TAG Lecture 5: Elliptic Curves

Paul Goerss

18 June 2008

Weierstrass curves

Definition

A Weierstrass curve $C = C_a$ over a ring R is a closed subscheme of \mathbb{P}^2 defined by the equation

TAG 5

Elliptic curves

$$y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6.$$

The curve *C* has a unique point e = [0, 1, 0] when z = 0.

C is has at most one singular point;

- C is always smooth at e;
- (a) the smooth locus C_{sm} is an abelian group scheme.

Definition

An elliptic curve over a scheme S is a proper smooth curve of genus 1 over S $C \stackrel{q}{\underset{e}{\leftarrow}} S$ with a given section e.

Any elliptic curve is an abelian group scheme:

if $T \rightarrow S$ is a morphism of schemes, the morphism

$${T-\text{points of } C} \longrightarrow \operatorname{Pic}^{(1)}(C)$$

 $P \longmapsto \mathcal{I}^{-1}(P)$

is a bijection.

Comparing definitions

(

TAG 5 Elliptic curves

Let $C = C_a$ be a Weierstrass curve over R. Define elements of R by

$$b_2 = a_1^2 + 4a_2$$

$$b_4 = 2a_4 + a_1a_3$$

$$b_6 = a_3^2 + 4a_6$$

$$c_4 = b_2^2 - 24b_4$$

$$c_6 = b_2^3 + 36b_2b_4 - 216b_6$$

$$12)^3 \Delta = c_4^3 - c_6^2$$

Then *C* is elliptic if and only if Δ is invertible. All elliptic curves are locally Weierstrass (more below).

1.) Legendre curves: over $\mathbb{Z}[1/2][\lambda, 1/\lambda(\lambda - 1)]$:

$$y^2 = x(x-1)(x-\lambda)$$

2.) Deuring curves: over $\mathbb{Z}[1/3][\nu, 1/(\nu^3 + 1)]$:

$$y^2 + 3\nu xy - y = x^3$$

3.) Tate curves: over $\mathbb{Z}[\tau]$:

$$y^2 + xy = x^3 + \tau$$

 ∞ .) The cusp: $y^2 = x^3$.

The stacks

TAG 5 Elliptic curves

Isomorphisms of elliptic curves are isomorphisms of pointed schemes. This yields a stack $\mathcal{M}_{e\ell\ell}$.

Isomorphisms of Weirstrass curves are given by projective transformations

$$x \mapsto \mu^{-2}x + r$$

 $y \mapsto \mu^{-3}y + \mu^{-2}sx + t$

This yields an algebraic stack

$$\mathcal{M}_{Weier} = \mathbb{A}^5 \times_G EG$$

where $G = \text{Spec}(\mathbb{Z}[r, s, t, \mu^{\pm 1}]).$

Invariant differentials

Consider $C \stackrel{q}{\underset{e}{\leftarrow}} S$. Then *e* is a closed embedding defined by an ideal \mathcal{I} . Define

$$\omega_{\mathcal{C}} = \boldsymbol{q}_* \mathcal{I} / \mathcal{I}^2 = \boldsymbol{q}_* \Omega_{\mathcal{C}/\mathcal{S}}.$$

- ω_C is locally free of rank 1; a generator is an invariant 1-form;
- if $C = C_a$ is Weierstrass, we can choose the generator

$$\eta_{\mathbf{a}} = \frac{dx}{2y + a_1 x + a_3};$$

Elliptic curves

 if C is elliptic, a choice of generator defines an isomorphism C = C_a; thus, all elliptic curves are locally Weierstrass.

TAG 5

Modular forms

The assignment $C/S \mapsto \omega_C$ defines a quasi-coherent sheaf on $\mathcal{M}_{\varrho\ell\ell}$ or \mathcal{M}_{Weier} .

Definition

A modular form of weight n is a global section of $\omega^{\otimes n}$.

The classes c_4 , c_6 and Δ give modular forms of weight 4, 6, and 12.

Theorem (Deligne)

There are isomorphisms

$$\mathbb{Z}[\mathit{c}_4, \mathit{c}_6, \Delta^{\pm 1}]/(\mathit{c}_4^3 - \mathit{c}_6^2 = (12)^3 \Delta) o \mathit{H}^0(\mathcal{M}_{e\ell\ell}, \omega^{\otimes *})$$

and

$$\mathbb{Z}[\boldsymbol{c}_4,\boldsymbol{c}_6,\Delta]/(\boldsymbol{c}_4^3-\boldsymbol{c}_6^2=(12)^3\Delta)\to \boldsymbol{H}^0(\mathcal{M}_{\mathrm{Weier}},\omega^{\otimes*})$$

We have inclusions

$$\mathcal{M}_{e\ell\ell} \subseteq \bar{\mathcal{M}}_{e\ell\ell} \subseteq \mathcal{M}_{Weier}$$

where

- *M*_{eℓℓ} classifies elliptic curves: those Weierstrass curves with Δ invertible;
- **(a)** $\bar{\mathcal{M}}_{e\ell\ell}$ classifies those Weierstrass curves with a unit in (c_4, c_6, Δ) .

Theorem

The algebraic stacks $\mathcal{M}_{\textit{e\ell\ell}}$ and $\bar{\mathcal{M}}_{\textit{e\ell\ell}}$ are Deligne-Mumford stacks.

TAG 5 Elliptic curves

Topological modular forms

Theorem (Hopkins-Miller-Lurie)

There is a derived Deligne-Mumford stack $(\bar{\mathcal{M}}_{e\ell\ell}, \mathcal{O}^{top})$ whose underlying ordinary stack is $\bar{\mathcal{M}}_{e\ell\ell}$.

Define the spectrum of topological modular forms tmf to be the global sections of $\mathcal{O}^{\text{top}}.$

There is a spectral sequence

$$H^{s}(\overline{\mathcal{M}}_{e\ell\ell}, \omega^{\otimes t}) \Longrightarrow \pi_{2t-s} \mathbf{tmf}.$$

1. Calculate the values of c_4 and Δ for the Legendre, Duering, and Tate curves. Decide when the Tate curve is singular.

2. Show that the invariant differential η_a of a Weierstrass curve is indeed invariant; that is, if $\phi : C_a \to C_{a'}$ is a projective transformation from one curve to another, then $\phi^*\eta_{a'} = \mu\eta_a$.

3. The *j*-invariant $\overline{\mathcal{M}}_{\ell\ell\ell} \to \mathbb{P}^1$ sends an elliptic curve *C* to the class of the pair (c_4^3, Δ) . Show this classifies the line bundle $\omega^{\otimes 12}$.

Remark: The *j*-invariant classifies isomorphisms; that, the induced map of sheaves $\pi_0 \overline{\mathcal{M}}_{\ell\ell\ell} \to \mathbb{P}^1$ is an isomorphism.

