TAG Lecture 7: Derived global sections

Paul Goerss

19 June 2008

Coherent cohomology

Definition

Let X be an algebraic stack and \mathcal{F} a quasi-coherent sheaf on X. The **coherent cohomology** of \mathcal{F} is the right derived functors of global sections:

TAG 7

Cohomology

 $H^{s}(X, \mathcal{F}) = H^{s}R\Gamma(\mathcal{F}).$

Warning: I may need hypotheses on *X*, but I will be vague about this.

If X is derived Deligne-Mumford stack, we have a **descent** spectral sequence

$$H^{s}(X, \pi_{t}\mathcal{O}_{X}) \Longrightarrow \pi_{t-s}R\Gamma(\mathcal{O}_{X}).$$

Suppose $X \to Y$ is faithfully flat. We have the simplicial bar construction

$$\epsilon: X_{\bullet} \longrightarrow Y.$$

We get a spectral sequence

$$\pi^{s}H^{t}(X_{\bullet}, \epsilon^{*}\mathcal{F}) \Longrightarrow H^{s+t}(Y, \mathcal{F}).$$

If U is affine, $H^{s}(U, \mathcal{F}) = 0$ for s > 0.

If $X = \sqcup U_i$ is where $U = \{U_i\}$ is a finite affine cover of Y separated, we get an isomorphism with coherent cohomology and Čech cohomology

$$H^{s}(Y, \mathcal{F}) \cong \check{H}(\mathcal{U}, \mathcal{F}).$$

Cohomology

TAG 7

Comodules and comodule Ext

Let \mathcal{M} be a stack and suppose $\operatorname{Spec}(A) \to \mathcal{M}$ is a flat presentation with the property that

$$\operatorname{Spec}(A) \times_{\mathcal{M}} \operatorname{Spec}(A) \cong \operatorname{Spec}(\Lambda).$$

Then (A, Γ) is a Hopf algebroid and we have

$$H^{s}(X,\mathcal{F})\cong \operatorname{Ext}^{s}_{\Lambda}(A,M)$$

where $M = \epsilon^* \mathcal{F}$ is the comodule obtained from \mathcal{F} .

Example: $\mathcal{M} = X \times_G EG$ with $X = \operatorname{Spec}(A)$ and $G = \operatorname{Spec}(\Lambda)$. Here $\Gamma = A \otimes \Lambda$.

Example: the Adams-Novikov E2-term

Let $G : \operatorname{Spec}(L) \to \mathcal{M}_{fg}$ classify the formal group of the universal formal group law. Then E(L, G) = MUP is periodic complex cobordism. We have

$$\operatorname{Spec}(L) \times_{\mathcal{M}_{fg}} \operatorname{Spec}(L) = \operatorname{Spec}(W) = \operatorname{Spec}(MUP_0MUP)$$

where

$$W = L[a_0^{\pm 1}, a_1, a_2, \ldots].$$

Then

$$\begin{split} H^{s}(\mathcal{M}_{\mathbf{fg}}, \omega^{\otimes t}) &\cong \mathrm{Ext}^{s}_{W}(L, \mathsf{MUP}_{2t}) \\ &\cong \mathrm{Ext}^{s}_{\mathcal{MUP}*\mathcal{MUP}}(\Sigma^{2t}\mathcal{MUP}_{*}, \mathcal{MUP}_{*}). \end{split}$$

This is not really the E_2 -term of the ANSS so we must talk about:

TAG 7 Cohomology

Gradings: the basics

• A graded *R*-module is a *R*[$\mu^{\pm 1}$]-comodule;

• A graded ring gives an affine \mathbb{G}_m -scheme.

Example

The Lazard ring L is graded:

$$x +_{F\mu} y = \mu^{-1}((\mu x) +_F (\mu y)).$$

2 $W = L[a_0^{\pm 1}, a_1, ...]$ is graded:

$$(\phi\mu)(\mathbf{x}) = \mu^{-1}\phi(\mu\mathbf{x}).$$

③ Weierstrass curves: $x \mapsto \mu^{-2}x$, $y \mapsto \mu^{-3}y$.

Gradings and cohomology

Let $H = \text{Spec}(\Lambda)$ be an affine group scheme with an action of \mathbb{G}_m and let

$$G = H \rtimes \mathbb{G}_m = \operatorname{Spec}(\Lambda[\mu^{\pm 1}])$$

be the semi-direct product. Let X = Spec(A) be an affine right *G*-scheme. Then $(A_*, \Gamma_* = A_* \otimes \Lambda_*)$ is a graded Hopf algebroid.

$$H^{s}(X \times_{G} EG, \mathcal{F}) = \operatorname{Ext}_{\Gamma_{*}}^{s}(A_{*}, M_{*}).$$

where $M_* = \mathcal{F}(\text{Spec}(A) \rightarrow X \times_G EG)$.

•
$$H^{s}(\mathcal{M}_{\mathbf{fg}}, \omega^{\otimes t}) \cong \operatorname{Ext}^{s}_{MU_{*}MU}(\Sigma^{2t}MU_{*}, MU_{*});$$

• $H^{s}(\mathcal{M}_{\operatorname{Weier}}, \omega^{\otimes t}) \cong \operatorname{Ext}^{s}_{\Lambda_{*}}(\Sigma^{2t}A_{*}, A_{*}).$
• $H^{*}(\mathbb{A}^{n+1} \times_{\mathbb{G}_{m}} \mathbb{G}_{m}, \mathcal{F}) = M_{0}.$

Derived push-forward

Given $f: X \to Y$ and a sheaf \mathcal{F} on X, then $f_*\mathcal{F}$ is the sheaf on Y associated to

TAG 7

Cohomology

$$U \mapsto H^0(U \times_Y X, \mathcal{F}).$$

If \mathcal{F} is quasi-coherent and f is quasi-compact, $f_*\mathcal{F}$ is quasi-coherent.

There is a composite functor spectral sequence

$$H^{s}(Y, R^{t}f_{*}\mathcal{F}) \Longrightarrow H^{s+t}(X, \mathcal{F}).$$

If higher cohomology on Y is zero:

$$H^0(Y, \mathbb{R}^t f_*\mathcal{F}) \cong H^t(X, \mathcal{F}).$$

Example: projective space

Let $S_* = \mathbb{Z}[x_0, ..., x_n]$ with $|x_i| = 1$.

Theorem

$$\mathcal{H}^t(\mathbb{P}^n,\mathcal{O}(*))\cong \left\{egin{array}{cc} S_* & t=0;\ S_*/(x_0^\infty,\ldots,x_n^\infty) & t=n. \end{array}
ight.$$

We examine the diagram

We must calculate (the global sections) of

 $Rj_*j^*\mathcal{O}_{\mathbb{A}^{n+1}}$ "=" $Rj_*j^*S_*$.

Cohomology

TAG 7

Example: the affine case

Let X = Spec(R) and $j : U \to X$ the open defined by an ideal $I = (a_1, \ldots, a_n)$. If \mathcal{F} is defined by the module M, then $j_*j^*\mathcal{F}$ is defined by K where there is an exact sequence

$$0 \to K \to \prod_{s} M[\frac{1}{a_s}] \to \prod_{s < t} M[\frac{1}{a_s a_t}].$$

There is also an exact sequence

$$0 \rightarrow \Gamma_I M \rightarrow M \rightarrow K \rightarrow 0$$

where

$$\Gamma_I M = \{ x \in M \mid I^n x = 0 \text{ for some } n \}.$$

If $i: U \to Y$ is the open complement of a closed sub-stack $Z \subseteq Y$ define local cohomology by the fiber sequence

$$R\Gamma_Z \mathcal{F} \to \mathcal{F} \to Ri_*i^*\mathcal{F}.$$

If X = Spec(A) and Z is define by $I = (a_1, ..., a_k)$ local cohomology can be computed by the **Koszul complex**

$$M \to \prod_{s} M[\frac{1}{a_{s}}] \to \prod_{s < t} M[\frac{1}{a_{s}a_{t}}] \to \cdots \to M[\frac{1}{a_{1} \dots a_{k}}] \to 0.$$

Since $x_0, \ldots, x_n \in S_*$ is a regular sequence:

$$R^{n+1}\Gamma_{\{0\}}S_* = S_*/(x_0^{\infty}, \dots, x_n^{\infty})$$

and $R^t \Gamma_{\{0\}} S_* = 0, t \neq n + 1.$

TAG 7 Cohomology