Weekly notice \#14

There will be no more notices. Consult the course home page for further and forthcoming information about the exam.

The lectures in week 19: The main results covered were Hölder's and Minkowski's Inequalities and the Fisher Completeness Theorem.

The lectures in week 20: A little time will spent on \mathcal{L}_{∞} and L_{∞}, but the main topic from now on will be the Fourier Transform ($\S 8.1$ and $\S 8.2$).

The problem sessions in week 21: 8.1, 8.2, 8.3*, 8.4, 8.6 ${ }^{\dagger}$, W14.1, W14.2*, W14.3*.
$(\dagger$) [Information to exercise 8.6: The absolute value of the Jacobian determinant for the change of variables is $r^{2} \sin \theta$, where θ is the angle between the position vector (x, y, z) and the z-axis.]

Problem W14.1. Prove that the equation $\frac{\partial^{2}}{\partial x^{2}} \psi=\frac{\partial^{2}}{\partial y^{2}} \psi$ has no solutions in the Schwartz space $\mathcal{S}\left(\mathbb{R}^{2}\right)$. [Hint: Look at the Fourier transform.]

Problem W14.2. (Assumes complex function theory as in Matematik 2KF.) Prove that if $f(x)=e^{-\frac{1}{2} x^{2}}$ then $\hat{f}(\xi)=\sqrt{(2 \pi)} e^{-\frac{1}{2} \xi^{2}}=\sqrt{(2 \pi)} f(\xi)$. [Hint: Write

$$
\hat{f}(\xi)=e^{-\frac{1}{2} \xi^{2}} \int_{\mathbb{R}} e^{-\frac{1}{2}(x+i \xi)^{2}} d x
$$

and view the integral as a complex curve integral of the entire function $e^{-\frac{1}{2} z^{2}}$ along a line parallel to the x-axis and going through $i \xi$. Such an integral may be seen to be independent of ξ and may hence be computed for $\xi=0$.]

Problem W14.2. Granted the fact that the Schwartz space $\mathcal{S}\left(\mathbb{R}^{k}\right)$ is dense in $\mathcal{L}_{1}\left(\mathbb{R}^{k}\right)$, do exercise 8.10.

