Coherent cohomology

Definition

Let X be an algebraic stack and \mathcal{F} a quasi-coherent sheaf on X. The coherent cohomology of \mathcal{F} is the right derived functors of global sections:

$$H^s(X, \mathcal{F}) = H^s R\Gamma(\mathcal{F}).$$

Warning: I may need hypotheses on X, but I will be vague about this.

If X is derived Deligne-Mumford stack, we have a descent spectral sequence

$$H^s(X, \pi_t \mathcal{O}_X) \Longrightarrow \pi_{t-s} R\Gamma(\mathcal{O}_X).$$
Čech complexes

Suppose $X \to Y$ is faithfully flat. We have the simplicial bar construction

$$\epsilon : X_\bullet \to Y.$$

We get a spectral sequence

$$\pi^s H^t(X_\bullet, \epsilon^* \mathcal{F}) \Rightarrow H^{s+t}(Y, \mathcal{F}).$$

If U is affine, $H^s(U, \mathcal{F}) = 0$ for $s > 0$.

If $X = \bigsqcup U_i$ is where $\mathcal{U} = \{U_i\}$ is a finite affine cover of Y separated, we get an isomorphism with coherent cohomology and Čech cohomology

$$H^s(Y, \mathcal{F}) \cong \check{H}(\mathcal{U}, \mathcal{F}).$$

Comodules and comodule Ext

Let \mathcal{M} be a stack and suppose $\text{Spec}(A) \to \mathcal{M}$ is a flat presentation with the property that

$$\text{Spec}(A) \times_\mathcal{M} \text{Spec}(A) \cong \text{Spec}(\Lambda).$$

Then (A, Γ) is a Hopf algebroid and we have

$$H^s(X, \mathcal{F}) \cong \text{Ext}^s_A(\Lambda, M)$$

where $M = \epsilon^* \mathcal{F}$ is the comodule obtained from \mathcal{F}.

Example: $\mathcal{M} = X \times_G EG$ with $X = \text{Spec}(A)$ and $G = \text{Spec}(\Lambda)$. Here $\Gamma = A \otimes \Lambda$.
Let $G : \text{Spec}(L) \to \mathcal{M}_{\text{fg}}$ classify the formal group of the universal formal group law. Then $E(L, G) = \text{MUP}$ is periodic complex cobordism. We have

$$\text{Spec}(L) \times_{\mathcal{M}_{\text{fg}}} \text{Spec}(L) = \text{Spec}(W) = \text{Spec}(\text{MUP}_0 \text{MUP})$$

where

$$W = L[\{a_0^\pm 1, a_1, a_2, \ldots\}] .$$

Then

$$H^s(\mathcal{M}_{\text{fg}}, \omega^\otimes t) \cong \text{Ext}^s_W(L, \text{MUP}_{2t}) \cong \text{Ext}^s_{\text{MUP}_* \text{MUP}}(\Sigma^{2t} \text{MUP}_*, \text{MUP}_*) .$$

This is not really the E_2-term of the ANSS so we must talk about:

Example

1. The Lazard ring L is graded:
 $$x +_{F_\mu} y = \mu^{-1}(\mu x) +_{F} (\mu y) .$$

2. $W = L[\{a_0^\pm 1, a_1, \ldots\}]$ is graded:
 $$(\phi_\mu)(x) = \mu^{-1}\phi(\mu x) .$$

3. Weierstrass curves: $x \mapsto \mu^{-2} x$, $y \mapsto \mu^{-3} y .
Let $H = \text{Spec}(\Lambda)$ be an affine group scheme with an action of \mathbb{G}_m and let

$$G = H \rtimes \mathbb{G}_m = \text{Spec}(\Lambda[\mu^{\pm 1}])$$

be the semi-direct product. Let $X = \text{Spec}(A)$ be an affine right G-scheme. Then $(A_*, \Gamma_* = A_* \otimes \Lambda_*)$ is a graded Hopf algebroid.

$$H^s(X \times_G E\mathbb{G}_m, F) = \text{Ext}^s_{\Gamma_*}(A_*, M_*).$$

where $M_* = F(\text{Spec}(A) \to X \times_G E\mathbb{G}_m)$.

1. $H^s(M_{fg}, \omega \otimes t) \cong \text{Ext}^s_{MU, MU}(\Sigma^{2t}MU_*, MU_*);$
2. $H^s(M_{\text{Weier}}, \omega \otimes t) \cong \text{Ext}^s_\Lambda(\Sigma^{2t}A_*, A_*).$
3. $H^*\left(\mathbb{A}^{n+1} \times \mathbb{G}_m, E\mathbb{G}_m, F \right) = M_0.$

Derived push-forward

Given $f : X \to Y$ and a sheaf F on X, then f_*F is the sheaf on Y associated to

$$U \mapsto H^0(U \times_Y X, F).$$

If F is quasi-coherent and f is quasi-compact, f_*F is quasi-coherent.

There is a composite functor spectral sequence

$$H^s(Y, R^tf_*F) \Longrightarrow H^{s+t}(X, F).$$

If higher cohomology on Y is zero:

$$H^0(Y, R^tf_*F) \cong H^t(X, F).$$
Example: projective space

Let $S_\ast = \mathbb{Z}[x_0, \ldots, x_n]$ with $|x_i| = 1$.

Theorem

$$H^t(\mathbb{P}^n, \mathcal{O}(\ast)) \cong \begin{cases} S_\ast & t = 0; \\ S_\ast/(x_0^\infty, \ldots, x_n^\infty) & t = n. \end{cases}$$

We examine the diagram

$$
\begin{array}{ccc}
\mathbb{A}^{n+1} & \xrightarrow{j} & \mathbb{A}^{n+1} \\
\downarrow & & \downarrow \\
\mathbb{P}^n & \xrightarrow{i} & \mathbb{A}^{n+1} \times_{\mathbb{G}_m} \mathbb{E}_{\mathbb{G}_m}.
\end{array}
$$

We must calculate (the global sections) of

$$Rj_*j^*\mathcal{O}_{\mathbb{A}^{n+1}} \sim Rj_*j^*S_\ast.$$

Example: the affine case

Let $X = \text{Spec}(R)$ and $j : U \to X$ the open defined by an ideal $I = (a_1, \ldots, a_n)$. If \mathcal{F} is defined by the module M, then $j_*j^*\mathcal{F}$ is defined by K where there is an exact sequence

$$0 \to K \to \prod_s M[\frac{1}{a_s}] \to \prod_{s < t} M[\frac{1}{a_s a_t}].$$

There is also an exact sequence

$$0 \to \Gamma_I M \to M \to K \to 0$$

where

$$\Gamma_I M = \{ x \in M \mid I^n x = 0 \text{ for some } n \}.$$
Local cohomology

If \(i : U \to Y \) is the open complement of a closed sub-stack \(Z \subseteq Y \) define local cohomology by the fiber sequence

\[
R \Gamma_Z F \to F \to R i_* i^* F.
\]

If \(X = \text{Spec}(A) \) and \(Z \) is define by \(I = (a_1, \ldots, a_k) \) local cohomology can be computed by the Koszul complex

\[
M \to \prod_s M[\frac{1}{a_s}] \to \prod_{s < t} M[\frac{1}{a_s a_t}] \to \cdots \to M[\frac{1}{a_1 \cdots a_k}] \to 0.
\]

Since \(x_0, \ldots, x_n \in S_* \) is a regular sequence:

\[
R^{n+1} \Gamma_{\{0\}} S_* = S_*/(x_0^\infty, \ldots, x_n^\infty)
\]

and \(R^t \Gamma_{\{0\}} S_* = 0, \ t \neq n + 1. \)