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1. Introduction

In modular representation theory of finite groups, the indecomposable kG-
modules M whose restriction to a Sylow p-subgroup S split as the trivial mod-
ule k plus a free kS-module are basic yet somewhat mysterious objects. Such
modules form a group Tk(G,S) under tensor product, discarding projective kG-
summands, with neutral element k and M∗ the inverse of M (see §2.1 for de-
tails). It is also denoted K(G) in the literature. It contains the one-dimensional
characters Hom(G, k×) as a subgroup, but has been observed to sometimes also
contain exotic elements, i.e., modules of dimension greater than one. The group
Tk(G,S) is an important subgroup of the larger group of all so-called endotrivial
modules Tk(G), i.e., kG-modules M where M∗ ⊗ M ∼= k ⊕ P , for P a projective
kG-module. Namely Tk(G,S) = ker (Tk(G) → Tk(S)), i.e., the kernel of the re-
striction to S. The group of endotrivial modules has a categorical interpretation
as Tk(G) ∼= Pic(StModkG), the Picard group of the stable module category. Such
modules occur in many parts of representation theory, e.g., as source modules (see
the surveys [Thé07,Car12,Car17] and the papers quoted below).

Classifying endotrivial modules has been a long-running quest, which has been
reduced to calculating Tk(G,S), through a series of fundamental papers: The
group Tk(S) was determined in celebrated works of Dade [Dad78a,Dad78b], Alperin
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[Alp01], and Carlson–Thévenaz [CT04,CT05]. From this, Carlson–Mazza–Nakano–
Thévenaz [CMN06,MT07,CMT13] worked out the image of the restriction Tk(G)→
Tk(S), at least as an abstract abelian group, and showed that the restriction is split
onto its image, except in well-understood cases with cyclic Sylow p-subgroup (see
(1.1)). Subsequently there has been an intense interest in calculating Tk(G,S), with
contributors Balmer, Carlson, Lassueur, Malle, Mazza, Nakano, Navarro, Robinson,
Thévenaz, and others.

In this paper we give an elementary and computable homological description of
the group Tk(G,S), as the first cohomology group of the orbit category on non-
trivial p-subgroups of G, with constant coefficients in k×, for any finite group G and
any field k (not assumed algebraically closed) of characteristic p dividing the order
of G. Using homological methods, adapted from mod p homology decompositions
(but now with k×-coefficients, hence “prime to p”), we deduce a range of structural
and computational results on Tk(G,S), with answers expressed in terms of standard
p-local group theory: We write Tk(G,S) as an inverse limit of homomorphisms
from normalizers of chains of p-subgroups to k×, answering the main conjecture of
Carlson–Thévenaz [CT15, Ques. 5.5] in the positive (see also [Car17, Ques. 1]). A
related “centralizer decomposition” expresses it in terms of the p-fusion system of
G and centralizers of elementary abelian p-subgroups (see §§1.2–1.3). We also get a
formula for Tk(G,S) in terms of π0 and π1 of the p-subgroup complex |Sp(G)| of G.
It implies that Tk(G,S) ∼= Hom(G, k×) when the p-subgroup complex of G is simply
connected. The formula can be seen as a topological correction to the old hope (too
näıve; see [Car12, p. 106]) that exotic modules could only occur in the presence of
a strongly p-embedded subgroup, meaning |Sp(G)| disconnected (see §1.1). We get
bounds on Tk(G,S) in terms of the fundamental group of the p-fusion system of G,
and see the contribution of specific p-subgroups in G (see §1.4). Lastly we provide
consequences of these results for specific classes of groups, e.g., finite groups of Lie
type and sporadic groups, obtaining new computations as well as recovering and
simplifying many old ones in the vast literature. As an example we try out one of
our formulas on the Monster sporadic simple group, and easily calculate Tk(G,S)
for p any of the harder primes 3, 5, 7, 11, and 13, which had been left open in the
literature [LM15b] (see §1.5).

Our proof of the identification of Tk(G,S) is direct and self-contained, and pro-
vides “geometric” models for the module generator in Tk(G,S) corresponding to a
1-cocycle: it is the class in the stable module category represented by the unreduced
Steinberg complex of G twisted by the 1-cocycle. It has the further conceptual
interpretation as the homotopy left Kan extension of the 1-cocycle from the or-
bit category on non-trivial p-subgroups, to all p-subgroups. Our identification was
originally inspired by a characterization due to Balmer of Tk(G,S) in terms of what
he dubs “weak homomorphisms” [Bal13], and we also indicate another argument
of how to deduce the identification using these.

Let us now describe our work in detail. Call a kG-module Sylow-trivial if it upon
restriction to kS splits as the trivial module k plus a projective kS-module. Tk(G,S)
identifies with the group of equivalence classes of Sylow-trivial modules, identifying
two if they become isomorphic after discarding projective kG-summands. Each
equivalence class contains a unique indecomposable representative, up to isomor-
phism (see Proposition 3.1). Let O∗

p (G) denote the orbit category of G with objects
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G/P , for P a non-trivial p-subgroup, and morphisms G-maps. The following is our
main identification of Tk(G,S).

Theorem A. Fix a finite group G and k a field of characteristic p dividing the
order of G. The group Tk(G,S) is described via the following isomorphism of abelian
groups

Φ: Tk(G,S)
∼=−−→ H1(O∗

p (G); k×)

The map Φ sends [M ] ∈ Tk(G,S) to the functor ϕ : O∗
p (G) → k× defined as follows:

First consider
kϕ : G/P �→ Ĥ0(P ;M) = MP /(

∑
g∈P

g)M,

given by zeroth Tate cohomology, a functor from O∗
p (G) to the connected groupoid

of one-dimensional k-modules and isomorphisms. Then identify the target with the
group k×, regarded as a category with one object, via an equivalence of categories,
to obtain a functor ϕ : O∗

p (G) → k×, well-defined up to natural isomorphism of
functors.

The inverse Φ−1(ϕ) is the class in Tk(G,S) of the unaugmented “twisted Stein-
berg complex”

C∗(|Sp(G)|; kϕ) ∈ Db(kG)/Dperf(kG) �←−− stmodkG

where kϕ is the G-twisted coefficient system induced by ϕ : O∗
p (G) → k×, i.e.,

assigning kϕ(G/P0) (∼= k) to the n-simplex (P0 ≤ · · · ≤ Pn) and endowing the
chain complex with the canonical G-action (see §3.2.2).

In fact we establish in Theorem 3.11 a more general correspondence between
kG-modules that split as a sum of trivial and projective modules upon restriction
to S, and representations of the fundamental group π1(O

∗
p (G)), refining parts of

Green correspondence.
The one-dimensionality of Ĥ0(P ;M) is by definition of Sylow-trivial, as P is sub-

conjugate to S. Also, we used the equivalence of homotopy categories stmodkG
�−−→

Db(kG)/Dperf(kG) between stmodkG, the full subcategory of the stable module
category StModkG with objects finitely generated kG-modules, and the bounded
derived category of finitely generated kG-modules, modulo perfect complexes, re-
called in §3.2.1. We recall G-twisted coefficient systems on the p-subgroup complex
|Sp(G)|, the nerve of the poset of non-trivial p-subgroups of G, in §3.2.2.

The chain complex C∗(|Sp(G)|; kϕ) can be interpreted as the value on G/e of the
homotopy left Kan extension of ϕ along O∗

p (G)op → Op(G)op, i.e., to the opposite
orbit category on all p-subgroups, which has model the homotopy colimit in chain
complexes hocolimP∈Sp(G)op kϕ (see Proposition 3.7). When ϕ = 1, the complex
is the Steinberg complex without the k-augmentation in degree −1, and the fact
that Φ−1(k) ∼= k is equivalent to projectivity of the augmented Steinberg complex,
proved by Quillen [Qui78, 4.5] and Webb [Web91].

Let us briefly describe how to obtain the whole group of endotrivial modules
Tk(G) from that of Tk(G,S) together with results in the literature. Using the
definitions (see §2.2) have an exact sequence

(1.1) 0 → Tk(G,S) → Tk(G)
resS−−−→ L → 0

with L = im(Tk(G) → Tk(S)). The torsion-free rank of L has been determined
in [CMN06, §3], extending the work of Alperin [Alp01]. By the classification of
endotrivial modules for finite p-groups [CT04,CT05], L is torsion-free except when
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S is cyclic or a semi-dihedral or quaternionic 2-group, and in particular the above
sequence is split outside those cases. The exceptions can be described explicitly by
a case-by-case analysis carried out in [MT07,CMT13] and it turns out that in all
those cases the torsion part of L equals that of Tk(S). When S is a semi-dihedral
or quaternionic 2-group the restriction is furthermore split by [CMT13, Thms. 6.4
and 4.5]. When S is cyclic, Tk(Z/2) = 0, and for |S| > 2, Tk(S) ∼= Z/2. The 4-
fold periodic resolution of the trivial F3S3-module shows that the restriction is not
always split, but the structure of the extension above can in all cases be described
explicitly (see [MT07, Thm. 3.2 and Lem. 3.5]). We remark that while L hence is
known as an abstract abelian group for any finite group G, explicit generators for
the torsion-free part have in fact hitherto been elusive (see [CMT14]). Combining
the methods of this paper with methods from higher algebra, we have recently,
together with Tobias Barthel and Joshua Hunt [BGH], also been able to describe
these, giving the precise image L ⊆ limG/P∈O∗

p (G) Tk(P ) ⊆ Tk(S), and obtaining

answers to conjectures in [CMT14].
We now embark in putting the model for Tk(G,S) of Theorem A to use, express-

ing H1(O∗
p (G); k×) in terms of p-local information about the group. We start with

some elementary observations: By standard algebraic topology (recalled in §2.5)
(1.2)
H1(O∗

p (G); k×)∼=Rep(O∗
p (G), k×)∼=Hom(π1(O

∗
p (G)), k×)∼=Hom(H1(O

∗
p (G)), k×)

where Rep means isomorphism classes of functors, viewing k× as a category with
one object. Let

(1.3) G0 = 〈NG(Q)|1 < Q ≤ S〉
also called the 1-generated core ΓS,1(G) by group theorists, which, if proper in G, is
the smallest strongly p-embedded subgroup containing S (see Remark A.18). Recall
that a Frattini argument implies that we have surjections NG(S)/S � (G0)p′ �
Gp′ , where we throughout the paper adopt the convention that

(1.4) Gp′ = G/〈 g ∈ G | g is of finite p-power order 〉.

(Hence, Gp′ = G/Op′
(G), when G is finite, and Mp′ = M/Torsp(M) when M is

abelian.) An application of Alperin’s fusion theorem [Alp67, §3] shows that O∗
p (G)

and O∗
p (G0) are equivalent categories and the Frattini surjections above refine to

(1.5) NG(S)/S � π1(O
∗
p (G)) � (G0)p′ � Gp′

displaying π1(O
∗
p (G)) as a finite p′-group (see Proposition 4.1). Via Theorem A, this

encodes the classical bounds on Tk(G,S) (cf. [CMN06, Prop. 2.6], [MT07, Lem. 2.7],
and Proposition 3.2):

(1.6) Hom(G, k×) ≤ Hom(G0, k
×) ≤ Tk(G,S) ≤ Hom(NG(S)/S, k

×)

using that k× does not contain p-torsion.
We describe the precise kernel of NG(S)/S � π1(O∗

p (G)) in terms of p-local
group theory in Theorem 4.10—it already directly implies a list of structural prop-
erties of Tk(G,S) via Theorem A and (1.2) (see e.g., Corollary 4.14).

In the rest of this section we present our further descriptions of π1(O∗
p (G)) and

its abelianization H1(O
∗
p (G)), each highlighting different structural properties. We

divide this into 5 subsections: §1.1 Subgroup categories, §1.2 Decompositions, §1.3
The Carlson–Thévenaz conjecture, §1.4 Fusion systems, and §1.5 Computations.
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1.1. Descriptions in terms of subgroup complexes. Let T ∗
p (G) denote the

transport category of G with objects the non-trivial p-subgroups of G, and

HomT ∗
p (G)(P,Q) = {g ∈ G|gP ≤ Q}.

We have a functor T ∗
p (G) → O∗

p (G) sending g to the G-map G/P → G/Q specified

by eP �→ g−1Q. Since O∗
p (G) is a quotient of T ∗

p (G) by morphisms in p-groups
Q ≤ AutT ∗

p (G)(Q),

(1.7) π1(T
∗
p (G))p′

∼=−−→ π1(O
∗
p (G))

(see Proposition 4.5). As k× contains no elements of finite p-power order, (1.7) and
Theorem A imply that 1-dimensional characters of π1(T

∗
p (G)) also parametrize

Sylow-trivial modules for G, i.e.,

(1.8) Tk(G,S) ∼= Hom(π1(T
∗
p (G)), k×)

By definition T ∗
p (G) equals the transport category (or Grothendieck construction)

of the G-action on the poset of nontrivial p-subgroups Sp(G), under inclusion.
Hence

(1.9) |T ∗
p (G)| 
 |Sp(G)|hG

by Thomason’s theorem [Tho79, Thm. 1.2], where XhG = EG ×G X denotes the
Borel construction (see also Lemma 2.3). Hence we can also conclude the following.

Corollary 1.1. For any finite group G and k any field of characteristic p,

Tk(G,S) ∼= H1(|Sp(G)|hG; k×)
In particular if H1(|Sp(G)|hG)p′

∼=−−→ H1(G)p′ then Tk(G,S) ∼= Hom(G, k×).

From this perspective, exotic Sylow-trivial modules parametrize the failure of the
collection of non-trivial p-subgroups to be ‘H1(−;Z)-ample’ generalizing Dwyer’s
definition [Dwy97, 1.2] for mod p cohomology (see Remark 4.8 and Theorem 4.35).
It also allows us to deduce a very recent result of Balmer [Bal18], as we explain in
Remark 4.9.

To further describe the group π1(T ∗
p (G)), recall that

(1.10) |Sp(G)| ∼= G×G0
|Sp(G0)|

with |Sp(G0)| connected, as observed by Quillen [Qui78, §5] (see Proposition A.16).
Hence |Sp(G)|hG ∼= EG ×G (G ×G0

|Sp(G0)|) ∼= EG ×G0
|Sp(G0)| 
 |Sp(G0)|hG0

,
and we have a fibration sequence

(1.11) |Sp(G0)| → |Sp(G)|hG → BG0

On fundamental groups it induces an exact sequence

(1.12) 1 → π1(Sp(G0)) → π1(T
∗
p (G)) → G0 → 1

displaying π1(T ∗
p (G)) as an extension of G0 by another group, possibly infinite.

Using the identification (1.8), the low-degree cohomology sequence of the group
extension (1.12) (see [HS71, VI.8]) furthermore induces an exact sequence as follows.

Theorem B (Subgroup complex sequence). Let G be a finite group, k a field of
characteristic p, and G0 ≤ G as in (1.3). We have an exact sequence

0 → Hom(G0, k
×) → Tk(G,S) → H1(Sp(G0); k

×)G0
∂−→ H2(G0; k

×)
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where superscript G0 means invariants. If (H1(Sp(G))G)p′ = 0 then Tk(G,S) ∼=
Hom(G0, k

×) and if |Sp(G)| is simply connected, then Tk(G,S) ∼= Hom(G, k×).

In words, Tk(G,S) is an extension of Hom(G0, k
×) (producing kG-modules via

induction and discarding projective summands, cf. Lemma 3.6) by a “truly exotic”
part, not induced from 1-dimensional kG0-modules, described above as the kernel
of the boundary map ∂ : H1(Sp(G0); k

×)G0 → H2(G0; k
×) (see also Remark 4.7).

The group H2(G0; k
×) identifies with the p′-part of the Schur multiplier of G0 if k

is algebraically closed.
There is already an extensive literature on when |Sp(G)| is simply connected; see

e.g., [Smi11, §9]. It is known to hold for “sufficiently large” symmetric groups and
finite groups of Lie type at the characteristic, as well as some finite group of Lie
type away from the characteristic and certain sporadic groups. It is conjectured to
hold for many more (see also §1.5).

The description of Tk(G,S) as 1-dimensional representations of π1(T ∗
p (G)) in

(1.8) combined with manipulations with subgroup complexes also enables us to see
precisely how Tk(G,S) behaves under for instance passage to p′-index subgroups
or p′-central extensions (see Corollaries 4.16 and 4.18). Furthermore the groups
π1(O

∗
p (G)) and π1(T

∗
p (G)) only depend on very few of the p-subgroups of G, as we

analyze in detail in Appendix A—see in particular Theorems A.10 and A.15.

1.2. Homology decomposition descriptions. We now use homology decompo-
sition techniques to get formulas for Tk(G,S). These techniques have a long history
for providing results about mod p group cohomology (see e.g., [Dwy97,Gro02,GS06]
and their references), but here we are interested in coefficients in k×, an abelian
group with no p-torsion. We can however still describe the low-degree p′-homology
of |Sp(G)|hG, by examining the bottom corner of spectral sequences, even if they do
not collapse. More precisely, given an arbitrary collection C of subgroups (i.e., a set
of subgroups closed under conjugation), there are 3 homology decompositions one
usually considers associated to the G-action on |C|: the subgroup decomposition,
the normalizer decomposition, and the centralizer decomposition. The subgroup de-
composition does not provide new information, if C is a collection of p-subgroups,
but the two others do. Let us start with the normalizer decomposition.

Theorem C (Normalizer decomposition). Let G be a finite group, k a field of
characteristic p, and C ⊆ Sp(G) a subcollection such that the inclusion is a G-
homotopy equivalence, e.g., C the collection of non-trivial p-radical subgroups or of
non-trivial elementary abelian p-subgroups (see §A.3). Then

Tk(G,S) ∼= lim
[P0<···<Pn]

Hom(NG(P0 < · · · < Pn), k
×)

inside Hom(NG(S)/S, k
×), with the limit taken over conjugacy classes of chains in

C ordered by refinement. Explicitly:

Tk(G,S) ∼= ker
(
⊕[P ] Hom(NG(P ), k×) → ⊕[P<Q]Hom(NG(P ) ∩NG(Q), k×)

)
≤ Hom(NG(S), k

×)

Different possibilities for C are given in Theorem A.8 (see also [GS06, Thm. 1.1]).
Appendix A, along with Proposition 5.3 and Theorem 5.6, provides a precise anal-
ysis of which subgroups are needed to make the conclusion of Theorem C hold. We
note that the data going into calculating the righthand side, normalizers of chains
of say p-radical subgroups, or elementary abelian p-subgroups, has been tabulated
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for a large number of groups, and this relates to a host of problems in local group
theory and representation theory, such as the classification of finite simple groups
and conjectures of Alperin, McKay, Dade, etc. To obtain Theorem C from Theo-
rem A, the only extra input, apart from the isotropy spectral sequence, is a result
of Symonds [Sym98], formerly known as Webb’s conjecture, which we provide a
short proof of in Proposition A.3, that appears to be new.

We now explain the centralizer decomposition, which ties into fusion systems.
Let FC(G) denote the restricted p-fusion system of G with objects P ∈ C and
HomFC(G)(P,Q) = HomT ∗

p (G)(P,Q)/CG(P ) i.e., monomorphisms induced by G-

conjugation, writing F∗
p (G) when C = Sp(G).

Theorem D (Centralizer decomposition). For G a finite group and k a field of
characteristic p, we have an exact sequence

0 → H1(F∗
p (G); k×) → Tk(G,S) → lim

V ∈FA2
p
(G)

Hom(CG(V ), k×) → H2(F∗
p (G); k×)

where A2
p denotes the collection of elementary abelian p-subgroups of rank one or

two.
In particular, if H1(CG(x))p′ = 0 for all elements x of order p, and H1(NG(S)/S)

is generated by elements in NG(S) that commute with some non-trivial element in
S, then Tk(G,S) = 0.

This breaks Tk(G,S) up into parts depending on the underlying fusion system
and parts calculated from centralizers. It may be illuminating to note that it special-
izes to the sequence in cohomology with k× coefficients induced by 1 → CG(V ) →
NG(V ) → NG(V )/CG(V ) → 1 in the very special case where G has p-rank 1, and
hence a unique non-trivial elementary abelian p-subgroup (see Corollary 4.14(2)).
In particular H1(F∗

p (G); k×) is a subgroup of Tk(G,S) depending only on the fusion
system. We describe how to calculate cohomology of F∗

p (G) in §4.3 and Appen-
dix A; the first cohomology group is in fact zero in many, but not all, cases. The
assumptions of the ‘in particular’ are often satisfied for the sporadic groups, e.g.,
for the Monster at the more difficult primes up to 13.

1.3. The Carlson–Thévenaz conjecture. Theorem C implies the Carlson–
Thévenaz conjecture, which predicts an algorithm for calculating Tk(G,S) from
p-local information, essentially by a change of language, taking C = Sp(G). Set

Ap′
(G) = Op′

(G)[G,G], the smallest normal subgroup of G such that the quotient
is an abelian p′-group.

Theorem E (The Carlson–Thévenaz conjecture, [CT15, Ques. 5.5]). Let G be
a finite group with non-trivial Sylow p-subgroup S, and define ρr(S) ≤ NG(S)
(depending on G and S) via the following definition (cf. [CMN14, Prop. 5.7], [CT15,

§4]): ρ1(Q) = Ap′
(NG(Q)), ρi(Q) = 〈NG(Q) ∩ ρi−1(R)|1 < R ≤ S〉 ⊇ ρi−1(Q).

Then

H1(O
∗
p (G)) ∼= NG(S)/ρ

r(S)

for any r at least either the nilpotency class of S plus 1 or the number of groups in
the longest proper chain of non-trivial p-radical subgroups. Hence by Theorem A,
for any field k of characteristic p,

Tk(G,S) ∼= Hom(NG(S)/ρ
r(S), k×)
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This in fact strengthens the Carlson–Thévenaz conjecture, by providing a rather
manageable bound on r (see also Theorem 5.8). (The original conjecture was only a
prediction about the union ρ∞(S), and also had an algebraically closed assumption
on k.) Theorem E is well adapted to implementation on a computer, and indeed
Carlson has already made one such implementation calculating ρi(S), and to use
this for proofs a theoretical bound on when the ρi(S) stabilize is obviously also
necessary.

As already noted, the inverse limit in Theorem C identifies with a subset of
Hom(NG(S), k

×). One may näıvely ask if the limit could simply be described as
the elements in Hom(NG(S), k

×) whose restriction to Hom(NG(P )∩NG(S), k
×) is

zero on Ap′
(NG(P ))∩NG(S) for all [P ] ∈ C/G, an obvious necessary condition to lie

in the limit. In other words, one may ask if one, in the language of Theorem E, could
always take r = 2. Computer calculations announced in [CT15] say this is not the
case for G2(5) when p = 3. The main theorem of that paper [CT15, Thm. 5.1] shows
that this näıve guess is true when S is abelian, as also follows from Theorem C.
Our proof allows for a stronger statement:

Corollary 1.2. If all non-trivial p-radical subgroups in G with P < S are normal
in S, then

Tk(G,S) ∼= ker
(
Hom(NG(S), k

×) → ⊕[P ]Hom(NG(S) ∩ Ap′
(NG(P )), k×)

)
where [P ] runs through G-conjugacy classes of non-trivial p-radical subgroups with
P < S. In particular in the notation of Theorem E

Tk(G,S) ∼= Hom(NG(S)/ρ
2(S), k×).

More generally if we for each [P ] can pick P ≤ S with Q = NS(P ) Sylow in NG(P )

and NG(P ≤ Q ≤ S)Ap′
(NG(P ≤ Q)) = NG(P ≤ Q), then the same formulas hold,

choosing such P .

See also Corollaries 5.12 and 5.13. The last part of Corollary 1.2 provides a
strengthening of Carlson–Thévenaz’s more technical [CT15, Thm. 7.1], which in-
stead of abelian assumes that NG(S) controls p-fusion along with extra conditions
(see Remark 5.14). Corollary 1.2 however moves beyond these cases with limited
fusion, and e.g., also holds for finite groups of Lie type in characteristic p. To
illustrate the failure in general we calculate Tk(G,S) for G = G2(5) and p = 3 in
Proposition 6.3, using Theorem C. Remark 5.11 contains a more detailed discussion
of bounds on r.

1.4. Further relations to fusion systems. Recall that a p-subgroup P is said
to be centric if Z(P ) = CG(P ) and p-centric if Z(P ) is a Sylow p-subgroup in
CG(P ). We denote by a superscript c full subcategories with objects the p-centric
subgroups. Subgroups of π1(Fc) parametrize sub-fusion systems of p′-index of a
fusion system F by [BCG+07, §5.1], and calculating π1(Fc) is of current interest
within p-local group theory—see e.g., [AOV12, §4], [Rui07], and [Asc11, Ch. 16].
The condition that π1(Fc) = 1 is one of the conditions for a fusion system to be
reduced [AOV12, Def. 2.1]. We here state a rough, yet useful, relation between
Sylow-trivial modules and π1(Fc)–much more precise information is given in the
paper proper.
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Theorem F. We have the following commutative diagram of monomorphisms

Tk(G,S) �
� �� Hom(π1(Oc

p(G)), k×) �
� �� Hom(NG(S)/S, k

×)

Hom(π1(F∗
p (G)), k×) �

� ��
��

��

Hom(π1(Fc
p(G)), k×) �

� ��
��

��

Hom(NG(S)/SCG(S), k
×)

��

��

If all p-centric p-radical subgroups are centric then π1(Oc
p(G)) ∼= π1(Fc

p(G)) and

Hom(π1(F∗
p (G)), k×) ≤ Tk(G,S) ≤ Hom(π1(Fc

p(G)), k×)

The underlying maps are elaborated in (4.8). The condition that p-radical p-
centric subgroups are centric is satisfied for finite groups of Lie type at the char-
acteristic, but also holds e.g., for many sporadic groups. In general the inclusions
in the diagram of Theorem F may all be strict: for GLn(q) and p not dividing
q, the main theorem in Ruiz [Rui07] states that π1(Fc

p(GLn(q))) ∼= Z/e for e the
multiplicative order of q mod p and n ≥ ep, whereas π1(O∗

p (GLn(q))) = 1 when
the p-rank of GLn(q)) is at least 3 by §1.1 combined with [Qui78, Thm. 12.4],
[Das95, Thm. A]. Section 4 and Appendix A analyse π1(OC(G)) and π1(FC(G)),
for C an arbitrary collection of p-subgroups.

1.5. Computational results. We have already described how the results of this
paper can be used to obtain a range of structural and computational results about
Tk(G,S). To further illustrate the computational potential we will in §6 go through
different classes of groups: symmetric, groups of Lie type, sporadic, p-solvable, and
others, obtaining new results, and reproving a range of old results. We briefly
summarize this:

For sporadic groups |Sp(G)| is sometimes known to agree with a building, where
simple connectivity has been studied extensively (see [Smi11, §9]). However it is
often easier to apply Theorems C, D, F, or 4.10 directly, in particular since the
necessary p-local data has already been tabulated, due to interest arising from
counting conjectures in modular representation theory. We demonstrate this in
§6.1 by showing that Tk(G,S) = 0 for G the Monster and k a field of characteristic
p = 3, 5, 7, 11, or 13, the primes left open in the recent paper [LM15b] (see Theo-
rem 6.1). It should be possible to fill in the remaining gaps in the existing sporadic
group computations using similar arguments, though this is outside the scope of
the present paper. (This has subsequently been carried out by Craven [Cra21].)

For finite groups of Lie type in characteristic p the p-subgroup complex is just the
Tits building [Qui78], which is simply connected when the rank is at least 3, again
recovering results of Carlson–Mazza–Nakano [CMN06]. For finite groups of Lie type
in arbitrary characteristic, the p-subgroup complex is also believed to generically be
a wedge of high dimensional spheres, which would imply that generically there were
no exotic Sylow-trivial modules by Theorem B. It has been verified in a number of
cases [Das95,Das98,Das00], and this way, we recover very recent results of Carlson–
Mazza–Nakano for the general linear group for any characteristic [CMN14,CMN16],
again using Theorem B, and for symplectic groups we get the following new result
(see §6.2).

Theorem G. Let G = Sp2n(q), and k a field of characteristic p. If the multiplica-
tive order of q mod p is odd, and G has an elementary abelian p-subgroup of rank
3, then Tk(G,S) = 0.
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In joint work in progress with Carlson, Mazza, and Nakano, we determine the
group of endotrivial modules for all finite groups of Lie type using the methods of
this paper combined with the “Φd-local” approach to finite groups of Lie type.

For symmetric and alternating groups, the p-subgroup complex is known to be
simply connected (except known small exceptions) [Kso03, Kso04], so we recover
results of Carlson–Hemmer–Mazza–Nakano [CMN09, CHM10], using Theorem B
(see §6.3, where we also correct a small mistake in the literature about alternating
groups).

For p-solvable groups above p-rank one, it has been shown that there are no
exotic Sylow-trivial modules by works of Carlson–Mazza–Thévenaz [CMT11] and
Robinson–Navarro [NR12], using an inductive argument that at one inductive step
indirectly relies on the classification of finite simple groups. We link this inductive
step to stronger conjectures by Quillen and Aschbacher about the connectivity of
the p-subgroup complex for p-solvable groups (see §6.4).

As explained above, a calculation of π1(O∗
p (G)) and H1(O∗

p (G)) for all finite
simple groups should be within reach. To pass to arbitrary finite groups one may
then hope to use the structural properties of π1(O∗

p (G)) given in this paper (in
particular §4 and Appendix A) to reduce the question of the existence of exotic
Sylow-trivial modules to the simple case, using the generalized Fitting subgroup
F ∗(G) from finite group theory. We note in this connection that Aschbacher [Asc93]
has, in a certain sense, reduced the question of simple connectivity of |Sp(G)| to
simple groups, modulo his conjecture for p-solvable groups alluded to above. Based
on available data, it may be that π1(O∗

p (G))
∼=−−→ (G0)p′ when the p-rank is at least

three? This would imply Tk(G,S) ∼= Hom(G0, k
×) under that assumption. See

Remarks 5.11 and A.18, and §6, for more information.

Further vistas. In addition to the structural and computational consequences
described so far, it is natural to wonder about further representation theoretic
significance of the finite p′-groups π1(O∗

p ), π1(Oc
p), π1(Fc

p), and π1(F∗
p ), and the

higher homotopy and homology groups, yet to be found. In a similar vein one
may wonder if the method for constructing representations in Theorems A and
3.11, when applied to more general coefficient systems on |Sp(G)| (see §2.6), could
enable one to describe a larger slice of the stable module category, potentially
shedding light on standard counting conjectures and their derived generalizations.
Remarks 3.17, 3.20, 4.12, and 4.40 give some hints in these directions. Further
afield, one may look for a contribution of the homotopy type of the orbit or fusion
category on collections of p-subgroups for problems involving any other ‘p-local’
symmetric monoidal (infinity) category that depend on G, whether in algebra or
topology, similar to the one discovered here for StModkG (see also [Mat16] for
infinity categorical considerations).

Organization of the paper. In §2 we state conventions and introduce the cat-
egories and constructions needed for the main results, providing a fair amount of
detail in the hope of making the paper accessible to both group representation
theorists and topologists. In §3 we prove Theorem A, only relying on the recol-
lections in §2. In §4 we prove a number of results on π1(O∗

p (G)) and π1(F∗
p (G)),

and among other things deduce the consequences described in §§1.1, 1.4, including
Corollary 1.1, and Theorems B and F. In §5 the decompositions and the Carlson–
Thévenaz conjecture are established as stated in §§1.2, 1.3, proving Theorems C, D,
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and E, and Corollary 1.2. In §6 we go through the computational consequences and
results, including Theorem G. Finally Appendix A contains a number of results
about changing the collection of subgroups, which are used throughout §§4–6, and
should also be of independent interest.

2. Notation and preliminaries

This short section collects some conventions and definitions, giving some detail,
in the hope to make the paper accessible to both group theorists and topologists.
We defer certain parts of the discussion of coefficient systems and derived categories
to §3.2.2 and §3.2.1 respectively.

2.1. Conventions. In this paper G will always be an arbitrary finite group and
p an arbitrary prime dividing the order of G (to avoid having to make special
statements in the trivial case where this is not so). We use the notation S for its
Sylow p-subgroup and set G0 = 〈NG(Q)|1 < Q ≤ S〉, which when G0 < G is the
smallest strongly p-embedded subgroup of G containing S (see also (1.3) and §A.5).
By k we will always mean a field of characteristic p, where p divides |G|, but subject
to no further restrictions. Thus k is not assumed to be algebraically closed. Note
that the units k× cannot have p-torsion, as the Frobenius map is injective, and
it will be uniquely p-divisible if k is perfect (see also §4.4). Our kG-modules will
not be assumed finitely generated, though everything could also be phrased inside
the smaller category of finitely generated modules with the same result. Tensor
products are over k.

By a collection of p-subgroups C, we mean a set of p-subgroups of G, closed under
conjugation, which we view as a poset under inclusion, hence as a category. We
use standard notation for various specific collections of p-subgroups, like Ap(G) for
the non-trivial elementary abelian p-subgroups, Bp(G) for the non-trivial p-radical
subgroups, etc., which we also recall in Appendix A.

We use standard group theoretic notation, plus that

Gp′ = G/〈 g ∈ G | g is of finite p-power order 〉

and Ap′
(G) = Op′

(G)[G,G], as also mentioned in §1.
By a space we will for convenience mean a simplicial set, | · | denotes the nerve

functor from categories to simplicial sets, and homotopy equivalence means ho-
motopy equivalence after geometric realization. Group theorists not familiar with
simplicial sets are largely free to think of them as simplicial complexes, or topo-
logical spaces, and can find a quick introduction in [Ben91b, Ch. 1.8], and more
information e.g., in [DH01]. A space is simply connected if it is connected with
trivial fundamental group, and connected spaces are assumed to be non-empty.

We use [·] for conjugacy and equivalence classes, ∼= for isomorphism, and 
 for
equivalence.

2.2. Sylow-trivial modules. As stated in §1 we use the term Sylow-trivial for our
basic objects: kG-modules that when restricted to a Sylow p-subgroup S split as the
trivial module k direct sum a projective module. Two Sylow-trivial modules M and
N are called equivalent if there exist projective kG-modules P,Q such that M⊕P ∼=
N ⊕ Q. We denote by Tk(G,S) the set of equivalence classes of Sylow-trivial
modules. By Proposition 3.1 each Sylow-trivial module has an, up to isomorphism
unique, indecomposable representative, and this is isomorphic to a summand of
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k[G/S]. We claim that tensor product over k endows Tk(G,S) with an abelian
group structure with neutral element k. First it is clear that the tensor product
of two Sylow-trivial modules is again Sylow-trivial, as the tensor product of a
projective kS-module with any kS-module is again projective. The same fact (now
over kG) implies that the multiplication descends to equivalence classes. Also if
M ↓S∼= k ⊕ (proj), then the cokernel of the unit kG-map k → M∗ ⊗ M is a
projective kG-module, since projectivity is detected on kS, and as kS-modules,
M∗ ⊗M ∼= k∗ ⊗ k ⊕ (proj), with the map k → k∗ ⊗ k ∼= k the identity. Thus M∗

is an inverse to M in Tk(G,S), and Tk(G,S) ≤ Tk(G), the group of endotrivial
modules.

2.3. The stable module category StModkG. Recall that the stable module cat-
egory StModkG is the category with objects kG-modules and morphisms from M to
N the quotient of HomkG(M,N) where we identify two maps if their difference fac-
tors through a projective kG-module. We denote by stmodkG the full subcategory
with objects finitely generated kG-modules. The relevance of the stable module
category for endotrivial modules stems from the following well-known fact.

Lemma 2.1. Two kG-modules M , N are isomorphic in StModkG if and only if
there exist projective kG-modules P , Q such that M ⊕ P ∼= N ⊕ Q. In particular
Tk(G)

∼=−−→ Pic(StModkG).

Proof. It is clear that equivalent modules are isomorphic in StModkG. Conversely
(following an online argument by Rickard), assume we have maps f : M → N
and g : N → M such that fg − 1 and gf − 1 factor through projectives, and let

M
ϕ−→ Q

ψ−→ M be a factorization of gf − 1. Let f̃ = (f, ϕ) : M → N ⊕ Q and

g̃ = (g − ψ) : N ⊕ Q → M . Then g̃f̃ = 1 and so M ⊕ ker(g̃) ∼= N ⊕ Q. As

f̃ g̃ − 1: N ⊕ Q → N ⊕ Q also factors through a projective (using that fg − 1
does), and is the identity on ker(g̃), we conclude that P = ker(g̃) is a retract of a
projective and hence projective as wanted.

By the first part Tk(G) ↪→ Pic(StModkG), where Pic(StModkG) is defined as
isomorphism classes of invertible objects under tensor product in StModkG. It is
also surjective as any invertible object M in StModkG has inverse M∗ by a small
calculation, true in any closed symmetric monoidal category (see e.g., [HPS97,
Prop. A.2.8]). �

As for Sylow-trivial modules, modules in StModkG in fact have a representa-
tive without projective summands, unique up to isomorphism of kG-modules (see
Proposition 3.1 and [Ric97, Lem. 3.1]).

2.4. Categorical constructions. Define the transport category T (G) as the cat-
egory with objects all subgroups of G and morphisms Mor(P,Q) = {g ∈ G|gP ≤
Q}, i.e., the transport category, or Grothendieck construction, of the left conju-
gation action of G on the poset of all subgroups (see also Lemma 2.3). We have
a quotient functor T (G) → O(G) which on objects sends H to G/H and assigns

to (g, gH ≤ K) the G-map G/H
[g−1]−−−→ G/K that sends the trivial coset eH to

g−1K. This induces K\HomT (G)(H,K)
∼=−−→ HomO(G)(G/H,G/K) (see also e.g.,

[tD87, I.10]). Denote by OC(G) and TC(G) the full subcategories with objects
G/H and H respectively, for H ∈ C, and we continue to use the notation O∗

p (G)
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and T ∗
p (G) for these categories when C = Sp(G) is the collection of all non-trivial p-

subgroups. We also introduce the fusion category FC(G) and fusion-orbit category
F̄C(G) both with objects P ∈ C and morphisms

HomFC(G)(P,Q) = HomTC(G)(P,Q)/CG(P ) and

HomF̄C(G)(P,Q) = Q\HomTC(G)(P,Q)/CG(P )

respectively, i.e., monomorphisms induced by conjugation in G and ditto modulo
conjugation in the target. (The fusion-orbit category is called the exterior quo-

tient F̃ of FC(G) by Puig [Pui06], and is also sometimes denoted O(F).) All four
categories hence have object-sets identifiable with C, and morphisms related via
quotients

TC(G)

�� ����
���

��

�������
���

�

OC(G) �� �� F̄C(G) FC(G)����

Remark 2.2 (On op’s and inverses). Since op’s and inverses are a common source
of light confusion, we make a few remarks about their presence in the formulas:
A group G viewed as a category with one object is isomorphic as a category to
Gop via the map g �→ g−1. In particular T (G) is isomorphic to the category
with morphism set Mor′(P,Q) = {g ∈ G|P g ≤ Q}, which is the Grothendieck
construction Sp(G)Gop . Redefining the transport category this way would get rid
of the inverse appearing in the formula for the projection map T (G) → O(G);
alternatively one could reparametrize the orbit category, the choice made e.g., in
[AKO11, III.5.1]. Notice also that when we are considering functors to an abelian
group such as k×, viewed as a category with one object, covariant functors naturally
equal contravariant functors. (The identification using the isomorphism between G
and Gop produces the automorphism given by “pointwise inverse”.)

2.5. Low dimensional cohomology and homotopy of categories. The coho-
mology of a small category D with constant coefficients in an abelian group A is
defined as the cohomology of the simplicial set |D| with constant coefficients A. In
particular H1(D;A) identifies with functors D → A, up to natural isomorphism of
functors, where A is viewed as a category with one object. Indeed, a 1-cocycle is a
function F : Mor(D) → A such that F (β ◦α) = F (β)+F (α) (hence F (id) = 0), in
other words a functor F : D → A. And a 1-coboundary is a 1-cocycle of the form
F (α) = g(cod(α))− g(dom(α)), for a function g : Ob(D) → A, i.e., a functor that
admits a natural transformation (hence isomorphism) to the zero functor. Further-
more H1(D;A)

∼=−−→ Hom(H1(D), A), where H1(D) is the abelian group of cycles
of morphisms in D, modulo the equivalence relation coming from composition, a
special case of the universal coefficient theorem [Hat02, Thm. 3.2]. (See also e.g.,
[Web07].)

Homotopy groups are defined as πi(D, d) = πi(|D|, d), and also have a categorical
description for i = 1: the fundamental groupoid π(|D|) identifies as D[Mor(D)−1]
the category obtained by formally inverting all morphisms in D (left adjoint to the
inclusion functor from groupoids to categories), providing a canonical isomorphism
π1(|D|, d) ∼= AutD[Mor(D)−1](d). (See also e.g., [Qui73, §1].)

Assume that D is connected, i.e., that all objects x, y can be connected by a
finite zig-zag x = x0 → x1 ← · · · → xn = y of morphisms. The universal properties
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give us isomorphisms

Hom(π1(D, d), A)
∼=−−→ H1(π1(D, d);A)

∼=←−− H1(D[Mor(D)−1];A)
∼=−−→ H1(D;A)

and one also sees directly that the canonical map π1(D, d) → H1(D), viewing
loops as 1-cycles, is abelianization, a special case of the Hurewicz theorem [Hat02,
Thm. 2A.1].

It is often convenient to have a concrete way of writing elements in π1(D, d). For
this, pick for each object x ∈ D a path ix from x to d, producing a functor D →
π1(D, d) via (ϕ : x → y) �→ iy ◦ϕ◦ i−1

x . This induces a functor ω : D[Mor(D)−1] →
π1(D, d), which is manifestly an inverse equivalence of categories to the inclusion,
and we can think of elements of π1(D, d) as finite zig-zags of morphisms in D in this
way. Recall also that we may replace D by an equivalent category without changing
the result. In particular for D = O∗

p (G), we can, up to equivalence of categories,
replace it with the full subcategory O∗

S(G) with objects G/Q for 1 < Q ≤ S, and
take basepoint G/S, so that we have canonical maps iG/Q : G/Q → G/S. Hence
ω(G/P → G/Q) = 1 for P ≤ Q, allowing us to effectively ignore morphisms induced
by inclusions; similarly for the other standard categories from §2.4. We will often
suppress the basepoint from the notation, and the above shows why we can do
this without ambiguity. Note also that any basepoint-dependence disappears after
abelianization.

We used at various points, e.g., in (1.9), that the Borel construction on the
nerve of a small category can be expressed as the nerve of the transport category
(or Grothendieck construction). For convenience of the reader, let us prove this
special case of Thomason’s theorem [Tho79, Thm. 1.2].

Lemma 2.3 (Thomason’s theorem for Borel constructions). For a small category
D with an action of G, let DG denote the transport category with objects the objects
of D and morphisms from x to y given by a pair (g, f : gx → y), where g ∈ G and
f ∈ HomD(gx, y). Then

|DG| ∼= |D|hG
where |D|hG denotes the Borel construction. In particular |TC | = |CG| ∼= |C|hG for
any collection C.

Proof. Define the category EG to be the category with objects the elements of G
and a unique morphism between all elements, so that |EG| = EG, the universal
free contractible G-space. Our group G acts freely on the product category EG×D,
on objects given by g · (h, x) = (hg−1, gx). The quotient EG×G D identifies with
DG. Since the nerve functor commutes with products and free G-actions we have
identifications |D|hG = EG×G |D| ∼= |EG×G D| = |DG| as wanted. �

2.6. Coefficient systems. Finally we recall the notion of coefficient system, to
be specialized and elaborated in later sections. A general homological G-coefficient
system on a G-space X is just a functor A : (ΔX)G → R-mod, to R-modules, for R
a ground ring. Here ΔX is the category of simplices with objects the simplices of X,
and morphisms given by iterated face and degeneracy maps [GJ99, I.2], and (ΔX)G
is the associated transport category of the left G-action on ΔX. The chain complex
C∗(X;A), with Cn(X;A) = ⊕σA(σ), and the standard simplicial differential, is a
chain complex of RG-modules via the induced G-action, A((g, idgσ)) : A(σ) →
A(gσ) (see also [Gro02, §2]). In this paper two more restrictive types of coefficient
systems play a special role, namely G-twisted coefficient systems, used in §3, and
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Bredon G-isotropy coefficient systems, used in §5. These special systems enjoy
homotopy invariance properties, not enjoyed by general G-coefficient systems, as
we explain in those sections.

3. Proof of Theorem A

In this section we prove Theorem A, just using the preparations from the pre-
ceding section.

3.1. Injectivity of the map Φ. We start with some elementary facts about Sylow-
trivial modules, including dealing with the finite-dimensionality issue once and for
all.

Proposition 3.1. Any Sylow-trivial kG-module M is of the form N ⊕ P , where
N is an indecomposable direct summand of k[G/S] and P is projective, and N is
uniquely determined, up to isomorphism. If Op(G) �= 1, then any indecomposable
Sylow-trivial kG-module is one-dimensional.

Proof. This is well known, and follows by [BBC09, Thm. 2.1] and [MT07, Lem. 2.6],
but since it is among the few “classical” representation theory facts used, we give
a direct proof. Let M be our Sylow-trivial module, and recall that M is a direct
summand of M ↓GS ↑GS , since the composite of the kG-map M → M ↓S↑G= kG⊗kS

M , m �→
∑

gi∈G/S gi ⊗ g−1
i m, and the kG-map M ↓S↑G→ M , g ⊗ m �→ gm, is

multiplication by |G : S|, which is a unit in k. (See also e.g., [Ben91a, Cor. 3.6.10],
where the standing finitely generated assumption is not being used.) By assumption
M ↓S∼= k ⊕ (proj), so M is a summand of k ↑GS ⊕(proj). As explained in [Ric97,
Lem. 3.1], any kG-module, also infinite dimensional, can be written as a direct sum
of a projective module and a module without projective summands, and the non-
projective part is unique up to isomorphism. Furthermore, by [Ric97, Lem. 3.2],
this decomposition respects direct sums. This shows that M ∼= N ⊕ P , with N
a non-projective direct summand of k ↑GS which is uniquely determined, up to
isomorphism. Furthermore, N has to be indecomposable, since otherwise it cannot
be Sylow-trivial.

Now assume Op(G) �= 1. Since M is a direct summand of k ↑GS by the first part,
then M ↓GS is a direct summand of k ↑GS ↓GS∼= ⊕g∈S\G/Sk ↑SS∩gS , which does not

contain any projective summands, since S ∩ gS ≥ Op(G) �= 1. Hence M ↓GS∼= k as
wanted. �

Let us also give the following well known special case of Green correspondence
[Ben91a, Thm. 3.12.2] (see also [CMN06, Prop. 2.6(a)]), used for injectivity of the
map Φ of Theorem A.

Proposition 3.2. Let M be a kG-module such that M ↓NG(S)
∼= k ⊕ (proj). Then

M ∼= k ⊕ (proj). In particular restriction provides an inclusion

Tk(G,S) ↪→ Tk(NG(S), S) ∼= Hom(NG(S)/S, k
×).

Proof. As mentioned this is a special case of Green correspondence, but let us
extract a direct argument: By Proposition 3.1 it is enough to see that if M is
indecomposable, then M ∼= k. So, set N = NG(S), and assume that M is an
indecomposable kG-module such that M ↓GN∼= k⊕ (proj). As in Proposition 3.1, M
will be a summand of M ↓GN↑GN∼= k ↑GN ⊕(proj), and hence a summand of k ↑GN∼=
k ⊕ L, for L a complement of k(

∑
g∈G/N gN). But L ↓GS∼= ⊕g∈S\G/N,g 	∈Nk ↑SS∩gN ,
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and in particular it does not contain k as a direct summand, so M has to be a direct
summand of k. Thus restriction provides an inclusion Tk(G,S) ↪→ Tk(NG(S), S),
and furthermore Tk(NG(S), S) ∼= Hom(NG(S)/S, k

×) by Proposition 3.1. �

We can already now prove a part of Theorem A.

Proposition 3.3. For any Sylow-trivial module M ,

G/P �→ Ĥ0(P ;M) = MP /(
∑
g∈P

g)M

defines a functor from O∗
p (G)op to one-dimensional k-modules and isomorphisms,

which we can identify with a functor O∗
p (G) → k×. The assignment that sends a

Sylow-trivial module M to the above functor defines an injective group homomor-
phism Φ: Tk(G,S) → H1(O∗

p (G); k×).

Proof. It is clear that Ĥ0(P ;M) = MP /(
∑

g∈P g)M is one-dimensional, since

M ↓P∼= k ⊕ (proj) by assumption, and the construction kills the projective part.

It furthermore defines a functor on O∗
p (G)op that sends G/P

g−→ G/P ′ to the mor-

phismMP ′
/(
∑

g∈P ′ g)M → MP /(
∑

g∈P g)M given by multiplication by g. Picking

a fixed one-dimensional k-vector space, say MS/(
∑

g∈S g)M , and for each one-

dimensional k-vector space a fixed isomorphism to MS/(
∑

g∈S g)M , identifies this

with a functor O∗
p (G) → k× (concretely we may model O∗

p (G)op, up to equivalence
of categories, by the full subcategory O∗

S(G)op with objects G/P for 1 < P ≤ S,
and use the identifications induced by canonical morphisms G/P → G/S). (See
also Remark 2.2 for a discussion of variance.) The resulting functor is uniquely
defined, up to isomorphism of functors, and hence defines a unique element in
H1(O∗

p (G); k×).

It is also clear that Tk(G,S) → H1(O∗
p (G); k×) is a group homomorphism, where

the group structure on the right is pointwise multiplication, as

(M ⊗N)P /(
∑
g∈P

g)(M ⊗N)
∼=←−− (MP /(

∑
g∈P

g)M)⊗ (NP /(
∑
g∈P

g)N)

and tensoring two 1-dimensional kNG(P )-modules amount to multiplying their
characters.

Finally we check injectivity: By Proposition 3.1, M ↓NG(S)
∼= Ĥ0(S;M)⊕ (proj).

If Φ([M ]) is the identity, then the action of NG(S) on Ĥ0(S;M) is trivial, i.e.,
M ↓NG(S)

∼= k ⊕ (proj). Hence M ∼= k ⊕ (proj) by Proposition 3.2 as wanted. �

Remark 3.4. For the modules we consider in Theorem A,

Ĥ0(P ;M) ∼= MP /Im(⊕Q<P (
∑

[g]∈P/Q

g)MQ),

the Brauer quotient, and this may be another way to view this construction.

3.2. G-twisted coefficient systems and the Buchweitz–Rickard equiva-
lence. Before continuing with the rest of the proof of Theorem A in §3.2.1, we
now recall the Buchweitz–Rickard equivalence, used in Theorem A, and also ex-
plain G-twisted coefficient systems in some detail.
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3.2.1. The Buchweitz–Rickard equivalence. We recall the equivalence of homotopy
categories

(3.1) stmodkG
�−−→ Db(kG)/Dperf(kG),

given by viewing a module as a chain complex concentrated in degree zero, going
back to [Ric89, Thm. 2.1] and [Buc, Thm. 4.4.1]. Here stmodkG is the “small” stable
module category with objects finitely generated kG-modules and morphisms homo-
morphisms of kG-modules modulo the relation that two morphisms are equivalent
if their difference factors through a projective kG-module. The category Db(kG)
is the “small” bounded derived category, with objects unbounded chain complexes
of finitely generated kG-modules, with homology concentrated in a bounded range
of degrees. A morphism in the underlying category is a kG-linear chain map. It
induces an isomorphism in the homotopy category if it induces isomorphisms on
homology (i.e., is a quasi-isomorphism). (We shall not describe precisely the set
of morphisms in the homotopy category as it shall not use it here, but see e.g.,
[Huy06, §2] for an elementary treatment, and [Lur17, §1] for an ∞-categorical
perspective.) The category Dperf(kG) is the full subcategory of complexes quasi-
isomorphic to a finite complex of finitely generated projective kG-modules. The
quotientDb(kG)/Dperf(kG) is the Verdier quotient, inverting morphisms inDb(kG)
with cofiber in Dperf(kG). (Recall that the cofiber can be obtained as the cokernel
of an underlying monomorphism of chain complexes.)

Let us construct the inverse used in Theorem A, displaying how an object in
Db(kG)/Dperf(kG) is isomorphic to one in the image under (3.1): By choosing a
projective resolution, represent an isomorphism class by a bounded below complex
P∗ of finitely generated projective kG-modules. In Db(kG)/Dperf(kG) this complex
is canonically equivalent to its truncation P̄∗ = (· · · → Pr+1 → Pr → 0 → · · · ),
for any r. Taking r to be the degree of the top non-trivial homology class of
P∗, the complex P̄∗ has homology only in degree r, and is hence equivalent in
Db(kG)/Dperf(kG) to Ω−r(Pr/ im(dr+1)), the −rth Heller shift of the rth homology
group, viewed as a chain complex in degree 0. (Recall that the inverse Heller shift
Ω−1(M) is the cokernel of the map from M to its injective hull, the “suspension”
in the triangulated structure.) Hence it is in the image of Ω−r(Pr/ im(dr+1)) ∈
stmodkG under (3.1).

3.2.2. G-twisted coefficient systems on subgroup complexes. A G-twisted coefficient
system over k on a space X is a G-coefficient system A : (ΔX)G → k-mod, as
in §2.6, with the added feature that it sends all morphisms to isomorphisms. It
hence factors through fundamental groupoid of the category (ΔX)G, or equivalently
the fundamental groupoid of XhG (see §2.5). For XhG connected, a G-twisted
coefficient system over k is thus equivalent to a kπ1(XhG, x)-module M , for a choice
of basepoint x ∈ XhG. Such coefficient systems are hG-homotopy invariants in the
sense that if Y → X is a G-equivariant map and a homotopy equivalence, and Y
is given the coefficient system induced by a G-twisted coefficient system A on X,
then C∗(Y ;A) → C∗(X;A) is a kG-homomorphism and a homology equivalence.
See e.g., [Qui78, §7],[Ben91b, 6.2.3], or [Hat02, Ch. 3.H] for more information.

In particular for X = |C| a G-twisted coefficient system is the same as a functor
from TC(G) to k-vector spaces sending all morphisms to isomorphisms. If fur-
thermore TC(G) is connected (e.g., C is a collection of p-subgroups containing S),
then a G-twisted coefficient system can be identified with a kπ1(TC(G), P )-module,



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

194 JESPER GRODAL

for P ∈ C. A one-dimensional kπ1(TC(G), P )-module is just a homomorphism
π1(TC(G), P ) → k×. So, for ϕ : O∗

p (G) → k× a functor (where k× is viewed as a
category with one object) we consider the corresponding functor kϕ from O∗

p (G) to
one dimensional k-vector spaces and isomorphisms, and view this as a G-twisted
coefficient system on |Sp(G)|, still denoted kϕ, in the canonical way via

(3.2) (Δ|Sp(G)|)G → Sp(G)G = T ∗
p (G) → O∗

p (G)

Here Δ|Sp(G)| → Sp(G) sends (P0 ≤ · · · ≤ Pn) �→ P0 and Sp(G)G → O∗
p (G) sends

(gP ≤ P ′, g) �→ (G/P
[g−1]−−−→ G/P ′). Note that, if one ignores the group action, this

is a twisted coefficient system in the ordinary (non-equivariant) sense, depending
on the fundamental groupoid of |Sp(G)|.

3.3. Surjectivity of Φ. With the above preliminaries in place, we are ready for
surjectivity of Φ.

Proposition 3.5. Let ϕ : π1(O∗
p (G)) → k× be a homomorphism and equip |Sp(G)|

with the corresponding G-twisted coefficient system kϕ via (3.2). Then for any
non-trivial p-subgroup P we have the equivalences

kϕ(P ) �−−→ C∗(|{P}|; kϕ) �−−→ C∗(|Sp(G)|P ; kϕ) �−−→ C∗(|Sp(G)|; kϕ)
in Db(kNG(P ))/Dperf(kNG(P )).

Consequently C∗(|Sp(G)|; kϕ) gives a Sylow-trivial module M via stmodkG
�−−→

Db(kG)/Dperf(kG) (cf. §3.2.1) and Φ([M ]) = ϕ.

Proof. The first map is a chain homotopy equivalence, indeed an isomorphism onto
the normalized chain complex concentrated in degree 0.

For the second map, recall that for a non-trivial p-subgroup P , |Sp(G)|P is
NG(P )-equivariantly contractible by Quillen’s argument: |Sp(G)|P = |Sp(G)P |,
which is contractible via a contracting homotopy induced by Q ≤ PQ ≥ P (see
[Qui78, 1.3], [GS06, Rec. 2.1]). Thus the second map, induced by the NG(P )-
homotopy equivalence |{P}| → |Sp(G)|P , is an equivalence in Db(kNG(P )), as
G-twisted coefficient systems are hG-homotopy invariant, recalled in §3.2.2.

We show that the right map is an equivalence inDb(kNG(P ))/Dperf(kNG(P )) by
generalizing Quillen’s proof that the (reduced) Steinberg complex is isomorphic to a
finite complex of projectives [Qui78, Prop 4.1 and 4.5] (see also [Web91, Thm. 2.7.4]
and [Sym08]): Choose a Sylow p-subgroup S′ of NG(P ), and note that it is enough
to prove that the map is an equivalence in Db(kS′)/Dperf(kS′) (since an element in
the bounded derived category is perfect if, in the notation of §3.2.1, Pr/ im(dr+1)

is projective, which is detected on a Sylow p-subgroup). Also since |Sp(G)|S′ →
|Sp(G)|P is an S′-homotopy equivalence, it is enough to prove the statement with P
replaced by S′. Now, set Δ = |Sp(G)| and let Δs denote the singular set under the
S′-action, i.e., the union of all simplices where S′ does not act freely. By definition
we have an exact sequence of chain complexes

0 → C∗(Δs,Δ
S′
; kϕ) → C∗(Δ,ΔS′

; kϕ)
f−→ C∗(Δ,Δs; kϕ) → 0

As observed in [Qui78, Prop. 4.1] (though only stated for S′ the Sylow p-subgroup),
the singular set Δs is contractible. (To see this, one can also note that Δs is covered
by the contractible subcomplexes ΔQ, for 1 �= Q ≤ S′, all of whose intersections
are also contractible; see [Seg68, §4] or [tD08, Thm. 6.7.11].) Hence ΔS′ → Δs is a

homotopy equivalence, so C∗(Δs,Δ
S′
; kϕ) is acyclic, using the homotopy invariance
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of non-equivariant homology with twisted coefficient systems (see [Hat02, Sec. 3.H]
and §3.2.2). Therefore f is an equivalence in Db(kS′). By definition C∗(Δ,Δs; kϕ)

is a complex of free kS′-modules, so C∗(Δ,ΔS′
; kϕ) is in Dperf(kS′) as wanted,

establishing the first part of the proposition.
To see that C∗(|Sp(G)|; kϕ) is Sylow-trivial in stmodkG, it is enough to prove

that C∗(|Sp(G)|; kϕ) is equivalent to the trivial module k in Db(kS)/Dperf(kS),
as the equivalence stmodkG → Db(kG)/Dperf(kG) is compatible with restriction.
However this follows from the first part upon taking P = S.

We finally observe that Φ([C∗(|Sp(G)|; kϕ)]) = ϕ in H1(O∗
p (G); k×). Namely, by

Proposition 4.1 it is enough to see that the two functors agree as kNG(S)-modules
when evaluated on G/S, which follows by the first part, finishing the proof. (In fact
the above argument shows that for any G/P the identification of C∗(|Sp(G)|; kϕ)
with kϕ in stmodkNG(P ) is compatible with restriction and conjugation, and hence
defines an isomorphism of functors on O∗

p (G), avoiding the reference to Proposi-
tion 4.1.) �
Proof of Theorem A. By Proposition 3.3, Φ is a group monomorphism. Propo-
sition 3.5 shows that C∗(|Sp(G)|; kϕ) does define a Sylow-trivial module via the
equivalence of categories stmodkG

�−−→ Db(kG)/Dperf(kG), and this assignment is
a right inverse to Φ. So Φ is surjective as well. �

We note that Theorem A includes the bijection between Sylow-trivial kG0-
modules and Sylow-trivial kG-modules is given by induction modulo projectives
[MT07, Lem. 2.7(2)], using (1.10).

Lemma 3.6 (Sylow-trivial modules for groups with a strongly p-embedded sub-
group).

C∗(|Sp(G)|; kϕ) ∼= C∗(|Sp(G0)|; kϕ) ↑GG0

�
As mentioned in §1 the chain complex C∗(|Sp(G)|; kϕ) may be interpreted as

a homotopy colimit of kϕ over Sp(G)op. We detail this as a proposition for the
interested reader.

Proposition 3.7 (Homotopy Kan extensions). We have equivalences of kG-chain
complexes

C∗(|Sp(G)|; kϕ) ∼= hocolimP∈Sp(G)op kϕ
�←−− hocolimη↓G/e kϕ ∼= (LKanη kϕ)(G/e)

where the homotopy colimits are taken in chain complexes over k, using the standard
model from e.g., [Hir03, Ch. 18.1.1], LKanη kϕ : Op(G)op → k-(chain complexes) is
the homotopy left Kan extension of kϕ along η : O∗

p (G)op → Op(G)op, and η ↓ G/e
is the overcategory of G/e.

Proof. The left isomorphism is by the model for hocolim, and the right isomorphism
is also by the definitions. As the overcategory η ↓ G/e admits a canonical G-
equivariant functor to Sp(G)op, which is an equivalence of categories (see (A.2)),
this produces the middle equivalence in Db(kG). �

The näıve guess for the inverse in Theorem A might have been the non-derived
colimP∈Sp(G)op kϕ. This is however zero, unless ϕ corresponds to a Sylow-trivial
module induced from a 1-dimensional kG0-module, as we see next—it was this
viewpoint that led us to the formula in Theorem A.
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Proposition 3.8 (Kan extensions). We have isomorphisms of kG-modules

H0(|Sp(G0))|; kϕ)↑GG0
∼= H0(|Sp(G)|; kϕ) ∼=
colimP∈Sp(G)op kϕ

∼=←−− colimη↓G/e kϕ ∼= (LKanη kϕ)(G/e)

with LKan the left Kan extension. The kG0-module H0(|Sp(G0))|; kϕ) is 0 un-
less the action of kNG(S) on kϕ(G/S) extends to kG0, where it is the unique
1-dimensional kG0-module with this property.

Proof. The first isomorphism is by Lemma 3.6, using that induction is exact. The
second and fourth are by definition, while the third follows as in Proposition 3.7.

As Sp(G0) is connected by (1.10), kϕ(G0/S) � colimP∈Sp(G0)op kϕ(G0/P ) as
kNG(S)-modules. Hence if the quotient is non-zero this means that the kNG(S)-
action extends to kG0. Likewise if kϕ(G/S) extends to a kG0-module, then the
colimit is obviously 1-dimensional. Finally note furthermore that any extension is
necessarily unique by the Frattini argument [Gor68, Thm. I.3.7]. �

Using the above remarks, Theorem A gives a more explicit model for the Sylow-
trivial module when |Sp(G)| is G-homotopy equivalent to one-dimensional complex.
This in fact appears to cover all currently known examples of exotic Sylow-trivial
modules! Recall the Heller shift Ω from §3.2.1.

Corollary 3.9. Suppose that G is a finite group such that |Sp(G)| is G-homotopy
equivalent to a one-dimensional complex (e.g., G has p-rank at most 2, or at most
one proper inclusion between p-radicals), and suppose ϕ ∈ Hom(π1(O∗

p (G)), k×) is

not in the subgroup Hom(G0, k
×), cf. (1.5). Then the corresponding Sylow-trivial

module is given as

Ω−1(H1(|Sp(G0)|; kϕ)) ↑GG0

Proof. By Proposition 3.8, H0(|Sp(G0)|; kϕ) is trivial if ϕ is not in Hom(G0, k
×).

Hence C∗(|Sp(G0)|; kϕ) is isomorphic in Db(kG0) to H1(|Sp(G0)|; kϕ), viewed as a
chain complex concentrated in degree 1. The corollary now follows from Theorem A
and Lemma 3.6 (see also §3.2.1). �

Remark 3.10. If C is a 1-dimensional collection in G0, G0-homotopy equivalent to
|Sp(G0)|, then

(3.3) H1(|Sp(G0)|; kϕ) ∼=

ker
(
⊕[P<Q]∈|C|1/G0

kϕ(P ) ↑G0

NG0
(P<Q)

d0−d1−−−−→ ⊕[P ]∈|C|0/G0
kϕ(P ) ↑G0

NG0
(P )

)
as kG0-modules, by definition, where kϕ(P ) is the 1-dimensional NG(P )-module
given by NG(P ) → π1(O∗

p (G)) → k×. Often C can be chosen so that |C|1/G is
small, maybe even a single element (see §6.3 for an example). (The relationship
between collections in G and G0 is explained in §A.5.)

Lastly we remark that Ω−1M is isomorphic to Ω−1k ⊗M , modulo projectives,
so in terms of finding generators for the group of endotrivial modules, Ω−1M works
as well as M .

One may wonder what happens if one applies the map Φ−1(−) = [C∗(|Sp(G)|;−)]
of Theorem A to an arbitrary kπ1(O∗

p (G))-module (semi-simple since π1(O∗
p (G)) is a
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p′-group by (1.5)). The proof of Theorem A in fact shows that Φ will still be a left in-
verse, and one can identify the image. The following more precise theorem general-
izes Theorem A, and arose as response to questions by Radha Kessar (Remark 3.16)
and David Craven. Call a kG-module M Sylow-semi-simple if M ↓S∼= kr ⊕ (kS)s

for non-negative integers r, s.

Theorem 3.11 (Classification of “Sylow-semi-simple” modules). We have a bijec-
tion⎧⎨

⎩
Sylow-semi-simple kG-modules
without projective summands,

up to isomorphism

⎫⎬
⎭ ∼=−−→

⎧⎨
⎩

finitely generated
kπ1(O

∗
p (G))-modules,

up to isomorphism

⎫⎬
⎭

given by restriction to NG(S), discarding projective summands, and viewing the rest
as a kπ1(O

∗
p (G)))-module, using that ker(NG(S) � π1(O

∗
p (G))) acts trivially.

Under this bijection indecomposable modules correspond to simple modules, giv-
ing the bijection between Sylow-trivial modules and 1-dimensional kπ1(O∗

p (G))-
modules of Theorem A, a restriction of Green correspondence. Furthermore

(1) The forward map in the bijection identifies with the functor Φ sending a
kG-module M to the kπ1(O∗

p (G))-module corresponding to the functor from
O∗

p (G)op to the connected groupoid of k-vector spaces and isomorphisms,

given by G/P �→ Ĥ0(P ;M), as in Theorem A.
(2) The inverse map is described as assigning to a kπ1(O∗

p (G))-module N the

element C∗(|Sp(G)|;N) ∈ Db(kG)/Dperf(kG), with G-twisted coefficient
system on |Sp(G)| via T ∗

p (G) → O∗
p (G) → π1(O∗

p (G)) as in Theorem A,
and identifying this with a unique kG-module M without projective sum-
mands, via the Buchweitz–Rickard equivalence of §3.2.1.

Proof. This is shown by modifying the argument of the proof of Theorem A slightly,
and we follow the setup there: Suppose that M is a kG-module as above. Then it
is clear that Φ, via the functor G/P �→ Ĥ0(P ;M), produces a kπ1(O

∗
p (G))-module,

which when inflated along NG(S) � π1(O∗
p (G)) agrees with the module N of the

decomposition M ↓NG(S)
∼= N ⊕ P , as stated in (1).

By Green correspondence [Ben91a, Thm. 3.12.2] there is a bijection between
indecomposable trivial-source kG-modules with vertex S and simple NG(S)/S-
modules, given by restriction and disposing summands not with vertex S. In par-
ticular the map in the theorem is injective. As restriction preserves direct sum it
is also clear that indecomposable modules correspond to simple modules under the
bijection, once we have seen surjectivity.

For surjectivity, with inverse as described in (2), suppose thatN is a kπ1(O∗
p (G))-

module, and let M be the kG-module without projective summands corresponding
to C∗(|Sp(G)|;N). Observe that the argument given in the first half of Proposi-
tion 3.5 still gives equivalences in Db(kNG(S))/D

perf(kNG(S))

N → C∗(|Sp(G)|S;N) → C∗(|Sp(G)|;N)

which again implies that N and M ↓NG(S) are isomorphic after throwing away
projective summands, by the Buchweitz–Rickard equivalence §3.2.1. �

Remark 3.12. Subsequent sections give many ways of computing ker(NG(S) →
π1(O∗

p (G)). In particular Theorem 4.10 gives a group theoretic description in terms
of generators and relations.
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Remark 3.13. As noted, the map in Theorem 3.11 is a restriction of Green cor-
respondence [Ben91a, Thm. 3.12.2] which provides a bijection M �→ N between
indecomposable kG-modules M that split M ↓NG(S)

∼= N ⊕ N ′ where N is simple
and N ′ is a sum of indecomposable modules with vertex a proper subgroup of S,
and all simple kNG(S)/S-modules.

Remark 3.14. Since the restriction map preserves direct sum and tensor product,
Theorem 3.11 in fact gives an isomorphism of semi-rings between Sylow-semi-simple
modules without projective summands and finitely generated π1(O∗

p (G))-modules,
where the tensor product on Sylow-semi-simple modules means tensoring and dis-
carding projective summands. Sylow-trivial modules constitute the units in the
semi-ring of Sylow-semi-simple modules.

Corollary 3.15. Suppose M is a kG-module that arises from the correspondence of
Theorem 3.11 with N an absolutely simple kπ1(O∗

p (G))-module. Then Endk(M) ∼=
k ⊕M ′ as kG-modules, where M ′ is a kG-module without k in its socle.

Proof. If N is absolutely simple, its dimension divides |π1(O∗
p (G))| (see [Ser79, §6.5

Cor. 2]), and is in particular prime to p, since π1(O∗
p (G)) is a p′-group by (1.5).

Hence the dimension of M is prime to p, since the dimension of M is congruent to

the dimension ofN modulo |S|, by Theorem 3.11. In particular k → Endk(M)
Tr−→ k

is an isomorphism, so k splits off Endk(M). To see that k is not in the socle of M ′

note that

HomG(M,M)⊆HomNG(S)(M,M)∼=HomNG(S)(N,N)∼=Homπ1(O∗
p (G))(N,N)∼= k

since N is absolutely simple. �
Remark 3.16. As pointed out to us by Radha Kessar, modules as in Corollary 3.15
are interesting since they are candidates for the image of simple modules under
self-equivalences of the stable module category. Carlson proved in [Car98] that for
p-groups, modules N satisfying HomG(N,N) ∼= k are in fact endotrivial, but for
general finite groups the class is bigger, e.g., it contains all simple modules. Its size
in general, and the precise image given via Theorem 3.11, is at present unclear.

Remark 3.17 (More general modules from p-local information). The process of
constructing modules from p-local information via a homotopy left Kan extension
as in Theorems A and 3.11 should be of interest also for more general families
of modules on p-local subgroup NG(P ), even when they are not translates of a
fixed module on NG(S). Or, said differently, when one considers more general G-
local coefficient systems on |Sp(G)|, as explained in §2.6. For instance it would
be worthwhile to understand the work of Wheeler [Whe02] from this point of view
(see also [Mat16]). Fundamental counting conjectures in representation theory, such
as Alperin’s [Alp87], predict a relationship between kG-modules and modules on
normalizers of p-subgroups, and it is not unnatural to expect that the glue between
these subgroups provided by the transport and orbit categories should play a role
in categorifiying, and potentially proving, these conjectures.

Remark 3.18 (Discrete valuation rings). Our model for Sylow-trivial modules can
also be lifted to characteristic 0: Suppose that (K,R, k) is a p-modular system,
with R a complete rank one discrete valuation ring with residue field k of charac-
teristic p [Ben91a, §1.9]. Then reduction modulo the maximal ideal R → k induces
an isomorphism on finite roots of unity in R and k by Hensel’s lemma. Hence
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H1(O∗
p (G);R×)

∼=−−→ H1(O∗
p (G); k×), so we can uniquely define the twisted Stein-

berg complex C∗(|Sp(G)|;Rϕ) over R. By the RG-lattice version of the Buchweitz–
Rickard theorem [Pou, Prop. 3.4] it defines an object in the stable module category
of RG-lattices, lifting the kG-module corresponding to ϕ ∈ H1(O∗

p (G); k×). This
makes explicit the lift known to exist by virtue of Sylow-trivial modules being trivial
source [Ben91a, Cor. 3.11.4(i)].

3.4. Addendum: Ak(G,S) ∼= H1(O∗
p (G); k×). In this addendum we relate Bal-

mer’s notion of a weak homomorphism to H1(O∗
p (G); k×), providing a different

proof of Theorem A. This version is less direct as it uses the main result of
[Bal13], where he identifies Tk(G,S) with a group he calls Ak(G,S) of weak S-
homomorphisms from G to k×, but may nevertheless be instructive for readers
familiar with that work. By [Bal13, Def. 2.2], a weak S-homomorphism is a map
from G to k× such that

(WH1) ϕ(g) = 1 for g ∈ S,
(WH2) ϕ(g) = 1 when S ∩ Sg = 1, and
(WH3) ϕ(g)ϕ(h) = ϕ(gh) when S ∩ Sh ∩ Sgh �= 1,

where as usual Hg = g−1Hg. It would be interesting to play off the construction
of endotrivial modules in Theorem A with [Bal13, Constr. 2.5 and Thm. 2.9].

Proposition 3.19. For any finite group and field k, Ak(G,S) ∼= H1(O∗
p (G); k×),

where Ak(G,S) is the group of weak S-homomorphisms from G to k×.

Proof. We prove that Ak(G,S) identifies with Hom(π1(O∗
p (G)), k×), by observing

that there are canonical group homomorphisms in both directions, that we check
are well defined and inverses to each other. Recall the bijection

HomO∗
p (G)(G/P,G/Q) ∼= {g ∈ G|P g ≤ Q}/Q

described in §2.4, and that, by §2.5, we have an isomorphism of sets which is an
isomorphism of abelian groups, where the group structure on the left is pointwise
multiplication in the target, and Rep means isomorphism classes of functors. Up to
equivalence of categories (which does not change Rep) we can furthermore replace
O∗

p (G) by the equivalent full subcategory O∗
S(G) with objects G/P for 1 < P ≤ S,

for our fixed Sylow p-subgroup S (see §2.5).
We are thus just left with verifying that isomorphism classes of functors O∗

S(G) →
k× agree with the group Ak(G,S) that Balmer introduced: Given ϕ ∈ Ak(G,S)

define Φ: O∗
S(G) → k× by sending a morphism G/Q

[g]−→ G/Q′ to ϕ(g). This is
well defined, since replacing g by gq, for q ∈ Q, yields ϕ(gq) = ϕ(g)ϕ(q) = ϕ(g)
by (WH3) and (WH1). It is likewise a functor: By (WH1), Φ([idG/Q]) = ϕ(1) = 1

and given a composite G/Q
[g]−→ G/Q′ [h]−−→ G/Q′′ we have Qg ≤ Q′ ≤ S and

(Q′)h ≤ Q′′ ≤ S, so

Sgh ∩ Sh ∩ S = (Sg ∩ S)h ∩ S ≥ (Qg)h ∩ S = (Qg)h > 1

Hence by (WH3), writing composition in categories from right to left,

Φ([h] ◦ [g]) = Φ([gh]) = ϕ(gh) = ϕ(g)ϕ(h) = ϕ(h)ϕ(g) = Φ([h])Φ([g])

as wanted.
Conversely given a functor Φ: O∗

S(G) → k×, up to isomorphism, we construct
a weak homomorphism ϕ : G → k× as follows: By §2.5, Φ is isomorphic to a
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unique functor Φ̃ : O∗
S(G) → k× that factors through O∗

S(G) → π1(O∗
S(G)), with

the model for π1(O∗
S(G)) of §2.5. This model in particular sends morphisms induced

by inclusions to the identity. We may without restriction replace Φ by this functor
Φ̃. Set

ϕ(g) =

{
Φ(G/(gS ∩ S)

[g]−→ G/(S ∩ Sg)) if S ∩ Sg �= 1
1 otherwise

It is clear that (WH1) and (WH2) are satisfied. For (WH3) suppose that S ∩ Sh ∩
Sgh �= 1 and consider the diagram

G/(ghS ∩ gS ∩ S)

[g] �����
����

����
[gh] �� G/(S ∩ Sh ∩ Sgh)

G/(hS ∩ S ∩ Sg)
[h]

��������������

where the top map is the quotient of G/(ghS ∩ S)
[gh]−−→ G/(S ∩ Sgh), and similarly

for the two other maps. Hence applying Φ(−) to this diagram, and using that
morphisms G/Q → G/Q′ induced by inclusions Q ≤ Q′ go to the identity we see
that ϕ(gh) = Φ([gh]) = Φ(h)Φ(g) = ϕ(h)ϕ(g) = ϕ(g)ϕ(h) as wanted.

As we have now given maps between Ak(G,S) and Rep(O∗
S(G), k×) that are

group homomorphisms under pointwise multiplication in k×, and mutual inverses,
we have finished the proof. �

Remark 3.20. Another perspective on “weak homomorphisms” can be given by
showing that they correspond to morphisms of partial groups in the sense of Cher-
mak [Che13] from a locality of G based on all non-trivial subgroups p-subgroups to
k×.

4. Fundamental groups of orbit and fusion categories

In this section we describe how to calculate and manipulate our basic invariants
π1(O∗

p (G)) and π1(F∗
p (G)), and related groups. In §4.1 we establish basic properties

of π1(O∗
p (G)) and establish Corollary 1.1 and Theorem B. In §4.2 we expand on

its properties and in §4.3 we carry out a similar analysis for π1(F∗
p (G)). In §4.4

we look at higher homotopy groups—these occur naturally in the analysis, even if
one is ultimately only interested in π1. Some results are stated for an arbitrary
collection of p-groups C, appealing to Appendix A to get minimal hypothesis on
C–the reader may take C = Sp(G) at first reading. We refer to Appendix A for
much additional information. The categories discussed were introduced in §2.4.

Recall that Hp′ means the quotient of H by the subgroup generated by elements

of p-power order (so Hp′ = H/Op′
(H) when H is finite). For a fixed Sylow p-

subgroup S and a collection C, set

(4.1) G0,C = 〈NG(Q)|Q ≤ S, Q ∈ C〉 and C0 = {Q ∈ C|Q ≤ G0,C}.

Hence C0 is a collection in G0,C , and when C = Sp(G), G0,C = G0 of (1.3). A p-
subgroup is called p-essential if Sp(NG(P )/P ) is disconnected (hence non-empty).
See §A.5 for an elaboration.
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4.1. Fundamental groups of orbit categories: Proof of Corollary 1.1 and
Theorem B.

Proposition 4.1 (Bounds on π1(OC(G))). Let C be a collection of p-subgroups
closed under passage to p-essential and Sylow overgroups. Then the categories
OC(G) and OC0

(G0,C), as well as TC(G) and TC0
(G0,C), are equivalent, all con-

nected, and hence π1(OC(G))
∼=←−− π1(OC0

(G0,C)) and π1(TC(G))
∼=←−− π1(TC0

(G0,C)).
Furthermore we have a sequence of surjections

NG(S)/S � π1(OC(G)) � (G0,C)p′ � Gp′

and in particular π1(OC(G)) is a finite p′-group.

Proof. The categories are connected since S ∈ C. That OC(G) and OC0
(G0,C) are

equivalent categories follows from Alperin’s fusion theorem: By Sylow’s theorem
they are both equivalent to their full subcategories OC,S(G) and OC0,S(G0,C) with
objects G/Q and G0,C/Q respectively, with Q ≤ S and Q ∈ C, for some fixed
Sylow p-subgroup S. Now Alperin’s fusion theorem [Alp67, §3], in the version
of Goldschmidt–Miyamoto–Puig [Miy77, Cor. 1], says that for any conjugation

G/P
[g]−→ G/P g with P, P g ≤ S we can write g = g1 · · · grn where gi ∈ NG(Pi)

with P ≤ P1, Pi ≤ S p-essential, P g1···gi ≤ Pi+1, and n ∈ NG(S). In particular
g ∈ G0,C . Hence the two subcategories OC,S(G) and OC0,S(G0,C) are isomorphic,
and thus OC(G) and OC0

(G0,C) are equivalent. The same argument applies verbatim
to T . (See also [Gro02, §10] for information on versions of the fusion theorem.) As
the categories are equivalent, their fundamental groups are isomorphic.

To see the stated surjections, recall that G = NG(S)O
p′
(G), for any finite group

G, by the Frattini argument [Gor68, Thm. I.3.7]. In particular we have surjec-
tions NG(S)/S � Gp′ and NG(S)/S � (G0,C)p′ . Thus we have established the
proposition if we show the surjection NG(S)/S � π1(OC(G)). For this, first note
that by Lemma A.11 we can without restriction assume that C is closed under
passage to all p-subgroups, not just p-essential and Sylow subgroups. Next, recall
the model for π1(OC(G)) of §2.5: Take G/S as basepoint and consider the functor

ω : OC,S(G) → π1(OC(G)) from §2.5 given by sending G/P
[g]−→ G/Q, for P,Q ≤ S,

to the loop G/S ← G/P
[g]−→ G/Q → G/S. We have ω(G/P → G/Q) = 1 for

P ≤ Q, and the image of ω generates π1(OC(G)). Again by the fusion theorem,
π1(OC(G)) is in fact generated by NG(P )/P for P ≤ S, P ∈ C (compare also
[BLO03b, Pf. of Prop. 1.12]). Furthermore, the fusion theorem in Alperin’s version

[Alp67, §3] says that any conjugation G/P
[g]−→ G/P g can be obtained as a sequence

of conjugations by elements of p-power order in NG(Pi) for p-subgroups for a se-
quence of p-subgroups Pi ≤ S containing a conjugate of P , related as above (but
now not necessarily p-essential), and an element in NG(S). However, any element
[x] ∈ NG(P )/P of p-power order is trivial in the fundamental group, since it will
be conjugate to an element in S, which is zero: To see this explicitly, pick g which
conjugates 〈x, P 〉 into S; then we can consider the diagram

G/P

[x]

		

[g−1] �� G/gP

[gxg−1]

		

�� G/S

[1]

		
G/P

[g−1] �� G/gP �� G/S
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which commutes since gxg−1 ∈ S, hence showing that G/P
[x]−→ G/P maps to the

identity in π1(OC(G)). This shows that NG(S)/S → π1(OC(G)) is surjective as
wanted. �

Remark 4.2. For C = A2(G) and G = Z/4, |OC(G)| 
 BZ/2, so π1(OC(G)) is not
a 2′-group.

Remark 4.3. The maps in Proposition 4.1 are natural in the collection, so if C′ ≤ C
we have a surjection π1(OC′(G)) � π1(OC(G)), introducing a natural filtration on
π1(O∗

p (G)).

Remark 4.4. For C a collection of p-subgroups of G, closed under passage to p-
overgroups, and NG(S) ≤ H ≤ G, then by Proposition 4.1 we have surjections

NG(S)/S � π1(OC′(H)) � π1(OC(G))

for C′ the elements of C that are subgroups of H. Via Theorem A this can be seen as
a refinement of the fact that restriction to H is injective on Sylow-trivial modules,
as is usually seen via Green correspondence [CMN06, Prop. 2.6(a)].

Proposition 4.5 (Quotienting out by p-torsion). For any collection C of p-sub-
groups, and any basepoint P ∈ C, the natural surjections of categories induce iso-
morphisms

π1(TC(G))p′
∼=−−→ π1(OC(G))p′ and π1(FC(G))p′

∼=−−→ π1(F̄C(G))p′

In particular H1(OC(G);A)
∼=−−→ H1(TC(G);A) if A is a p-torsion-free abelian group

(e.g., A = k×) and H1(TC(G);A)
∼=−−→ H1(OC(G);A) if A instead is assumed to be

p-divisible.

Proof. Note that we include the basepoint P in the formulation, since without fur-
ther assumptions on C the categories could be disconnected (though this is never
the case for the C we are interested in) (see §2.5 for more detail). We first prove
π1(TC(G))p′

∼=−−→ π1(OC(G))p′ . Note that TC and OC have the same path com-
ponents, since the quotient functor is a bijection on objects and a surjection on
morphisms. Choose for each Q ∈ C which lie in the same path component as
P , a preferred path in TC from Q to P , as explained in §2.5, which induces a
corresponding path in OC . Now, the morphisms in TC(G) surject onto the mor-
phisms of OC(G), and if two morphisms in TC(G) are mapped to the same mor-
phism in OC(G), then they differ by an automorphism of p-power order. Since
the morphisms in the category generate the fundamental group, we conclude that
π1(TC(G))p′

∼=−−→ π1(OC(G))p′ as wanted. The case π1(FC(G))p′
∼=−−→ π1(F̄C(G))p′ is

identical.
The consequences for cohomology and homology now follow, using the universal

coefficient theorem and the Hurewicz theorem explained in §2.5. �

We have now justified all the ingredients to prove Corollary 1.1 and Theorem B
from §1.1:

Proof of Corollary 1.1. We have isomorphisms

Tk(G,S)
∼=−−→ H1(O∗

p (G); k×)
∼=−−→ H1(T ∗

p (G); k×) ∼= H1(|Sp(G)|hG; k×)

by Theorem A, Proposition 4.5, and Lemma 2.3 respectively. �
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Proof of Theorem B. As mentioned in (1.11) and (1.12), we have a fibration se-
quence |Sp(G0)| → |Sp(G)|hG → BG0, whose long exact sequence in homotopy
groups produces the short-exact sequence

1 → π1(Sp(G0)) → π1(|Sp(G)|hG) → G0 → 1,

as BG0 has no higher homotopy groups and |Sp(G0)| is connected. The exact se-
quence of Theorem B identifies with first four terms of the five-term exact sequence
in group cohomology with k×-coefficients (see [HS71, VI.8]) arising from the above
group extension, and using Tk(G,S)

∼=−−→ H1(|Sp(G)|hG; k×) by Corollary 1.1. (Al-
ternatively apply the five-term exact sequence of the fibration (1.11) directly.)

The first of the two final statements follows from the exact sequence in the first
part, together with the Universal Coefficient Theorem and Frobenius reciprocity
(see also Proposition 4.6). The second now also follows, as |Sp(G)| simply connected
implies G = G0 by (1.10). �

Let us also spell out the homology version of Theorem B, as this is often useful
in practice.

Proposition 4.6. We have an exact sequence

H2(O
∗
p (G)) → H2(G0)p′

∂−→ (H1(Sp(G0))G0
)p′ → H1(O

∗
p (G)) → H1(G0)p′ → 0

(where also H1(Sp(G0))G0
∼= H1(Sp(G))G by (1.10) and Frobenius reciprocity).

Proof. The five-term exact sequence in homology with Z[ 1p ]-coefficients for the ex-

tension (1.12) is

H2(T
∗
p (G);Z[ 1p ]) → H2(G0;Z[

1
p ]) → H1(Sp(G0);Z[

1
p ])G0

→ H1(T
∗
p (G);Z[ 1p ]) → H1(G0;Z[

1
p ]) → 0

(see again [HS71, VI.8]). We have Hi(T ∗
p (G);Z[ 1p ])

∼=−−→ Hi(O∗
p (G)) for i = 1, 2 by

Proposition 4.34 and Theorem 4.35 so we can rewrite the sequence as

H2(O
∗
p (G)) → H2(G0)⊗ Z[ 1p ] → (H1(Sp(G0))G0

)⊗ Z[ 1p ]

→ H1(O
∗
p (G)) → H1(G0)⊗ Z[ 1p ] → 0

using also exactness of inverting p. All terms except the middle are known to be
finite, so the middle is as well, and we can hence replace (−) ⊗ Z[ 1p ] with (−)p′

everywhere as wanted. �
Remark 4.7. The boundary map ∂ in Theorem B sends an element

f ∈ H1(Sp(G0); k
×)G0 ↪→ H1(Sp(G0); k

×) ∼= Hom(H1(Sp(G0)), k
×)

to −f∗([α]) ∈ H2(G0; k
×), where [α] ∈ H2(G0;H1(Sp(G0))) is the extension class

of the abelianization of the extension (1.12) (see e.g., [HS53, Thm. 4] or [Eve91,
Thm. 7.3.1]). Dually for ∂ in Proposition 4.6. This extension class may deserve
closer study.

Remark 4.8. Propositions 4.1 and 4.5 should be compared to the situation at the
prime p, where

(4.2) H∗(T
∗
p (G))(p)

∼=−−→ H∗(G)(p)

by a classical result of Brown [Bro94, Thm. X.7.3] (translated via Lemma 2.3).
The theory of ‘ample collections’ describes for which C this continues to hold (see
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[Dwy97, 1.3], [Gro02, §9]). This combines to show that H1(T ∗
p (G))

∼=−−→ H1(G) if
and only if H1(O∗

p (G))
∼=−−→ H1(G)p′ . See Theorem 4.35 for a more general version.

Remark 4.9 (Equivariant complex line bundles on Sp(G)). Via a remark of Totaro
[Bal18, Rem. 2.7], Corollary 1.1 easily implies a very recent theorem of Balmer
[Bal18, Thm. 1.1] that identifies Tk(G,S) with the p′-torsion part of the group
of G-equivariant complex line bundles on |Sp(G)|, under the assumption that k is
algebraically closed. Namely, in this case we have an embedding Torsp′(Q/Z) ∼=
μ∞(k) ⊆ k×, where Torsp′ means the subgroup of elements of finite order prime to
p, and μ∞(k) are the units of finite order. Hence we have isomorphisms

Torsp′(H2(|Sp(G)|hG;Z)) ∼=←−− Torsp′(H1(|Sp(G)|hG;Q/Z))
∼=−−→ H1(|Sp(G)|hG; k×)

where the first is induced by the exact sequence 0 → Z → Q → Q/Z → 0 and the
second uses thatH1(|Sp(G)|hG) is finite, e.g., by (1.5), (1.7), and (1.9). But now the
left-hand term identifies with the p′-torsion part of the G-equivariant complex line
bundles on |Sp(G)|, as remarked by Totaro [Bal18, Rem. 2.7], and the right-hand
side identifies with Tk(G,S) by Corollary 1.1. More generally, since (4.2) shows
that H2(|Sp(G)|hG;Z) is a finite abelian group with p-torsion part H2(G)(p), we
can describe all G-equivariant complex line bundles on |Sp(G)| as

(4.3) PicG(|Sp(G)|) ∼= H2(G)(p) ⊕ Tk(G,S).

Here k should in fact just be large enough so that the one-dimensional representa-
tions of π1(O∗

p (G)) do not depend on k, e.g., containing all |NG(S) : S|th roots of
unity.

4.2. Fundamental groups of orbit categories: Further structural results.
The fundamental group π1(O∗

p (G)) can be described in a purely group theoretic
way.

Theorem 4.10 (Group theoretic description of π1(O∗
p (G))). Let KO be the sub-

group of NG(S) generated by elements g ∈ NG(S) such that there exist nontriv-
ial subgroups 1 < Q0, . . . , Qr ≤ S and a factorization g = x1 · · ·xr in G, where
xi ∈ Op′

(NG(Qi)) and Qx1···xi
0 ≤ Qi+1 for i ≥ 0. Then

NG(S)/KO
∼=−−→ π1(O

∗
p (G))

In particular NG(S) ∩Op′
(NG(P )) ≤ ker

(
NG(S) � π1(O∗

p (G))
)
for 1 < P ≤ S.

Proof. The proof amounts to a careful study of the proof of Proposition 4.1. The
canonical map NG(S) → π1(O∗

p (G)) is surjective by Proposition 4.1. We first
justify that it factors through KO , to induce a homomorphism ϕ : NG(S)/KO �
π1(O∗

p (G)). Let g ∈ KO be a generator with a decomposition g = x1 · · ·xr as in

the theorem. Then G/S
[g]−→ G/S is equal to G/Q0

[g]−→ G/Qg
0 in π1(O∗

p (G)), as
inclusions go to the identity, as explained in §2.5. Furthermore, for each i, we have
a commutative diagram

G/Qi
[xi] �� G/Qi

G/Q
x1···xi−1

0

[xi] ��

��

G/Qx1···xi
0

��
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equating G/Qi
[xi]−−→ G/Qi and G/Q

x1···xi−1

0

[xi]−−→ G/Qx1···xi
0 in π1(O∗

p (G)). But

G/Qi
[xi]−−→ G/Qi is zero in π1(O∗

p (G)) as it is a product of elements of p-power
order in NG(Qi)/Qi, and π1(O∗

p (G)) is a p′-group by Proposition 4.1. Hence [g] is

zero in π1(O∗
p (G)) as well, and KO ≤ ker

(
NG(S) � π1(O∗

p (G))
)
as wanted. The

last statement in the theorem follows from this.
To show the whole theorem, i.e., ϕ is an isomorphism, we construct an inverse

ψ : π1(O∗
p (G)) → NG(S)/KO using Alperin’s fusion theorem. For this, recall that

O∗
p (G) is equivalent to a full category O∗

S(G) with objects G/P for P ≤ S, and

consider G/P
[g]−→ G/P g, with P , P g ≤ S. Now, by Alperin’s fusion theorem

[Alp67, §3], we can find x1, . . . , xr and non-trivial p-subgroups Q1, . . . , Qr ≤ S
such that P = Q0 ≤ Q1, xi ∈ NG(Qi) is of p-power order, P x1···xi ≤ Qi+1 ≤ S,
and Sg = Sx1···xr , i.e., g = x1 · · ·xrn with n ∈ NG(S). (Our Qi correspond to
“Qi ∩ P”, when 1 ≤ i ≤ r, in the notation of [Alp67, §3].) We claim that the
map sending [g] to nKO gives a well defined functor O∗

S(G) → NG(S)/KO . If

g = x1 · · ·xrn = y1 · · · ysm then mn−1 = y−1
s · · · y−1

1 x1 · · ·xr, where the right-hand
side lies in KO , so n equals m in the quotient. Also note that changing g by
a different coset representative will not change this image. Likewise the map is a

functor since if we have a composite G/P
[g]−→ G/P g [h]−−→ G/P gh with g = x1 · · ·xrn

and h = y1 · · · ysm, then gh = x1 · · ·xrny1n
−1ny2 · · · ys−1n

−1nysn
−1nm and hence

is sent to nm as wanted. By the universal property of the fundamental group (see
§2.5), we hence get an induced group homomorphism ψ : π1(O∗

p (G)) → NG(S)/KO ,
which is clearly a left and a right inverse to ϕ, as both maps commute with the
surjection from NG(S). �

Remark 4.11. Let us briefly discuss the assumptions in Theorem 4.10. First note
that the relationship between the subgroups Qi is an important part of the state-
ment, i.e., we cannot just consider the bigger subgroup NG(S) ∩ 〈Op′

(NG(P ))|1 <
P ≤ S〉 as examples such as S7 at p = 3 show. Second, one could ask if the
elements xi could be assumed to lie in NG(S), i.e., if the subgroups of the ‘in par-
ticular’ generate the kernel. This often holds but fails e.g., for G2(5) at p = 3, as
we shall analyze in connection with the Carlson–Thévenaz conjecture, Theorem E
(see Proposition 6.3 and its proof). Finally we remark that one cannot just as-

sume that all Qi are p-essential, i.e., NG(Qi) cannot be replaced by Op′
(NG(Qi))

in the Goldschmidt–Miyamoto–Puig [Miy77, Cor. 1] version of the fusion theorem,
as G2(5) at p = 3 is again a counterexample by Example A.12. Which subgroups
are needed is analyzed in detail in Appendix A in terms of homotopy properties of
the collection C.

Remark 4.12. The subcategories of T ∗
p (G) and O∗

p (G) obtained as preimages of
subgroups of π1(O∗

p (G)) can be thought of as subcategories “of p′-index” analogous

to the results in [BCG+07, §5] on fusion system and linking systems, and the above
proof may be compared to [BCG+07, Pf. of Prop. 5.2]. Furthermore T ∗

p (G) is
an example of an abstract transporter system as defined in [OV07, Def. 3.1], so
in light of (1.8), it would be interesting to further understand the group theoretic
significance of these subcategories.

Let us describe the relationship between π1(O∗
p (G)) and Gp′ = G/Op′

(G) in
simple cases.
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Corollary 4.13. If |Sp(G)| is simply connected then

π1(T
∗
p (G))

∼=−−→ G and π1(O
∗
p (G))

∼=−−→ Gp′ .

If we only assume that |Sp(G0)| is simply connected, then π1(T
∗
p (G))

∼=−−→ G0 and
π1(O

∗
p (G))

∼=−−→ (G0)p′ .

Proof. By (1.12) we have an exact sequence 1 → π1(Sp(G0)) → π1(T ∗
p (G)) →

G0 → 1. This gives the statements about T ∗
p (G) and T ∗

p (G0) and the statements
about π1(O∗

p (G)) and π1(O∗
p (G0)) now follow using Propositions 4.1 and 4.5. �

Corollary 4.14 recovers and extends “classical” facts about Tk(G,S), by Carl-
son, Mazza, Nakano, and Thévenaz, via Theorem A. (See Remark 4.15 for some
historical references.)

Corollary 4.14 (Basic calculations of Tk(G,S) via π1(O∗
p (G))).

(1) If for all g ∈ G, S ∩ Sg �= 1 (e.g., if Op(G) �= 1) then π1(O
∗
p (G))

∼=−−→ Gp′

and hence Tk(G,S) ∼= Hom(G, k×).
(2) If S has p-rank one, then π1(O∗

p (G))
∼=−−→ (G0)p′ , with G0 = NG(Ωp(Z(S))),

and hence Tk(G,S) ∼= Hom(NG(Ωp(Z(S))), k×), with Ωp(Z(S)) the ele-
ments of order at most p in Z(S).

(3) If G is a trivial intersection (T.I.) group, i.e., a group where unequal Sylow
p-subgroups intersect trivially, then G0 = NG(S), π1(O∗

p (G)) ∼= NG(S)/S,

and hence Tk(G,S) ∼= Hom(NG(S), k
×).

(4) If G � H ◦C K is a normal subgroup of a central product, with p||H ∩ G|
and p||K ∩G|, then π1(O∗

p (G))
∼=−−→ Gp′ and Tk(G,S) ∼= Hom(G, k×).

(5) If G = H �Sn is a wreath product, with p||H| and n ≥ 2, then π1(O∗
p (G))

∼=−−→
Gp′ and Tk(G,S) ∼= Hom(G, k×).

Proof. (1) Suppose G/P
[g]−→ G/Q goes to 1 ∈ Gp′ , so g can be written as a product

in G of elements of p-power order. We can thus without loss of generality assume
that g is itself of p-power order. Furthermore, by changing g up to conjugacy we can

assume that Q ≤ S, and it is enough to prove that G/S
[g]−→ G/Sg is the identity in

π1(O∗
p (G)). However here it factors as G/S ← G/(S∩Sg)

[g]−→ G/(S∩Sg) → G/Sg,
which is the identity in π1(O

∗
p (G)), as g has p-power order in NG(S ∩ Sg)/S ∩ Sg.

(2) Since |Ap(G)| = G/NG(Ωp(Z(S))), a discrete G-space, we have G0 =
NG(Ωp(Z(S))). In particular Op(G0) �= 1 and the claim follows from (1), using
Proposition 4.1.

(3) Since Sp(G) is G-homotopy equivalent to the collection of non-trivial Sylow-
intersections, e.g., by [GS06, Thm. 1.1], |Sp(G)| 
 G/NG(S) and G0 = NG(S) and
the claim again follows from (1).

(4) Let S be a Sylow p-subgroup of G, and note that Z(S) ∩ H �= 1, by a

basic property of p-groups, and similarly for K. We claim that Op′
(G) ∩NG(S) is

generated by Op′
(NG(Z(S)∩K))∩NG(S) and Op′

(NG(Z(S)∩H))∩NG(S), which
will finish the proof by the ‘in particular’ part of Theorem 4.10. To see this, set
H̃ = H ∩G, Ĥ = Op′

(H̃S)∩ H̃, and define K̃ and K̂ symmetrically. Note that for

h ∈ H, s ∈ S, we have hsh−1s−1 ∈ H̃ so hsh−1 ∈ H̃S and hence hsh−1 ∈ Op′
(H̃S)

as s is of p-power order. Thus hsh−1s−1 ∈ Ĥ and hS ≤ ĤS. In particular
h(H̃S) ≤ H̃(hS) ≤ H̃S and hence h(Op′

(H̃S)) ≤ Op′
(H̃S), so Ĥ � H. As the

similar statements hold for K̂ we conclude that ĤK̂ � HK and ĤK̂S � HK.
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In particular ĤK̂S = Op′
(G) as it, by the above, is a normal subgroup generated

by elements of p-power order, and of p′ index. The factorization Op′
(G) = ĤK̂S

also holds in NG(S): If hk ∈ ĤK̂ ∩ NG(S), then
kS = Sh ≤ ĤS ∩ K̂S. But

ĤS ∩ K̂S = (Ĥ ∩ K̂)S ≤ CS, since if x ∈ ĤS ∩ K̂S of order prime to p then

x ∈ Ĥ ∩ K̂ ≤ C, as Ĥ and K̂ are normal. Hence h, k ∈ NG(S), so

h ∈ Ĥ ∩NG(S) ≤ Op′
(NG(Z(S) ∩K)) ∩NG(S),

and symmetrically for k as wanted.
(5) Suppose G = H � Sn. Let Hi denote the ith copy of H and Si its Sylow

p-subgroup, and let Δ denote Sylow p-subgroup of H embedded diagonally. Since
Sn ≤ CG(Δ), Op′

(Sn) ≤ Op′
(NG(Δ)). Likewise since Hi ≤ CG(Hj) for i �= j,

Op′
(Hi) ≤ Op′

(NG(Sj)). But

NG(S) ∩Op′
(G) = NG(S) ∩ (

∏
i

Op′
(Hi)�Op′

(Sn))

= (
∏
i

NG(S) ∩Op′
(Hi))� (NG(S) ∩Op′

(Sn)).

So the result again follows from the ‘in particular’ in Theorem 4.10, as NG(S) ∩
Op′

(G) is generated by groups that are trivial in π1(O∗
p (G)) by the above rewriting.

�

Remark 4.15. The statement about Tk(G,S) in (1) above is [MT07, Lem. 2.6].
(Note also that if Op(G) �= 1, |Sp(G)| is contractible by [Qui78, Prop. 2.4], and
compare also to Proposition 3.1.) For the statement about Tk(G,S) in (2) see
[MT07, Lem. 3.5] (noting that the proof there works also for S of p-rank one,
not just cyclic) and compare also [CT15, §6]. For (3) see [CMN06, Prop. 2.8 and
Rem. 2.9] and also [LM15b, §3.3]. The statement about Tk(G,S) in (4) is a slight
strengthening of the recent [CMN16, Thm. 2.4]. Note furthermore that |Sp(H×K)|
is simply connected unless H and K both contain strongly p-embedded subgroups
by [Qui78, Prop. 2.6] and Lemma A.5.

Corollary 4.16 (Subgroups of p′-index). If H
G is of p′ index, there is a diagram
with exact rows

(4.4)

1 �� π1(O∗
p (H)) ��

				

π1(O∗
p (G)) ��

				

G/H �� 1

1 �� Hp′ �� Gp′ �� G/H �� 1

In particular π1(O∗
p (H))

∼=−−→ Hp′ if and only if π1(O∗
p (G))

∼=−−→ Gp′ , an isomor-
phism H1(O∗

p (H))
∼=−−→ H1(H)p′ implies H1(O∗

p (G))
∼=−−→ H1(G)p′ , and Tk(H,S) ∼=

Hom(H, k×) implies Tk(G,S) ∼= Hom(G, k×).

Proof. Note that |Sp(H)| = |Sp(G)|. Hence taking Borel constructions and using
(1.9) produces the following diagram, where the rows are fibration sequences

(4.5)

|T ∗
p (H)| ��

		

|T ∗
p (G)| ��

		

B(G/H)

BH �� BG �� B(G/H)
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Diagram (4.4) is the bottom of the associated long exact sequence of homotopy
groups, after dividing out elements of finite p-power order. Diagram (4.4) implies
the consequence about π1 by the 5-lemma. The homology consequence also follows
from the 5-lemma, now applied to the associated ladder of exact sequences coming
from (4.4)

H2(G/H) �� H1(O∗
p (H))G/H

��

				

H1(O∗
p (G)) ��

				

H1(G/H) �� 0

H2(G/H) �� (H1(H)p′)G/H
�� H1(G)p′ �� H1(G/H) �� 0

Finally the consequence about Tk(G,S) follows from the dual sequence in cohomol-
ogy with k×-coefficients, and using Theorem A. �
Remark 4.17. The converse to the last two implications in Corollary 4.16 fail for
G = SL2(F8)�C3, with C3 acting via the Frobenius, H = SL2(F8), and p = 2, where
π1(O∗

2 (G)) = C7�C3 and π1(O∗
2 (H)) = C7 (see also Remark A.20). Corollary 4.16

says that a full calculation of π1(O∗
p (G)) not only allows the determination of the

Sylow-trivial modules forG but also those of its normal subgroups of p′ index, which
is not possible from just knowing H1. We illustrate this in §6.3 with the symmetric
and alternating groups, in fact correcting a small mistake in the literature.

Corollary 4.18 (Central p′-extensions). Suppose Z is a central p′-subgroup of G.
Then there is a diagram of spaces, with horizontal maps fibration sequences

BZ ��

		

|T ∗
p (G)| ��

		

|T ∗
p (G/Z)|

		
BZ �� BG0

�� B(G0/Z)

and hence a ladder of exact sequences

H2(O∗
p (G)) ��

		

H2(O∗
p (G/Z))

∂ ��

		

Z �� H1(O∗
p (G))

ϕ
				

�� H1(O∗
p (G/Z)) ��

ϕ̄
				

0

H2(G0)p′ �� H2(G0/Z)p′
∂′

�� Z �� H1(G0)p′ �� H1(G0/Z)p′ �� 0

In particular 0 → im(∂′)/ im(∂) → ker(ϕ) → ker(ϕ̄) → 0 is exact. And if
H2(O∗

p (G/Z)) → H2(G/Z)p′ is surjective, e.g., if ⊕[P ]∈Sp(G)/GH2(NG/Z(P ))p′ �
H2(G/Z)p′ , then ker(ϕ)

∼=−−→ ker(ϕ̄), i.e., G and G/Z have isomorphic groups of
“truly exotic” Sylow-trivial modules, as defined after Theorem B.

Proof. Since Z is central, we have a principal fibration sequence

BZ → (|Sp(G)| × EG)/G → (|Sp(G)| × E(G/Z))/G

with the canonical action of BZ on (|Sp(G)| ×EG)/G (see e.g., [GJ99, V.3]). This
fibration sequence identifies with the top fibration sequence of the corollary using
(1.9) and the fact that the projection map Sp(G)

∼=−−→ Sp(G/Z) is a bijection. The
map to the standard bottom fibration sequence follows as T ∗

p (G) is equivalent to
T ∗

p (G0) by Proposition 4.1 and (G/Z)0 = G0/Z. The ladder of exact sequences
is now the five-term exact sequence in homology of a fibration with coefficients
in Z[ 1p ], using that we can replace T ∗

p by O∗
p when considering p′-coefficients by
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Proposition 4.34 and Theorem 4.35. The stated consequences follow from the snake
lemma. �

Remark 4.19. Note that the kernel of ϕ is described via Proposition 4.6, and this
can be used for an alternative derivation of the last part of Corollary 4.18.

Example 4.20. Let us illustrate Corollary 4.18 by the symmetric groups: Recall
that by homological stability, F2

∼= H2(S4)
∼=−−→ H2(Sn+4) for any n ≥ 0 [Ker05,

Thm. 2], so H2(NSn
((1 · · · p))) � H2(Sn) when n ≥ p+4. Hence Tk(2

±Sn, S)
∼=−−→

Tk(Sn, S) for n ≥ p+4 and p odd, by Corollary 4.18, where 2±Sn denotes the two
double covers of Sn, following ATLAS [CCN+85] notation. This was first proved
in [LM15a, Thm. B(2)] (under an algebraically closed assumption), by lifting to
characteristic zero and examining the list of possible characters.

Remark 4.21. In [LT17, Thm. 1.1] a reduction of the problem describing Sylow-
trivial modules for arbitrary p′-extensions to that of central p′-extensions, at least
as far as obtaining an upper bound on Sylow-trivial modules of the extension. The
proof relies, through reference to earlier results, on the classification of finite simple
groups. It would be interesting to rework and extend this result in light of the
methods of the present paper.

4.3. Fundamental groups of fusion categories: Proof of Theorem F. We
now analyze π1(F∗

p (G)) and related categories, and use this to prove Theorem F,
and set the stage for later calculations involving the centralizer decomposition,
Theorem D. The starting point is bounds on π1(F∗

p (G)) analogously to (1.5) for
π1(O

∗
p (G)):

(4.6) NG(S)/C
p′
(NG(S)) � π1(F∗

p (G)) � G0/C
p′
(G0) � G/Cp′

(G)

where

(4.7) Cp′
(G) = 〈x ∈ G| p divides |CG(x)|〉,

the group generated by “positive defect” elements. This is a special case of Propo-
sition 4.22.

Recall that a p-subgroup P is called p-centric if Z(P ) is a Sylow p-subgroup of
CG(P ) (hence CG(P ) ∼= Z(P ) × Op′(CG(P )) by Schur-Zassenhaus). It is called
F-essential if it is not Sylow and W0PCG(P )/P is a proper subgroup of W =
NG(P )/P , or equivalently if it is p-centric and Sp(NG(P )/PCG(P )) is disconnected
(see §A.4.2 and Lemma A.17). Continuing the notation from (4.1), the analog of
Proposition 4.1 states:

Proposition 4.22 (Bounds on π1(FC(G))). Suppose that C is a collection of p-
subgroups closed under passage to F-essential and Sylow overgroups. Then FC(G)

is equivalent to FC0
(G0,C) and with C̄p′

C (H) = 〈PCH(P )|P ≤ H,P ∈ C〉, for S ≤
H ≤ G, we have canonical surjections

NG(S)/SCG(S) � NG(S)/C̄
p′

C (NG(S))
∼=−−→ π1(F̄C(NG(S)))

� π1(F̄C(G)) � G0,C/C̄
p′

C (G0,C)

If C contains all minimal p-centric subgroups, then π1(FC(G))
∼=−−→ π1(F̄C(G)), and

thus π1(FC(G)) is a finite p′-group.
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Proof. First note that FC0
(G0,C) → FC(G), and hence also F̄C0

(G0,C) → F̄C(G),
are equivalences of categories by Alperin’s fusion theorem, either in the version of
Goldschmidt–Miyamoto–Puig [Miy77, Cor. 1] or more generally for fusion systems
[AKO11, Thm. I.3.5] (see again [Gro02, §10] for a discussion of versions of the fusion
theorem). For the rest of the proof we can hence without loss of generality assume
that G = G0,C so the claimed sequence becomes

NG(S)/SCG(S) � NG(S)/C̄
p′

C (NG(S))
∼=−−→ π1(F̄C(NG(S)))

� π1(F̄C(G)) � G/C̄p′

C (G).

We model π1(F̄C(G)) analogously to the proof of Proposition 4.1 with genera-
tors maps in F̄C(G) between subgroups P,Q of S with P,Q ∈ C, via the functor
F̄C(G) → π1(F̄C(G)), taking S as basepoint, cf. again §2.5. In this notation the

right-most epimorphism π1(FC(G)) � G/C̄p′

C (G) is the map sending (cg : P → Q)

to [g] ∈ G/C̄p′

C (G). Since π1(F̄C(G)) is a quotient of π1(OC(G)), we have a
surjection NG(S) � π1(F̄C(G)) by Proposition 4.1, and by the same argument
NG(S) � π1(F̄C(NG(S))). We have hence shown that the map from NG(S) to all
the terms in the sequence is surjective, so all maps in the sequence are surjections

as claimed. Likewise SCG(S) ≤ Cp′

C (NG(S)) = 〈PCNG(S)(P )|P ≤ NG(S), P ∈ C〉,
as S ∈ C, so the first map is well-defined.

To finish showing that we have the stated sequence of maps we therefore just

have to show that C̄p′

C (NG(S)) is exactly the kernel of NG(S) → π1(F̄C(NG(S))).
It is in the kernel since if g ∈ PCNG(S)(P ) then we have a commutative diagram

P

id
		

�� S

cg

		
P �� S

in F̄C(G) and hence cg : S → S represents the identity in π1(F∗
p (NG(S))). However,

then the kernel has to be exactly C̄p′

C (NG(S)), since taking G = NG(S), the second
and fifth terms of the sequence of the proposition agree and the map is the identity.

To finish the proof assume now that C contains all minimal p-centric subgroups.
We will show that π1(FC(G))

∼=−−→ π1(F̄C(G)). This in fact follows easily from results
about fusion theorems (see Remark 4.30), but let us include a stand-alone argument
for completeness: By Proposition A.14 we may assume that C is closed under
passage to all p-overgroups, and in particular contains all p-centric subgroups. By
the fusion theorem, again, π1(FC(G)) is generated by self-maps of elements P ∈ C,
P ≤ S, so we just need to see that all elements of p-power order in AutF (P ) ∼=
NG(P )/CG(P ) are trivial in π1(FC(G)). We can without loss of generality assume
that NS(P ) is a Sylow p-subgroup of NG(P ) (i.e., P is “fully G-normalized” in
S), G-conjugating P if necessary. By conjugation in AutF (P ) it is furthermore
enough to prove that all elements in the image of NS(P ) in AutF (P ) are trivial
in π1(FC(G)). In π1(FC(G)), such elements are equal to elements of Inn(S) ≤
AutF (S), since inclusions are trivial in π1(FC(G)). The claim is hence reduced
to seeing that Inn(S) ≤ AutF (S) map to the identity in π1(FC(G)). Now, any
element x ∈ S is G-conjugate to an element x′ ∈ S such that CS(x

′) is a Sylow
p-subgroup of CG(x

′) (i.e., x′ is “fully G-centralized” in S). Note that Q = CS(x
′)

is p-centric in G, since CG(Q) ≤ CG(x
′), and Q is obviously p-centric in CG(x

′),
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it being a Sylow p-subgroup. The image of x′ ∈ S in AutF (S) identifies with the
image of x′ in AutF (Q), as elements of π1(FC(G)), again since inclusions map to
the identity. But x′ goes to the identity in AutF (Q), so x′ ∈ S represents the
identity in π1(FC(G)). Hence so does the G-conjugate element x, as wanted. �

Let us spell out what Proposition 4.22 says for C = Sp(G), in classical group-
theoretic terms, as used in the proof of Theorem D in §5.

Corollary 4.23 (A vanishing condition for π1(F∗
p (G))). Let L be a complement to

S in NG(S), and set L0 = 〈CL(x)|x ∈ S \ 1〉 � L. Then

L/L0
∼=−−→ π1(F∗

p (NG(S))) � π1(F∗
p (G))

In particular if L is generated by elements that commute with at least one non-
trivial element in S, then π1(F∗

p (G)) = 1. If H1(L) is generated by such elements
then H1(F∗

p (G)) = 0. �

We also get Corollary 4.24, analogous to Corollary 4.13.

Corollary 4.24. If |Sp(G)| is simply connected, e.g., if Op(G) �= 1, then

π1(F∗
p (G))

∼=−−→ G/Cp′
(G).

If just |Sp(G0)| is simply connected then π1(F∗
p (G))

∼=−−→ G0/C
p′
(G0).

Proof. The second case reduces to the first since F∗
p (G0) → F∗

p (G) is an equivalence
of categories by Proposition 4.22, also using (1.10). Now, consider the diagram
obtained also using (1.12)

π1(T ∗
p (G))

� ��

				

G

				
π1(F∗

p (G)) �� �� G/Cp′
(G)

We just need to see that any element x ∈ G which lies in Cp′
(G) goes to zero in

π1(F∗
p (G)) under the composite given by the top isomorphism and the left-hand

epimorphism. Assume that x is a generator of Cp′
(G), i.e., we can find a non-trivial

p-subgroup P such that x ∈ CG(P ). Lift x to x : P → P in π1(T ∗
p (G)), which

maps to the identity in π1(F∗
p (G)) as wanted. �

Remark 4.25. Note that Corollary 4.24 can also be applied to subgroups H of our
group G. And if NG(S) ≤ H ≤ G then π1(Fp(H)) � π1(F∗

p (G)) by naturality, as
in Remark 4.4.

We also state Corollary 4.26, suggested to us by Ellen Henke.

Corollary 4.26. If NG(S)/SCG(S) is abelian, then π1(F∗
p (G)) is cyclic.

Proof. Set H = NG(S)/SCG(S) and choose an irreducible H-submodule V of
Ωp(Z(S)), the elements of order at most p in Z(S). Then H/CH(V ) is cyclic
by elementary representation theory [Gor68, Thm. 3.2.3], which implies the claim
by Corollary 4.23. �
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Remark 4.27. As hinted above, the quotient G/Cp′
(G) is often trivial or a rather

small group, and bounding its size is an interesting and so far apparently unexplored
group theoretical question about p′-actions. We study this in joint work in progress
with Geoffrey Robinson.

Analogous to Theorem 4.10 we can also describe π1(F∗
p (G)) purely group theo-

retically.

Theorem 4.28 (Group theoretic description of π1(F∗
p (G))). Let KF be the sub-

group of NG(S) generated by elements g ∈ NG(S) such that there exist nontrivial
subgroups 1 < Q0, . . . , Qr ≤ S and a factorization g = x1 · · ·xr in G, where
xi ∈ Cp′

(NG(Qi)) and Qx1···xi
0 ≤ Qi+1 for i ≥ 0. Then

NG(S)/KF
∼=−−→ π1(F∗

p (G))

In particular NG(S) ∩ Cp′
(NG(P )) ≤ ker

(
NG(S) � π1(F∗

p (G))
)
for 1 < P ≤ S.

Proof. Recall that in the proof of Theorem 4.10 we showed the isomorphism

ϕ : NG(S)/KO
∼=−−→→ π1(O

∗
p (G)),

by constructing a left inverse ψ. And by Proposition 4.22 we have a surjection
π1(O

∗
p (G)) � π1(F∗

p (G)). As KO ≤ KF by definition we can thus establish the

theorem by verifying that ϕ and ψ induce well-defined maps ϕ̄ and ψ̄ on the quo-
tients

NG(S)/KO

				

ϕ

∼=
�� �� π1(O

∗
p (G))

				
ψ





NG(S)/KF
ϕ̄ �� �� π1(F∗

p (G))

ψ̄





which will then necessarily be inverse equivalences. This amounts to unravelling
the definitions:

To see that ϕ̄ is well-defined, we need to check that KF lies in the kernel of
NG(S) → π1(F∗

p (G)). Given a generator g of KF as in the theorem, we have the
following commutative diagram

S
cg−1 �� S

Q0

��

c
x
−1
1 �� Q1

�� · · · �� Qr−1

c
x
−1
r �� Qr

��

in F∗
p (G), and cx−1

i
: Qi−1 → Qi is equivalent to cx−1

i
: Qi → Qi in π1(F∗

p (G)).

The kernel of NG(Qi) → π1(F∗
p (NG(Qi))) is Cp′

(NG(Qi)) by Corollary 4.24, so
the factorization NG(Qi)/CG(Qi) → π1(F∗

p (NG(Qi))) → π1(F∗
p (G)) shows that

cx−1
i

: Qi → Qi, and hence cg : S → S, is zero in π1(F∗
p (G)) as wanted. This shows

that we have a well-defined map ϕ̄ : NG(S)/KF � π1(F∗
p (G)). It also establishes

the last part of the theorem.
To see that ψ̄ is well-defined we have to justify that for any g ∈ CG(P ), the

element G/P
[g]−→ G/P in π1(O

∗
p (G)) is mapped to an element in KF/KO under

ψ. We can without restriction assume that P ≤ S. As explained in the proof
of Theorem 4.10, the map ψ is given by sending [g] to nKO , where we express
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g = x1 · · ·xrn, with xi ∈ Op′
(NG(Qi)) and n ∈ NG(S), where 1 < Q0, . . . , Qr ≤ S,

P = Q0, Qx1···xi
0 ≤ Qi+1 for i ≥ 0, using Alperin’s fusion theorem. But then

n−1 = g−1x1 · · ·xr, with P g−1

= P and g−1 ∈ CG(P ) ≤ Cp′
(NG(P )), which shows

that n−1 ∈ KF as wanted. �

Proof of Theorem F. Consider the following commutative diagram

(4.8)

NG(S)/S �� ��

				

π1(O
c
p(G)) �� ��

				

π1(O
∗
p (G))

				
NG(S)/CG(S)S �� �� π1(F̄c

p(G)) �� �� π1(F̄∗
p (G))

π1(Fc
p(G)) �� ��

�

��

π1(F∗
p (G))

�

��

The top horizontal maps in (4.8) are epimorphisms by Proposition 4.1, as the
collection of p-centric subgroups is closed under passage to p-overgroups. The
surjections between the top and middle rows follow by definition, and the properties
of the maps in and between the second and third rows follow by Proposition 4.22.
Applying Hom(−, k×) and Theorem A now gives the first part of Theorem F.

Now suppose that all p-radical p-centric subgroups are centric: We claim that
then in fact all p-centric subgroups are centric. Namely suppose that P is p-centric
so CG(P ) ∼= ZP×K whereK = Op′(CG(P )). Then K is normalized by Op(NG(P ))
and vice versa. But as K and Op(NG(P )) are of coprime order they then have to
commute. If Op(NG(P )) is not p-radical, we can repeat the process of taking
Op(NG(−)), until we arrive at a p-radical subgroup (the p-radical closure, which
will also be used in §5). Hence K centralizes a p-centric p-radical subgroup and is
hence trivial by assumption, which is what we wanted. Hence Oc

p(G) ∼= F̄c
p(G) by

definition, and thus π1(Oc
p(G)) ∼= π1(F̄c

p(G))
∼=←−− π1(Fc

p(G)), using Proposition 4.1
again. With this isomorphism, the last part of the theorem now follows from the
first part. �

Remark 4.29. Appendix A, e.g., Theorem A.10 and Proposition A.14, can be used
to further analyze which p-centric subgroups need to be centric, for π1(Oc

p(G)) and
π1(Fc

p(G)) to agree.

Remark 4.30. The p′-quotient groups of π1(Fc(G)) were originally studied in
[BCG+07, §5.1], where they were related to subsystems of the fusion system of
p′-index. It was remarked to the authors by Aschbacher that the group itself is a
finite p′-group; see [BCG+07, p. 3839], [Asc11, Ch. 11] and [AKO11, Prop. III.4.19].

Let us round off our discussion of π1(FC(G)) for now by giving a few computa-
tional examples—see also Appendix A for more information on how it depends on
C.

Example 4.31. For ϕ an automorphism, of order prime to p, of a finite p-group S,
π1(F∗

p (S � 〈ϕ〉)) ∼= Z/r, generated by ϕ, with r the greatest common divisor of all
natural numbers s such that ϕs acts with a fixed-point on S \ 1, by Corollary 4.23.

Proposition 4.32. Suppose that F is a fusion system over S=31+2+ . Then π1(F∗)=1

unless F=F3(G) for G=31+2
+ :8, in which case π1(F∗)∼=Z/2. The sporadic group J2
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is the unique finite simple group with 3-fusion system F3(3
1+2
+ : 8), and hence for

all other finite simple groups G with Sylow 3-subgroup 31+2, π1(F∗
3 (G)) = 1.

Proof. We have that Out(S) ∼= GL2(F3) of order 48, with the canonical action on
S/Z(S) ∼= (F3)

2 and action on Z(S) through the determinant map, described in
detail in [Win72]. As we can lift S/Z(S) to an Out(S) invariant subset of S, an
element of Out(S) acts freely on S \ 1 iff it acts freely on S/Z(S) \ Z(S) and on
Z(S)\1. We have that L = NF (S)/S is a subgroup of the Sylow 2-subgroup SD16,
which identifies with the semi-linear automorphisms of F9, generated by a generator
σ of F×

9 and the Frobenius τ , subject to the relations σ8 = τ2 = 1, and τστ = σ3.
Both σ and τ have determinant −1 inside GL2(F3). We claim that elements of the
form σ2k+1 are the only elements of SD16 that act freely on S \ 1. Such elements
act freely, as they act freely on F×

9 and on Z(S) \ 1. The elements σ2k and σ2k−1τ ,
k ≥ 1, act with a fixed-point, since they act trivially on Z(S), and so does τ as it
fixes F×

3 ⊆ F×
9 . The element σ2kτ has a fixed-point as well, as it is conjugate to

τ via σk(σ2kτ )σ−k = τ . The only two subgroups that contain σ2k+1 are 〈σ〉 and
SD16. For L = SD16 we have σ = (στ )τ , in the notation of Corollary 4.23, so
L = L0. For L = 〈σ〉, L/L0

∼= Z/2 by Example 4.31.
Now by [RV04, Thm. 1.1] all abstract fusion systems on S = 31+2

+ arise from

groups, and by [RV04, Tables 1.1 and 1.2] F3(3
1+2
+ : 8) is the only fusion system

on 31+2
+ with NF (S)/S ∼= Z/8. Hence Corollary 4.23, combined with the analysis

above, shows that F = F3(3
1+2
+ : 8) is the only fusion system with π1(F∗) �= 1, and

that π1(F∗) ∼= Z/2 in that case. Furthermore J2 is the unique finite simple group
realizing F by [RV04, Rem. 1.4]. �
Example 4.33. By [CCN+85] the centralizers of 3-elements in J2 are CJ2

(3A) =
3 · PSL2(9) and CJ2

(3B) = 3× A4. In particular they satisfy H1(−)3′ = 0. Hence
Proposition 4.32 combined with Theorem D gives

TF3
(J2, S) ∼= Hom(π1(F∗

3 (J2)),F
×
3 )

∼= Z/2

in this case. See [LM15b, 6.4] for a very different derivation of this result.

4.4. Higher homology groups. We conclude the section by briefly considering
the higher homology of |T ∗

p (G)| and |O∗
p (G)|. Higher homology groups occur nat-

urally, as obstructions to extending compatible elements, as in Theorem D. We
already made a forward reference to this subsection in the proof of Corollary 4.18,
but otherwise the main results of the paper do not rely in them.

Proposition 4.34. For C any collection of p-subgroups of G,

H∗(TC(G))⊗ Z[ 1p ]
∼=−−→ H∗(OC(G))⊗ Z[ 1p ],

H∗(FC(G))⊗ Z[ 1p ]
∼=−−→ H∗(F̄C(G))⊗ Z[ 1p ],

and H∗(|C|/G)⊗Q
∼=←−− H∗(TC(G))⊗Q

∼=−−→ H∗(FC(G))⊗Q.

Proof. The statements follow by a Grothendieck composite functor spectral se-
quence argument, since the morphisms differ by finite p-groups or finite groups.
More precisely, [BLO03a, Lem. 1.3] implies that the two first maps are equivalences
in homology with F�-coefficients for all primes � �= p. Since the spaces are of fi-
nite type this implies equivalence in homology with Z(�)-coefficients, for all primes

� �= p, and hence an isomorphism in homology with Z[ 1p ]-coefficients, and after ten-

soring with Z[ 1p ]. The third isomorphism holds since the isotropy spectral sequence,
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Proposition 5.1, for the G-action on |C| converging to |C|hG 
 |TC(G)|, collapses,
and the fourth isomorphism again follows from the proof of [BLO03a, Lem. 1.3],

now using that H̃∗(CG(P );Q) = 0. �
Theorem 4.35. Let C be collection of p-subgroups, closed under passage to p-
radical overgroups. For i > 0 the groups Hi(OC(G)), Hi(TC(G)), and Hi(FC(G))
are finite, and Hi(OC(G)) and Hi(F∗

p (G)) are of order prime to p. When C is ample
(i.e., H∗(TC(G))(p)

∼=−−→ H∗(G)(p); see Remark 4.8),

Hi(TC(G))
∼=−−→ Hi(OC(G))⊕Hi(G)(p), i > 0.

Proof. First note that all the groups are finitely generated, since there are finitely
many simplices in each dimension, the spaces being nerves of finite categories.
Furthermore, by Proposition A.3, Hi(|C|/G) = 0 for i > 0. Now the finiteness of
all the groups follows from Proposition 4.34.

The statements about absence of p-torsion are well known consequences of the
theory of mod p homology decompositions: To see that Hi(OC(G)) is of order
prime to p we just have to see that Hi(OC(G);Z(p)) = 0 for i > 0. By definition

Hi(OC(G);Z(p)) ∼= limi
OC(G) Z(p) (see [Gro02, Prop. 2.6]). But [Gro02, Thm. 1.3]

gives a spectral sequence for calculating limi, whose E1-term in this case, by [Gro02,
Cor. 5.4], is zero except for one Z(p), coming from the Sylow p-subgroup, responsible

for lim0
OC(G) Z(p)

∼= Z(p), showing the claim. Likewise Hi(F∗
p (G);Z(p)) = 0, i > 0,

by [Dwy98, 7.3] and [Gro02, Ex. 8.6] (variants on the classical [JM92, Prop. 2.1]).
Finally, ifH∗(TC(G))(p)

∼=−−→H∗(G)(p) thenHi(TC(G))
∼=−−→Hi(OC(G))⊕Hi(G)(p)

for i > 0 by Proposition 4.34. �
Remark 4.36. In the degenerate case when C is the collection of all p-subgroups,
including the trivial one, Theorem 4.35 says that Hi(Op(G)) ∼= Hi(G)p′ , i > 0, as
|TC(G)| 
 BG.

Remark 4.37. The homology groups of TC(G), OC(G), or FC(G) will generally not
be finite without assumptions on C. For example if G is abelian then FC(G) = C
and |C|/G = |C|, so examples can be constructed using Proposition 4.34. Taking
G = (Z/p)r and C the collection of proper non-trivial subgroups of G, then |C| has
homotopy type a wedge of spheres (e.g., p+ 1 points and a wedge of p3 circles, for
r = 2, 3 respectively).

Corollary 4.38. For any field k of characteristic p,

Hi(T ∗
p (G); k×)

∼=←−− Hi(O∗
p (G); k×)⊕Hi(G; k×)(p) for i > 0.

If k is perfect, then k× is uniquely p-divisible, and

H∗(T ∗
p (G); k×)

∼=←−− H∗(O∗
p (G); k×).

Proof. The first claim is a consequence of Theorem 4.35, the Universal Coefficient
Theorem, and the five-lemma, using that Hi(T

∗
p (G))(p)

∼=−−→ Hi(G)(p) by (4.2).

That k is perfect means that the Frobenius map (−)p : k× → k× is not only injec-
tive, but also surjective, i.e., k× is uniquely p-divisible, and hence Hi(G; k×)(p) = 0,
for i > 0 by an application of the transfer. �
Remark 4.39. Any finite field or any algebraically closed field is of course perfect.
For any field of characteristic p we have H1(G; k×)(p) = 0, as k× is p-torsion-
free, but the higher groups are non-trivial in general for non-perfect fields. E.g.,
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if k = Fp(x), rational functions in one variable over Fp, the unit k× is isomorphic

to F×
p × Z(N), as an abelian group, with a basis for the torsion-free part given by

monic irreducible polynomials, so Hi(G; k×)(p) ∼= (Hi(G;Z)(p))
(N) in that case.

Remark 4.40 (Interpretation of H2(O∗
p (G); k×)). The group H2(O∗

p (G); k×) may

be thought of as a “p-local Schur multiplier”, analogous to H2(G; k×). One may
also ask if it also has a representation theoretic interpretation, as a suitable Brauer
group. Note in this connection that H2(Fc; k×) occurs in connection with the
so-called gluing problem for blocks; see [Lin04,Lin05,Lin09].

The next two remarks, Remarks 4.41 and 4.42, explain the underlying picture
on the level of homotopy.

Remark 4.41 (Higher homotopy groups). That Hi(OC(G)), i > 0, is finite of order
prime to p, for C a collection of p-subgroups closed under passage to p-radical over-
groups, in fact has a strengthening, which also has the finiteness in Proposition 4.1
as a special case: For such C, πi(OC(G)) is a finite p′-group for all i. This follows
by a slight modification of the argument above: As π1(OC(G)) is a finite p′-group
by Proposition 4.1, it is sufficient to show that Hi(X;Z(p)) = 0 for all i > 0, for
X the universal cover of |OC(G)|, by the Hurewicz theorem modulo Serre classes
[tD08, Thm. 20.6.1]. But H∗(X;Z(p)) ∼= H∗(|OC(G)|;Z(p)[π1(OC(G))]), equipping
|OC(G)| with the canonical twisted coefficient system (since on chains

C∗(|OC(G)|;Z(p)[π1(OC(G))]) ∼= Homπ1(OC(G))(C∗(X),Z(p)[π1(OC(G))])

∼= Hom(C∗(X),Z(p)),

by definition [Hat02, Sec. 3.H] and the finiteness of π1(OC(G))). This again equals
lim∗

OC(G) Z(p)[π1(OC(G))], which vanishes in positive degree as in the proof of The-

orem 4.35 (all elements of order p in NG(P )/P act trivially on Z(p)[π1(OC(G))],
as π1(OC(G)) is a finite p′-group). Note that this is in contrast to TC(G), where
πi(TC(G))

∼=←−− πi(C), for i ≥ 2, which is in general not finite; e.g., |Sp(G)| is ho-
motopy equivalent to a wedge of spheres when G is a finite group of Lie type in
characteristic p.

Remark 4.42 (Inverting p on TC(G)). The relationship between the homotopy (or
homology) groups of TC(G) and OC(G) from above can be stated on the level of
spaces: For C as in Theorem 4.35,

(4.9) |OC(G)| 
 Lp′ |TC(G)|

where Lp′ denotes localization with respect to the multiplication by p map S1 p−→
S1 [Far96]. Namely, recall that |TC(G)| 
 hocolimG/P∈OC(G) EG ×G G/P ; see
[Dwy97, §§1.7,3.2]. Hence

(4.10) Lp′ |TC(G)| 
 Lp′(hocolimG/P∈OC(G) Lp′(EG×G G/P ))
�−−→ Lp′(hocolimG/P∈OC(G) ∗) 
 Lp′ |OC(G)|.

Here we used that Lp′ is a left adjoint [Far96, Prop. 1.D.3] for the first homotopy
equivalence and that Lp′(BP ) 
 ∗ for a finite p-group P (as is seen from the
definition or [CP93, Thm. 3.2]) for the second. Now the claim follows by observing
that Lp′ |OC(G)| 
 |OC(G)|, as |OC(G)| is a space whose homotopy groups are
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finite p′-groups by Remark 4.41, which implies that it is Lp′ -local (see e.g., [CP93,
Cor. 2.13]). A very special case is if C = Se

p(G) where |TC(G)| 
 BG, and thus

(4.11) |Op(G)| 
 Lp′BG

elaborating Hi(Op(G)) ∼= Hi(G)p′ , i > 0, from Remark 4.36.

5. Homology decompositions and the Carlson–Thévenaz conjecture

In this section we establish the results about homology decompositions stated
in §1, and show how they imply the Carlson–Thévenaz conjecture. The key tool is
the isotropy spectral sequence, recalled below. Applied to the space |C| this gives
us the normalizer decomposition (Theorem C). For the centralizer decomposition
(Theorem D) we instead use the space |EAC |, where EAC is the overcategory ι ↓ G
for ι : FC → FC∪G (see §A.1 for details). (There is also a third decomposition, the
subgroup decomposition, based on a space |EOC|, but since the isotropy subgroups
are p-groups, it does not provide us with new information when taking coefficients
prime to p.) We work in both homology and cohomology—these are essentially
equivalent, but from a practical viewpoint it may feel more convenient to work in
homology, only mapping into k× at the end, so we give both versions.

5.1. Homology decompositions: Proof of Theorems C and D. A Bredon
G-isotropy coefficient systems is a functor F : O(G) → R-mod. It induces a G-
coefficient system, as in §2.6, on X via the canonical functor (ΔX)G → O(G) on
objects sending σ �→ G/Gσ. Such coefficient systems are G-homotopy invariants, in
the sense that a G-homotopy equivalence Y → X induces an RG-chain homotopy
equivalence C∗(Y ;F) → C∗(X;F). Let HG

∗ (X;F) = H(C∗(X;F)G) denote Bredon
homology equipped with an isotropy coefficient system F (see e.g., [Bre67] for more
details).

Proposition 5.1 (The isotropy spectral sequence). Let G be a finite group, X a
G-space, and A an abelian group. We have a homological isotropy spectral sequence
for the action of G on X

E2
i,j = HG

i (X;Hj(−;A)) ⇒ Hi+j(XhG;A)

The bottom right-hand corner produces an exact sequence

H2(XhG;A) → H2(X/G;A) → HG
0 (X;H1(−;A))

→ H1(XhG;A) → H1(X/G;A) → 0

The dual spectral sequence in cohomology produces

0 → H1(X/G;A) → H1(XhG;A) → H0
G(X;H1(−;A))

→ H2(X/G;A) → H2(XhG;A).

If H1(X/G;A) = H2(X/G;A) = 0 then this degenerates to

H1(XhG;A) ∼= HG
0 (X;H1(−;A)).

Dually if H1(X/G;A) = H2(X/G;A) = 0 then H1(XhG;A) ∼= H0
G(X;H1(−;A)).

By definition

HG
0 (X;H1(−;A)) = coker

(
⊕σ∈X1/GH1(Gσ;A)

d0−d1−−−−→ ⊕σ∈X0/GH1(Gσ;A)
)

for Xi the non-degenerate i-simplices, and dually for cohomology.
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Proof. As explained in standard references such as [Dwy98, §2.3], [Bro94, VII(5.3)],
the (homology) isotropy spectral sequence is constructed as the spectral sequence
of the double complex C∗(EG)⊗GC∗(X;A), filtered via the skeletal filtration of X.
Hence E1

∗j = Hj(G;C∗(X;A)), and the E2-term is obtained by taking homology
induced by the differential on C∗(X;A). The stated properties now follow from the
definitions. �

We would like to alternatively view the HG
0 in Proposition 5.1 as a colimit, so

we also recall the general principle behind this: Recall from §2.6 that a general
(covariant) coefficient system on X is just a functor ΔX → R-mod, where ΔX is
the category of simplices.

It is convenient to say that a space is complex-like if every non-degenerate simplex
Δ[n] → X is an injection on sets, i.e., if it “looks like” an ordered simplicial complex
[Tho80, p. 311]. For a complex-like space, the subdivision category sdX is the full
subcategory of ΔX on the non-degenerate simplices; it has a unique morphism
σ → τ if τ can be obtained from σ via face maps, and no other morphisms (see
[DK83, §5]). The following classical proposition gives the relationship we need,
stated also for higher homology for clarity:

Proposition 5.2. Let D be a small category, and R a commutative ring.

(1) For any functor F : D → R-mod, colimD
∗ F ∼= H∗(|D|;F ), where F is the

coefficient system induced via Δ|D| → D, (d0 → · · · → dn) �→ d0.

(2) For any functor F : Dop → R-mod, colimDop

∗ F ∼= H∗(|D|;F ), where F is
the coefficient system induced via Δ|D| → Dop, (d0 → · · · → dn) �→ dn.

(3) Suppose X is a complex-like space. For any functor F : sdX → R-mod,

colimsdX
∗ F ∼= H∗(X;F ), where F is induced from F via ΔX → sdX, the

functor sending all degeneracies to identities (see [DK83, §5]).

Proof. We shall only need non-derived ∗ = 0 part of these statements, which follows
easily by writing down the definitions (for the last point also using cofinality),
which we invite the reader to do. For (1) and (2), in the general case, see [GZ67,
App. II.3.3], and also [Gro02, Prop. 2.6]. (The point is that both sides can be seen
as homology of C∗(|− ↓ D|)⊗D F respectively F ⊗D C∗(|D ↓ −|).) For (3), notice
that both sides can be seen as the homology of C∗(|σ|) ⊗sdX F , where |σ| is the
n-simplex defined by the vertices of σ (by assumption distinct). It is a contravariant
functor on sdX by (σ → τ ) assigning the map induced by the unique face inclusion
of τ in σ (i.e., the extra structure on sdX allows us to ‘avoid a subdivision’; see
also [Gro02, Prop. 7.1]). �

Proposition 5.3. Let C be a collection of p-subgroups such that H1(|C|/G)p′ =
H2(|C|/G)p′ = 0; then

H1(OC(G))p′
∼=←−− coker

(
d0 − d1 : ⊕[P<Q] H1(NG(P < Q))p′ → ⊕[P ]H1(NG(P ))p′

)
∼= colim[P0<···<Pn] H1(NG(P0 < · · · < Pn))p′

where the colim is over G-conjugacy classes of strict chains in C, ordered by reverse
refinement.

The conditions on C are satisfied if it is closed under passage to p-radical over-
groups, or just abstractly G-homotopy equivalent to such a collection (e.g., C =
Ap(G)).
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Proof. First note that the conditions are indeed satisfied if C is closed under pas-
sage to p-radical overgroups as |C|/G is then contractible by Symonds’ theorem,
Proposition A.3. As the condition only depends on the G-equivariant homotopy
type of |C|, it also holds if |C| is only abstractly G-homotopy equivalent to |C′| for
another collection C′ which is closed under passage to p-radical overgroups. This
is the case for Ap(G), as |Ap(G)| → |Sp(G)| is a G-homotopy equivalence (see
Theorem A.8(2)).

Now, if H1(|C|/G)p′ = H2(|C|/G)p′ = 0 then the isotropy spectral sequence,
Proposition 5.1, applied to the G-space |C| with A = Z[ 1p ] gives H1(|C|hG;Z[ 1p ]) ∼=
HG

0 (|C|;H1(−;Z[ 1p ])). Since the right-hand side is obviously finite so is the left-hand

side; hence taking coefficients in Z[ 1p ] is the same as applying (−)p′ . Furthermore

H1(OC(G))p′ ∼= H1(TC(G))p′ ∼= H1(|C|hG)p′ by Proposition 4.5 and Lemma 2.3.
The first formula now follows by definition of HG

0 . The second rewriting as a colimit
over conjugacy classes of strict chains follows from Proposition 5.2(3), noting that
|C|/G is complex-like. �

Proof of Theorem C. We have that Tk(G,S) ∼= Hom(H1(O∗
p (G)), k×), by Theo-

rem A and (1.2). Combining this with Proposition 5.3 for C = Sp(G) gives the
wanted expressions, using that Hom(−, k×) sends colimits to limits. Again, it is a
subset of Hom(NG(S)/S, k

×) by Proposition 4.1. �

We now prove the centralizer version.

Proposition 5.4. For C a collection of p-subgroups and A an abelian group, we
have exact sequences

H2(FC(G);A) → colim
P∈FC(G)op

H1(CG(P );A) → H1(TC(G);A) → H1(FC(G);A) → 0

and

0 → H1(FC(G);A) → H1(TC(G);A) → lim
P∈FC(G)

H1(CG(P );A) → H2(FC(G);A)

Here we may replace TC by OC if A satisfies the assumptions in Proposition 4.5.
Furthermore to calculate the limit (or colimit over the opposite category) we

may replace FC(G) by a final subcategory, e.g., if C is a collection of non-trivial p-
subgroups containing the elementary abelian p-subgroups of rank one or two A2

p(G),

then we may replace C by A2
p(G).

Proof. Consider the isotropy exact sequence in homology from Proposition 5.1,
with X the G-space |EAC | introduced in the beginning of this section (and in more
detail in §A.1):

H2(|EAC |/G;A) → HG
0 (|EAC|;H1(−;A)) → H1(|EAC |hG;A)

→ H1(|EAC|/G;A) → 0

We want to identify this sequence with the first sequence of the proposition. As
remarked in §A.1, |EAC|/G = |FC |, which identifies the first and the fourth term.
For the third term, remark that, again by §A.1, the G-map |EAC | → |C| is a
homotopy equivalence, and hence induces |EAC |hG �−−→ |C|hG, and the space |C|hG
again identifies with |TC(G)| by Lemma 2.3. For the second term, notice that the
stabilizer of an n-simplex i : V0 → V1 → · · · → Vn → G is CG(i(Vn)). Hence
Proposition 5.2(2) also identifies HG

0 (|EAC|;H1(−;A)) with the colimit as stated.
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The sequence in cohomology follows dually using the isotropy exact sequence in
cohomology from Proposition 5.1, and the dual version of Proposition 5.2(2) stated
e.g., as [Gro02, Prop. 2.6].

The addendum about replacing TC by OC follows directly from Proposition 4.5,
and the replacement of categories by a (co)final subcategory is a general fact about
calculation of (co)limits, as explained e.g., in [Mac71, XI.3]. The stated example is
easily seen to be final. �
Proof of Theorem D. This follows from the cohomological sequence in Proposi-
tion 5.4, taking C to be the collection of all non-trivial p-subgroups and A = k×,
and utilizing the two additions at the end of Proposition 5.4: Using Proposition 4.5
and Theorem A we may replace H1(T ∗

p (G); k×)
∼=←−− H1(O∗

p (G); k×)
∼=←−− Tk(G,S),

and also restrict to elementary abelian p-subgroups of rank one or two in the limit
by finality.

For the final part, note that since the centralizers of elements x of order p are
assumed to satisfy H1(CG(x))p′ = 0 (i.e., are “p′-perfect”), the inverse limit is
obviously zero since the values are zero. The assumptions on the action of NG(S)
imply that H1(F∗

p (G); k×) = 0 by Corollary 4.23. �
Remark 5.5 (Isotropy versus Bousfield–Kan spectral sequence). The above argu-
ments in terms of the isotropy spectral sequence can also be recast in terms of
the Bousfield–Kan spectral sequence of a homotopy colimit. As explained e.g.,
in [Dwy98, §3], [Dwy97, §3.3], the isotropy spectral sequence identifies with the
Bousfield–Kan spectral sequence for the normalizer homology decomposition

|C|hG 
 hocolimσ∈|C|/G EG×G G/Gσ

It is also possible to work with OC(G) directly, instead of passing via |C|hG, since
by [S�lo91, Cor. 2.18] the orbit category admits a normalizer decomposition

(5.1) |OC(G)| 
 hocolim(P0<···<Pn)∈|C|/G BNG(P0 < · · · < Pn)/P0

(where BNG(P0 < · · · < Pn)/P0 has to be interpreted as E(G/P0)×G G/NG(P0 <
· · · < Pn), for E(G/P0) the translation groupoid of the G-set G/P0, in order to
get a strict functor to spaces). The associated spectral sequence for this homotopy
colimit can also be obtained in a more low-tech way as the Leray spectral sequence
of the projection map |OC(G)| = |EOC|/G → |C|/G.

5.2. The Carlson–Thévenaz conjecture: Proof of Theorem E and Corol-
lary 1.2. We now prove the results in §1.3, and in particular deduce Theorem E
from Theorem C. Via Theorem A, this will amount to describing how the colimit
appearing in Proposition 5.3 can be calculated in certain cases, simplified using a
Frattini argument. We define the p-radical closure P of a p-subgroup P in G as
the subgroup obtained by successively applying Op(NG(−)), starting from P until
the process stabilizes. Let NG,p(P ) denote a Sylow p-subgroup of NG(P ), well de-
fined up to NG(P )-conjugation, and write Be

p(G) for the collection of all p-radical
subgroups of G.

Theorem 5.6. For C a collection of p-subgroups closed under passage to p-radical
overgroups

H1(OC(G)) ∼=

coker
(
d0 − d1 : ⊕[P ]∈C′<S/GH1(NG(P < NG,p(P )))p′ →⊕[P ]∈C′/GH1(NG(P ))p′

)
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with C′ = C∩Be
p(G) and C′<S/G denoting G-conjugacy classes of p-radical subgroups

in C except [S].

Proof. First note that H1(OC(G)) is a finite p′-group by Proposition 4.1. We want
to see that the cokernel formula in Proposition 5.3 can be reduced to the simpler
expression above. By Theorem A.8(1) we can without restriction assume that C is
closed under passage to all p-overgroups. Before we start, also note that the domain
in Proposition 5.3 runs over conjugacy classes of pairs P < Q, whose elements we
can view as conjugacy classes of subgroups P ∈ C together with, for each P , NG(P )-
conjugacy classes of subgroups Q ∈ C, with P < Q. (Recall that the formula is well
defined by the identification of the result as a zeroth homology group; more näıvely
one may note that NG(P ) acts trivially on H1(NG(P ))p′ .) Set H(−) = H1(−)p′

for short.
Also observe that NG(P ) = NG(P ≤ P ) ≤ NG(P ) for P the p-radical closure of

P , and we hence have an induced map H(NG(P )) → H(NG(P )), which identifies
a summand corresponding to [P ] with its image in the summand corresponding
to [P ]. This enables us to view the cokernel in Proposition 5.3 as a quotient of
⊕[P ]∈C′/GH(NG(P )) via these maps.

Our task is thus reduced to showing that the image of ⊕[P<Q]∈C/GH(NG(P <
Q)), via the map from Proposition 5.3, agrees with the image of the subgroup

defined by letting the sum run over just [P < P ] and [P < NG,p(P )] for P ∈ C. We
will do this by downward induction on the size of P . If P has index p in S there is
nothing to show as Q will necessarily be Sylow, which is included in the above. So
assume that the statement is true for larger subgroups. We divide the induction
into steps.

We first reduce to the case where P is normal in Q. Namely, if not set Q′ =
NQ(P ) and note that P < Q′, as Q is a p-group. We claim that the image under
d0 − d1 of the summand corresponding to P < Q lies in the image under d0 − d1
generated by the summands P � Q′ and Q′ < Q. Namely consider the diagram

H(NG(P < Q′ < Q))

�����
����

����
��

������
����

����
�

H(NG(P < Q′))

		 �����
����

����
��

H(NG(P < Q))

������
����

����
�

�����
����

����
��

H(NG(Q
′ < Q))

		������
����

����
�

H(NG(P )) H(NG(Q
′)) H(NG(Q))

and note that the image of any element x ∈ H(NG(P < Q)) equals the image of
a sum x1 + x2 where x1 ∈ H(NG(P < Q′)) and x2 ∈ H(NG(Q

′ < Q)) are the
images of x ∈ H(NG(P < Q′)) = H(NG(P < Q′ < Q)) under the maps induced
by inclusion of normalizers. As Q′ is strictly bigger than P we are reduced to the
case where P is normal in Q by induction.

Next consider the case of P � Q with P �= P̄ . We claim that the image of the
summand P < Q is generated by the image of the summands corresponding to
P < P , P ≤ PQ and Q ≤ PQ, noting that PQ is again a p-group as Q normalizes
P and hence P . This will prove the claim, using the induction hypothesis, as P and
Q are strictly larger than P . (Note that if the weak inequalities above are equalities,
the map is just zero, so we do not have to separate out this case; topologically this
corresponds to degenerate simplices.) The generation follows from the following
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diagram:

H(NG(P < Q))

		 ������
�����

�����
�����

�����
�



��
���

���
���

�
��

��

��
H(NG(P < P ))

		�����
���

���
���

�
H(NG(P ≤ PQ))

��			
			

			
			























H(NG(Q ≤ PQ))

��				
			

			
			

	

		
H(NG(P )) �� H(NG(P )) H(NG(Q)) H(NG(PQ))

Namely, the image under d0 − d1 of any element x ∈ H(NG(P < Q)) equals the
image of x1 + x2 − x3 where x1 ∈ H(NG(P < P )), x2 ∈ H(NG(P ≤ PQ)), and
x3 ∈ H(NG(Q ≤ PQ)) are the images of x under the maps induced by the inclusion
of normalizers (the top horizontal arrows in the diagram).

Finally consider the case P � Q with P = P , which we want to replace with
P < NG,p(P ). Let R be a Sylow p-subgroup of NG(P < Q) (thus containing Q).
We first claim that the image of the summand corresponding to P < Q is generated
by the summands for P < R and Q ≤ R. For this consider the diagram

(5.2)

H(NG(P < Q ≤ R))

				 �����
����

����
��

��������
�������

�������
�����

H(NG(P < Q))

		 �����
����

����
��

H(NG(P < R))

�����
����

����
�

������
����

����
�

H(NG(Q ≤ R))

��
















		
H(NG(P )) H(NG(Q)) H(NG(R))

where H(NG(P < Q ≤ R)) � H(NG(P < Q)) is surjective by the Frattini ar-

gument, as Ap′
(NG(P < Q)) is normal in NG(P < Q) of p′ index. Given any

x ∈ H(NG(P < Q)), we can lift it to x′ ∈ H(NG(P < Q ≤ R)) and let x1 and
x2 be the image of x′ under the inclusion of normalizers in H(NG(P < R)) and
H(NG(Q < R)). Then the image of x under d0−d1 agrees with the image of x1−x2

by the above diagram. If Q = R then R is a Sylow p-subgroup of NG(P ) and hence
we may replace P � Q with P < R = NG,p(P ) as the summand corresponding to
Q ≤ R is taken care of by the induction hypothesis. If Q < R then the argument
shows that we may replace P < Q with P < R, and we can hence repeat until Q
is indeed Sylow in NG(P ). Finally as NG(P < NG,p(P )) ≤ NG(P < NG,p(P )) we

may replace P < NG,p(P ) by P < NG,p(P ) as wanted, finishing the proof. �

Next we show how a cokernel such as in Theorem 5.6 can be described iteratively.

Lemma 5.7. Suppose we have an increasing filtration {s} = X0 ⊂ X1 ⊂ · · · ⊂
Xn = X, n ≥ 1, of a finite set X, and a function ϕ : X \ {s} → X, which
strictly decreases filtration. Let ⊕x∈XA(x) and ⊕x∈XB(x) be abelian groups, and
suppose we, for each x ∈ X \ {s}, are given two homomorphisms fx : A(x) �
B(x) and gx : A(x) → B(ϕ(x)), with fx surjective. Set B0(x) = 0 and Bi(y) =∑

x∈ϕ−1(y) gx(f
−1
x (Bi−1(x))). Then

coker
(
⊕x∈X\{s}A(x)

gx−fx−−−−→ ⊕x∈XB(x)
)
∼= B(s)/Bn(s)

Proof. We prove this by induction on n. The statement is true for n = 1 since any
element of B(x), for x �= s, is identified with a unique element of B(s)/B1(s), by
the surjectivity of fx and the definition of B1(s). Suppose that it is true for i < n.
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Notice that

coker
(
⊕x∈X\{s}A(x)

gx−fx−−−−→ ⊕x∈XB(x)
)

∼= coker
(
⊕x∈X\{s}A(x)

gx−fx−−−−→ ⊕x∈XB(x)/B1(x)
)

∼= coker
(
⊕x∈Xn−1\{s}A(x)

gx−fx−−−−→ ⊕x∈Xn−1
B(x)/B1(x)

)
Here the first isomorphism is because elements of B1(x) are obviously zero in the
cokernel and the second isomorphism follows as elements of ⊕x∈Xn\Xn−1

B(x) each
get identified with unique elements of ⊕x∈Xn−1

B(x)/B1(x), by surjectivity of fx
and the definition of B1. As ⊕x∈Xn−1

A(x) and ⊕x∈Xn−1
B(x)/B1(x) satisfy the

assumptions of the original setup, we are done by induction. �

For any conjugacy class of p-radical subgroups [P ] consider the chain constructed

by taking [P0] = [P ] and [Pi] = [NG,p(Pi−1)], well defined on conjugacy classes.
Define the normal-radical height of [P ] in G as the smallest i such that [Pi] = [S],
with S a Sylow p-subgroup. Define the normal-radical class of a collection of p-
subgroups C as the maximal normal-radical height of a p-radical [P ] ∈ C/G. (E.g.,
normal-radical class 0 means that only [S] is p-radical.)

Theorem 5.8. For a finite group G with Sylow p-subgroup S, let C be a collection
of p-subgroups, closed under passage to p-radical overgroups. Set C′ = C ∩ Be

p(G).

For Q ∈ C, let ν1C(Q) = Ap′
(NG(Q)) and define by induction

νiC(Q) = 〈(NG(Q) ∩ νi−1
C (P ))Ap′

(NG(Q))|[P ] ∈ C′/G with [Q] = [NG,p(P )]〉,
picking for each [P ] a representative P such that NQ(P ) is Sylow in NG(P ) and

NQ(P ) = Q. Then

H1(OC(G)) ∼= NG(S)/ν
r
C(S)

for r at least the normal-radical class of C plus 1.

Proof. Theorem 5.6 provides a formula for H1(OC(G)). We claim that Lemma 5.7
allows us to reformulate that expression to the one given in the theorem. Namely
take X = C′/G, A([P ]) = H1(NG(P < NG,p(P )))p′ and B([P ]) = H1(NG(P ))p′ ,
and notice that the induced map f[P ] : A([P ]) → B([P ]) is surjective by the diagram

H1(NG(P < NG,p(P ) ≤ NG,p(P )))p′

=

		

�� H1(NG(P < NG,p(P )))p′

f[P ]

		
H1(NG(P < NG,p(P )))p′

d0 �� H1(NG(P ))p′

together with the surjectivity of d0, which follows from the Frattini argument with
respect to the normal subgroup Ap′

(NG(P )). LetXi ⊂ X consist of those conjugacy
classes of subgroups of normal-radical height at most i, as defined just before the
theorem. Then by definition Bi([P ]) = νi+1

C (P )/Ap′
(NG(P )), and it now follows

from Theorem 5.6 and Lemma 5.7 that H1(OC(G))p′ ∼= NG(S)/ν
r
C(S), for r at least

the normal-radical class of C plus 1. �

Lemma 5.9. Let C ⊆ Sp(G) be a collection closed under passage to p-radical
overgroups, and let C′ = C ∩ Bp(G). The normal-radical class of C is bounded by
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the nilpotency class of S, as well as by min{dim |C′|, dim |C′c|+1}, where C′c means
the p-centric subgroups in C′ (cf. §1.4).

Proof. Let P = P0 be an arbitrary p-radical subgroup, and let [P0], . . . , [Pn] = [S]
be the normal-radical series as above. For the nilpotency bound, let Zi be the ith
group in the lower central series of S, i.e., Z1 = Z(S) etc. We can assume P0 ≤ S.

As Z1 normalizes P0, we can choose representative P1 with [P1] = [NG,p(P0)] and
Z1 ≤ P1. Assume by induction that we have chosen Pi−1 with Zi−1 ≤ Pi−1.
Then Zi/Zi−1 centralizes Pi−1/Zi−1, and in particular Zi normalizes Pi−1; we can
choose Pi with Zi ≤ Pi, showing the claim. The dim |C′| bound is obvious, and the
dim |C′c|+ 1 bound holds as Pi will be p-centric for i ≥ 1, as they contain a Sylow
p-subgroup of CG(P0). �

Proof of Theorem E. It follows from Theorem 5.8 that νrC(S) = ker(NG(S) →
H1(O

∗
p (G))), for C = Sp(G) and r at least the normal radical class of C plus

1. This shows a version of Theorem E, with νr instead of ρr, noting that the
stated bounds are implied by Lemma 5.9. To be able to replace ν by ρ, notice
first that νiC(Q) ≤ ρi(Q) for any i and Q ∈ C ⊆ Sp(G), by definition (for ρ, un-
like ν, we do not assume that the subgroups are related by inclusion). Hence,
to finish the proof, we just need to verify that also ρi(S) lies in the kernel of
NG(S) → H1(O∗

p (G)), since then νrC(S)
∼= ρr(S). However ρi(Q) lies in the kernel

of NG(Q) → H1(O∗
p (G)) for any 1 < Q ≤ S and any i follows essentially by defi-

nition (like for ν), as we now verify by induction on i: For ρ1(Q) it follows by the
factorization NG(Q) → H1(NG(Q))p′ → H1(O

∗
p (G)), as H1(O

∗
p (G)) is a p′-group

by Proposition 4.1. And, if g ∈ NG(Q) ∩ ρi−1(R) ⊆ ρi(Q), for 1 < R ≤ S, then we
have a diagram

(5.3)

G/Q

[g]

		

�� G/QR

[g]

		

G/R��

[g]

		
G/Q �� G/QR G/R��

where QR denotes the subgroup generated by Q and R inside S. This shows that
the image of g ∈ NG(Q) ∩ ρi−1(R) in H1(O∗

p (G)) via

ρi−1(R) → NG(R) → H1(NG(R)) → H1(O
∗
p (G))

equals the image of g via ρi(Q) → NG(Q) → H1(NG(Q)) → H1(O∗
p (G)), which is

hence also zero by induction. As ρi(Q) is generated by such g we conclude that
ρi(Q) maps to zero in H1(O

∗
p (G)) as wanted. �

Remark 5.10. Note that the statement in the last proof that ρi(S) lies in the
kernel of NG(S) → H1(O∗

p (G)), via the dictionary of Theorem A, amounts to
the statement that Sylow-trivial modules split as a trivial module k direct sum a
projective module upon restriction to ρi(S) which was already shown by Carlson–
Thevenaz (see [CT15, Thm. 4.3]).

Remark 5.11 (The bound r in Theorem E and sparsity of Sylow-trivial modules).
In Appendix A we provide a detailed analysis of how to find small collections
C ⊆ Sp(G) such that H1(O

∗
p (G))p′ ∼= H1(OC(G))p′ , and hence get other bounds on

r in the Carlson–Thévenaz conjecture, Theorem E: By Theorem A.10 and Proposi-
tion A.3 we can take C to be the smallest collection closed under passage to p-radical
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overgroups and containing all the p-subgroups P where NG(P )/P admits an exotic
Sylow-trivial module (a closure of the collection Ep(G) of §A.4). For a finite group
of Lie type of characteristic p this subcollection of Bp(G) identifies with unipotent
radicals of parabolic subgroups of rank at most one. As far as we know, this poset
could have a uniform dimension bound in general, independent of the finite group
G. The group G2(5) at p = 3 is an example where both bounds in Theorem E
give r = 3 and r = 2 does not work (see the discussion before Proposition 6.3).
We do not know of an example where one cannot take r = 3. In fact, to the best
of our knowledge, in all finite groups where Tk(G,S) has been calculated either
ρ3(S) = NAp′ (G)(S) (and hence Tk(G,S) = Hom(G, k×)) or Sp(G) is G-homotopy

equivalent to a 1-dimensional complex. The results of this paper indicate that find-
ing bounds on r in general has links to many facets of p-local finite group theory
(see also §§A.4, A.5).

Finally, let us finally address in more detail when one can take r = 2 as bound
on the filtration.

Corollary 5.12. Let C be a collection of p-subgroups, closed under passage to
p-radical overgroups, and set C′ = C ∩ Bp(G). If each [P ] ∈ C′/G satisfies that

[NG,p(P )] = [S] then

H1(OC(G)) ∼= NG(S)/〈NG(P ≤ S) ∩Ap′
(NG(P ))|[P ] ∈ C′/G〉

where each P is chosen in [P ] such that NS(P ) is a Sylow p-subgroup of NG(P ).
More generally, if one just, for each [P ] ∈ C′/G, can pick P ≤ S with NS(P )

Sylow in NG(P ) and NG(P ≤ NS(P ) ≤ S)Ap′
(NG(P ≤ NS(P ))) = NG(P ≤

NS(P )) then the same conclusion holds.

Proof. The first part follows directly from Theorem 5.8, as normal-radical class of
C is at most 1. The ‘more generally’ part follows from its proof: Under the stated
assumption, diagram (5.2) in the proof of Theorem 5.6 shows that we can replace

P ≤ NS(P ) with P ≤ S (taking (Q = NS(P ) and R = S), so the cokernel in
Theorem 5.6 can be calculated as claimed in this corollary. �

Proof of Corollary 1.2. If all p-radical subgroups P ≤ S are normal, then in par-
ticular [NG,p(P )] = [S] and S = NS(P ) is a Sylow p-subgroup of NG(P ), so the
first part follows from Corollary 5.12, together with Theorem A. For the ‘more
generally’ part, we note that the assumption implies that of Corollary 5.12: By
a Frattini argument NG(P ≤ Q ≤ S)Ap′

(NG(P ≤ Q ≤ S)) = NG(P ≤ Q ≤ S)

and NG(P ≤ Q)Ap′
(NG(P ≤ Q)) = NG(P ≤ Q), as Q is a Sylow p-subgroup and

NG(Q) = NG(Q ≤ Q). Hence NG(P ≤ Q ≤ S)Ap′
(NG(P ≤ Q)) = NG(P ≤ Q ≤

S)Ap′
(NG(P ≤ Q)) = NG(P ≤ Q)Ap′

(NG(P ≤ Q)) = NG(P ≤ Q) as wanted. �

Let us for completeness also state a variant of Corollary 5.12 valid for general
collections.

Corollary 5.13. Let C be a collection with S ∈ C and H1(|C|/G)p′ = H2(|C|/G)p′ =
0. Assume that for each G-conjugacy class of pairs [P ≤ Q] with P,Q ∈ C, we can

pick P ≤ Q ≤ S such that NG(P ≤ Q ≤ S)Ap′
(NG(P ≤ Q)) = NG(P ≤ Q) (e.g.,

if all subgroups in C≤S are normal in S); then H1(OC(G))p′ ∼= NG(S)/〈NG(P ≤
S) ∩ Ap′

(NG(P ))|[P ] ∈ C/G〉, with representative P picked as above.
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Proof. The formula for the cokernel in Proposition 5.3 reduces to the formula above
via the diagram (5.2) (with R = S) as before, where the surjective map now is by
assumption. �

Remark 5.14 (A strong version of [CT15, Thm. 7.1]). Suppose that NG(S) controls
p-fusion in G, and that for each nontrivial p-radical subgroup Q ≤ S

(NG(S) ∩ CG(Q))Ap′
(CG(Q)) = CG(Q)

Then the general assumption of Corollary 5.12 is satisfied. Namely

NG(P < Q) = NG(P < Q < S)CG(Q) = NG(P < Q < S)Ap′
(CG(Q))

≤ NG(P < Q < S)Ap′
(NG(P < Q))

and the other inclusion is clear. Here the first equality is by control of fusion and the
second by assumption. This provides a slightly stronger version of [CT15, Thm. 7.1],
where the condition is only checked on p-radical subgroups.

6. Computations

By Theorem A calculating Tk(G,S) amounts to calculating H1(O∗
p (G)), and we

have developed a number of theorems and tools for this in the preceding sections.
Formulas such as Theorems C and D make it computable for individual groups,
since the input data has often already been tabulated, e.g., in connection with
inductive approaches to the Alperin and McKay conjectures. Similarly Theorem B
allows us to tap into the large preexisting literature on the fundamental group of
subgroup complexes, which has been studied in topological combinatorics, due to
its relationship to other combinatorial problems, as well as in finite group theory,
where it is related to uniqueness question of a group given its p-local structure, and
the classification of finite simple groups. Expanding on the summary in §1.5 we will
in this section go through different classes of groups, and show how the strategy
translates into explicit computations. We only pick some low-hanging fruit, but
with a recipe for how to continue.

6.1. Sporadic groups. We complete the general discussion from §1.5 by using
Theorem D to determine Sylow-trivial modules for the Monster finite simple group,
as a computational example:

Theorem 6.1. Let G = M be the Monster sporadic group, and k a field of charac-
teristic p. Then

Tk(G,S) ∼=
{

0 for p ≤ 13
Hom(NG(S)/S, k

×) for p > 13

The case p = 2 is clear since NG(S) = S, and if p > 13, S is cyclic so the
formula is standard, Corollary 4.14(2) (with values tabulated in [LM15b, Table 5]).
We prove the remaining cases below, which were left open in the recent paper
[LM15b, Table 3], using our formulas:

Proof of Theorem 6.1 for p = 3, 5, 7, 11, 13. There is some choice in methods, since
several of our theorems can be used. For primes p = 3, 5, 7, 11 the easiest is probably
to observe that in all cases colim0

V ∈FA2
p
(G)op H1(CG(V ))p′ = 0 and H1(F∗

p (G)) = 0,

and then appeal to the centralizer decomposition Theorem D, or more precisely the
homological Proposition 5.4 and Theorem A. The vanishing statements will follow
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by a coup d’œil at the standard data about the Monster from [Wil88] and [AW10]
(correcting [Yos05]), and [CCN+85]. In fact even the H1’s that appear in centralizer
colimit vanish, and H1(F∗

p (G)) = 0 by the vanishing criterion of Corollary 4.23. In
detail:

For p = 3: According to [CCN+85] there are 3 conjugacy classes of subgroups of
order 3, with the following centralizers: CG(3A) = 3 ·Fi′24, CG(3B) = 31+12

+ ·2Suz,
CG(3C) = 3 × Th. All of these have zero H1(−)3′ , since Fi′24, 2Suz and Th are
perfect. Hence trivially colim = 0. We want to use Corollary 4.23 to see that also
π1(F∗

p (G)) = 1. By [AW10, Table 2] NG(S) = S : (22 × SD16) a subgroup of

NG(3A
3) = 33+2+6+6.(L3(3) × SD16). Hence SD16 acts trivially on 3A3 and 22

acts as the diagonal matrices in SL3(F3) and is generated by elements that fix a
non-trivial element in 3A3. We conclude by Corollary 4.23 that π1(F∗

p (G)) = 1.
For p = 5: There are two conjugacy classes of subgroups of order 5 with cen-

tralizers CG(5A) = 5 × HN and CG(5B) = 51+6
+ : 4J2, which have zero H1(−)5′

since HN and 4J2 are perfect. Hence colim = 0. For π1(F∗
5 (G)) = 1, note that

NG(S) = S : (S3 × 42) inside NG(5B
2) = 52+2+4.(S3 × GL2(5)). Hence S3 acts

trivially on 5B2, and 42 is generated by elements which act with a non-trivial
fixed-point on 5B2, so the conclusion again follows by Corollary 4.23.

For p = 7: There are 2 conjugacy classes of subgroups of order 7 with centralizers
CG(7A) = 7 × He and CG(7B) = 71+4 : 2A7, both with vanishing H1(−)7′ , so
colim = 0. By [Wil88, Thm. 7] and [AW10, Table 1], NG(S) = S : 62 inside
NG(7B

2) = 72+1+2 : GL2(7), so again we can use Corollary 4.23.
For p = 11: We have just one conjugacy class of subgroups of order 11 with

CG(11A) = 11 × M12, which satisfy H1(CG(11A))11′ = 0. By [AW10, Table 1],
NG(S) = NG(11A

2) = 112 : (5 × 2A5). We want to see that H1(NG(S)/S) is
generated by elements which commute with a non-trivial element in S, so that we
can apply Corollary 4.23. For this we describe the action more explicitly: Note that
(5×2A5) is not a subgroup of SL2(11) (by the classification of maximal subgroups of
PSL2(11), say), so (5×2A5)∩SL2(11) = 2A5. Furthermore the 5-factor has to lie in
the center of GL2(11), since it commutes with 2A5, and otherwise the action of 2A5

on 112 would be reducible. In matrices we can hence write a generator of the 5-factor
as diag(α, α), where α is a primitive 5th root of unity in F×

11. However since 2A5

is a subgroup of SL2(11) and has order divisible by 5, it contains up to conjugacy
in GL2(11) the element diag(α, α−1). Hence diag(α2, 1) ∈ NG(S)/S ≤ GL2(11)
generates H1(NG(S)/S) and centralizes a non-trivial element is S. We conclude
that H1(F∗

11(G)) = 0 by Corollary 4.23.
For p = 13: We use Theorem F. By [AW10, Table 1] all p-centric p-radicals are

centric, so the assumptions of the last part of that theorem are satisfied, and by the
same reference NG(S) = NG(13B) = 131+2 : (3× 4S4). But π1(Fc

13(M)) = 1, since
otherwise there would by [BCG+07, Thm. 5.4] need to exist a subsystem of index 3
or 2, but by [RV04, Thm. 1.1] no such subsystems exist. Hence Theorem F implies
that Tk(G,S) = 0. (Alternatively apply the last part of Theorem D again; the
centralizer condition holds since CG(13A) = 13 × SL3(3) and CG(13B) = 131+2 :
2A4 using [AW10, Table 1], and the H1(NG(S)/S) condition is satisfied since 3 ×
4S4

∼= NG(S)/S ≤ Out(S) ∼= GL2(13) contains all diagonal elements in some basis,
being the unique subgroup of order 2532.) �
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(The remaining sporadic groups left open in [LM15b, Table 5] have subsequently
also been dealt with by Craven [Cra21] using our methods, and in fact he redoes
all sporadic groups this way.)

6.2. Finite groups of Lie type. The p-subgroup complex of a finite group of Lie
type G at the characteristic is simply connected if the Lie rank is at least 3, since it
is homotopy equivalent to the Tits building [Qui78, §3]. Theorem B hence implies
that there are no exotic Sylow-trivial modules in that case, a result originally found
in [CMN06]. (This is also true in rank two, by a small direct computation, using
Theorem A and [Ste68, Thm. 12.6(b)].)

Away from the characteristic the p-subgroup complex is also expected to be sim-
ply connected if G is “large enough”, but this is not known in general. Stronger yet,
the p-subgroup complex appears often to be Cohen–Macaulay [Qui78, Thm. 12.4],
[Das98], [Das00], [Smi11, §9.4]. Partial results in this direction imply by Theo-
rem B that there are no exotic Sylow-trivial modules in those cases. We give two
examples of this, for GLn(q) and Sp2n(q). The GLn(q) case also follows from very
recent work of Carlson–Mazza–Nakano, while the Spn(q) case is new.

Theorem 6.2 ([CMN14, CMN16]). Let G = GLn(q) with q prime to the char-
acteristic p of k. If G has an elementary abelian p-subgroup of rank 3, then
Tk(G,S) ∼= Hom(G, k×).

Proof. It was proved by Quillen [Qui78, Thm. 12.4] that |Sp(G)| is simply connected
(and in fact Cohen-Macaulay) under the stated assumptions if p|q−1, and when p �
q−1 it is shown in [Das95, Thm. A]. Hence the result follows from Theorem B. �

Theorem G. Let G = Sp2n(q), and k a field of characteristic p. If the multiplica-
tive order of q mod p is odd, and G has an elementary abelian p-subgroup of rank
3, then Tk(G,S) = 0.

Proof of Theorem G. The main theorem in [Das98] states that |Sp(G)| is simply
connected under these assumptions, so the result follows from Theorem B. �

That the p-rank of G is at least 3 is not enough to ensure simple connectivity
in general. At the characteristic SL2(Fpr ) or SL3(Fpr ) shows this, and even away
from the characteristic it is not true as U4(3) = O−

6 (3) has 2-rank 4, but the 2-
subgroup complex is not simply connected (see [Smi11, Ex. 9.3.11]). In this case
H1(O∗

2 (G)) ∼= H1(G)2′ = 0 though, just by virtue of the Sylow 2-subgroup being its
own normalizer. See e.g., [Asc93] and [Smi11, 9.3] for more on simple connectivity.

As mentioned in §1, in joint work in progress with Carlson, Mazza, and Nakano
we classify all Sylow-trivial modules for finite groups of Lie type using the more
detailed theorems of this paper together with the “Φd-local” approach to finite
groups of Lie type. Here we will just do one more example, namely G2(5) at p = 3,
which is one of the borderline cases where H1(O3(G)) = 0, but Ap(G) is one-
dimensional and not simply connected. It is furthermore interesting since Carlson–
Thévenaz observed via computer that ρ2(S) �= ρ3(S) = ρ∞(S) = NG(S) in [CT15].
As required, the assumptions of Corollary 1.2 are not satisfied, as all p-subgroups
turn out to be p-radical, but one subgroup of order 3 is not normal in S. The group
can however be easily calculated using either Theorem C (with Ceither B3(G) or
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A3(G)) or Theorem D (using Proposition 4.32)—we choose the first, slightly more
cumbersome, method, to see exactly how ρ2(S) �= ρ3(S) = ρ∞(S) = NG(S).

Proposition 6.3. For k of characteristic 3, Tk(G2(5), S) = 0.

Proof. Looking at [CCN+85], we see that NG(S) ∼= 31+2
+ : SD16 and that there are

2 conjugacy classes of elements of order 3, where 3A is a central element in 31+2
+

and 3B is a non-conjugate non-trivial element. In fact NG(S) controls 3-fusion in
G, as otherwise 3A and 3B would need to be conjugate (see e.g., [RV04, Lem. 4.1]).
We hence have 3 conjugacy classes of proper, non-trivial subgroups 〈3A〉, 〈3B〉,
and V = 〈3A, 3B〉 and furthermore conjugacy classes of chains in this case coincide
with chains of conjugacy classes. (The subgroups all turn out to be 3-radical, but
〈3B〉 is not normal in S, so the assumptions of Corollary 1.2 are not satisfied.)

We want to see that any element in H1(NG(S))3′ is equivalent to zero in the
colimit. We do this by considering H1(·)3′ of the following subdiagram:

NG(3B < V < S)

������
����

����

		 ����
����

����

����
����

����

NG(3B < V )

		 �����
����

����
��

NG(V < S)

		 �����
����

����
��

NG(3B < S)

���������
������

������
������

����

		

NG(3A < S)

		���
���

���
��

���
���

���
��

NG(3B) NG(V ) NG(S) NG(3A)

Note that NG(3B < V ) = N(3B) ∩ N(3A), by the description of fusion in S. By
looking at the order of centralizers of elements and the list of maximal subgroups, as
described by [CCN+85], we see that NG(V ) and NG(S) are contained in NG(3A) ∼=
3 ·U3(5) : 2, and that NG(3B) is contained in the maximal subgroup NG(2A) ∼= 2 ·
(A5×A5).2 = 2·A(S5×S5), the index 2 subgroup of 2S5◦2S5 of even permutations,
for 2S5 the central extension with Sylow 2-subgroup Q16. Recall also that SD16 =
〈σ, τ |σ8 = τ2 = 1, τστ = σ3〉 ≤ Out(31+2

+ ) ∼= GL2(F3), with σ4 identifying with

the non-trivial central element in Out(31+2
+ ) which acts as −1 on 31+2

+ /Z(31+2
+ )

and trivially on Z(31+2
+ ). In our model of 31+2

+ , σ4 will hence conjugate 3B to
−3B and commute with 3A, and we can furthermore choose the generator τ so it
commutes with 3B and conjugates 3A to −3A. Inside 2 ·A(S5×S5) we can hence
represent 3B as (123), 3A as (1′2′3′), σ4 as (12)(4′5′) and τ as (45)(1′2′). Hence
NG(3B) = 2 ·A(S3 ×S2 ×S5) and NG(3B < V ) = 2 ·A(S3 ×S2 ×S3 ×S2).

Working inside these groups the diagram identifies as follows:
(6.1)

V : (2× 2)

������
����

����
�

		 ���
���

���
�

���
���

���
�

2 ·A(S3 ×S2 × (S3 ×S2))

		 �����
����

����
����

31+2
+ : (2× 2)

		 ����
���

���
�

V : (2× 2)

��������
������

������
������

�

		

31+2
+ : SD16

		���
���

���

���
���

���

2 ·A(S3 ×S2 ×S5) NG(V ) 31+2
+ : SD16 3 · U3(5) : 2
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(In fact NG(V ) ∼= 3 · A3,4 : 2, as is seen working inside NG(3A), but we shall not
need this.) Taking H1(·)3′ we obtain the following diagram:

(6.2)

Z/2× Z/2

��			
			

			
			

�
		 ���

���
���

�

���
���

���
�

Z/2× Z/2× Z/2

				 ����
���

���
���

��
Z/2
σ4

× Z/2
τ

				 ����
���

���
�

Z/2
σ4

× Z/2
τ

�������
�����

�����
�����

����

		

Z/2× Z/2

				���
���

���
��

���
���

���
��

Z/2× Z/2 Z/2× Z/2 Z/2
σ̄

× Z/2
τ̄

Z/2
τ̄

The double headed arrows are surjections by a Frattini argument, and we conclude
from this that H1(NG(V )) ∼= Z/2×Z/2, since NG(V )/CG(V ) ∼= Z/2×Z/2, by the
G-fusion in V . The indicated generators follow since we know how σ4 and τ act
on 3A and 3B (and hence V ). The right-hand part of the diagram immediately
reveals that σ̄ is zero in the colimit. The element τ̄ is also zero in the colimit:
Namely, consider the element (1′2′)(4′5′) ∈ NG(3B < V ). This maps to zero in
H1(NG(3B)), by the above description. But in H1(NG(V )) it maps to the same
element as τ , since it acts the same way on V . Hence τ̄ represents the zero element
in the colimit as wanted. �
6.3. Symmetric groups. The Sylow-trivial modules for the symmetric groups are
understood via representation theoretic methods by the work of Carlson–Hemmer–
Mazza–Nakano [CMN09,CHM10] (see also [LM15a] for extensions). Let us point
out that simple connectivity of Sp(G) and our work directly implies their results,
at least in the generic case.

Theorem 6.4. If p is odd, and 3p+ 2 ≤ n < p2 or n ≥ p2 + p, then

Tk(Sn, S) ∼= Hom(Sn, k
×) ∼= Z/2.

Proof. In [Kso04, Thm. 0.1] (building on [Kso03], [Bou92]) it is proved thatAp(Sn),
and hence Sp(Sn), is simply connected if and only if n is in the above range, p odd.
So the result follows from Theorem B. �

When p = 2, Tk(Sn, S) = 0 since NSn
(S) = S for all n [Wei25, Cor. 2]. It is

an interesting exercise to fill in the left-out cases, where p is odd and n is small
relative to p, using the methods of this paper. Let us just quickly do this calculation
where n = 2p + b, for p odd and 0 < b < p, where Tk(Sn, S) = Z/2 × Z/2, as an
illustration (one can in fact also do the general case directly this way, without
much more effort). The case is of interest e.g., since n = 7 = 2 · 3 + 1 is the
smallest case where Sp(G) is connected but not simply connected, and where the
näıve guess [Car12, §5] that groups without strongly p-embedded subgroup should
have no exotic Sylow-trivial modules fails: Pick S = 〈(12 · · · p), ((p + 1) · · · 2p)〉;
there is just one NG(S)-conjugacy class of non-trivial proper 3-radical subgroups,
represented by A = 〈(12 · · · p)〉. By Proposition 5.3, H1(O∗

p (G)) equals the colimit
of H1(−)p′ applied to the diagram NG(A) ← NG(A < S) → NG(S), or

Cp � Cp−1 ×Sp+b ← (Cp � Cp−1)
2 ×Sb → (Cp � Cp−1) � C2 ×Sb,

which is seen to be Z/2× Z/2. Hence by Theorem A,

Tk(S2p+b, S) = Hom(H1(O
∗
p (S2p+b)), k

×) ∼= Z/2× Z/2
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as wanted. Alternatively one may use the centralizer decomposition, using that
|F∗

p (G)| is contractible, since it is one-dimensional with π1(F∗
p (G)) = 1 by Corol-

lary 4.23.
To come full circle in the above example, we can also use Proposition A.4 (or

Theorem 4.10 directly) to determine π1(O∗
p (S2p+b)) by describing the effect of

adding the subgroup A–this reveals that

π1(O
∗
p (S2p+b)) ∼= Cp−1 � C2 ×Sb/(Cp−1 � C2 ×Sb) ∩ (1× Ap+b)(6.3)

∼=
{

D8 if b = 1
C2 × C2 if 1 < b < p

still with p odd. For b = 0, G0 = Sp � C2, and we likewise get π1(O
∗
p (S2p)) ∼= D8.

By Corollary 4.16, the full π1 calculation for Sn enables us to do the calculation
for An as well. Let us dwell on this for a moment as it illustrates some of the
preceding formulas, and lets us correct a small mistake in the literature: Notice that,
in the above notation, the generator of a Cp−1 and the wreathing C2 correspond to
odd elements inside S2p+b. Hence their product is even and defines an element in
ker(π1(O∗

p (S2p+b)) → Z/2), which is of order 4 when b = 0, 1. So by Corollary 4.16

(6.4) π1(O
∗
p (A2p+b)) ∼=

{
C4 if b = 0, 1
C2 if 1 < b < p

still with p odd. In particular

(6.5) Tk(A2p+b, S) ∼= Hom(π1(O
∗
p (A2p+b)), k

×) ∼=
{

Z/4 if b = 0, 1
Z/2 if 1 < b < p

when p is odd and k has a 4th root of unity. The formula (6.5) for p > 3 and
b = 0, 1 corrects [CMN09, Thm. 1.2(c)], which states Z/2 ⊕ Z/2 (the mistake was
that the given modules are not all self-dual).

Notice also that Corollary 3.9 gives a description of an exotic generator for, say,
Tk(S2p+b, S) as Ω

−1H1(|Sp(S2p+b)|; kϕ), with

H1(|Sp(S2p+b)|; kϕ) ∼= ker
(
kϕ ↑GNG(V <S)� kϕ ↑GNG(V ) ⊕kϕ ↑GNG(S)

)
,

and ϕ ∈ Hom(π1(O∗
p (S2p+b)), k

×) not coming from a one-dimensional represen-
tation of S2p+b. E.g., taking n = 7 and p = 3, H1(|S3(S7)|; kϕ) is of dimension
35 = 140− (35+70) (cf. also [Bou92, §5.6]). This agrees on the level of dimensions
with the description in [CMN09, Prop. 8.3] as the Young module Y (4, 3), which is
of dimension 28 with projective cover of dimension 28 + 35 = 63, as explained to
us by Anne Henke. For untwisted coefficients, the representation given by the top
homology group of the p-subgroup complex has been studied in some generality by
Shareshian–Wachs [Sha04,SW09].

6.4. p-Solvable groups. When G is a p-solvable group, it is proved in [NR12],
building on [CMT11], that Tk(G,S) ∼= Hom(G0, k

×), at least when k is algebraically
closed, and G = G0 when the p-rank is two or more by [Gol70, Thm. 2.2]. The proof
in [NR12,CMT11] reduces to the case G = AH, where A is an elementary abelian
p-group, and H is a normal p′-group, and appeals to the classification of the finite
simple groups in the proof of the last statement, albeit in a mild way. By Theorem A
the statement is equivalent to the isomorphismH1(O∗

p (G); k×) ∼= Hom(G0, k
×). We

will not reprove this isomorphism here, but would like to make two remarks: First,
we have the following result.
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Theorem 6.5. Suppose that G = AH with H a normal p′-group and A a non-trivial
elementary abelian p-group. Then Tk(G,S) ∼= lim0

V ∈FAp(A)
Hom(CH(V ), k×).

Proof. Note that F∗
p (A) ∼= F∗

p (G), and in particular |F∗
p (G)| is contractible. so the

result follows from Theorem D, also using that (CH(V ))p′
∼=−−→ (CG(V ))p′ . �

It would obviously be interesting to have an identification of the right-hand side
with Hom(G, k×), when A has rank at least 2, via a proof which did not use the
classification of finite simple groups.

Second, again Tk(G,S) = Hom(G, k×) would follow from the simply connectiv-
ity of Sp(G), by Theorem B. When G = AH as above, Quillen [Qui78, Prob. 12.3]
conjectures that Sp(G) should in fact be Cohen–Macaulay, and in particular simply
connected when A has p-rank at least 3, and proved this when G is actually solv-
able [Qui78, Thm. 11.2(i)]. Aschbacher also conjectured the simple connectivity in
[Asc93], and reduced the claim to where H = F ∗(G) is a direct product of simple
components being permuted transitively by A; see also [Smi11, §9.3]—Aschbacher
uses the commuting complex Kp(G), but this is G-homotopy equivalent to Sp(G)
(see e.g., [Gro02, p. 431] or [Smi11, §9.3]). (The related [Qui78, Thm. 11.2(ii)],
giving non-zero homology in the top dimension, has in fact been generalized to the
p-solvable case, though with a proof also using the classification of finite simple
groups; see [Smi11, §8.2].) We remark though that when G is not of the form
G = AH, the complex Sp(G) need not be simply connected even for large p-rank
(see [PW00, Ex. 5.1]), so a direct proof in the p-solvable case would need one of our
more precise theorems. (The homology of Sp(G) when G is solvable is described in
[PW00, Prop. 4.2], and when G is p-solvable, the p-essential subgroups are those p-
radical subgroups P where NG(P )/P has p-rank one by [Pui76, Cor. to Prop. II.4].)
As noted in §1.5, one may hope to get vanishing results for π1(O∗

p (G)) for any finite
group G by reducing to simple groups, by suitably generalizing the p-solvable case.

Appendix A. Varying the collection C of subgroups

In this appendix we describe how the homotopy and homology of OC(G) and the
other standard categories of this paper behave under changing the collection C. The
results are often extensions of results from mod p homology decompositions [Dwy97,
Gro02, GS06], but now working integrally or away from p, and also examining
low-dimensional behavior. The results are referred to throughout the paper when
moving to collections smaller than Sp(G). We start in §A.1 by recalling various
G-categories associated to C. In §A.2 we explain how the homotopy type of our
categories change upon removing a given subgroup (postponing parts of the proof
to §A.6). We then use it in §A.3 to show that the homotopy types agree for various
collections, and in §A.4 to analyze the low-dimensional homotopy types, when more
subgroups are removed. Finally §A.5 describes the set of components of C and its
relation to group theoretic notions of strongly p-embedded subgroups.

A.1. G-categories associated to collections of subgroups. Recall the cate-
gories OC(G) and FC(G) from §2.4. We now introduce “fattened up” versions of
C related to these, also used in e.g., [Dwy97,Gro02]—they will be preordered sets,
meaning a category with at most one map between any two objects. Preordered
sets are equivalent as categories to posets, but usually not equivariantly so. Let
EOC be the category of “pointed G-sets”, i.e., the G-category with objects (G/P, x)
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for P ∈ C, and x ∈ G/P , and morphisms maps of pointed G-sets. The group G
acts on objects by g · (G/P, x) = (G/P, gx). Similarly EAC is the category with
objects monomorphisms i : P → G induced by conjugation in G, with P ∈ C, and
morphisms i → i′ given by the group homomorphisms ϕ : P → P ′, induced by
conjugation in G, such that i = i′ϕ (see also e.g., [Gro02, 2.8]). (As AC is an older
name for FC , EAC would most logically be called EFC in the current notation, but
we keep the traditional name, to avoid confusion with other standard terminology.)
By inspection of simplices, as already observed in e.g., [Gro02, Prop. 2.10],

(A.1) |EOC|/G = |OC(G)| and |EAC |/G = |FC(G)|
The advantage of such a description is that a G-homotopy equivalence induces a
homotopy equivalence on orbit spaces, by elementary algebraic topology, which we
will use to examine which subgroups can be removed from C without changing the
homotopy type of |OC(G)| and |FC(G)|.

Note also the G-equivariant functors

(A.2) EOC → C ← EAC

given by (G/P, x) �→ Gx and (i : Q → G) �→ i(Q). These are equivalences of
categories but not in general G-equivalences (non-equivariant functors the other
way are given by P �→ (G/P, e) and P �→ (P → G)). We can use the maps to C to
describe the fixed-points, as one checks that we have equivalences of categories

(A.3) EOH
C → C≥H and EAH

C → C≤CG(H).

(See also [GS06, (†)].) We record the following relationship:

Lemma A.1. Let G be a finite group, and consider collections of p-subgroups
C′ ≤ C.

(a) If |C′| �−−→|C|, then |TC′(G)| �−−→|TC(G)| and π1(OC′(G))p′
∼=−−→ π1(OC(G))p′ .

(b) If |EOC′ | → |EOC| is a G-homotopy equivalence then |OC′(G)| �−−→ |OC(G)|.
(c) If |EAC′ | → |EAC | is a G-homotopy equivalence then |FC′(G)| �−−→ |FC(G)|.

Proof. For (a) consider the diagram

|TC′(G)|

		

|C′
G|

		

|C′|hG∼��

∼
		

|TC(G)| |CG| |C|hG∼��

The horizontal equivalences are by Lemma 2.3 and the vertical equivalences follow
since |C′| → |C| is a G-equivariant map, assumed to be a homotopy equivalence,
and hence induces a homotopy equivalence between Borel constructions. Now the
statement about fundamental groups follows from the first claim, using Propo-
sition 4.5. Points (b) and (c) follow from A.1, since a G-homotopy equivalence
induces a homotopy equivalence on orbits. �

A.2. Removing a single conjugacy class. The next result describes the effect
of removing a conjugacy class of subgroups, called “pruning” in [Dwy98, §9] (see
also [GS06, Lem. 2.5]). The result is phrased in terms of certain homotopy pushout
squares [BK72, Ch. XII] (see e.g., [DH01, I.4.18] for an introduction). These give
rise to Meyer-Vietoris sequences in homology, and a van Kampen theorem de-
scription for the fundamental groups. Some squares will furthermore be homotopy
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pushouts of G-spaces, which hence induce homotopy pushouts on both fixed-points
and orbit spaces.

Denote by (EOC)>P the full subcategory of pairs (G/Q, x) such that there exists
a non-isomorphism (G/Q, x) → (G/P, e), i.e., Gx > P , and similarly for (EOC)<P

and EAC .

Proposition A.2 (Pruning collections). Let C′ be a collection of p-subgroups ob-
tained from a collection C by removing all G-conjugates of a p-subgroup P ∈ C. We
have the following five G-homotopy pushout squares, with corresponding quotient
homotopy pushout squares:

G×N (|C<P | � |C>P |) ��

		

|C′|

		
(1a)

G/N �� |C|

(|C<P |/P � |C>P |)/W ��

		

|C′|/G

		
(1b)

pt �� |C|/G
G×N (EN × (|C<P | � |C>P |)) ��

		

EG× |C′|

		
(2a)

G×N EN �� EG× |C|

(|C<P | � |C>P |)hN ��

		

|TC′(G)|

		
(2b)

BN �� |TC(G)|
G×N (EW × (|(EOC)<P | � |C>P |)) ��

		

|EOC′ |

		
(3a)

G×N EW �� |EOC|

(|(EOC)<P |/P � |C>P |)hW ��

		

|OC′(G)|

		
(3b)

BW �� |OC(G)|
G×N (EW ′ × (|C<P | � |(EAC)>P |)) ��

		

|EAC′ |

		
(4a)

G×N EW ′ �� |EAC |

(|C<P | � |(EAC)>P |/C)hW ′ ��

		

|FC′(G)|

		
(4b)

BW ′ �� |FC(G)|
where C = CG(P ), N = NG(P ), W = N/P , W ′ = N/C, and � denotes join of
spaces.

The proof of Proposition A.2 is not hard, but is postponed to §A.6 to not inter-
rupt the flow. We move on to draw consequences, starting with Symonds’ theorem,
‘Webb’s conjecture’ [Web87, Conj. 4.2], on the contractibility of the orbit space
of the p-subgroup complex, used in the proofs of Theorems C and E. To get
minimal assumptions on the collection C, rather than just closed under passage
to p-overgroups, we make a forward reference Lemma A.6, allowing us to remove
non-p-radical subgroups.

Proposition A.3 ([Sym98]). If G is a finite group and C a non-empty collection of
p-subgroups, closed under passage to p-radical overgroups, then |C|/G is contractible.

Proof. By Lemma A.6 |C| is G-homotopy equivalent to |C̄| where C̄ is obtained by
adding all p-overgroups of subgroups in C. We may thus without restriction assume
that C is closed under passage to all p-overgroups, as G-homotopy equivalences
induce homotopy equivalences on G-orbit spaces.

If C consists of just all Sylow (i.e., maximal) p-subgroups, then the claim amounts
exactly to the part of Sylow’s theorem saying that these subgroups are all conjugate.
We will prove the claim in general by seeing that contractibility is preserved under
adding conjugacy classes of subgroups in order of decreasing size, using Proposi-
tion A.2(1b) by an induction on the size of the group: Suppose the claim is true
for all groups G of strictly smaller order, and that C is obtained from C′ by adding
G-conjugates of a subgroup P this way. We can also assume that P is non-trivial,
since otherwise the claim is clear, as C is equivariantly contractible to the trivial
subgroup in that case.
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Now consider the pushout square of Proposition A.2(1b): The top left-hand
corner becomes |C>P |/W , for W = NG(P )/P . But |C>P | has a W -equivariant
deformation retraction onto |Sp(W )| via Q �→ NQ(P )/P , as observed by Quillen
[Qui78, Prop. 6.1] (see also Lemma A.6). But |Sp(W )|/W is contractible by our
induction hypothesis, observing that W is of smaller order since P is non-trivial
and that Sp(W ) is non-empty as we have already added the Sylow p-subgroups.
Hence |C′|/G → |C|/G is a homotopy equivalence, and we conclude that the claim
is true for all collections C as in the proposition, proving the claim for G. �

Let us spell out what Proposition A.2(3b) says when the subgroup P we remove
is minimal.

Proposition A.4 (The effect of adding or removing a minimal subgroup). Suppose
that C is a collection of p-subgroups in a finite group G, closed under passage to
p-radical overgroups, and that C′ is obtained from C by removing the conjugacy
class of a minimal p-subgroup P ∈ C. Set W = NG(P )/P . Then |OC(G)| can be
described via a homotopy pushout square

|T ∗
p (W )| ��

		

|OC′(G)|

		
BW �� |OC(G)|

Here the top horizontal map identifies with the nerve of the composite T ∗
p (W ) →

O∗
p (W ) → OC′(G) where the first map is the natural one from §2.4 and the second

sends a W -set X to G/P×WX (replacing C by its closure under taking p-overgroups
if necessary, using Lemma A.6(1)). In particular

(1) π1(OC(G))
∼=←−− π1(OC′(G))/im(K), with K = ker(π1(O

∗
p (W )) → Wp′) and

the overline denoting normal closure.
(2) H1(OC(G))

∼=←−−H1(OC′(G))/ im(K), with K = ker(H1(O∗
p (W ))→H1(W )).

Hence

(3) If π1(O∗
p (W ))

∼=−−→ Wp′ then π1(OC′(G))
∼=−−→ π1(OC(G)).

(4) If H1(O∗
p (W ))

∼=−−→ H1(W )p′ then H1(OC′(G))
∼=−−→ H1(OC(G)).

Proof. We claim that square in the position identifies with the homotopy pushout
square of Proposition A.2(3b), after making suitable identifications. Namely the
left-hand corner in (3b) identifies with |T ∗

p (W )| via the homotopy equivalences
|C>P |hW 
 |Sp(W )|hW 
 |T ∗

p (W )|, using again Lemma A.6 and (1.9), and the
maps identify with the stated ones via this equivalence.

Now (1) is a consequence of van Kampen’s theorem [Hat02, §1.2]: By Proposi-
tion 4.1 both fundamental groups on the right-hand side of the pushout square are
finite p′-groups, so van Kampen’s theorem and (1.7) produce a pushout of groups

(A.4)

π1(O∗
p (W )) ��

				

π1(OC′(G))

				
Wp′ �� π1(OC(G))

with vertical maps surjective, and (1) follows. Point (2) follows similarly, but using
the Mayer–Vietoris sequence instead. Points (3) and (4) are now obvious. �
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For further applications of Proposition A.2, we recall the behavior of connectivity
under joins. In general the join of an n-connected space with an m-connected space
is (n+m+ 2)-connected (use cellular approximation [Hat02, §4.1]). The cases we
will need are summarized in Lemma A.5.

Lemma A.5 (Connectivity of joins). The join X � Y is connected for X,Y non-
empty or X connected. It is simply connected for X connected and Y non-empty,
or for X simply connected.

The join X � Y is (G-) contractible if X or Y is (G-) contractible.

Proof. This follows from the definition of the join, e.g., as the homotopy pushout
of the diagram X ← X×Y → Y (which identifies with the suspension of the smash
Σ(X ∧ Y ) if picking a basepoint). �

We finally give the postponed lemma about removing subgroups, which will also
be used several times in proofs of the subsequent theorems.

Lemma A.6. Let C be a collection of p-subgroups in G, and let C̄ be the smallest
collection containing C, closed under passage to p-overgroups, and let P be a p-
subgroup of G.

(1) If C contains all p-radical groups in C̄>P , then C>P → C̄>P is an NG(P )-
homotopy equivalence. Thus, if all p-radical overgroups of P are in C then
we have NG(P )-homotopy equivalences

|C>P | �−−→ |Sp(G)>P | �←−− |Sp(NG(P )/P )|.
(2) If C contains all Sylow and p-essential overgroups in C̄>P , then π0(C>P )

∼=−−→
π0(C̄>P ). Thus, if all Sylow and p-essential overgroups of P are in C then
we have NG(P )-equivariant bijections

π0(C>P )
∼=−−→ π0(Sp(G)>P )

∼=←−− π0(Sp(NG(P )/P )).

Proof. Start by recalling that Sp(G)>P is indeed NG(P )-homotopy equivalent to
Sp(NG(P )/P ) via the equivariant deformation retraction R �→ NR(P )/P , as al-
ready observed by Quillen [Qui78, Prop. 6.1].

Now to see the first claim in (1), we add NG(P )-conjugacy classes of p-subgroups
to C>P in order of decreasing size to reach C̄>P (see also [Gro02, Pf. of Thm. 1.2]).

If C̃ is obtained from C by adding an NG(P )-conjugacy class of a p-subgroup Q,
maximal in C̄ \ C, then we have an NG(Q)-homotopy pushout square analogous to
Proposition A.2(1a):

(A.5)

NG(P )×NG(P<Q) (|Sp(G)>Q| � |C>P,<Q|) ��

		

|C>P |

		
NG(P )/NG(P < Q) �� |C̃>P |

By assumption Q is not p-radical, so that Sp(G)>Q is NG(Q)-contractible, via the
standard contraction

(A.6) R ≥ NR(Q) ≤ NR(Q)Op(NG(Q)) ≥ Op(NG(Q))

of Quillen [Qui78] and Bouc [Bou84]. Hence |Sp(G)>Q| � |C>P,<Q| is NG(P < Q)-
contractible by the initial observation and Lemma A.5. Hence (A.5) shows that

|C>P | → |C̃>P | is an NG(P )-homotopy equivalence. Continuing this way shows the
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first part of (1) by induction. The second half follows from the first, but applied

to C ∪ [P ] so that (C ∪ [P ])>P = Sp(G)>P .
The proof of (2) follows similarly. The assumption that Sp(NG(Q)/Q) is con-

nected still ensures that |Sp(G)>Q| � |C>P,<Q| is connected by Lemma A.5. Hence

|C>P | → |C̃>P | is a bijection on π0 by (A.5), and we again conclude π0(C>P )
∼=−−→

π0(C̄>P ) by induction. Again the second part follows by applying the first to
C ∪ [P ]. �

Remark A.7. Lemma A.6 also has a generalization to higher homotopy groups:
If C is closed under passage to all overgroups Q such that |Sp(NG(Q)/Q)| is not
i-connected, then ι is an isomorphism on πj for j ≤ i and surjective on πi+1.
This follows by the same argument as above, but now in (A.5) appealing to the
Blakers-Massey’s excision theorem (see e.g., [tD08, Prop. 6.4.2]) instead.

A.3. Varying the collection without changing homotopy types. We now
see how we can vary our collection C without changing the homotopy type of asso-
ciated categories. The omnibus Theorem A.8 is mainly a translation of “classical”
homotopy equivalences [GS06, Thm. 1.1], using the elementary Lemma A.1 (see
also [GS06] for historical references).

As usual let Sp(G) and Ap(G) denote non-trivial p-groups and non-trivial ele-
mentary abelian p-subgroups V ∼= (Z/p)r respectively. The collection Bp(G) is the
collection of non-trivial p-radical subgroups, i.e., non-trivial p-subgroups P such
that Op(NG(P )) = P .

Here and elsewhere the superscript e means that we do not exclude the trivial
subgroup.

Theorem A.8. Let G be a finite group and C a collection of p-subgroups.

(1) Suppose C is closed under passage to p-radical overgroups. Then |C ∩
Be
p(G)| �−−→ |C| and |EOC∩Be

p(G)(G)| �−−→ |EOC| are G-homotopy equiva-

lences and consequently

|TC∩Be
p(G)(G)| �−−→ |TC(G)| and |OC∩Be

p(G)(G)| �−−→ |OC(G)|

(2) Suppose C is closed under passage to non-trivial elementary abelian sub-
groups. Then

|C ∩ Ae
p(G)| �−−→ |C| and |EAC∩Ae

p(G)| �−−→ |EAC |

are G-homotopy equivalences. Consequently

|TC∩Ae
p(G)(G)| �−−→ |TC(G)| and |FC∩Ae

p(G)(G)| �−−→ |FC(G)|.

Proof. Point (1): To see that |C ∩Be
p(G)| �−−→ |C| is a G-homotopy equivalence, note

that for an arbitrary P ∈ C \ Be
p(G), the space |C>P | � |C<P | is NG(P )-contractible

by Lemma A.6(1) and Lemma A.5, as |Sp(NG(P )/P )| is since P is not p-radical.
Hence the pushout square in Proposition A.2(1a) shows that we can remove the
subgroups in C \ Be

p(G) one G-conjugacy class at a time (in some arbitrary or-
der) without changing the G-homotopy type. That |EOC∩Be

p(G)(G)| �−−→ |EOC| is
a G-homotopy equivalence follows from the analogous argument, but now using
Proposition A.2(3a) instead. The homotopy equivalences on T and O follow from
this and Lemma A.1((a)), ((b)), finishing the proof of (1). (For the last bit, one
could also use Proposition A.2((2b), (3b)) directly.)
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Point (2): We want to prove this by comparing C and C ∩Ae
p(G) to the smallest

collection C̄ containing C and closed under passage to non-trivial p-subgroups. We
do this by adding G-conjugacy classes of subgroups to C in order of increasing size,
and observe that this does not change the G-homotopy types of |C| and EAC , and
correspondingly for C ∩ Ae

p(G):

Let C̃ = C ∪ [P ], where P ∈ C̄ \ C is minimal. Then Proposition A.2((1a), (4a))

shows that |C| → |C̃| and |EAC | → |EAC̃ | are G-homotopy equivalences, once
we see that |C<P | is NG(P )-equivariantly contractible (also using Lemma A.5). If
C contains the trivial subgroup then C<P = Se

p(G)<P and the claim is obvious,
so assume that this is not the case, i.e., C<P = Sp(G)<P . This is still NG(P )-
equivariantly contractible, as is seen using the standard contraction of Quillen

(A.7) Q ≤ QΦ(P ) ≥ Φ(P ),

where Φ(P ) is the Frattini subgroup, generated by commutators and pth powers
and QΦ(P ) < P since P is not elementary abelian.

By continuing to add subgroups this way we show that |C| → |C̄| and |EAC| →
|EAC̄| are G-homotopy equivalences. The proof that |C ∩ Ae

p(G)| → |C̄| and
|EAC∩Ae

p(G)| → |EAC̄ | are G-homotopy equivalences is identical. The statements

about T and F now follow from Lemma A.1((a)), ((c)). �
Remark A.9. Theorem A.8(1) does not hold for F , since |FBp(S)(S)| ∼= B(S/Z(S))
(compare also Proposition 4.22). Theorem A.8(2) is not true for O, since
|OA2(C4)(C4)| ∼= BZ/2. See also [JM12] for results with F̄ .

A.4. Varying the collection without changing the low dimensional homo-
topy type. In this subsection we continue to apply the formulas of §A.2 to remove
subgroups, but now focusing on the first homology group and the fundamental
group.

A.4.1. Models for H1(OC(G)), π1(OC(G)) and π1(TC(G)).

Theorem A.10 (Propagating fundamental groups, p-overgroup-closed version).
Let Ep(G) denote the collection of p-subgroups P that are either Sylow, p-essential,
or satisfy that ψP : H1(O∗

p (NG(P )/P )) → H1(NG(P )/P )p′ is not an isomorphism.
For any collection C of p-subgroups, closed under passage to p-overgroups in Ep(G),
H1(OC∩Ep(G)(G))

∼=−−→ H1(OC(G)).
Likewise π1(OC∩E′

p(G)(G))
∼=−−→ π1(OC(G)) and π1(TC∩E′′

p (G)(G))
∼=−−→ π1(TC(G)),

where the collections E ′
p(G) and E ′′

p (G) are defined analogously, replacing ψP by
ψ′
P : π1(O∗

p (NG(P )/P ))→ (NG(P )/P )p′ and ψ′′
P : π1(T ∗

p (NG(P )/P ))→NG(P )/P ,
respectively. By construction Ep(G) ⊆ E ′

p(G) ⊆ E ′′
p (G).

We remark that π1(T ∗
p (W ))

∼=−−→ W if and only if Sp(W ) is simply connected
by (1.12). The proof of Theorem A.10 needs a lemma, which can also be used to
remove additional subgroups in it.

Lemma A.11. Suppose that C is a collection of p-subgroups closed under passage
to p-essential and Sylow p-overgroups, and let C̄ = {P ∈ Se

p(G)| there exists Q ≤
P with Q ∈ C}. Then π1(TC(G))

∼=−−→ π1(TC̄(G)) and π1(OC(G))
∼=−−→ π1(OC̄(G)).

Proof. Suppose P ∈ C̄ \ C. Then C>P is connected by Lemma A.6(2) and C<P is
non-empty. Thus |C<P | � |C>P | and |(EOC)<P |/P � |C>P | are simply connected by
Lemma A.5. Proposition A.2((2b), (3b)), together with van Kampen’s theorem,
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shows that we can add the conjugacy class of P to C without changing π1(TC(G))
or π1(OC(G)). Repeating this argument, now with C ∪ [P ] etc., allows us to add all
the subgroups of C̄ \ C as wanted. �

Proof of Theorem A.10. By Lemma A.11 we can just as well compare groups rela-
tive to the two collections C ∩ Ep(G) ⊆ C. However all the subgroups in C\C ∩ Ep(G)
can now be removed, in order of increasing size using Proposition A.4(4).

The statement for E ′
p(G) follows by the same argument, but now appealing to

Proposition A.4(3). The statement for E ′′
p (G) also follows from the same line of

argument: As remarked after the statement of Theorem A.10, P �∈ E ′′
p (G) means

that |Sp(G)>P | is simply connected. Hence Proposition A.2(2b), together with van

Kampen’s theorem, still allows us to remove subgroups in C \ C ∩ Ep(G) without
changing the fundamental group of T . �

Example A.12. For finite groups of Lie type in characteristic p, Ep(G) = E ′
p(G) =

{Sylow} ∪ {p-ess.} and are exactly the unipotent radicals of parabolic subgroups
of rank at most one, whereas E ′′

p (G) identify with unipotent radicals of parabolic
subgroups of rank at most 2 (see §6.2).

For G = G2(5) at p = 3, discussed in Proposition 6.3, the subgroup 〈3A〉 is
in Ep(G) but not p-essential. And for C the collection of non-trivial p-subgroups
except 〈3A〉, π1(OC(G)) ∼= C2 whereas π1(O

∗
p (G)) = 1, so 〈3A〉 is indeed necessary

to control endotrivial modules.

Remark A.13. The collections from Theorem A.10 fit in a hierarchy involving
higher homotopy groups. Note that π1(T ∗

p (NG(P )/P )) 	∼=−−→ NG(P )/P if and
only if |Sp(NG(P )/P )| is not simply connected. Say that P is “πi-essential” if
|Sp(NG(P )/P )| is not i-connected. Then π−1-essential is Sylow, π0-essential is
Sylow or p-essential, π1-essential means in E ′′

p (G), and we have inclusions

(A.8) {Sylow} ⊆ {Sylow} ∪ {p-ess.} ⊆ Ep(G) ⊆ E ′
p(G) ⊆ E ′′

p (G) = {π1-ess.}
⊆ {π2-ess.} · · · ⊆ Be

p(G)

It follows from Remark A.7 that the πi-essential subgroups are the ones needed
to describe the i-truncation of the homotopy type of |Sp(G)|, and hence the i-
truncation of |T ∗

p (G)| and |O∗
p (G)|. As an n-connected space of dimension n is

contractible (see e.g., [Hat02, Exc. 4.12]) the filtration in (A.8) is finite, and further-
more Quillen’s famous conjecture [Qui78, Conj. 2.9] predicts that p-radical implies
πn-essential, for n, say, the dimension of Sp(G) (see e.g., [AS93] for known cases).
As mentioned in §6.2 and §6.4, several open questions about simply connectivity
of Sp(G) may be shadows of stronger statements about Cohen–Macaulayness, also
justifying an interest in πi-essential subgroups.

A.4.2. Models for π1(FC(G)). A non–Sylow p-subgroup P is called F-essential if
W0PCG(P )/P is a proper subgroup of W = NG(P )/P (with W0 as in (1.3)). It is
obviously a subcollection of the p-essential subgroups and was introduced in [Pui76]
(as “C-essential”). The F-essential subgroups can also be described as the p-centric
subgroups such thatNG(P )/PCG(P ) contains a strongly p-embedded subgroup (see
Lemma A.17). (Beware that some fusion literature such as [AKO11, Def. I.3.2], but
not [Pui06, §5], takes “fully F-normalized” in S as part of the definition, giving a
smaller, but non-conjugacy invariant set, as it refers to a fixed Sylow p-subgroup
S.)
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Proposition A.14. Suppose that C is closed under passage to F-essential and
Sylow p-overgroups, and that C′ is a collection obtained from C by removing con-
jugacy classes of p-subgroups, which are neither Sylow p-subgroups, F-essential, or
minimal in C. Then π1(FC′(G))

∼=−−→ π1(FC(G)).

Proof. It is enough to show that for both FC(G) and FC′(G) we get the same fun-
damental group as FC̄(G), for C̄ the minimal collection containing C and closed
under all p-overgroups. And for that, it is enough to show that the fundamental
group of FC̄(G) does not change when removing a p-subgroup P from C̄ which is
neither minimal nor F-essential nor a Sylow p-subgroup (by removing subgroups
in order of increasing size). This will be a consequence of Proposition A.2(4b),
if we see that |(EAC̄)>P |/CG(P ) is connected. For this note, as in (A.2), that
|(EAC̄)>P | → |C̄>P | is an NG(P )-equivariant map, which is a bijection on compo-
nents, and hence |(EAC̄)>P |/CG(P ) → |C̄>P |/CG(P ) is also a bijection on com-
ponents. By assumption |C̄>P | = |Sp(G)>P | which is NG(P )-homotopy equivalent
to |Sp(NG(P )/P )| by Lemma A.6. By (1.10), π0(|Sp(NG(P )/P )|) ∼= W/W0, in
the notation from above the proposition, and W = W0CG(P )P/P , as P is non-
F-essential. Putting this together we see that |(EAC̄)>P |/CG(P ) is connected as
wanted. �

A.4.3. Fundamental groups for subgroup-closed collections. We end with the dual
case:

Theorem A.15 (Propagating fundamental groups, subgroup-closed version). Let C
be a collection of p-subgroups closed under passage to non-trivial elementary abelian
subgroups. Then π1(TC′(G))

∼=−−→ π1(TC(G)), π1(OC′(G))p′
∼=−−→ π1(OC(G))p′ , and

π1(FC′(G))
∼=−−→ π1(FC(G)) for C′ the subgroups in C which are either maximal or

elementary abelian of rank at most two. The same statements hold taking C′ the
elementary abelian subgroups of C of rank at most 3.

Proof. First, the claim for O follows from T by Proposition 4.5. Second, the
claims are obvious if the trivial subgroup is in C, so we can assume that this is
not the case. Now to prove the claim for T and F , it is, as usual, enough to
compare C and C′ to a collection C̄ obtained from C by adding non-elementary
abelian p-groups, to make it closed under passage to all non-trivial p-subgroups.
By removing subgroups from C̄ in order of decreasing size, we just have to see
that the fundamental groups do not change by removing a non-trivial subgroup P
which is not elementary abelian of rank 1 or 2, and if elementary abelian of rank 3
not maximal in C. However, this all follows from Proposition A.2((2b), (4b)) and
van Kampen’s theorem: If P is not elementary abelian then C̄<P = Sp(G)<P is
contractible via the standard contraction (A.7). If P is elementary abelian of rank
at least 4, then Sp(G)<P is simply connected as it is homotopy equivalent to a
simply connected Tits building. And if P is elementary abelian of rank 3 and not
maximal in C then C̄<P is connected and is joined with a non-empty space giving
something simply connected (cf. Lemma A.5). �

A.5. Essential and strongly p-embedded subgroups: The connected com-
ponents of C. We now describe the set of connected components of C in more
detail, generalizing the description for Sp(G) due to Quillen [Qui78, §5], [Gro02,
Prop. 5.8], explained in (1.10)—we need this in §4 to get the results in their optimal
form, and it also has group theoretic significance; see Remark A.19.
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Fix a Sylow p-subgroup S and set G0,C = 〈NG(Q)|Q ≤ S,Q ∈ C〉 and C0 = {Q ∈
C|Q ≤ G0,C} as in (4.1).

Proposition A.16 (Connected components of C). Let C be a collection of p-
subgroups in G, closed under passage to Sylow and p-essential overgroups. Then
G×G0,C |C0| ∼=−−→ |C| is a G-equivariant isomorphism of simplicial sets, via (g, P0 ≤
· · · ≤ Pn) �→ (gP0 ≤ · · · ≤ gPn), and |C0| is connected. On the set of components

G/G0,C
∼=−−→ π0(|C|) ∼=←−− π0(|C′|) ∼=←−− G/G0,C′

with C′ the Sylow or p-essential subgroups of C.
Furthermore for a subgroup H ≤ G the following conditions are equivalent:

(1) G0,C is subconjugate to H.
(2) p � |G : H| and if, for any g ∈ G, H ∩ gH contains an element of C, then

g ∈ H.

In particular G0,C is characterized as a minimal subgroup satisfying (2), containing
S.

Proof. Let us first show that the two conditions are equivalent. Suppose that (1)
is satisfied. We can without loss of generality assume that G0,C ≤ H, since the
condition on H is conjugation invariant. Suppose now that Q ≤ H ∩ gH, and
Q ∈ C. We want to show that g ∈ H. By Sylow’s theorem in H, using that
p � |G : H| we can upon changing g by an element in H assume that Q ≤ S. By

assumption x−1

Q ≤ H, and hence we can, again by Sylow’s theorem, find h ∈ H

so that hx−1

Q ≤ S. Alperin’s fusion theorem, in the version of Goldschmidt–
Miyamoto–Puig [Miy77, Cor. 1] (see also [Gro02, §10]), now says that we can find
p-essential subgroups P1, . . . , Pr, and elements gi ∈ NG(Pi), and n ∈ NG(S), with
Q ≤ P1 and gi···g1Q ≤ Pi+1 ≤ S for i ≤ r−1, such that hx−1 = ngr · · · g1. However
since the right-hand side is in G0,C by assumption, this shows that x ∈ H as wanted,
so (2) holds.

Now suppose that H is a subgroup satisfying (2). By Sylow’s theorem, we can
change H up to conjugation so that S ≤ H. We want to show that G0,C ≤ H.
In fact we will prove the stronger statement that GS , the stabilizer of [S] ∈ π0(C),
is contained in H. As it is clear that G0,C ≤ GS , this will show (2) ⇒ (1), and
furthermore establish that GS = G0,C as claimed in the first part of the theorem.
Hence suppose that g ∈ GS , so that gS and S lie in the same component. By
definition there exists a sequence of Sylow p-subgroups S0, . . . , Sr, so that S = S0,
Sr = gS such that Si ∩ Si+1 contains an element of C. Choose gi ∈ G such that
giSi = Si+1, so that gr−1···g0S = gS. If Si ≤ H, then Si+1 ≤ H and gi ∈ H by
our assumption, so by induction we conclude that gr−1 · · · g0 ∈ H, and hence also
g ∈ H since the two elements differ by an element of NG(S) ≤ H.

That G ×G0,C |C0| ∼=−−→ |C| now follows: The map is surjective since for P0 ≤
· · · ≤ Pn ∈ |C|n we can, by Sylow’s theorem, find g ∈ G so gPn ≤ S, and hence

(gP0 ≤ · · · ≤ gPn) ∈ |C0|n. Furthermore if (gP0 ≤ · · · ≤ gPn) = (g
′
P ′
0 ≤ · · · ≤ g′

P ′
n)

then g′−1gP0 = P ′
0 ≤ G0,C , and likewise P0 ≤ G0,C by definition, i.e., P0 and P ′

0 lie
in the same component so g′−1g ∈ GS = G0,C , by the first part. In other words
gG0,C = g′G0,C as wanted.

The last claim we need to justify is that π0(|C′|) ∼=−−→ π0(|C|) which follows from
Lemma A.6 with P = e, except the degenerate case where e ∈ C. But here it is
also true: this is clear if also e ∈ C′ since both spaces are contractible, and if e �∈ C′
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then Proposition A.2(1a) still says that we can add e to C′ without changing the
number of components, which hence has to be one. �

We now check that the two definitions of F-essential from §A.4.2 agree (see also
[Pui76, Cor. III.2]).

Lemma A.17. W0PCG(P )/P is a proper subgroup of W = NG(P )/P if and only
if P is p-centric and Sp(NG(P )/PCG(P )) is disconnected.

Proof. Let H denote the preimage of W0PCG(P )/P in NG(P ). As P ≤ PCG(P ) ≤
H ∩ Hg for all g ∈ NG(P ), Proposition A.16 (applied to C = Sp(NG(P )/P ) in
NG(P )/P ) shows that if H �= NG(P ), then |PCG(P ) : P | is prime to p, as |P :
H ∩Hg| is, so P is p-centric.

If P is p-centric then CG(P ) ∼= Z(P ) × R, for R a p′-group. Note that
|Sp(NG(P )/P )|/R ∼= |Sp(NG(P )/PR)| (by [Gro02, Prop. 5.7]), a space with set
of components W/W0R. Hence W0R is a proper subgroup of W if and only if
|Sp(NG(P )/PR)| is disconnected, showing the lemma. �

Remark A.18 (Groups with a strongly p-embedded subgroup). To use the theorems
in this paper, it is useful to know when G0 = 〈NG(Q)|1 < Q ≤ S〉 is proper in G,
i.e., in group theoretic language, when G contains a strongly p-embedded subgroup.
The answer to this question forms an important chapter in the classification of finite
simple groups. The following is a theorem of Bender when p = 2 [Ben71], and only
known as a consequence of the classification when p is odd: Either rkp(G) = 1
and G0 = NG(Ωp(Z(S))), with G0 < G exactly when Op(G) = 1, or rkp(G) ≥ 2,
Op′(G) ≤ G0, Ḡ = G/Op′(G) has a unique minimal normal non-abelian simple
subgroup K̄ = F ∗(Ḡ), and Ḡ/K̄ ≤ Out(K̄). The group K̄ is either a finite group
of Lie type of rank 1 (possibly twisted) in defining characteristic, A2p (p ≥ 3),
(L3(4), 3), (M11,3), (Fi22, 5), (Mc, 5), (F4(2)

′, 5), or (J4, 11). See [GLS98, 7.6.1,
7.6.2] and also [Qui78, §5], [Asc93, (6.2)] for more details.

Remark A.19. As noticed, when taking C = Sp(G), Proposition A.16 is a strong
version of Quillen’s [Qui78, Prop. 5.2]. When taking C to be the collection of p-
subgroups of p-rank at least k, G0,C = Γk,S(G), the k-generated p-core from finite
group theory, and one also makes geometric and extends a standard characterization
of it [Asc00, (46.4)] (see also [GLS96, Sec. 22], [ALSS11, Sec. B.4]). Groups with
proper 2-generated 2-core were famously classified by Aschbacher [Asc74].

Remark A.20. By examining the list in Remark A.18 one sees that very often
when G0 < G, H1(G0)p′ � H1(G)p′ is not injective, providing exotic Sylow-trivial
modules via (1.6) (take for instance G = SL2(Fpr) with pr �= 2). But it may also
be injective: Let p = 2 and consider K = SL2(F2r), r > 1 odd, and let Cr act on K
via field automorphisms. Set G = K � Cr. Then K0 consists of upper triangular
matrices of determinant one, and G0 = H0�Cr. Hence H1(G0)2′ ∼= H1(G)2′ ∼= Cr.
Other examples may be constructed along these lines, though perhaps limited to
small primes. (We are grateful to Ron Solomon for consultations on these points.)

A.6. Proof of Proposition A.2. We now prove Proposition A.2, via general ob-
servations about links in preordered sets, an abstraction of observations in [Dwy98,
GS06]. Let X be a preordered set, i.e., a small category with at most one morphism
between any two objects. Note that our spaces EOC, etc., are all examples of such.
For x ∈ X , let x̄ denote the full subcategory of X on objects isomorphic to x, let
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X<x̄ denote the full subcategory of X on elements smaller than and not isomorphic
to x, and define X>x̄ similarly. For preordered sets X and Y the join X � Y is the
preordered set obtained from the disjoint union of X and Y by adding a unique
morphism from each object in X to each object in Y . This has the property that
|X �Y| ∼= |X |� |Y|. The star starX (x̄) is the full subcategory of X on objects which
admit a morphism to or from x, and the link linkX (x̄) is the full subcategory on
objects that admit a non-isomorphism to or from x. Note that

starX (x̄) = X<x̄ � x̄ � X>x̄ and linkX (x̄) = X<x̄ � X>x̄

If X has a G-action, these are all Gx̄-subcategories, where Gx̄ is the stabilizer of
x̄ as a set, and furthermore starX (x̄) is Gx-contractible to x (but generally not
Gx̄-contractible).

Proposition A.21. Suppose X is a preordered set equipped with a G-action such
that isomorphic objects are G-conjugate, and let X ′ denote the subcategory of X
obtained by removing all G-conjugates of an element x.

(1) There is a pushout square of G-spaces, which is also a homotopy pushout
square of G-spaces:

G×Gx̄
| linkX (x̄)|

		

�� |X ′|

		
G×Gx̄

| starX (x̄)| �� |X |

where x̄ denotes the subcategory of elements isomorphic to x and Gx̄ its
stabilizer as a set.

(2) Assume in addition that the stabilizer Gx of any point x ∈ X is a normal
subgroup in the stabilizer of its isomorphism class x̄. Then the square

G×Gx̄
(E(Gx̄/Gx)× | linkX (x̄)|)

		

�� |X ′|

		
G×Gx̄

(E(Gx̄/Gx)× | starX (x̄)|) �� |X |

obtained by collapsing E(Gx̄/Gx) and continuing as in (1) is again a pushout
and homotopy pushout square of G-spaces, and remains a homotopy pushout
of G-spaces after collapsing | starX (x̄)|.

In particular, under these assumptions:

(3) On G-orbits there is a homotopy pushout square

((|X<x̄| � |X>x̄|)/Gx)hGx̄/Gx

		

�� |X ′|/G

		
B(Gx̄/Gx) �� |X |/G

Proof. For (1), notice that it is a pushout of G-spaces by the fact that |X ′| and
the image of G ×Gx̄

| starX (x̄)| cover |X |, and the part of G ×Gx̄
| starX (x̄)| that

maps to X ′ is the subspace G ×Gx̄
| linkX (x̄)|, just by the definitions, and that

isomorphic elements are G-conjugate. It is homotopy pushout of G-spaces since
G×Gx̄

| linkX (x̄)| → G×Gx̄
| starX (x̄)| is an injective map of G-spaces.
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For (2) it is enough to see that the projection square

G×Gx̄
E(Gx̄/Gx)× | linkX (x̄)|

		

�� G×Gx̄
×| linkX (x̄)|

		
G×Gx̄

E(Gx̄/Gx)× | starX (x̄)| �� G×Gx̄
×| starX (x̄)|

is a pushout and homotopy pushout of G-spaces, by transitivity of pushouts and
homotopy pushouts. To see this it is again enough to see that

E(Gx̄/Gx)× | linkX (x̄)|

		

�� | linkX (x̄)|

		
E(Gx̄/Gx)× | starX (x̄)| �� | starX (x̄)|

is a pushout and homotopy pushout of Gx̄-spaces, which we do by checking on all
fixed-points for H ≤ Gx̄. For H ≤ Gx E(Gx̄/Gx)

H is contractible and the claim is
clear. (Note, we use that Gx̄/Gx is a group, not just a coset, so the isotropy does
not depend on the chosen point x ∈ x̄.) For H �≤ Gx, the spaces on the left are
empty, and linkX (x̄)H = starX (x̄)H , so it is also a pushout and homotopy pushout
square in that case. For the purposes of having a homotopy pushout square of G-
spaces, we can replace starX (x̄) by a point, since starX (x̄) is Gx-contractible, and
hence E(Gx̄/Gx)× | starX (x̄)| → E(Gx̄/Gx) a Gx̄-homotopy equivalence.

For (3), note that since G ×Gx̄
E(Gx̄/Gx)× | linkX (x̄)| → G×Gx̄

E(Gx̄/Gx) ×
| starX (x̄)| is a cofibration of G-spaces, passing to G-orbits in (2) produces the
homotopy pushout square in (3). �

Remark A.22. In Proposition A.21((2), (3)) we can replace | linkX (x̄)| = |X<x̄| �
|X>x̄| by a Gx-equivalent space through a Gx̄-equivariant map, without changing
the conclusion, as any group element in Gx̄ \Gx acts freely on E(Gx̄/Gx).

Proof of Proposition A.2. This will be applications of Proposition A.21: (1a) is
Proposition A.21(2) with X = C, noting that in this case X is a poset and Gx̄ = Gx.
(1b) is Proposition A.21(3). For (2a) cross the diagram from (1a) with EG, noting
that EG as an N -space is equivalent to EN . For (2b) take G-orbits and note
that |C|hG identifies with |TC | by Lemma 2.3. (Alternatively, more directly take
X = ETC = e ↓ ι, the undercategory for ι : TC → TC∪{e}.) For (3a) and (3b) take
X = EOC, so for x = (G/Q, y), Gx = Gy, and Gx̄ = NG(Gy). The diagrams now
follow from Proposition A.21((2)–(3)) using that we have an NG(P )-equivariant
map |(EOC)>P | → |C>P | which is a P -homotopy equivalence by (A.3), so we can
replace (EOC)>P by C>P by Remark A.22. Finally for (4a)-(4b) take X = EAC and
again use Proposition A.21((2)–(3)) (where Gx = CG(i(Q)) and Gx̄ = NG(i(Q)),
for x = (i : Q → G)), together with the simplification that |(EAC)<P | → |C<P | is
a CG(P )-homotopy equivalence (which holds as |(EAC)<P )|H �−−→ |C<P | by (A.3)
when H ≤ CG(P ), or equivalently P ≤ CG(H)). �
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p-subgroup categories, J. Pure Appl. Algebra 216 (2012), no. 12, 2665–2696, DOI

10.1016/j.jpaa.2012.03.032. MR2943749
[Ker05] M. C. Kerz, The complex of words and Nakaoka stability, Homology Homotopy Appl.

7 (2005), no. 1, 77–85. MR2155519
[Kso03] R. Ksontini, Simple connectivity of the Quillen complex of the symmetric group, J.

Combin. Theory Ser. A 103 (2003), no. 2, 257–279, DOI 10.1016/S0097-3165(03)00073-
6. MR1996066

[Kso04] R. Ksontini, The fundamental group of the Quillen complex of the symmetric group,
J. Algebra 282 (2004), no. 1, 33–57, DOI 10.1016/j.jalgebra.2004.07.025. MR2095571

[Lin04] M. Linckelmann, Fusion category algebras, J. Algebra 277 (2004), no. 1, 222–235, DOI
10.1016/j.jalgebra.2003.12.010. MR2059628

[Lin05] M. Linckelmann, Alperin’s weight conjecture in terms of equivariant Bredon cohomol-
ogy, Math. Z. 250 (2005), no. 3, 495–513, DOI 10.1007/s00209-004-0753-x. MR2179608

[Lin09] M. Linckelmann, On H∗(C; k×) for fusion systems, Homology Homotopy Appl. 11
(2009), no. 1, 203–218. MR2506133

[LM15a] C. Lassueur and N. Mazza, Endotrivial modules for the Schur covers of the symmetric
and alternating groups, Algebr. Represent. Theory 18 (2015), no. 5, 1321–1335, DOI
10.1007/s10468-015-9542-y. MR3422472

[LM15b] C. Lassueur and N. Mazza, Endotrivial modules for the sporadic simple groups
and their covers, J. Pure Appl. Algebra 219 (2015), no. 9, 4203–4228, DOI
10.1016/j.jpaa.2015.02.014. MR3336004
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[Thé07] J. Thévenaz, Endo-permutation modules, a guided tour, Group representation theory,
EPFL Press, Lausanne, 2007, pp. 115–147. MR2336639

[Tho79] R. W. Thomason, Homotopy colimits in the category of small categories, Math. Proc.
Cambridge Philos. Soc. 85 (1979), no. 1, 91–109, DOI 10.1017/S0305004100055535.
MR510404

[Tho80] R. W. Thomason, Cat as a closed model category, Cahiers Topologie Géom.
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