TAG Lecture 8: Topological Modular Forms

Paul Goerss

19 June 2008

Topological modular forms

Compute

$$
H^{s}\left(\overline{\mathcal{M}}_{e \ell \ell}, \omega^{\otimes t}\right) \Longrightarrow \pi_{t-s} \mathbf{t m f}
$$

when 2 is inverted. Can do $p=2$ as well, but harder.
We have a Cartesian diagram

where U is the open defined by the comodule ideal

$$
I=\left(c_{4}^{3}, \Delta\right) .
$$

Any Weierstrass curve is isomorphic to a curve of the form

$$
y^{2}=x^{3}-(1 / 48) c_{4} x-(1 / 216) c_{6}
$$

and the only remaining projective transformations are

$$
(x, y) \mapsto\left(\mu^{-2} x, \mu^{-3} y\right) .
$$

Then

$$
\operatorname{Spec}\left(\mathbb{Z}_{(p)}\left[c_{4}, c_{6}\right]\right) \rightarrow \mathcal{M}_{\text {Weier }}
$$

is a presentation. There is no higher cohomology and

$$
H^{0}\left(\mathcal{M}_{\text {Weier }}, \omega^{\otimes *}\right) \cong \mathbb{Z}_{(p)}\left[c_{4}, c_{6}\right]
$$

with $\left|c_{4}\right|=8$ and $\left|c_{6}\right|=12$. Note $\Delta=\left(1 /(12)^{3}\right)\left(c_{4}^{3}-c_{6}^{2}\right)$.

Cohomology of $\mathcal{M}_{\text {Weier }}, p=3$.

Any Weierstrass curve is isomorphic to a curve of the form

$$
y^{2}=x^{3}+(1 / 4) b_{2}+(1 / 2) b_{2}+(1 / 4) b_{6}
$$

and the remaining projective transformations are

$$
(x, y) \mapsto\left(\mu^{-2} x+r, \mu^{-3} y\right)
$$

Then

$$
\operatorname{Spec}\left(\mathbb{Z}_{(3)}\left[b_{2}, b_{4}, b_{6}\right]\right) \rightarrow \mathcal{M}_{\text {Weier }}
$$

is a presentation and

$$
H^{s}\left(\mathcal{M}_{\text {Weier }}, \omega^{t}\right)=\operatorname{Ext}_{\Gamma}^{s}\left(\Sigma^{2 t} A_{*}, A_{*}\right)
$$

with

$$
A_{*}=\mathbb{Z}_{(p)}\left[b_{2}, b_{4}, b_{6}\right] \quad \text { and } \quad \Gamma_{*}=A_{*}[r]
$$

with appropriate degrees.

In the Hopf algebroid $\left(A_{*}, \Gamma_{*}\right)$, we have

$$
\eta_{R}\left(b_{2}\right)=b_{2}+12 r
$$

so there is higher cohomology:

$$
H^{*}\left(\mathcal{M}_{\text {Weier }}, \omega^{\otimes *}\right)=\mathbb{Z}_{(3)}\left[c_{4}, c_{6}, \Delta\right][\alpha, \beta] / I
$$

where $|\alpha|=(1,4)$ and $|\beta|=(2,12)$. Here $/$ is the relations:

$$
\begin{aligned}
c_{4}^{3}-c_{6}^{2} & =(12)^{3} \Delta \\
3 \alpha=3 \beta & =0 \\
c_{i} \alpha=c_{i} \beta & =0 .
\end{aligned}
$$

Note: Δ acts "periodically".

TAG 8 tmf

A property of local cohomology
To compute

$$
H^{s}\left(\mathcal{M}_{\text {Weier }}, R^{t} i_{*} \omega^{*}\right) \Longrightarrow H^{s+t}\left(\overline{\mathcal{M}}_{e \ell \ell}, \omega^{*}\right)
$$

we compute $R \Gamma, A_{*}$ where $I=\left(c_{4}^{3}, \Delta\right)$.
Note: if $\sqrt{I}=\sqrt{J}$ then $R \Gamma_{I}=R \Gamma_{J}$.
For $p>3$ we take $I=\left(c_{4}^{3}, \Delta\right)$ and $J=\left(c_{4}, c_{6}\right)$.

$$
R^{2} \Gamma_{,} A_{*}=\mathbb{Z}_{(p)}\left[c_{4}, c_{6}\right] /\left(c_{4}^{\infty}, c_{6}^{\infty}\right) .
$$

and

$$
H^{s}\left(\overline{\mathcal{M}}_{e \ell \ell}, \omega^{*}\right) \cong \begin{cases}\mathbb{Z}_{(p)}\left[c_{4}, c_{6}\right], & s=0 ; \\ \mathbb{Z}_{(p)}\left[c_{4}, c_{6}\right] /\left(c_{4}^{\infty}, c_{6}^{\infty}\right), & s=1 .\end{cases}
$$

Note the duality. The homotopy spectral sequence collapses.

At $p=3$ there are inclusions of ideals

$$
\left(c_{4}^{3}, \Delta\right) \subseteq\left(c_{4}, \Delta\right) \subseteq\left(c_{4}, e_{6}, \Delta\right)=J=\sqrt{l}
$$

where

$$
e_{6}^{2}=12 \Delta
$$

Since J is not generated by a regular sequence we must use: if $J=(I, x)$ there is a fiber sequence

$$
R \Gamma_{J} M \rightarrow R \Gamma_{,} M \rightarrow R \Gamma_{/} M[1 / x] .
$$

We take $I=\left(c_{4}, e_{6}\right)$ and $J=\left(c_{4}, e_{6}, \Delta\right)$.

Duality at 3

Let $A_{*}=\mathbb{Z}_{(3)}\left[b_{2}, b_{4}, b_{6}\right]$.

Proposition

$R_{J}^{s} A_{*}=0$ if $s \neq 2$ and $R_{J}^{2} A_{*}$ is the Δ-torsion in $A_{*} /\left(c_{4}^{\infty}, e_{6}^{\infty}\right)$.

Corollary (Duality)

$R^{2} \Gamma_{j} \omega^{-10} \cong \mathbb{Z}_{(3)}$ with generator corresponding to $12 / c_{4} e_{6}$ and there is non-degenerate pairing

$$
R^{2} \Gamma_{J} \omega^{-t-10} \otimes \omega^{t} \rightarrow R^{1} \Gamma_{J} \omega^{-10} \cong \mathbb{Z}_{(3)}
$$

We now can calculate π_{*} tmf, at least it $p=2$.

The crucial differentials are classical:

$$
\begin{aligned}
d_{5} \Delta & =\alpha \beta^{2} \quad \text { (Toda) } \\
d_{9} \Delta \alpha & =\beta^{4} \quad \text { (Nishida) }
\end{aligned}
$$

There is also an exotic extension in the multiplication: if z is the homotopy class detected by $\Delta \alpha$, then:

$$
\alpha \boldsymbol{z}=\beta^{3} .
$$

In fact, $\boldsymbol{z}=\left\langle\alpha, \alpha, \beta^{2}\right\rangle$ so

$$
\alpha \boldsymbol{Z}=\alpha\left\langle\alpha, \alpha, \beta^{2}\right\rangle=\langle\alpha, \alpha, \alpha\rangle \beta^{2}=\beta^{3} .
$$

