TAG Lecture 3: Other Maps, Other Topologies

Paul Goerss

17 June 2008

Flat morphisms

A morphism of rings $A \rightarrow B$ is flat if $B \otimes_A (-)$ is exact. It is faithfully flat if it creates isomorphisms.

Definition

A morphism $f : X \to Y$ of schemes is flat if for all $x \in X$, \mathcal{O}_x is a flat $\mathcal{O}_{f(x)}$ -algebra. The morphism f is faithfully flat if is flat and surjective.

A morphism $A \rightarrow B$ of E_{∞} -ring spectra is flat if

- $\pi_0 A \rightarrow \pi_0 B$ is a flat morphism of rings;
- $a n_0 B \otimes_{\pi_0 A} \pi_n A \cong \pi_n B \text{ for all } n.$

Let $X \to Y$ be a morphism of schemes and let

$$\epsilon: X_{\bullet} \longrightarrow Y$$

be the bar construction. Faithfully flat descent compares sheaves over *Y* with simplicial sheaves on

$$X_{\bullet} = \{ X^{\bullet+1} \}.$$

If $X = \operatorname{Spec}(B) \rightarrow \operatorname{Spec}(A) = Y$ are both affine; this is $\operatorname{Spec}(-)$ of the cobar construction

$$\eta: A \longrightarrow \{ B^{\otimes \bullet +1} \}.$$

TAG 3 Topologies
Descent

A module-sheaf \mathcal{F}_{\bullet} on X_{\bullet} is:

- 2 for each $\phi : [n] \to [m]$, a homomorphism $\theta(\phi) : \phi^* \mathcal{F}_n \to \mathcal{F}_m$;
- subject to the evident coherency condition.

Definition

Such a module sheaf is **Cartesian** if each \mathcal{F}_n is quasi-coherent and $\theta(\phi)$ is an isomorphism for all ϕ .

If ${\mathcal E}$ is a quasi-coherent sheaf on $Y,\, \epsilon^* {\mathcal E}$ is a Cartesian sheaf on $X_{\bullet}.$

Descent: If *f* is quasi-compact and faithfully flat, this is an equivalence of categories.

A chain complex \mathcal{F}_{\bullet} of simplicial module sheaves is the same as simplicial chain complex of module sheaves.

Definition

Let \mathcal{F}_{\bullet} be a chain complex of simplicial module sheaves on X_{\bullet} . The \mathcal{F}_{\bullet} is **Cartesian** if

• each $\theta(\phi) : \phi^* \mathcal{F}_n \to \mathcal{F}_m$ is an equivalence;

(2) the homology sheaves $\mathcal{H}_i(\mathcal{F}_{\bullet})$ are quasi-coherent.

If $\mathcal E$ is a complex of quasi-coherent sheaves on $Y, \, \epsilon^* \mathcal E$ is a Cartesian sheaf on X_{\bullet} .

TAG 3

Derived descent: This if *f* is quasi-compact and faithfully flat, this is an equivalence of derived categories.

Topologies

Étale and smooth morphisms

There are not enough Zariski opens; there are too many flat morphisms, even finite type ones; therefore:

Suppose we are given any lifting problem in schemes

with / nilpotent and f flat and locally finite. Then

Definition

- f is smooth if the problem always has a solution;
- I is étale if the problem always has a unique solution.

Theorem

 $B = A[x, ..., x_n]/(p_1, ..., p_m)$ is

- étale over A if m = n and $det(\partial p_i / \partial x_i)$ is a unit in B;
- smooth over A if m ≤ n and the m × m minors of the partial derivatives generate B.

Any étale or smooth morphism is locally of this form.

- $\mathbb{F}_p[x]/(x^{p^n}-x)$ is étale over \mathbb{F}_p .
- Any finite separable field extension is étale.
- 3 $A[x]/(ax^2 + bx + c)$ is étale over A if $b^2 4ac$ is a unit in A.

Topologies

Solution $\mathbb{F}[x, y]/(y^2 - x^3)$ is not smooth over any field \mathbb{F} .

TAG 3

Étale maps as covering spaces

Theorem

Let $f:X \to Y$ be étale and separated and $U \subset Y$ be open. Any section s of

$$U \times_Y X \to U$$

is an isomorphism onto a connected component.

For the analog of normal covering spaces we have:

Definition

Let $f: X \to Y$ be étale and $G = Aut_X(Y)$ (the Deck transformations). Then X is **Galois** overY if we have an isomorphism

 $G \times X \longrightarrow X \times_Y X$ $(g, x) \mapsto (g(x), x).$ Let X be a scheme. The étale topology has

- étale maps $U \rightarrow X$ as basic opens;
- a cover { $V_i \rightarrow U$ } is a finite set of étale maps with $\prod V_i \rightarrow U$ surjective.

Notes:

- every open inclusion is étale; so an étale sheaf yields a Zariski sheaf;
- Offine O_X(U→X) = O_U(U); this is the étale structure sheaf.

TAG 3

There are module sheaves and quasi-coherent sheaves for the étale topology.

Topologies

Zariski versus étale sheaves

The inclusion of a Zariski open $U \to X$ is rigid: Aut_X(U) = {e}. An étale open $U \to X$ need not be rigid: Aut_X(U) \neq {e} in general.

Example Let F be field. Quasi-coherent sheaves in the Zariski topology are F-vector spaces. Quasi-coherent sheaves in the étale topology are twisted, discrete F - Gal(F/F)-modules.

A morphism $f: A \rightarrow B$ of ring spectra is étale if

• $\pi_0 A \rightarrow \pi_0 B$ is an étale morphism of rings; and

2 $\pi_0 B \otimes_{\pi_0 A} \pi_i A \to \pi_i B$ is an isomorphism.

Compare to:

Definition (Rognes)

Let $A \rightarrow B$ of ring spectra and let $G = Aut_A(B)$. The morphism Galois if

•
$$B \wedge_A B \rightarrow F(G_+, B)$$
; and

•
$$A \rightarrow B^{hG} = F(G_+, B)^G$$

are equivalences.

Hypotheses are needed: G finite or "stably dualizable".

TAG 3

Topologies

The cotangent complex

Let $f : X \to Y$ be a morphism of schemes. Let $\text{Der}_{X/Y}$ be the sheaf on X associated to the functor

This is representable: $\text{Der}_{X/Y} = \text{Hom}_{\mathcal{O}_X}(\Omega_{X/Y}, \mathcal{O}_X)$. The **cotangent complex** $L_{X/Y}$ is the derived version.

Suppose f is locally finite and flat, then

- *f* is étale if and only if $L_{X/Y} = 0$;
- **9** *f* is smooth if and only if $L_{X/Y} \simeq \Omega_{X/Y}$ and that sheaf is locally free.

1. Let (A, Γ) be a Hopf algebroid. Assume Γ is flat over A. Then we get a simplicial scheme by taking Spec(-) of the cobar construction on the Hopf algebroid. Show that the category of Cartesian (quasi-coherent) sheaves on this simplicial scheme is equivalent to the category of (A, Γ) -comodules.

2. Let $A \rightarrow B$ be a morphism of algebras and M an A-module. Show that the functor on B-modules

 $M \rightarrow \mathbf{Def}_A(B, M)$

is representable by a *B*-module $\Omega_{B/M}$. Indeed, if *I* is the kernel of the multiplication map $B \otimes_A B \to B$, then $\Omega_{B/A} \cong I/I^2$.

3. Calculate Let $B = \mathbb{F}[x, y]/(y^2 - x^3)$ where \mathbb{F} is a field. Show that $\Omega_{B/\mathbb{F}}$ is locally free of rank 1 except at (0, 0).

