Københavns Universitet Examination in Mathematics 3MI

Solutions to selected questions (sketched).

Exercise 2 (15 points). Let $\underline{a} = (a_n)_{n=0}^{\infty}$ be a complex sequence which belongs to $\ell_4 = \mathcal{L}_4(\mathbb{N}_0, \mathcal{P}(\mathbb{N}_0), \mu)$, where μ is the counting measure. Assume that $||\underline{a}||_4^4 = 15^3$. Prove that

$$\sum_{n=0}^{\infty} \frac{|a_n|}{2^{3 \cdot n}} \le 8$$

Solution: Let $\underline{b} = (b_n)_{n=0}^{\infty}$ be the complex sequence with $b_n = \frac{1}{2^{3\cdot n}}$. Then $\underline{b} \in \ell_{4/3}$, where 4/3 is the dual exponent to 4. A small computation shows that $||\underline{b}|| = (\frac{16}{15})^{3/4}$, and the result now follows from the stated norm of \underline{a} in conjunction with Hölder's Inequality. One must, however, also introduce the sequence $|\underline{a}| = (|a_n|)_{n=0}^{\infty}$ and observe that $|\underline{a}|$ has the same ℓ_4 norm as \underline{a} .

Exercise 3 (20 points). Let (X, \mathbb{E}, μ) be a measure space. Let $A, B, C \in \mathbb{E}$ satisfy

$$\mu(A \cup B) = 2, \quad \mu(A \setminus C) = \frac{3}{4}, \quad \mu(A) = \frac{3}{2}, \quad \mu(B) = \frac{1}{2}, \quad \mu(C) = 3.$$

- (i) Determine $\mu(A \cap B)$.
- (ii) If, furthermore, $\mu(C \setminus (A \cup B)) = 2$, prove that $\mu(B \cap C) = \frac{1}{4}$.
- (iii) Let $B_1 \supseteq B_2 \supseteq \cdots \supseteq B_N \supseteq \ldots$ be a decreasing sequence of measurable sets, and assume $\forall n : \mu(B_n \setminus B_{n+1}) = 2^{-n}$. Determine

$$\mu\left(\cup_{n=1}^{\infty}(B_n\setminus B_{n+1})\right).$$

(iv) Let $C_1 \supseteq C_2 \supseteq \cdots \supseteq C_N \supseteq \ldots$ be a decreasing sequence of measurable sets, and assume that it now are the measures of the following set-differences; $\forall n : \mu(C_n \setminus C_{n+2}) = 2^{-n}$, that are given, but where furthermore you are informed that $\mu(C_1 \setminus C_2) = \frac{1}{4}$. Determine

$$\mu\left(\cup_{n=1}^{\infty}(C_n\setminus C_{n+1})\right).$$

(v) is the number computed in (iv) always equal to $\mu(C_1)$? - Explain!

Solutions to (iv) and (v): We have that

$$\mu(C_n \setminus C_{n+2}) = \mu(C_n \setminus C_{n+1}) + \mu(C_{n+1} \setminus C_{n+2})$$

which is the basic observation. Then,

$$\sum_{n=1}^{\infty} \mu(C_n \setminus C_{n+2}) = \sum_{n=1}^{\infty} \frac{1}{2^n} = 1$$

=
$$\sum_{n=1}^{\infty} \mu(C_n \setminus C_{n+1}) + \sum_{n=1}^{\infty} \mu(C_{n+1} \setminus C_{n+2})$$

=
$$\sum_{n=1}^{\infty} \mu(C_n \setminus C_{n+1}) + \sum_{n=1}^{\infty} \mu(C_n \setminus C_{n+1}) - \mu(C_1 \setminus C_2),$$

from which the result follows.

Another good idea is to use either the first or the second equality below:

$$\cup_{n=1}^{\infty} (C_n \setminus C_{n+1}) = \bigcup_{n \in \mathbb{N}, n \text{ odd}}^{\infty} (C_n \setminus C_{n+2}) = (C_1 \setminus C_2) \cup \left(\bigcup_{n \in \mathbb{N}, n \text{ even}}^{\infty} (C_n \setminus C_{n+2}) \right).$$

Since

$$C_1 = \bigcup_{n=1}^{\infty} (C_n \setminus C_{n+1}) \cup (\bigcap_{n=1}^{\infty} C_n) \quad \text{(disjoint union)},$$

and we do not assume $\mu(\bigcap_{n=1}^{\infty}C_n)=0$, we cannot in general find the measure of C_1 in this way

Exercise 4 (15 points). Let $\forall x \in \mathbb{R} : f(x) = e^{\sin x}$. Determine

$$\lim_{n \to \infty} \int_{-1}^{1} f(\frac{x}{n}) \, dx.$$

Exercise 5 (25 points). Let X, Y be non-empty sets and let $\phi : X \mapsto Y$ be a function from X to Y.

(i) Let \mathbb{D}_X be a Dynkin system (also called a σ -class) in X. Prove that

$$\widetilde{\mathbb{D}}_{Y} = \{F \in \mathcal{P}(Y) \mid \phi^{-1}(F) \in \mathbb{D}_{X}\}$$

is a Dynkin system in Y

(ii) Let \mathbb{E}_X and \mathbb{E}_Y be σ -algebras in X and Y, respectively, and set

$$\widetilde{\mathbb{E}}_Y = \{ F \in \mathbb{E}_Y \mid \phi^{-1}(F) \in \mathbb{E}_X \}.$$

Prove that $\widetilde{\mathbb{E}}_Y$ is a σ -algebra in Y.

(iii) Let $\widehat{\mathbb{E}}_X \subseteq \mathcal{P}(X)$ be defined by

$$\widehat{\mathbb{E}}_X = \{ \phi^{-1}(F) \mid F \in \mathbb{E}_Y \}.$$

Prove that $\widehat{\mathbb{E}}_X$ is a σ -algebra in X. (iv) Let \mathbb{K}_Y be a generating system for \mathbb{E}_Y . Prove that

$$\widehat{\mathbb{K}}_X = \{ \phi^{-1}(K) \mid K \in \mathbb{K}_Y \}$$

is a generating system for \mathbb{E}_X .

Solution to (iv): It is clear that $\widehat{\mathbb{K}}_X \subseteq \widehat{\mathbb{E}}_X$, hence it will generate a σ -algebra $\sigma(\widehat{\mathbb{K}}_X) = \check{\mathbb{E}}_X \subseteq \widehat{\mathbb{E}}_X$. If $\check{\mathbb{E}}_X \neq \widehat{\mathbb{E}}_X$ then

$$\mathbb{K}_Y \subseteq \check{\mathbb{E}}_Y = \{F \in \mathbb{E}_Y \mid \phi^{-1}(F) \in \check{\mathbb{E}}_X\} \neq \mathbb{E}_Y,$$

and by (ii), this is a contradiction.

Exercise 6 (15 points). a) Let $g \in \mathcal{L}_2(\mathbb{R}, \mathbb{B}, dx)$, where dx denotes the Lebesgue measure on \mathbb{R} . Prove that the function

$$F(t) = \int_{\mathbb{R}} \frac{1}{(x^2 + t^2 + 1)^{1/2}} g(x) \, dx$$

belongs to $C^1(\mathbb{R})$ and argue (or prove) that it actually belongs to $C^{\infty}(\mathbb{R})$. b) Let $\psi \in S$ be a Schwartz function on \mathbb{R} . Prove that

$$\int \left(\int \hat{\psi}(t)e^{-(x-t)^2/2} dt\right) dx = (\sqrt{2\pi})^3 \psi(0),$$

where $\hat{\psi}$ denotes the Fourier transform of $\,\psi.$ You must carefully justify all steps in the computation.