Københavns Universitet

Examination in Mathematics 3MI

Solutions to selected questions (sketched).

Exercise 2 (15 points). Let $\underline{a}=\left(a_{n}\right)_{n=0}^{\infty}$ be a complex sequence which belongs to $\ell_{4}=\mathcal{L}_{4}\left(\mathbb{N}_{0}, \mathcal{P}\left(\mathbb{N}_{0}\right), \mu\right)$, where μ is the counting measure. Assume that $\|\underline{a}\|_{4}^{4}=$ 15^{3}. Prove that

$$
\sum_{n=0}^{\infty} \frac{\left|a_{n}\right|}{2^{3 \cdot n}} \leq 8 .
$$

Solution: Let $\underline{b}=\left(b_{n}\right)_{n=0}^{\infty}$ be the complex sequence with $b_{n}=\frac{1}{2^{3 \cdot n}}$. Then $\underline{b} \in \ell_{4 / 3}$, where $4 / 3$ is the dual exponent to 4 . A small computation shows that $\|\underline{b}\|=$ $\left(\frac{16}{15}\right)^{3 / 4}$, and the result now follows from the stated norm of \underline{a} in conjunction with Hölder's Inequality. One must, however, also introduce the sequence $\underline{|a|}=\left(\left|a_{n}\right|\right)_{n=0}^{\infty}$ and observe that $|a|$ has the same ℓ_{4} norm as \underline{a}.

Exercise 3 (20 points). Let (X, \mathbb{E}, μ) be a measure space. Let $A, B, C \in \mathbb{E}$ satisfy

$$
\mu(A \cup B)=2, \quad \mu(A \backslash C)=\frac{3}{4}, \quad \mu(A)=\frac{3}{2}, \quad \mu(B)=\frac{1}{2}, \quad \mu(C)=3 .
$$

(i) Determine $\mu(A \cap B)$.
(ii) If, furthermore, $\mu(C \backslash(A \cup B))=2$, prove that $\mu(B \cap C)=\frac{1}{4}$.
(iii) Let $B_{1} \supseteq B_{2} \supseteq \cdots \supseteq B_{N} \supseteq \ldots$ be a decreasing sequence of measurable sets, and assume $\forall n: \mu\left(B_{n} \backslash B_{n+1}\right)=2^{-n}$. Determine

$$
\mu\left(\cup_{n=1}^{\infty}\left(B_{n} \backslash B_{n+1}\right)\right) .
$$

(iv) Let $C_{1} \supseteq C_{2} \supseteq \cdots \supseteq C_{N} \supseteq \ldots$ be a decreasing sequence of measurable sets, and assume that it now are the measures of the following set-differences; $\forall n: \mu\left(C_{n} \backslash C_{n+2}\right)=2^{-n}$, that are given, but where furthermore you are informed that $\mu\left(C_{1} \backslash C_{2}\right)=\frac{1}{4}$. Determine

$$
\mu\left(\cup_{n=1}^{\infty}\left(C_{n} \backslash C_{n+1}\right)\right) .
$$

(v) Is the number computed in (iv) always equal to $\mu\left(C_{1}\right)$? - Explain!

Solutions to (iv) and (v): We have that

$$
\mu\left(C_{n} \backslash C_{n+2}\right)=\mu\left(C_{n} \backslash C_{n+1}\right)+\mu\left(C_{n+1} \backslash C_{n+2}\right)
$$

which is the basic observation. Then,

$$
\begin{aligned}
\sum_{n=1}^{\infty} \mu\left(C_{n} \backslash C_{n+2}\right) & =\sum_{n=1}^{\infty} \frac{1}{2^{n}}=1 \\
& =\sum_{n=1}^{\infty} \mu\left(C_{n} \backslash C_{n+1}\right)+\sum_{n=1}^{\infty} \mu\left(C_{n+1} \backslash C_{n+2}\right) \\
& =\sum_{n=1}^{\infty} \mu\left(C_{n} \backslash C_{n+1}\right)+\sum_{n=1}^{\infty} \mu\left(C_{n} \backslash C_{n+1}\right)-\mu\left(C_{1} \backslash C_{2}\right)
\end{aligned}
$$

from which the result follows.
Another good idea is to use either the first or the second equality below:
$\cup_{n=1}^{\infty}\left(C_{n} \backslash C_{n+1}\right)=\cup_{n \in \mathbb{N}, n \text { odd }}^{\infty}\left(C_{n} \backslash C_{n+2}\right)=\left(C_{1} \backslash C_{2}\right) \cup\left(\cup_{n \in \mathbb{N}, n \text { even }}^{\infty}\left(C_{n} \backslash C_{n+2}\right)\right)$.
Since

$$
C_{1}=\cup_{n=1}^{\infty}\left(C_{n} \backslash C_{n+1}\right) \cup\left(\cap_{n=1}^{\infty} C_{n}\right) \quad \text { (disjoint union) }
$$

and we do not assume $\mu\left(\cap_{n=1}^{\infty} C_{n}\right)=0$, we cannot in general find the measure of C_{1} in this way.

Exercise 4 (15 points). Let $\forall x \in \mathbb{R}: f(x)=e^{\sin x}$. Determine

$$
\lim _{n \rightarrow \infty} \int_{-1}^{1} f\left(\frac{x}{n}\right) d x
$$

Exercise 5 (25 points). Let X, Y be non-empty sets and let $\phi: X \mapsto Y$ be a function from X to Y.
(i) Let \mathbb{D}_{X} be a Dynkin system (also called a σ-class) in X. Prove that

$$
\widetilde{\mathbb{D}}_{Y}=\left\{F \in \mathcal{P}(Y) \mid \phi^{-1}(F) \in \mathbb{D}_{X}\right\}
$$

is a Dynkin system in Y.
(ii) Let \mathbb{E}_{X} and \mathbb{E}_{Y} be σ-algebras in X and Y, respectively, and set

$$
\widetilde{\mathbb{E}}_{Y}=\left\{F \in \mathbb{E}_{Y} \mid \phi^{-1}(F) \in \mathbb{E}_{X}\right\}
$$

Prove that $\widetilde{\mathbb{E}}_{Y}$ is a σ-algebra in Y.
(iii) Let $\widehat{\mathbb{E}}_{X} \subseteq \mathcal{P}(X)$ be defined by

$$
\widehat{\mathbb{E}}_{X}=\left\{\phi^{-1}(F) \mid F \in \mathbb{E}_{Y}\right\}
$$

Prove that $\widehat{\mathbb{E}}_{X}$ is a σ-algebra in X.
(iv) Let \mathbb{K}_{Y} be a generating system for \mathbb{E}_{Y}. Prove that

$$
\widehat{\mathbb{K}}_{X}=\left\{\phi^{-1}(K) \mid K \in \mathbb{K}_{Y}\right\}
$$

is a generating system for $\widehat{\mathbb{E}}_{X}$.

Solution to (iv): It is clear that $\widehat{\mathbb{K}}_{X} \subseteq \widehat{\mathbb{E}}_{X}$, hence it will generate a σ-algebra $\sigma\left(\widehat{\mathbb{K}}_{X}\right)=\check{\mathbb{E}}_{X} \subseteq \widehat{\mathbb{E}}_{X}$. If $\check{\mathbb{E}}_{X} \neq \widehat{\mathbb{E}}_{X}$ then

$$
\mathbb{K}_{Y} \subseteq \widetilde{\tilde{\mathbb{E}}_{Y}}=\left\{F \in \mathbb{E}_{Y} \mid \phi^{-1}(F) \in \check{\mathbb{E}}_{X}\right\} \neq \mathbb{E}_{Y}
$$

and by (ii), this is a contradiction.
Exercise 6 (15 points). a) Let $g \in \mathcal{L}_{2}(\mathbb{R}, \mathbb{B}, d x$), where $d x$ denotes the Lebesgue measure on \mathbb{R}. Prove that the function

$$
F(t)=\int_{\mathbb{R}} \frac{1}{\left(x^{2}+t^{2}+1\right)^{1 / 2}} g(x) d x
$$

belongs to $C^{1}(\mathbb{R})$ and argue (or prove) that it actually belongs to $C^{\infty}(\mathbb{R})$.
b) Let $\psi \in \mathcal{S}$ be a Schwartz function on \mathbb{R}. Prove that

$$
\int\left(\int \hat{\psi}(t) e^{-(x-t)^{2} / 2} d t\right) d x=(\sqrt{2 \pi})^{3} \psi(0),
$$

where $\hat{\psi}$ denotes the Fourier transform of ψ. You must carefully justify all steps in the computation.

