Weekly notice \#8

The lectures in week 12: This was more or less a guided tour through sections $\S 4.3-4.6$. Only a cursory knowledge of Sections $\S 4.5-4.6$ will be expected at the exam (you should be familiar with the material but not necessarily with the proofs).

The lectures in week 13: First it will be shown that the Riemann and Lebesgue integrals coincide when they are both defined (Problem W7.6). Then we will prove the uniqueness of the Lebesgue measure on $\mathbb{R}^{k}(\S 5.1)$ and continue with $\S 5.2$ and portions of $\S 5.3$.

Homework - to be handed in to the TA in week 14: 3MI-exam January 2001: Problem 3.

The problem sessions in week 14: A) First do exercise 4.38 from the book. Then prove "Sætning 4.24" in the case $J=\mathbb{N}$. State "Sætning 4.26 " and "Sætning 4.28" for this special case. Discuss when and how the content of Exercise 4.38 may be generalized to doubly indexed sequences $\left\{a_{j, k}\right\}$ of complex numbers. [Hint: "Bemærkning 4.27".]
B) Do the following 3MI-exam problems: January '01: Problem 2; June '01: Problem 3; January '02: Problems 3, 7. Finally, do W8.1.
[An English version of the above exams can be found below. For a Danish version, use e.g. the link "Old 3MI-exams (in Danish)" from the course home page.]

Problem W8.1. Consider the function $f: \mathbb{R} \rightarrow \mathbb{R}_{+}$given by

$$
f(x)=\frac{1}{1+x^{4}} .
$$

Let μ be the measure on $\mathbb{B}(\mathbb{R}$ given by

$$
\mu(E)=\int_{E} f d m
$$

where m is the Lebesgue measure. Compute

$$
\int_{0}^{\infty} x d \mu(x)
$$

3MI-exam, January '01 - Problem 2 (10 points): Determine the limit

$$
\lim _{n \rightarrow \infty} \int_{-\infty}^{\infty} \cos \left(\frac{x^{2}+7 n}{n}\right) e^{-|x|} d x
$$

You must argue carefully for each step in the computation.
3MI-exam, January '01 - Problem 3 (20 points): Let $f: \mathbb{R} \rightarrow$ \mathbb{R} be given by

$$
f(x)=\left\{\begin{array}{lr}
1, & x \in[-1,0[\\
-2 & x \in[0,4] \\
0, & x \in]-\infty,-1[\cup] 4, \infty[
\end{array}\right.
$$

Let m be the usual Lebesgue measure on \mathbb{R}, let ε_{0} be the Dirac measure in 0 on \mathbb{R}, and let μ denote the counting measure on \mathbb{R}.
(i) Argue that f is a Borel function.
(ii) Determine whether $f \in \mathcal{L}(m)$, determine whether $f \in \mathcal{L}\left(\varepsilon_{0}\right)$, and determine whether $f \in \mathcal{L}(\mu)$.
(iii) Determine those of the integrals below, that are defined (see question (ii))

$$
\int_{\mathbb{R}} f d m, \quad \int_{\mathbb{R}} f d \varepsilon_{0}, \quad \int_{\mathbb{R}} f d \mu
$$

3MI-exam, June '01 - Problem 3 (20 points): For every Borel set $E \subseteq \mathbb{R}$ we define

$$
\mu(E)=\int_{E} \frac{d m(x)}{1+x^{2}}
$$

where m as usual denotes the Lebesgue measure on \mathbb{R}.
(i) Justify (e.g. by reference to a relevant place in the notes) that μ is a measure on $(\mathbb{R}, \mathbb{B}(\mathbb{R}))$ and that

$$
\int|x|^{a} \mu(x)=\int \frac{|x|^{a} d m(x)}{1+x^{2}}
$$

for every $a \in \mathbb{R}$. (As usual, $0^{a}=\infty$ for $a<0$, and $|x|^{0}=1$ for all x in \mathbb{R}.)
(ii) Show that the value of (\star) is finite when $-1<a<1$.

3MI-exam, January '02-Problem 3 (15 points): Set

$$
F(t)=\int_{0}^{\pi} \sin (x+t \cos (x)) d x, \quad t \in \mathbb{R} .
$$

Justify that F is continuous and differentiable, and that

$$
F^{\prime}(t)=\int_{0}^{\pi} \cos (x+t \cos (x)) \cos (x) d x, \quad t \in \mathbb{R}
$$

3MI-exam, January '02 - Problem 7 (25 points): Let (X, \mathbb{E}, μ) be a measure space, let $f: X \rightarrow[0, \infty[$ be an \mathbb{E}-measurable function, and set

$$
E_{t}=\{x \in X \mid f(x) \geq t\}, \quad t \in[0, \infty[.
$$

a) Justify that $E_{t} \in \mathbb{E}$ for $t \in[0, \infty[$.

Consider the function

$$
\varphi(t)=\mu\left(E_{t}\right), t \in[0, \infty[.
$$

b) Show that φ is decreasing, that is,

$$
\forall s, t \in[0, \infty[: s<t \Rightarrow \varphi(s) \geq \varphi(t) .
$$

c) Show that

$$
\lim _{n \rightarrow \infty} \varphi(1 / n)=\mu\left(X_{0}\right),
$$

where $X_{0}=\{x \in X \mid f(x)>0\}$.

