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Lecture one: Schemes

This lecture establishes some basic language, including:

Three ways of looking at schemes,

Quasi-coherent sheaves,

and the example of projective space.
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Affine Schemes

Let A be a commutative ring. The affine scheme defined by A is
the pair:

Spec(A) = (Spec(A),OA).

The underlying set of Spec(A) is the set of prime ideals p ⊆ A. If
I ⊆ A is an ideal, we define

V (I) = { p ⊆ A prime | I * p } ⊆ Spec(A).

These open sets form the Zariski topology with basis

V (f ) = V ((f )) = { p | f /∈ p } = Spec(A[1/f ]).

The sheaf of rings OA is determined by

OA(V (f )) = A[1/f ].
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Schemes as locally ringed spaces

Spec(A) is a locally ringed space: if p ∈ Spec(A), the stalk of OA

at p is the local ring Ap.

Definition

A scheme X = (X ,OX ) is a locally ringed space with an open
cover (as locally ringed spaces) by affine schemes.
A morphism f : X → Y is a continuous map together with an
induced map of sheaves

OY−→f∗OY

with the property that for all x ∈ X the induced map of local
rings

(OY )f (x)−→(OX )x

is local ; that is, it carries the maximal ideal into the maximal
ideal.
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Schemes as functors

If X is a scheme we can define a functor which we also call X
from commutative rings to sets by by

X (R) = Sch(Spec(R),X ).

Spec(A)(R) = Rings (A,R).

Theorem

A functor X : Ringsc−→Sets is a scheme if and only if
1 X is a sheaf in the Zariski topology;
2 X has an open cover by affine schemes.
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Example: projective space

Define a functor Pn from rings to sets: Pn(R) is the set of all
split inclusions of R-modules

N−→Rn+1

with N locally free of rank 1.

For 0 ≤ i ≤ n let Ui ⊆ Pn to be the subfunctor of inclusions j so
that

N
j // Rn+1

pi // R

is an isomorphism. Then the Ui form an open cover and
Ui
∼= An.
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Geometric points

If X is a (functor) scheme we get (locally ringed space) scheme
(|X |,OX ) by:

1 |X | is the set of (a geometric points) in X : equivalence
classes of pairs (F, x) where F is a field and x ∈ X (F).

2 An open subfunctor U determines an open subset of the
set of geometric points.

3 Define OX locally: if U = Spec(A) → X is an open
subfunctor, set OX (U) = A.

The geometric points of Spec(R) (the functor) are the prime
ideals of R.
If X is a functor and R is a ring, then an R-point of X is an
element in X (R); these are in one-to-one correspondence with
morphism Spec(R) → X .

Paul Goerss TAG

Schemes as ringed topoi

This notion generalizes very well.

If X is a scheme let X denote the category of sheaves of sets
on X . Then X is a topos:

1 X has all colimits and colimits commute with pull-backs
(base-change);

2 X has a set of generators;
3 Coproducts in X are disjoint; and
4 Equivalence relations in C are effective.

If X is a scheme, OX ∈ X and the pair (X ,OX ) is a ringed
topos.
[Slogan] A ringed topos is equivalent to that of a scheme if it is
locally of the form Spec(A).
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Quasi-coherent sheaves

Let (X ,OX ) be a scheme and F a sheaf of OX -modules. Then
F is quasi-coherent if is locally presentable as an OX -module.

Definition

An OX module sheaf is quasi-coherent if for all y ∈ X there is
an open neighborhood U of y and an exact sequence of
sheaves

O(J)
U

// O(I)
U

// F|U → 0.

If X = Spec(A), then the assignment F 7→ F(X ) defines an
equivalence of categories between quasi-coherent sheaves
and A-modules.
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Quasi-coherent sheaves (reformulated)

Let X be a scheme, regarded as a functor. Let Aff /X be the
category of morphisms a : Spec(A) → X . Define

OX (Spec(A) → X ) = OX (a) = A.

This is a sheaf in the Zariski topology.
A quasi-coherent sheaf F is sheaf of OX -modules so that for
each diagram

Spec(B)
b

''PPPPPPP

f

��
X

Spec(A)
a

77nnnnnnn

the map
f ∗F(a) = B ⊗A F(a) → F(b)

is an isomorphism.
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Example: O(k) on Pn

Morphisms a : Spec(A) → Pn correspond to split inclusions

N−→An+1

with N locally free of rank 1. Define OPn -module sheaves

O(−1)(a) = N

and
O(1)(a) = HomA(N,A).

These are quasi-coherent, locally free of rank 1 and O(1) has
canonical global sections xi

N // An+1
pi // A.
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Exercises

1. Show that the functor Pn as defined here indeed satisfies the
two criteria to be a scheme.

2. Fill in the details of the final slide: define the global sections
of sheaf and show that the elements xi there defined are
indeed global sections of the sheaf O(1) on Pn.

3. The definition of Pn given here can be extended to a more
general statement: if X is a scheme, then the morphisms
X → Pn are in one-to-one correspondence with locally free
sheaves F of rank 1 over X generated by global sections si ,
0 ≤ i ≤ n.

4. Show that the functor which assigns to each ring R the set of
finitely generated projective modules of rank 1 over R cannot
be scheme.
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Lecture 2: Derived schemes

In this lecture we touch briefly on the notion of derived
schemes. Topics include:

An axiomatic description of ring spectra;

Jardine’s definition of sheaves of spectra;

Derived schemes (in the Zariski topology) and examples.
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Spectra

We need a good model for the stable homotopy category. Let S
be a category so that

1 S is a cofibrantly generated proper stable simplicial model
model category Quillen equivalent to the
Bousfield-Friedlander category of simplicial spectra;

2 S has a closed symmetric monoidal smash product which
gives the smash product in the homotopy category;

3 the smash product and the simplicial structure behave well;
4 and so on.

Symmetric spectra (either simplicially or topologically) will do.
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Commutative ring spectra

A commutative monoid A in S is a commutative ring spectra:
there is a multiplication map

A ∧ A−→A

and a unit map
S0−→A

so that the requisite diagrams commutes.
There are A-modules with mulitplications A ∧M → M.
There are free commutative algebras:

Sym(X ) = ∨ Symn(X ) = ∨ (X∧n)/Σn

= ∨ (EΣn)+ ∧Σn X∧n.

These categories inherit model category structures
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Sheaves of spectra

Let X be a scheme. A presheaf of spectra is a functor

F : { Zariski opens in X }op → S.

Theorem (Jardine)

Presheaves of spectra form a simplicial model category where
E → F

is a weak equivalence if Ep → Fp is a weak equivalence for
all p ∈ X;

E → F is a cofibration in E(U) → F(U) is a cofibration for
all U.

A sheaf of (ring or module) spectra is a fibrant/cofibrant object.
Jardine proves an analogous theorem for ring and module
spectra for an arbitrary topos.
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Global sections

Let X be a scheme and F a sheaf on X . If {Uα} is an open
cover, let U the associated category. Then

H0(X ,F) = Γ(X ,F) = F(X ) ∼= Sh(X ,F)
∼= lim

U
F .

If F is a sheaf of spectra these become:

RΓ(X ,F) ' FSh+
(X ,F)

' holimU F .

And the derived nature of the subject begins to appear. There
is a spectral sequence

Hs(X , πtF) =⇒ πt−sRΓ(X ,F).

Paul Goerss TAG

Derived schemes

Theorem (Lurie)

Let X be a space and O a sheaf of ring spectra on X. Then
(X ,O) is a derived scheme if

(X , π0O) is a scheme; and

πiO is a quasi-coherent π0O module for all i .

Remark

This looks like a definition, not a theorem. There is a better
definition using topoi.
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Derived affine schemes

Definition

Let A be a ring spectrum. Define Spec(A) by

Underlying space: Spec(π0A); and

O: sheaf associated to the presheaf

V (f ) = Spec(π0A[1/f ]) 7→ A[1/f ].

Remark

A[1/f ] is the localization of A characterized by requiring

Spec(A[1/f ],B) ⊆ Spec(A,B)

to be subspace of components where f in invertible. Such
localizations can be done functorially in the category of ring
spectra.
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Derived schemes: the category

Lurie’s result above is actually part of an equivalence of
categories:

Theorem (Lurie)

A morphism f : (X ,OX ) → (Y ,OY ) of derived schemes is a pair
(f , φ) where

f : X → Y is a continuous map;

φ : OY → f∗OX is a morphism of sheaves of ring spectra

so that
(f , π0φ) : (X , π0X ) → (Y , π0Y )

is a morphism of schemes.

The collection of all morphisms f : (X ,OX ) → (Y ,OY ) is a
space.
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Derived schemes as functors

If X is a derived scheme, we write

X : Ring spectra → Spaces

for the functor

X (R) = Dsch (Spec(R),X ).

Example

The affine derived scheme A1 is characterized by

A1(R) = Ω∞R.

The affine derived scheme Gl1 is characterized

Gl1(R) ⊆ Ω∞R.

to be the subsets of invertible components.
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Example: Derived projective space

Define Pn(R) to be the subspace of the R-module morphisms

i : N−→Rn+1

which split and so that π0N is locally free of rank 1 as a
π0R-module.

The underlying scheme of derived Pn is ordinary Pn. The
sub-derived schemes Uk , 0 ≤ k ≤ n of those q with

N
i // Rn+1

pk // R

an equivalence cover Pn. Note

Uk (R) ∼= An(R) ∼= Ω∞R×n.
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Exercise

1. Let A be an E∞-ring spectrum and M an A-module. Assume
we can define the symmetric A-algebra SymA(M) and that it has
the appropriate universal property. (What would that be?) Let
A = S be the sphere spectrum and let M = ∨nS (∨ = coproduct
or wedge). What is Spec(SymS(M))? That is, what functor does
it represent?

2. Suppose n = 1 and x ∈ SymS(M) is represented by the
inclusion S = M → SymS(M). What is Spec(SymS(M)[1/x ])?
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Open-ended exercise: the tangent functor

3. If R is a ring, then R[ε]
def
= R[x ]/(x2). This definition makes

sense for E∞-ring spectra as well. If X is any functor on rings
(or E∞-ring spectra) the tangent functor TX is given by

R 7→ X (R[ε]).

Explore this functor, for example:
1 Show that TX is an abelian group functor over X ;
2 If x : Spec(A) → X is any A-point of X , describe the fiber

TX ,x = Spec(A)×X TX .

3 (More advanced) Show that this fiber is, in fact, an affine
scheme.
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Lecture 3: Flat, smooth, and étale maps

This lecture introduces some of the other standard topologies.
We discuss:

Descent and derived descent;

smooth and étale maps;

the new topologies and the sheaves in them; and

briefly mention the cotangent complex.
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Flat morphisms

A morphism of rings A → B is flat if B ⊗A (−) is exact. It is
faithfully flat if it creates isomorphisms.

Definition

A morphism f : X → Y of schemes is flat if for all x ∈ X, Ox is a
flat Of (x)-algebra. The morphism f is faithfully flat if is flat and
surjective.

A morphism A → B of E∞-ring spectra is flat if
1 π0A → π0B is a flat morphism of rings;
2 π0B ⊗π0A πnA ∼= πnB for all n.
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A bar construction

Let X → Y be a morphism of schemes and let

ε : X•−→Y

be the bar construction. Faithfully flat descent compares
sheaves over Y with simplicial sheaves on

X• = { X •+1 }.

If X = Spec(B) → Spec(A) = Y are both affine; this is Spec(−) of
the cobar construction

η : A−→{ B⊗•+1 }.
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Descent

A module-sheaf F• on X• is:
1 module sheaves Fn on Xn;
2 for each φ : [n] → [m], a homomorphism θ(φ) : φ∗Fn → Fm;
3 subject to the evident coherency condition.

Definition

Such a module sheaf is Cartesian if each Fn is quasi-coherent
and θ(φ) is an isomorphism for all φ.

If E is a quasi-coherent sheaf on Y , ε∗E is a Cartesian sheaf on
X•.

Descent: If f is quasi-compact and faithfully flat, this is an
equivalence of categories.
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Derived Descent

A chain complex F• of simplicial module sheaves is the same
as simplicial chain complex of module sheaves.

Definition

Let F• be a chain complex of simplicial module sheaves on X•.
The F• is Cartesian if

1 each θ(φ) : φ∗Fn → Fm is an equivalence;
2 the homology sheaves Hi(F•) are quasi-coherent.

If E is a complex of quasi-coherent sheaves on Y , ε∗E is a
Cartesian sheaf on X•.

Derived descent: This if f is quasi-compact and faithfully flat,
this is an equivalence of derived categories.
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Étale and smooth morphisms

There are not enough Zariski opens; there are too many flat
morphisms, even finite type ones; therefore:

Suppose we are given any lifting problem in schemes

Spec(A/I) //

⊆
��

X

f
��

Spec(A) //

::v
v

v
v

v
Y

with I nilpotent and f flat and locally finite. Then

Definition
1 f is smooth if the problem always has a solution;
2 f is étale if the problem always has a unique solution.
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Examples: Étale and smooth morphisms

Theorem

B = A[x , . . . , xn]/(p1, . . . ,pm) is

étale over A if m = n and det(∂pi/∂xj) is a unit in B;

smooth over A if m ≤ n and the m×m minors of the partial
derivatives generate B.

Any étale or smooth morphism is locally of this form.

1 Fp[x ]/(xpn − x) is étale over Fp.
2 Any finite separable field extension is étale.
3 A[x ]/(ax2 + bx + c) is étale over A if b2 − 4ac is a unit in A.
4 F[x , y ]/(y2 − x3) is not smooth over any field F.
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Étale maps as covering spaces

Theorem

Let f : X → Y be étale and separated and U ⊂ Y be open. Any
section s of

U ×Y X → U

is an isomorphism onto a connected component.

For the analog of normal covering spaces we have:

Definition

Let f : X → Y be étale and G = AutX (Y ) (the Deck
transformations). Then X is Galois overY if we have an
isomorphism

G × X−→X ×Y X

(g, x) 7→ (g(x), x).
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Étale topology

Let X be a scheme. The étale topology has

étale maps U → X as basic opens;

a cover { Vi → U } is a finite set of étale maps with∐
Vi → U surjective.

Notes:
1 every open inclusion is étale; so an étale sheaf yields a

Zariski sheaf;
2 Define OX (U → X ) = OU(U); this is the étale structure

sheaf.
3 There are module sheaves and quasi-coherent sheaves for

the étale topology.
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Zariski versus étale sheaves

The inclusion of a Zariski open U → X is rigid: AutX (U) = {e}.
An étale open U → X need not be rigid: AutX (U) 6= {e} in
general.

Example

Let F be field and X = Spec(F).

Module sheaves in the Zariski topology on X are F- vector
spaces.

Module sheaves in the étale topology on X are twisted,
discrete F̄−Gal(F̄/F)-modules.
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Étale morphisms for spectra

A morphism f : A → B of ring spectra is étale if
1 π0A → π0B is an étale morphism of rings; and
2 π0B ⊗π0A πiA → πiB is an isomorphism.

Compare to:

Definition (Rognes)

Let A → B of ring spectra and let G = AutA(B). The morphism
Galois if

B ∧A B → F (G+,B); and

A → BhG = F (G+,B)G

are equivalences.

Hypotheses are needed: G finite or “stably dualizable”.
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The cotangent complex

Let f : X → Y be a morphism of schemes. Let DerX/Y be the
sheaf on X associated to the functor

Spec(R) //

��

X

f
��

Spec(R[ε])
ε=0

//

::u
u

u
u

u
Y

This is representable: DerX/Y = HomOX (ΩX/Y ,OX ). The
cotangent complex LX/Y is the derived version.

Suppose f is locally finite and flat, then
1 f is étale if and only if LX/Y = 0;
2 f is smooth if and only if LX/Y ' ΩX/Y and that sheaf is

locally free.
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Exercises

1. Let (A, Γ) be a Hopf algebroid. Assume Γ is flat over A. Then
we get a simplicial scheme by taking Spec(−) of the cobar
construction on the Hopf algebroid. Show that the category of
Cartesian (quasi-coherent) sheaves on this simplicial scheme
is equivalent to the category of (A, Γ)-comodules.

2. Let A → B be a morphism of algebras and M an A-module.
Show that the functor on B-modules

M → DefA(B,M)

is representable by a B-module ΩB/M . Indeed, if I is the kernel
of the multiplication map B ⊗A B → B, then ΩB/A

∼= I/I2.

3. Calculate Let B = F[x , y ]/(y2 − x3) where F is a field. Show
that ΩB/F is locally free of rank 1 except at (0,0).
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Lecture 4: Algebraic stacks

We introduce the notion of algebraic stacks and quasi-coherent
sheaves thereon. Topic include:

Stacks of G-torsors and quotient stacks;

Projective space as a stacks;

Quasi-coherent sheaves versus comodules;

Deligne-Mumford stacks and their derived counterparts.
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Sheaves of groupoids

Let S be a scheme (usually Spec(R)). Stacks are built from
sheaves of groupoids G on S.

Example

Let (A, Γ) be Hopf algebroid over R. Then

G = { Spec(Γ)
//
// Spec(A)oo }

is a sheaf of groupoids in all our topologies.

Given U → S and x ∈ G(U), get a presheaf Autx

Autx(V → U) = IsoG(V )(x |V , x |V ).

G is a prestack if this is sheaf. Hopf algebroids give prestacks.
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Effective descent and stacks

Let G be a prestack on S and let NG be its nerve; this is a
presheaf of simplicial sets.

Definition

G is a stack if NG is a fibrant presheaf of simplicial sets.

This is equivalent to G satisfying the following:

Effective Descent Condition: Given
1 a cover Vi → U and xi ∈ G(Ui);
2 isomorphisms φij : xi |Vi×UVj → xj |Vi×UVj ;

3 subject to the evident cocyle condition;

Then there exists x ∈ G(U) and isomorphisms ψi : xi → x |Vi .
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Example: Principal G-bundles

Hopf algebroids hardly ever give stacks. Let’s fix this.
Let Λ be a Hopf algebra over a ring k and

G = Spec(Λ) → Spec(k) = S

the associated group scheme.

Definition

A G-scheme P → U over U is a a G-torsor if it locally of the
form U ×S G.

The functor from schemes to groupoids

U 7→ { G-torsors over U and their isos }

is a stack. This is the classifying stack BG.
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Example: Algebraic homotopy orbits

Let X be a G-scheme. Form a functor to groupoids

U 7→


G-map

P −→ X
torsor ↓

U


This is the quotient stack X ×G EG = [X/G/S].

If Λ is our Hopf algebra, A a comodule algebra, then
(A, Γ = A⊗ Λ) is a split Hopf algebroid and

Spec(A)×G EG

is the associated stack to the sheaf of groupoids we get from
(A,Λ).
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Example: Projective space

Consider the action

An+1 ×Gm−→An+1

(a0, . . . ,an)× λ 7→ (a0λ, . . . ,anλ)

Define Pn → An+1 ×Gm EGm by

{ N → Rn+1 } 7→


Iso(R,N) −→ An+1

↓
Spec(R)


We get an isomorphism

Pn ∼= (An+1 − {0})×Gm EGm.
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Morphisms and pullbacks

A morphism of stack M→N is a morphism of sheaves of
groupoids. A 2-commuting diagram

N1

p

��
M

f 88qqqqqq

g &&MMMMMM

N2

is specified natural isomorphism φ : pf → g.

Given M1
f // N M2

goo the pull-back M1 ×N M2 has
objects

(x ∈M1, y ∈M2, φ : f (x) → g(y) ∈ N ).
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Representable morphisms

Definition

A morphism M→N is representable if for all morphisms
U → N of schemes, the pull-back

U ×N M

is equivalent to a scheme.

A representable morphism of stacks N →M is smooth or étale
or quasi-compact or · · · if

U ×N M−→U

has this property for all U → N .
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Algebraic Stacks

Definition

A stack M is algebraic if
1 all morphisms from schemes U →M are algebraic; and,
2 there is a smooth surjective map q : X →M.

M is Deligne-Mumford if P can be chosen to be étale.

X ×G EG is algebraic with presentation

X−→X ×G EG

if G is smooth. Deligne-Mumford if G is étale.
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Quasi-coherent sheaves

Definition

A quasi-coherent sheaf F on an algebraic stack M:
1 for each smooth x : U →M, a quasi-coherent sheaf F(x);
2 for 2-commuting diagrams

V y
&&MMMMMM

f

��
M

U
x

88rrrrrr

coherent isomorphisms F(φ) : F(y) → f ∗F(x).

Descent: If X →M is a presentation then

{ QC-sheaves on M } ' { Cartesian sheaves on X• }
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Example: Quasi-coherent sheaves and comodules

Suppose M = X ×G EG where

G = Spec(Λ) with Λ smooth over the base ring;

X = Spec(A) where A is comodule algebra.

Then X = Spec(A) →M is a presentation and

Spec(A)×M Spec(A) ∼= Spec(A⊗ Λ) = Spec(Γ).

We have

{ Cartesian sheaves on X• } ' { (A, Γ)-comodules }.
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Derived Deligne-Mumford stacks

Theorem (Lurie)

Let M be a stack and O a sheaf of ring spectra on M. Then
(M,O) is a derived Deligne-Mumford stack if

1 (M, π0O) is a Deligne-Mumford stack; and
2 πiO is a quasi-coherent sheaf on (M, π0O) for all i .
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Exercise

Let Gm be the multiplicative group and BGm its classifying
stack: this assigns to each commutative ring the groupoid of
Gm-torsors over A. Show that BGm classifies locally free
modules of rank 1; that is, the groupoid of Gm-torsors is
equivalent to the groupoid of locally free modules of rank 1.

The proof is essentially the same as that of equivalence
between line bundles over a space X and the principle
Gl1(R)-bundles over X . Here are two points to consider:

1. If N is locally free of rank 1, then IsoA(A,N) is a Gm-torsor;

2. If P is a Gm torsor, choose a faithfully flat map f : A → B so
that we can choose an isomorphism φ : f ∗P ∼= Gm. If
di : B → B ⊗ B are the two inclusions then φ determines an
isomorphism d∗1Gm → d∗0Gm – which must be given by a
µ ∈ (B⊗A)×. Then (B, µ) is the descent data determining a
locally free module of rank 1 over A.
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Lecture 5: Elliptic curves

We discuss the compactified moduli stack of elliptic curves and
its derived analog, thus introducing the Hopkins-Miller theorem
and topological modular forms. Included are

Weierstrass versus elliptic curves;

an affine étale cover of M̄e``;

a brief discussion of modular forms.
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Weierstrass curves

Definition

A Weierstrass curve C = Ca over a ring R is a closed
subscheme of P2 defined by the equation

y2 + a1xy + a3y = x3 + a2x2 + a4x + a6.

The curve C has a unique point e = [0,1,0] when z = 0.

1 C is has at most one singular point;
2 C is always smooth at e;
3 the smooth locus Csm is an abelian group scheme.
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Elliptic curves

Definition

An elliptic curve over a scheme S is a proper smooth curve of

genus 1 over S C
q //

S
e

oo with a given section e.

Any elliptic curve is an abelian group scheme:

if T → S is a morphism of schemes, the morphism

{T -points of C}−→Pic(1)(C)

P 7−→ I−1(P)

is a bijection.
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Comparing definitions

Let C = Ca be a Weierstrass curve over R. Define elements of
R by

b2 = a2
1 + 4a2

b4 = 2a4 + a1a3

b6 = a2
3 + 4a6

c4 = b2
2 − 24b4

c6 = b3
2 + 36b2b4 − 216b6

(12)3∆ = c3
4 − c2

6

Then C is elliptic if and only if ∆ is invertible. All elliptic curves
are locally Weierstrass (more below).
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Examples

1.) Legendre curves: over Z[1/2][λ,1/λ(λ− 1)]:

y2 = x(x − 1)(x − λ)

2.) Deuring curves: over Z[1/3][ν,1/(ν3 + 1)]:

y2 + 3νxy − y = x3

3.) Tate curves: over Z[τ ]:

y2 + xy = x3 + τ

∞.) The cusp: y2 = x3.
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The stacks

Isomorphisms of elliptic curves are isomorphisms of pointed
schemes. This yields a stack Me``.

Isomorphisms of Weierstrass curves are given by projective
transformations

x 7→ µ−2x + r

y 7→ µ−3y + µ−2sx + t

This yields an algebraic stack

MWeier = A5 ×G EG

where G = Spec(Z[r , s, t , µ±1]).
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Invariant differentials

Consider C
q //

S
e

oo . Then e is a closed embedding defined by

an ideal I. Define

ωC = q∗I/I2 = q∗ΩC/S.

ωC is locally free of rank 1; a generator is an invariant
1-form;

if C = Ca is Weierstrass, we can choose the generator

ηa =
dx

2y + a1x + a3
;

if C is elliptic, a choice of generator defines an
isomorphism C = Ca; thus, all elliptic curves are locally
Weierstrass.

Paul Goerss TAG

Modular forms

The assignment C/S 7→ ωC defines a quasi-coherent sheaf on
Me`` or MWeier.

Definition

A modular form of weight n is a global section of ω⊗n.

The classes c4, c6 and ∆ give modular forms of weight 4, 6,
and 12.

Theorem (Deligne)

There are isomorphisms

Z[c4, c6,∆
±1]/(c3

4 − c2
6 = (12)3∆) → H0(Me``, ω

⊗∗)

and

Z[c4, c6,∆]/(c3
4 − c2

6 = (12)3∆) → H0(MWeier, ω
⊗∗)
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The compactified Deligne-Mumford stack

We have inclusions

Me`` ⊆ M̄e`` ⊆MWeier

where
1 Me`` classifies elliptic curves: those Weierstrass curves

with ∆ invertible;
2 M̄e`` classifies those Weierstrass curves with a unit in

(c3
4 , c

2
6 ,∆).

Theorem

The algebraic stacks Me`` and M̄e`` are Deligne-Mumford
stacks.
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Topological modular forms

Theorem (Hopkins-Miller-Lurie)

There is a derived Deligne-Mumford stack (M̄e``,Otop) whose
underlying ordinary stack is M̄e``.

Define the spectrum of topological modular forms tmf to be the
global sections of Otop.

There is a spectral sequence

Hs(M̄e``, ω
⊗t) =⇒ π2t−stmf .
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Exercises

1. Calculate the values of c4 and ∆ for the Legendre, Deuring,
and Tate curves. Decide when the Tate curve is singular.

2. Show that the invariant differential ηa of a Weierstrass curve
is indeed invariant; that is, if φ : Ca → Ca′ is a projective
transformation from one curve to another, then φ∗ηa′ = µηa.

3. The j-invariant M̄e`` → P1 sends an elliptic curve C to the
class of the pair (c3

4 ,∆). Show this classifies the line bundle
ω⊗12.

Remark: The j-invariant classifies isomorphisms; that, the
induced map of sheaves π0M̄e`` → P1 is an isomorphism.

Paul Goerss TAG

Lecture 6: The moduli stack of formal groups

We introduce the moduli stack of smooth one-dimensional
formal groups, whose geometry governs the chromatic
viewpoint of stable homotopy theory. We include

periodic homology theories;

a brief discussion of formal schemes;

the height filtrations; and

the Landweber exact functor theorem.
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Periodic homology theories

Definition
Let E∗ be a multiplicative cohomology theory and let

ωE = Ẽ0S2 = E2.

Then E is periodic if
1 E2k+1 = 0 for all k;
2 ωE is locally free of rank 1;
3 ωE ⊗E0 E2n → E2n+2 is an isomorphism for all n.

A choice of generator u ∈ ωE is an orientation ; then

E∗ = E0[u
±1].

The primordial example: complex K -theory.
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Formal schemes

If X is a scheme and I ⊆ O is a sheaf of ideals defining a
closed scheme Z . The nth-infinitesimal neighborhood is

Zn(R) = {f ∈ X (R) | f ∗In = 0 }.

The associated formal scheme:

Ẑ = colim Zn.

If X = Spec(A) and I defined by I ⊆ A, then

Ẑ def
= Spf(ÂI).

For example

Spf(Z[[x ]])(R) = the nilpotents of R.
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Formal groups

If E∗ is periodic, then

G = Spf(E0CP∞)

is a group object in the category of formal schemes – a
commutative one-dimensional formal group .

If E∗ is oriented, E0CP∞ ∼= E0[[x ]] and the group structure is
determined by

E0[[x ]] ∼= E0CP∞ → E0(CP∞ × CP∞) ∼= E0[[x , y ]]

x 7→ F (x , y) = x +F y .

The power series is a formal group law ; the element x is a
coordinate .
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Example: elliptic spectra

Let C : Spec(R) → M̄e`` be étale and classify a generalized
elliptic curve C. Hopkins-Miller implies that there is a periodic
homology theory E(R,C) so that

1 E(R,C)0
∼= R;

2 E(R,C)2
∼= ωC ;

3 GE(R,C)
∼= Ĉe.

Hopkins-Miller says a lot more: the assignment

{ Spec(R)
C

étale
// M̄e`` } 7→ E(R,C)

is a sheaf of E∞-ring spectra.
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The moduli stack of formal groups

An Isomorphism of formal groups over a ring R

φ : G1 → G2

is an isomorphisms of group objects over R. Define Mfg to be
the moduli stack of formal groups.

If G1 and G2 have coordinates, then φ is determined by an
invertible power series φ(x) = a0x + a1x2 + · · · .

Theorem

There is an equivalence of stacks

Spec(L)×Λ EΛ 'Mfg

where L is the Lazard ring and Λ is the group scheme of
invertible power series.
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Invariant differentials

Let G
q //

S
e

oo be a formal group. Then e identifies S with the

1st infinitesimal neighborhood defined the ideal of definition I
of G. Define

ωG = q∗I/I2 = q∗ΩG/S.

This gives an invertible quasi-coherent sheaf ω on Mfg :

ωG is locally free of rank 1, a generator is an invariant
1-form;

if S = Spec(R) and G has a coordinate x , we can choose
generator

ηG =
dx

Fx(0, x)
∈ R[[x ]]dx ∼= ΩG/S;

if E is periodic, then ωGE
∼= E2

∼= ωE .
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Height of a formal group

Let G be a formal group over a scheme S over Fp. There are
recursively defined global sections

vk ∈ H0(S, ωpk−1
G )

so that we have a factoring

G

p

((
F

// G(pn)
V

// G

if and only if v1 = v2 = · · · = vn−1 = 0. Here F is the relative
Frobenius.

Then G has height greater than or equal to n.
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The height filtration

We get a descending chain of closed substacks over Z(p)

Mfg M(1)
p=0oo M(2)

v1=0oo M(3)
v2=0oo · · ·oo M(∞)oo

and the complementary ascending chain of open substacks

U(0) ⊆ U(1) ⊆ U(2) ⊆ · · · ⊆ Mfg .

Over Z(p) there is a homotopy Cartesian diagram

M̄e``
//

��

MWeier

��
U(2) // Mfg
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The height filtration

We get a descending chain of closed substacks over Z(p)

Mfg M(1)
p=0oo M(2)

v1=0oo M(3)
v2=0oo · · ·oo M(∞)oo

and the complementary ascending chain of open substacks

U(0) ⊆ U(1) ⊆ U(2) ⊆ · · · ⊆ Mfg .

Over Z(p) there is a homotopy Cartesian diagram

M̄e``
//

flat
��

MWeier

not flat
��

U(2) // Mfg
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Flat morphisms (LEFT)

Suppose G : Spec(R) →Mfg is flat. Then there is an
associated homology theory E(R,G).

More generally: take a “flat” morphism N →Mfg and get a
family of homology theories.

Theorem (Landweber)

A representable and quasi-compact morphism N →Mfg of
stacks is flat if and only if vn acts as a regular sequence; that is,
for all n, the map

vn : f∗O/In → f∗O/In ⊗ ωpn−1

is an injection.
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The realization problem

Suppose N is a Deligne-Mumford stack and

f : N →Mfg

is a flat morphism. Then the graded structure sheaf on

(ON )∗ = {ω⊗∗N }

can be realized as a diagram of spectra in the homotopy
category.

Problem

Can the graded structure sheaf be lifted to a sheaf of E∞-ring
spectra? That is, can N be realized as a derived
Deligne-Mumford stack? If so, what is the homotopy type of the
space of all such realizations?
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Exercises

These exercises are intended to make the notion of height
more concrete.

1. Let f : F → G be a homomorphism of formal group laws over
a ring R of characteristic p. Show that if f ′(0) = 0, then
f (x) = g(xp) for some power series g. To do this, consider the
effect of f in the invariant differential.

2. Let F be a formal group law of F and p(x) = x +F · · ·+F x
(the sum taken p times) by the p-series. Show that either
p(x) = 0 or there in an n > 0 so that

p(x) = unxpn
+ · · · .

3. Discuss the invariance of un under isomorphism and use
your calculation to define the section vn of ω⊗pn−1.
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An exercise about LEFT

4. One direction of LEFT is fairly formal: show that
G : Spec(R) →Mfg is flat that then the vi form a regular
sequence.

The other direction is a theorem and it depends, ultimately, on
Lazard’s calculation that there is an unique isomorphism class
of formal groups of height n over algebraically closed fields.
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Lecture 7: Derived global sections

In this lecture and the next we outline an argument for
calculating the homotopy groups of tmf . Here we introduce:

coherent cohomology and derived pushforward;

cohomology versus comodule Ext;

how to calculate the cohomology of projective space.
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Coherent cohomology

Definition

Let X be an algebraic stack and F a quasi-coherent sheaf on
X. The coherent cohomology of F is the right derived
functors of global sections:

Hs(X ,F) = HsRΓ(F).

Warning: I may need hypotheses on X , but I will be vague
about this.

If X is derived Deligne-Mumford stack, we have a descent
spectral sequence

Hs(X , πtOX ) =⇒ πt−sRΓ(OX ).
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Čech complexes

Suppose X → Y is faithfully flat. We have the simplicial bar
construction

ε : X•−→Y .

We get a spectral sequence

πsH t(X•, ε∗F) =⇒ Hs+t(Y ,F).

If U is affine, Hs(U,F) = 0 for s > 0.

If X = tUi is where U = {Ui} is a finite affine cover of Y
separated, we get an isomorphism with coherent cohomology
and Čech cohomology

Hs(Y ,F) ∼= Ȟ(U ,F).
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Comodules and comodule Ext

Let M be a stack and suppose Spec(A) →M is a flat
presentation with the property that

Spec(A)×M Spec(A) ∼= Spec(Λ).

Then (A, Γ) is a Hopf algebroid and we have

Hs(X ,F) ∼= ExtsΛ(A,M)

where M = ε∗F is the comodule obtained from F .

Example: M = X ×G EG with X = Spec(A) and G = Spec(Λ).
Here Γ = A⊗ Λ.
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Example: the Adams-Novikov E2-term

Let G : Spec(L) →Mfg classify the formal group of the
universal formal group law. Then E(L,G) = MUP is periodic
complex cobordism. We have

Spec(L)×Mfg Spec(L) = Spec(W ) = Spec(MUP0MUP)

where
W = L[a±1

0 ,a1,a2, . . .].

Then

Hs(Mfg , ω
⊗t) ∼= ExtsW (L,MUP2t)

∼= ExtsMUP∗MUP(Σ2tMUP∗,MUP∗).

This is not really the E2-term of the ANSS so we must talk
about:
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Gradings: the basics

A graded R-module is a R[µ±1]-comodule;

A graded ring gives an affine Gm-scheme.

Example

1 The Lazard ring L is graded:

x +Fµ y = µ−1((µx) +F (µy)).

2 W = L[a±1
0 ,a1, . . .] is graded:

(φµ)(x) = µ−1φ(µx).

3 Weierstrass curves: x 7→ µ−2x , y 7→ µ−3y .
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Gradings and cohomology

Let H = Spec(Λ) be an affine group scheme with an action of
Gm and let

G = H o Gm = Spec(Λ[µ±1])

be the semi-direct product. Let X = Spec(A) be an affine right
G-scheme. Then (A∗, Γ∗ = A∗ ⊗ Λ∗) is a graded Hopf algebroid.

Hs(X ×G EG,F) = ExtsΓ∗(A∗,M∗).

where M∗ = F(Spec(A) → X ×G EG).

1 Hs(Mfg , ω
⊗t) ∼= ExtsMU∗MU(Σ2tMU∗,MU∗);

2 Hs(MWeier, ω
⊗t) ∼= ExtsΛ∗

(Σ2tA∗,A∗).

3 H∗(An+1 ×Gm EGm,F) = M0.
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Derived push-forward

Given f : X → Y and a sheaf F on X , then f∗F is the sheaf on
Y associated to

U 7→ H0(U ×Y X ,F).

If F is quasi-coherent and f is quasi-compact, f∗F is
quasi-coherent.

There is a composite functor spectral sequence

Hs(Y ,Rt f∗F) =⇒ Hs+t(X ,F).

If higher cohomology on Y is zero:

H0(Y ,Rt f∗F) ∼= H t(X ,F).
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Example: projective space

Let S∗ = Z[x0, . . . , xn] with |xi | = 1.

Theorem

H t(Pn,O(∗)) ∼=


S∗ t = 0;

S∗/(x∞0 , . . . , x∞n ) t = n.

We examine the diagram

An+1 − {0}
j //

��

An+1

��
Pn i // An+1 ×Gm EGm.

We must calculate (the global sections) of

Rj∗j∗OAn+1 “=” Rj∗j∗S∗.
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Example: the affine case

Let X = Spec(R) and j : U → X the open defined by an ideal
I = (a1, . . . ,an). If F is defined by the module M, then j∗j∗F is
defined by K where there is an exact sequence

0 → K →
∏

s

M[
1
as

] →
∏
s<t

M[
1

asat
].

There is also an exact sequence

0 → ΓIM → M → K → 0

where
ΓIM = {x ∈ M | Inx = 0 for some n }.
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Local cohomology

If i : U → Y is the open complement of a closed sub-stack
Z ⊆ Y define local cohomology by the fiber sequence

RΓZF → F → Ri∗i∗F .

If X = Spec(A) and Z is define by I = (a1, . . . ,ak ) local
cohomology can be computed by the Koszul complex

M →
∏

s

M[
1
as

] →
∏
s<t

M[
1

asat
] → · · · → M[

1
a1 . . .ak

] → 0.

Since x0, . . . , xn ∈ S∗ is a regular sequence:

Rn+1Γ{0}S∗ = S∗/(x∞0 , . . . , x∞n )

and RtΓ{0}S∗ = 0, t 6= n + 1.
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Lecture 8: Topological modular forms

This lecture computes the homotopy groups of tmf via the
descent spectral sequence, emphasizing the role of
Weierstrass curves and Serre duality.
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The spectral sequence

Compute
Hs(M̄e``, ω

⊗t) =⇒ πt−stmf

when 2 is inverted. Can do p = 2 as well, but harder.
We have a Cartesian diagram

U
j //

��

A5

��
M̄e`` i

// MWeier

where U is the open defined by the comodule ideal

I = (c3
4 ,∆).
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Cohomology of MWeier, p > 3.

Any Weierstrass curve is isomorphic to a curve of the form

y2 = x3 − (1/48)c4x − (1/216)c6

and the only remaining projective transformations are

(x , y) 7→ (µ−2x , µ−3y).

Then
Spec(Z(p)[c4, c6]) →MWeier

is a presentation. There is no higher cohomology and

H0(MWeier, ω
⊗∗) ∼= Z(p)[c4, c6]

with |c4| = 8 and |c6| = 12. Note ∆ = (1/(12)3)(c3
4 − c2

6).
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Cohomology of MWeier, p = 3.

Any Weierstrass curve is isomorphic to a curve of the form

y2 = x3 + (1/4)b2 + (1/2)b2 + (1/4)b6

and the remaining projective transformations are

(x , y) 7→ (µ−2x + r , µ−3y).

Then
Spec(Z(3)[b2,b4,b6]) →MWeier

is a presentation and

Hs(MWeier, ω
t) = ExtsΓ(Σ

2tA∗,A∗)

with
A∗ = Z(p)[b2,b4,b6] and Γ∗ = A∗[r ]

with appropriate degrees.
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Some familiar elements (Rezk)

In the Hopf algebroid (A∗, Γ∗), we have

ηR(b2) = b2 + 12r

so there is higher cohomology:

H∗(MWeier, ω
⊗∗) = Z(3)[c4, c6,∆][α, β]/I

where |α| = (1,4) and |β| = (2,12). Here I is the relations:

c3
4 − c2

6 = (12)3∆

3α = 3β = 0

ciα = ciβ = 0.

Note: ∆ acts “periodically”.
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A property of local cohomology

To compute

Hs(MWeier,Rt i∗ω∗) =⇒ Hs+t(M̄e``, ω
∗)

we compute RΓIA∗ where I = (c3
4 ,∆).

Note: if
√

I =
√

J then RΓI = RΓJ .

For p > 3 we take I = (c3
4 ,∆) and J = (c4, c6).

R2ΓIA∗ = Z(p)[c4, c6]/(c
∞
4 , c∞6 ).

and

Hs(M̄e``, ω
∗) ∼=


Z(p)[c4, c6], s = 0;

Z(p)[c4, c6]/(c∞4 , c∞6 ), s = 1.

Note the duality. The homotopy spectral sequence collapses.
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Local cohomology for tmf , p = 3

At p = 3 there are inclusions of ideals

(c3
4 ,∆) ⊆ (c4,∆) ⊆ (c4,e6,∆) = J =

√
I

where
e2

6 = 12∆.

Since J is not generated by a regular sequence we must use: if
J = (I, x) there is a fiber sequence

RΓJM → RΓIM → RΓIM[1/x ].

We take I = (c4,e6) and J = (c4,e6,∆).
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Duality at 3

Let A∗ = Z(3)[b2,b4,b6].

Proposition

Rs
J A∗ = 0 if s 6= 2 and R2

J A∗ is the ∆-torsion in A∗/(c∞4 ,e∞6 ).

Corollary (Duality)

R2ΓJω
−10 ∼= Z(3) with generator corresponding to 12/c4e6 and

there is non-degenerate pairing

R2ΓJ ω
−t−10 ⊗ ωt → R1ΓJ ω

−10 ∼= Z(3)

We now can calculate π∗tmf , at least it p = 2.
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The differentials and extensions

The crucial differentials are classical:

d5∆ = αβ2 (Toda)

d9∆α = β4 (Nishida)

There is also an exotic extension in the multiplication: if z is the
homotopy class detected by ∆α, then:

αz = β3.

In fact, z = 〈α, α, β2〉 so

αz = α〈α, α, β2〉 = 〈α, α, α〉β2 = β3.
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Lectures 9 and 10: Lurie’s realization result

This final (longer) lecture discusses

p-divisible groups;

how they arise in homotopy theory;

Lurie’s realization result;

the impact of the Serre-Tate theorem; and

gives a brief glimpse of the Behrens-Lawson
generalizations of tmf .
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p-divisible groups

Pick a prime p and work over Spf(Zp); that is, p is implicitly
nilpotent in all rings. This has the implication that we will be
working with p-complete spectra.

Definition

Let R be a ring and G a sheaf of abelian groups on R-algebras.
Then G is a p-divisible group of height n if

1 pk : G → G is surjective for all k ;
2 G(pk ) = Ker(pk : G → G) is a finite and flat group scheme

over R of rank pkn;
3 colim G(pk ) ∼= G.

This definition is valid when R is an E∞-ring spectrum.
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Examples of p-divisible groups

Formal Example: A formal group over a field or complete local
ring is p-divisible.

Warning: A formal group over an arbitrary ring may not be
p-divisible as the height may vary “fiber-by-fiber”.

Étale Example: Z/p∞ = colim Z/pk with

Z/pk = Spec(map(Z/pn,R)).

Fundamental Example: if C is a (smooth) elliptic curve then

C(p∞)
def
= C(pn)

is p-divisible of height 2.
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A short exact sequence

Let G be p-divisible and Gfor be the completion at e. Then
G/Gfor is étale ; we get a natural short exact sequence

0 → Gfor → G → Get → 0

split over fields, but not in general.

Assumption: We will always have Gfor of dimension 1.

Classification: Over a field F = F̄ a p-divisible group of height
n is isomorphic to one of

Γk × (Z/p∞)n−k

where Γk is the unique formal group of height k . Also

Aut(G) ∼= Aut(Γk )×Gln−k (Zp).

Paul Goerss TAG

Ordinary vs supersingular elliptic curves

Over F, char(F) = p, an elliptic curve C is ordinary if Cfor(p∞)
has height 1. If it has height 2, C is supersingular .

Theorem

Over an algebraically closed field, there are only finitely many
isomorphism classes of supersingular curves and they are all
smooth.

If p > 3, there is a modular form of A of weight p − 1 so that C
is supersingular if and only if A(C) = 0.
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p-divisible groups in stable homotopy theory

Let E be a K (n)-local periodic homology theory with associated
formal group

Spf(E0CP∞)) = Spf(π0F (CP∞,E)).

We have
F (CP∞,C) ∼= lim F (BCpn ,E).

Then
G = colim Spec(π0LK (n−1)F (BCpn ,E))

is a p-divisible group with formal part

Gfor = Spf(π0F (CP∞,LK (n−1)E)).
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Moduli stacks

Define Mp(n) to be the moduli stack of p-divisible groups
1 of height n and
2 with dim Gfor = 1.

There is a morphism

Mp(n)−→Mfg

G 7→ Gfor

Remark
1 The stack Mp(n) is not algebraic, just as Mfg is not. Both

are “pro-algebraic”.
2 Indeed, since we are working over Zp we have to take

some care about what we mean by an algebraic stack at
all.
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Some geometry

Let V(k) ⊆Mp(n) be the open substack of p-divisible groups
with formal part of height k . We have a diagram

V(k − 1) //

��

V(k) //

��

Mp(n)

��
U(k − 1) // U(k) // U(n) // Mfg

1 the squares are pull backs;
2 V(k)− V(k − 1) and U(k)− U(k − 1) each have one

geometric point;
3 in fact, these differences are respectively

B Aut(Γk )× BGln−k (Zp) andB Aut(Γk ).
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Lurie’s Theorem

Theorem (Lurie)

Let M be a Deligne-Mumford stack of abelian group schemes.
Suppose G 7→ G(p∞) gives a representable and formally étale
morphism

M−→Mp(n).

Then the realization problem for the composition

M−→Mp(n)−→Mfg

has a canonical solution. In particular, M is the underlying
algebraic stack of derived stack.

Remark: This is an application of a more general
representability result, also due to Lurie.
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Serre-Tate and elliptic curves

Let Me`` be the moduli stack of elliptic curves. Then

Me``−→Mp(2) C 7→ C(p∞)

is formally étale by the Serre-Tate theorem.

Let C0 be an M-object over a field F, with char(F) = p. Let
q : A → F be a ring homomorphism with nilpotent kernel. A
deformation of C0 to R is an M-object over A and an
isomorphism C0 → q∗C. Deformations form a category
DefM(F,C0).

Theorem (Serre-Tate)

We have an equivalence:

Defe``(F,C0) → DefMp(2)(F,C0(p
∞))
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Topological modular forms

If C is a singular elliptic curve, then Csm
∼= Gm or

Csm(p∞) = multiplicative formal group

which has height 1, not 2. Thus

Me``−→Mp(2)

doesn’t extend over M̄e``; that is, the approach just outlined
constructs tmf [∆−1] rather than tmf .

To complete the construction we could
1 handle the singular locus separately: “Tate K -theory is

E∞”; and
2 glue the two pieces together.
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Higher heights

There are very few families of group schemes smooth of
dimension 1. Thus we look for stackifiable families of abelian
group schemes A of higher dimension so that

There is a natural splitting A(p∞) ∼= A0 × A1 where A0 is a
p-divisible group with formal part of dimension 1; and

Serre-Tate holds for such A: DefA/F ' DefA0/F.

This requires that A support a great deal of structure; very
roughly:

(E) End(A) should have idempotents; there is a ring
homomorphism B → End(A) from a certain central simple
algebra;

(P) Deformations of A(p∞) must depend only on deformations
of A0; there is a duality on A – a polarization.
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Shimura varieties

Such abelian schemes have played a very important role in
number theory.

Theorem (Behrens-Lawson)

For each n > 0 there is a moduli stack Shn (a Shimura variety )
classifying appropriate abelian schemes equipped with a
formally étale morphism

Shn−→Mp(n).

In particular, the realization problem for the surjective morphism

Shn → U(n) ⊆Mfg

has a canonical solution.

The homotopy global sections of the resulting sheaf of E∞-ring
spectra is called taf : topological automorphic forms.
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