Weekly notice \#9

The lectures in week 13: We went through all the details of the rather technical proof of Hovedsætning (Main Theorem) 5.4 and after that we proved the uniqueness of the Lebesgue measure in \mathbb{R}^{k}. As mentioned, the existence of the measure will not be proved. After this, a solution to Exercise W7.4 was presented. Moreover, it was proved that for any Riemann integrable function $f:] a, b] \rightarrow \mathbb{R}$ there exist two Borel functions s, t such that $s \leq f \leq t$ and such that

$$
\int_{[a, b]} s d m=\int_{a}^{b} f(x) d x=\int_{[a, b]} t d m .
$$

In particular, $s=t m$-a.e.
The lectures in week 14: Portions of $\$ 5.2$ and $\S 5.3$ will be covered. After this, the Cantor set Z (Example 5.22) will be (briefly) discussed. We will then discuss various measure theoretic paradoxes, and we will finish (hopefully) with Vitali's Theorem (5.30).

Homework - to be handed in to the TA in week 15: Exercise 5.14 and 5.15. (See Exercise 5.8 for definitions.)

The problem sessions in week 15: W9.1, W9.2, W9.3, 5.7*, 5.8, 5.10, 5.11*, 5.32 (only 1°), 5.33*.

Problem W9.1. This is an exercise in σ-classes (Dynkin systems)!.
(i) Let \mathbb{D} be a σ-class on a set X. Suppose that $A ; B \in \mathbb{D}$ and that $A \subseteq B$. Show that $B \backslash A \in \mathbb{D}$.
(ii) Let $n \in \mathbb{N}$, set $X=\{1,2, \ldots, n\}$, and consider the system of subsets

$$
\mathbb{K}=\{\{1\},\{1,2\},\{1,2,3\}, \ldots,\{1,2, \ldots, n-1\}, X,\} .
$$

Show that $\mathbb{K}(\mathbb{D})=\mathcal{P}(X)$.
(iii) Consider here the system $\mathbb{K}=\{\{1,2\},\{1,3\}\}$ on $X=\{1,2,3,4\}$. Show that $\sigma(\mathbb{K})=\mathcal{P}(X)$, and that $\mathbb{D}(\mathbb{K}) \neq \mathcal{P}(X)$, and conclude that $\mathbb{D}(\mathbb{K})$ is not a σ-algebra.
(iv) Let X and \mathbb{K} be as in (iii). Construct two different measures, μ and ν, on $\mathcal{P}(X)$ such that $\mu(X)=\nu(X)<\infty$ and such that $\mu(K)=\nu(K)$ for all $K \in \mathbb{K}$.

Problem W9.2. Describe the Radon-measure on \mathbb{R} corresponding to each of the following positive linear forms:

$$
I_{1}(f)=f(4), I_{2}(f)=f(1)+2 f(2),=I_{3}(f)=\frac{1}{2} \int_{0}^{1} f(x) d x+f(0)+f(1)
$$

where $f \in C_{c}(\mathbb{R})$.
Problem W9.3. Let $f: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}$ be given by

$$
f=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n+1} 1_{[n, n+1[} .
$$

Show that $f \in \mathcal{L}_{\text {loc }}\left(\mathbb{R}_{\geq 0}\right)$, that the limit

$$
\lim _{x \rightarrow \infty} \int_{0}^{x} f(t) d t
$$

exists, but that f does not belong to $\mathcal{L}\left(\mathbb{R}_{\geq 0}\right)$.

