fibration.
(5) For all objects X there exists an ‘exchange map’ T : P 2X → P 2X such

that pε ◦ T = P (pε) and P (pε) ◦ T = pε, ε = 0, 1.

In the case where PX consists of the maps from the standard unit interval to
X, the exchange map of Axiom 5 is just the standard map exchanging the two
coordinates.

Dualizing the notion of a P -category one obtains an I-category, i.e. a category
with a natural cylinder object satisfying the dual requirements (cf. [1, p. 16]). The
duality is strict in the sense that if C is a P -category then Cop is an I-category, and
vice versa.

The category of pointed topological spaces possesses both a I- and a P -category
structure with the definitions of path and cylinder objects from the beginning of this
section, and usual cofibrations and (Hurewicz) fibrations as respectively cofibrations
and fibrations. Note that these are exactly the ones given by the lifting property
in Axiom 3 of Definition 3.2.

It follows from [1, Thm. I.3a.4] that a P -category structure on C implies that C
can be given a structure of a fibration category taking as fibrations the fibrations
in the P -category structure, and as weak equivalences homotopy equivalence as
induced by the path object P . In this structure all objects will be fibrant and
cofibrant. Dual to the notion of a fibration category structure is the notion of a
cofibration category structure (cf. [1, p. 5]), and hence an I-category structure on
C induces a cofibration category structure on C, in which all objects are fibrant and
cofibrant.

Remark 3.3. Just having a path object enables one to define a notion of homotopy.
However unless extra assumptions are made on the path object, homotopy will not
necessarily be an equivalence relation. If however the path object is part of a
P -category structure then homotopy equivalence becomes an equivalence relation
preserved under composition, and we say that a map is a weak equivalence if it has
a two sided inverse up to homotopy. Furthermore in this case our path object is
a path object in the sense of Quillen, i.e. the map (p0, p1) : PX → X × X is a
fibration and i : X → PX is a weak equivalence. The first claim follows directly
from Axiom 4 of the definition of a P -category setting Y = ∗, the second is slightly
more complicated (cf. [1, p. 23]).

For use in Section 4 we need the following definition.
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Definition 3.4. Let F : C → D be a functor between two P -categories. We say that
F is a P -functor if F takes ∗ to ∗, pullbacks to pullbacks, fibrations to fibrations,
and commute with P .

When dealing with fibrations it is useful to have made the following observation,
which is a direct consequence of the universal property of the pullback.

Observation 3.5. In the setup of Definition 3.2, a map q : X → Y has the
homotopy lifting property of Axiom 3. with respect to any A iff it has the homotopy
lifting property with respect to X×Y PY , i.e. iff the canonical map PX → X×Y PY
has a section.

Given a category with a natural path object it is possible simply to define fibra-
tions by the homotopy lifting property in Axiom 3 above. In this case several of
the axioms above are automatically satisfied:

Lemma 3.6. Let C be a category with a terminal object ∗ which has all pullbacks.
Assume that C has a natural path object P which preserves pullbacks and takes ∗
to ∗. Define a distinguished class of morphisms called fibrations by Axiom 3 of
Definition 3.2.

Then C is a P -category if it satisfies the following two properties:

4. For any fibration q : X → Y the canonical map PX → PY ×Y×Y (X ×X)
is a fibration.

5. For all objects X there exists an ‘exchange map’ T : P 2X → P 2X such
that pε ◦ T = P (pε) and P (pε) ◦ T = pε, ε = 0, 1.

Proof. We just have to show that the choice of fibrations given by Axiom 3 will sat-
isfy Axiom 1 and 2, but this is totally straight forward. Axiom 1, that the pullback
of a fibration again is a fibration, is a consequence of the fact that P is assumed
to preserve pullbacks and the universal property of the pullback construction. We
proceed to check Axiom 2. The unique map X → ∗ is a fibration since P takes ∗
to ∗ and the map p0 : PX → X has a right inverse i, by the definition of a path
object. That isomorphisms in C are fibrations follows from the fact that P is a
functor, and that fibrations are closed under composition is a direct consequence
of the definition. �

If our path object is a reasonably naturally arising one, and our fibrations are
chosen to be the ones with the homotopy lifting property, we see that the only
axiom which really needs to be checked is Axiom 4. It however turns out that also
this axiom is just a formal consequence of the geometry of I × I in our case of
interest.

Theorem 3.7. Let I be the full subcategory of the category of (unpointed) topo-
logical spaces having as objects spaces homeomorphic to finite disjoint unions of
products, In, of the unit interval I (I0 = ∗).

Let C be a pointed category and suppose that there exists a functor map : Iop ×
C → C which satisfies a natural equivalence map(−,map(−,−)) ' map(−×−,−),
as functors Iop × Iop × C → C.

Assume that C has all pullbacks and that the functor map(A,−) takes ∗ to ∗ and
preserves pullbacks. Also assume that map(−, X) takes the pushouts which exist in
I to pullbacks in C. Finally assume that map(I0,−) is equivalent to the identity
functor.
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Then map(I,−) : C → C is a natural path object P on C which induces a P -
category on C, taking as fibrations the ones induced by Axiom 3 of Definition 3.2.

Especially C is a fibration category in the sense of Baues [1, p. 10] with the
following structure: Fibrations are the same as in the P -category structure. Weak
equivalences are the homotopy equivalences induced via the path object map(I,−).
In this structure all objects are fibrant and cofibrant.

Proof. We have that map(I,−) : C → C is a natural path object P on C, just by
the property that map(−,−) is a functor which takes coproducts to products in the
first variable. We check that this path object P satisfies the conditions of Lemma
3.6. By assumption P preserves pullbacks and takes ∗ to ∗.

We now want to show Axiom 4, that for a fibration q : X → Y the canonical
map PX → PY ×Y×Y (X ×X) is a fibration. Let s be a section of the canonical
map l : PX → X ×Y PY , which exists by Observation 3.5. We show that the
canonical map

P 2X → PX ×PY×Y ×YX×X P (PY ×Y×Y X ×X) (3.1)

also has a section. This is done by showing that under suitable identifications this
map may be identified with Pl : P 2X → P (X ×Y PY ) which has the section Ps.

The space on the right hand side of (3.1) may be identified as the limit of the
diagram

P 2Y

Pp0
��
Pp1

%%

p1P

**

PXPq

tt
p1

%%

PXPq

tt

p0

�� p1
&&

PXPq

tt

p0

��
PY PY PY X X

Since we assume that map(−, X) takes the pullbacks which exist in I to pullbacks

in C we can in this diagram identify e.g. lim(PX
p1→ X

p0← PX
p1→ X

p0← PX) ' PX.
Hence the limit diagram can be simplified to the diagram P 2Y → PY ← PX,
where the maps are somewhat twisted. However consider now a homeomorphism
α : I2 → I2 rearranging the edges as follows:

-

-

-

6

�- - cba

b

c

a
Using this as reparametrisation, the pullback becomes P 2Y

Pp1→ PY
Pq← PX.

Moreover the maps P 2X → P 2Y and P 2X → PX in this reidentification of (3.1)
becomes respectively P 2q and Pp1. But this means that (3.1) after these identifi-
cations is just Pl : P 2X → P (X ×Y PY ), which has the section Ps. This proves
Axiom 4.

That Axiom 5 is satisfied follows from the existence of an ‘exchange map’ I2 →
I2 interchanging the two coordinates, using again that map(−,−) is a functor
satisfying the stated adjunction between map and ×. This finishes the proof of the
existence of a P -category structure.
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The last part of the theorem is by [1, Thm. I.3a.4] a formal consequence of the
first. �

Remark 3.8. The dual of Theorem 3.7 is also true, i.e. if a category C is ‘tensored’
over I, then the assignment IX = I × X endows C with cylinder objects which
induces an I-category structure on C. We leave the exact statement and proof of
this theorem to the reader (use e.g. duality).

As mentioned in the introduction it is obvious that the assumptions in Theorem
3.7 are satisfied for e.g. Banach algebras and C∗-algebras. For convenience we state
the last part of Theorem 3.7 in the category of C∗-algebras:

Corollary 3.9. The category of C∗-algebras admits a fibration category structure
with weak equivalences being the usual homotopy equivalences and fibrations being
what is usually known as C∗-algebra cofibrations. In this structure all objects are
fibrant and cofibrant. �

Example 3.10. Note that C0(X ∧ Y ) = C0(X)⊗ C0(Y ) and that

C0(X × Y ) = {f ∈ C(X × Y )|f(∗) = 0} = {f ∈ C(X)⊗ C(Y )|f(∗) = 0}
= ker(C0(X)+ ⊗ C0(Y )+

aug→ C).

This indicates that it might be worth studying A�B := ker(A+ ⊗ B+ aug→ C) for
general C∗-algebras A,B and some tensor product ⊗ (or free product!). Indeed
this can also be put into an axiomatic framework since � defines a fat product on
the category of C∗-algebras in the sense of Baues (cf. [1, p. 155]). A fat product
allows one to define a cosmash product as the homotopy fiber of the canonical
map A�B → A

∏
B. The product, fat product and cosmash product relates via

the formulas generalizing well known splitting formulas from topology (cf. [1, p.
156]). In the case where A�B → A

∏
B is already a fibration, the cosmash product

coincides with the tensor product, and we for instance obtain the splitting formula

Σ(A�B) ' Σ(A⊗B)⊕ ΣA⊕ ΣB,

where Σ denotes the C∗-algebraic suspension functor, i.e. the loop functor in the
fibration category structure.

Remark 3.11. It is our hope that also other fibration category structures can be
defined on the category of C∗-algebras, C∗, e.g. with asymptotic equivalences as
weak equivalences. This would provide a good setup for studying noncommutative
shape theory, a theory of current interest (cf. e.g. [8, 7, 9, 10, 5]) sparked by
the definition of E-theory (a generalized version of KK-theory) via asymptotic
morphisms by Connes-Higson [6]. (For information about shape theory in the
framework of cofibration categories see [27] and the references given therein.)

For separable C∗-algebras A,B, E-theory is defined as

E(A,B) := [[ΣA⊗K,ΣB ⊗K]],

where [[−,−]] denotes homotopy classes of asymptotic morphisms, Σ denotes the
C∗-algebraic suspension functor (which would be a loop functor in the notation of
this paper), and K denotes the compact operators.

Apart from understanding asymptotic morphisms, one should in order to under-
stand E-theory from an abstract homotopical point of view also need to understand
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the role of the suspension (suspension stabilization) and the tensoring with the com-
pact operators (matrix stabilization).

By generalized Bott periodicity we have E(A,B) = colimn[[ΣnA⊗K,ΣnB⊗K]].
In order to understand the suspension stabilization it seems natural to study ‘sus-
pension spectra’ of C∗-algebras. In the ‘stable homotopy category’ of C∗-algebras
the functor, Σ, which we will show does not have an adjoint in Ho(C∗), would have
an adjoint, Σ−1, by the construction of the stable category. This stable category
would satisfy some of the axioms of a axiomatic stable homotopy category of [20],
and hence might admit treatment from a homotopical viewpoint.

Tensoring with the compact operators is a localization functor (i.e. a coaug-
mented idempotent functor on Ho(C∗)), and these have been much studied in
category theory and topology (cf. e.g. [2, 18]). It moreover has the intriguing
property that in the (K ⊗ −)-local homotopy category of C∗-algebras finite prod-
ucts and coproducts coincide [29, Prop. 3.4].

We end this section with an observation we will need in the next section, when
examining extensions of fibration category structures to model category structures.

Lemma 3.12. If C possesses a fibration category structure which is extendable to a
model category structure in the sense of Quillen. Then the, by the fibration category
induced, loop functor will naturally descend to a loop functor on Ho(C) in the sense
of Quillen, and will hence especially have a left adjoint. Likewise the dual statement
for cofibration categories hold.

Proof. The homotopy categories of Baues and Quillen agree by [1, I.§2], [1, II.3.6],
and [28, Thm. I.1.1], and loop functors are defined in the same way in [1, II.§6]
and [28, I.§2], and therefore agree on the homotopy category. The fact that the
loop functor has an adjoint in a model category is stated as [28, Thm. I.2.2]. The
statement about cofibration categories is a categorical dual and hence also hold. �

4. Axiomatic homotopy theory in the category of C∗-algebras

In this section we discuss homotopy theory in the category of compact Hausdorff
spaces and how it relates to fibration category structures on C∗-algebras. One
result of our analysis will be that the fibration category structure on C∗-algebras
and various naturally occurring subcategories thereof cannot be extended to model
category structures.

It is well known that Comp∗
op is equivalent to the category of commuta-

tive C∗-algebras via Gelfand duality. More precisely the contravariant functor
F : Comp∗ → C∗, on objects given by F (X) = C0(X), embeds Comp∗

op in
C∗ as the full subcategory of commutative C∗-algebras. Here C0(X) denotes the
algebra of complex valued continuous functions f : X → C which vanish at the
base point. The inverse is given by to A associating the maximal ideal spectrum of
A+, where A+ denotes the forced unitization of A. (Note that S0 corresponds to
C.)

By Theorem 3.7 the category of commutative C∗-algebras, CommC∗, possesses
a P -category structure via the path object (−)I . Likewise Comp∗ possesses a struc-
ture as an I-category using the cylinder object −oI, which induces a P -category
structure on Comp∗

op. Under the equivalence above F (XoI) = C0(XoI) =
C0(((X \ ∗) × I)+) = C0(X)I = F (X)I , where + denotes the one point compacti-
fication. Hence the equivalence of categories Comp∗

op ' CommC∗ is in fact an
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equivalence of P -categories, which allows us to simply identify the two categories
without possibility for confusion. However note also that the P -category structure
on pointed topological spaces, Top∗, does not immediately restrict to Comp∗,
since in general XI is quite far from being compact.

In relating structures transferring results between the categories Comp∗ and
C∗, it is most useful to make the following observation:

Lemma 4.1. We have that Comp∗
op is a full and reflective subcategory of C∗,

meaning that it is a full subcategory where the inclusion functor has a left adjoint (cf.
[23, p. 88ff]). The left adjoint (reflector) of the inclusion is given by the commutator
functor which on objects is given by A 7→ A/[A,A] and applying Gelfand duality.
This adjunction descends to the homotopy categories and gives that Ho(Comp∗

op)
is a reflective subcategory of Ho(C∗).

Proof. The first statement is obvious from the definition. The second follows di-
rectly from the definition of homotopy via the path object. �

The above lemma guarantees that if a functor F : C∗ → C∗ restricts to a functor
F : Comp∗

op → Comp∗
op, and if F has a left adjoint on C∗, then the restriction

of F to Comp∗
op will likewise have a left adjoint, obtained by composing and

precomposing with the reflector and the inclusion. Combining this observation with
Lemma 3.12, we have reduced the question of proving that the fibration category
structure on C∗ does not extend to a model category structure, to showing that Σ
does not have a right adjoint on Ho(Comp∗).

Before doing this we study homotopy theory in Comp∗. The results are all
well known to topologists. However, since we have been unable to find suitable
references, and also feel that the discussion is illuminating, we proceed in some
detail—the impatient reader may skip right to Proposition 4.3

The category Comp∗ is a reflective subcategory of the category of all pointed
topological spaces, Top∗. The left adjoint is given by the Stone-Čech compactifi-
cation β (cf. e.g. [23, 2]). Especially it follows (cf. [23]) that Comp∗ not only has
arbitrary limits (coinciding with the limits in Top∗) but also also arbitrary colimits
given by first taking the colimit in Top∗ and then applying β.

Consider the from ι induced map on homotopy categories Ho(Comp∗)→ Ho(Top∗),
where homotopy equivalence is induced via the cylinder object −oI.

In order to relate homotopy theory in Ho(Comp∗) to homotopy theory in
Ho(Top∗) we have to look at properties of this inclusion. The category Ho(Top∗)
of course has arbitrary coproducts and products, since the cylinder object −oI
commutes with arbitrary products and coproducts in Top∗. However Ho(β) is no
longer left adjoint to Ho(ι), so the conclusion does not carry over to Ho(Comp∗).
Even stronger, we have the following:

Proposition 4.2. Let {Xi}i be an infinite collection of nontrivial spaces in Ho(Comp∗).
Then β(∨iXi) is never a coproduct in Ho(Comp∗)

Proof. For β(∨iXi) to be the coproduct of {Xi}i means per definition that [β ∨i
Xi, Y ] =

∏
i[Xi, Y ](= [∨iXi, Y ]), via the natural maps, for all Y ∈ Ho(Comp∗).

But setting Y = S1 we get by a straightforward calculation due to Dowker [11] that

ker(β∗ : [β ∨i Xi, S
1]→ [∨iXi, S

1]) = C(∨iXi,R)/Cb(∨iXi,R)
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where C(∨iXi,R) denotes continuous real valued functions on ∨iXi and Cb(∨iXi,R)
is the subgroup of bounded such functions. This kernel is nonzero since by the as-
sumptions ∨iXi is non-compact. �

The bad behavior of the Stone-Čech compactification with respect to homotopy
(essentially originating from the fact that βX × I 6= β(X × I) for X non-compact),
and the resulting lack of coproducts is one of the problems with doing homotopy
theory in Comp∗. (See e.g. [4], as well as other papers by those authors, for
more information about how homotopy relates to the Stone-Čech compactification.)
Another, more serious problem is the lack of function objects. Minimally one would
want the suspension functor to have a right adjoint [29, p. 157], at least in the
homotopy category, but this is not the case:

Proposition 4.3. The suspension functor Σ, induced by the cylinder object −oI
does not have a right adjoint neither as a functor on Comp∗ nor as a functor on
Ho(Comp∗).

Proof. To see that Σ does not have an adjoint in Comp∗ one can note that Σ does
not commute with infinite coproducts in Comp∗, in fact not even up to homotopy.
For example we have that [Σβ(∨NI), S1] = [β(∨NI),ΩS1] = 0 whereas, by the for-
mula in the proof of Proposition 4.2, [β(∨NΣI), S1] = C(∨NΣI,R)/Cb(∨NΣI,R)
which is uncountable.

To see that Σ does not have an adjoint on Ho(C∗), we argue by contradic-
tion. By [23, p. 83] Σ has an adjoint iff for all Y ∈ Ho(Comp∗), [Σ−, Y ] is
a representable functor on Ho(Comp∗). That is if we for all Y ∈ Ho(Comp∗)
can find X ∈ Ho(Comp∗) such that [Σ−, Y ] = [−,ΩY ] is naturally equiva-
lent to [−, X] as functors on Ho(Comp∗). Especially we get a canonical iso-
morphism [X,ΩY ] ' [X,X]. Let f ∈ [X,ΩY ] be the element corresponding to
idX ∈ [X,X]. By writing up the standard diagram from the Yoneda lemma, we
see that the natural equivalence is in fact given by the natural transformation
[−, f ] : [−, X] → [−,ΩY ]. In particular we see that f : X → ΩY induces an iso-
morphism on homotopy groups. Now take Y = S1. We have that ΩS1 is homotopy
equivalent to Z. However since X is assumed to be compact, f(X) has to be a
compact subset of ΩS1. Especially f cannot possibly be surjective on π0, and we
get the desired contradiction. �

Corollary 4.4. The natural cofibration category structure on Ho(Comp∗) cannot
be extended to a model category structure in the sense of Quillen [28]. �

Using Lemma 3.12, the remarks following Lemma 4.1, together with an extrac-
tion of what was used about Comp∗ in the proof of Proposition 4.3 allows us to
obtain the following general theorem:

Theorem 4.5. Let D be any full subcategory of Comp∗ which contains ∗ and S0

and which is closed under applying −oI an forming pushouts (and hence possesses
the structure of an I-category).

Let C be some P -category, which contains Dop as a reflective subcategory and
assume that the inclusion functor is a P -functor in the sense of Definition 3.4.

Then the, from the fibration category induced, loop functor on Ho(C) does not
have a left adjoint, and hence the fibration category structure cannot be extended to
a model category structure. �
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Remark 4.6. Note that the condition that the inclusion be a P -functor, in the case
of a reflective subcategory, just amounts to requiring P to commute with the inclu-
sion, the rest of the conditions being guaranteed by the definition of reflectiveness
and Observation 3.5.

Corollary 4.7. The fibration category structure on C∗-algebras of Corollary 3.9
does not extend to a model category structure. The same holds for various nat-
urally occurring subcategories, (‘admissible subcategories’ [30]), such as separable
C∗-algebras or separable nuclear C∗-algebras. �

Remark 4.8. We have so far considered non-unital C∗-algebras. We now explain
how this relates to the category of unital C∗-algebras and unital maps, uC∗. (Note
that uC∗ has initial object C and terminal object 0.) Consider the category of
augmented C∗-algebras, i.e. the over-category (cf. [23, p. 46]) uC∗ ↓ C. The
functor C∗ → (uC∗ ↓ C), given by forced unitization is easily seen to be an
equivalence of categories. Hence keeping this identification in mind we see that
C∗ simeq(uC∗ ↓ C) relates to uC∗ just as Comp∗ relates to Comp. Passing
to commutative C∗-algebras this of course fits with ordinary Gelfand duality ex-
pressing a categorical duality between unpointed compact Hausdorff spaces and
commutative unital C∗-algebras via X 7→ C(X). (Note also that forced uniti-
zation, as a functor uC∗ → (uC∗ ↓ C) is right adjoint to the forgetful functor
(uC∗ ↓ C) → uC∗, and as a functor C∗ → uC∗ left adjoint to the inclusion
uC∗ → C∗.)

In particular we see that a (not nessesarily unital) C∗-algebra should be defined
as well-pointed if the augmentation map A+ → C is a fibration as defined via the
path object P = map(I,−) on uC∗, and likewise we se that every object in C∗ is
freely homotopic (i.e. homotopic in uC∗) to a well-pointed C∗-algebra.

Finally we remark that it should be kept in mind that one in topology usually
would take a weak equivalences the maps which induce isomorphisms on homotopy
groups. This only coincides with homotopy equivalence induced via the cylinder
object on well-pointed CW complexes. (However, for an analysis of model cate-
gory structures on (well pointed) topological spaces taking weak equivalences to
be strong equivalences see Strøm [31].) This does not have a good noncommuta-
tive analog, since neither completely satisfactory notions of homotopy groups nor
noncommutative CW complex have yet been found, although effort has been put
into doing this and partial steps have been made (cf. [29, 30, 24, 17]). One way
of circumventing this problem could be to instead find a fibration category struc-
ture with weak equivalences being asymptotic equivalences generalizing topological
shape equivalence as remarked on in Remark 3.11, hence avoiding pathologies in a
different way.

5. Possibilities for homotopy theory in other categories of
topological algebras

The problem with C∗-algebras is that the category is somehow too small. There
are several ways around this:

• [14, 12, 15, 25, 26]
• Relation to the topological case (quasi-topological spaces, compactly gener-

ated...); Say why σ-C∗-algebras do not give these problems, since topology
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is metrizeable, and hence compactly generated. Wiedner’s example, and
the explanation via Dubuc-Porta, that the Kellyfication is C([0, 1]).
• P has an adjoint functor (categorial considerations, or refer to Phillips?).
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