Weekly notice \#13

Notice: The so-called Short List for the Essay Problem has now been posted. See the course home page or http://www.math.ku.dk/ ~ jakobsen/essay-short.html directly

The lectures in week 18: First the Fubini Theorem was discussed. Then some more general observations about the transformation of integrals and, in particular, polar coordinates, were made and the volume of the n-sphere was computed. In the secont hour, the \mathcal{L}_{p} and L_{p} spaces were introduced and the Hölder Inequality was proved (just barely).

The lectures in week 19: We will continue with Hölder's and Minkowski's Inequalities. Hopefully we will also cover the Fisher Completeness Theorem.

Homework - to be handed in to the TA in week 20: 3MI-Exam: January '02 Exercises 4 and 5. (see below.)

The problem sessions in week 20: W13.1, W13.2, W13.3, 7.10*, 7.12, 7.13, 7.15 ${ }^{\dagger}, 7.16,7.17^{*}$, and 7.18*
(\dagger) Hint for 7.15: Use Hölder's Inequality to show that if $r=t q+(1-t) s$, where $0<t<1$, then

$$
\int_{X}|f|^{r} d \mu \leq\left(\int_{X}|f|^{q} d \mu\right)^{t}\left(\int_{X}|f|^{s} d \mu\right)^{1-t} .
$$

Problem W13.1. Let $p \geq 1, n \in \mathbb{N}$, and $x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{C}$. Show that

$$
\left|\frac{x_{1}+x_{2}+\cdots+x_{n}}{n}\right|^{p} \leq \frac{\left|x_{1}\right|^{p}+\left|x_{2}\right|^{p}+\cdots+\left|x_{n}\right|^{p}}{n}
$$

[Hint: Let $X\{1,2, \ldots, n\}$ and let μ be the measure on X which is the counting measure divided by n. Use Hölder's Inequality on some relevant functions on this space.]

Problem W13.2. Let (X, \mathbb{E}, μ) be a measure space and let $1 \leq p<\infty$. Let \mathcal{M} be a subset of \mathcal{L}_{p}. Show that f belongs to the closure of \mathcal{M} (w.r.t. $\|\cdot\|_{p}$) if and only if there is a sequence $\left\{f_{n}\right\}_{n 1}^{\infty}$ in \mathcal{M} such that $f_{n} \rightarrow f$ pointwise μ-a.e. and in p-mean.

Problem W13.3. We consider here $\mathcal{L}_{p}([0,1]) \mathcal{L}_{p}([0,1], \mathbb{B}, m)$ spaces on the interval $[0,1]$ with the usual Lebesgue measure m.
(i) Show that $\|f\|_{1} \leq\|f\|_{2}$ for all $f \in \mathcal{L}_{2}([0,1])$.
(ii) Explain why $\mathcal{L}_{2}([0,1]) \subseteq \mathcal{L}_{1}([0,1])$.
(iii) Let K be a positive real number. Show that $\left\{f \in \mathcal{L}_{2}([0,1]) \mid\|f\|_{2} \leq K\right\}$ is a closed subset of $\mathcal{L}_{1}([0,1])$ w.r.t. $\|\cdot\|_{1}$. [Hint: Use W13.2 and Fatou's Lemma.]

3MI-Exam January 2002; Exercise 4: Show that

$$
\left|\int_{1}^{\infty} \frac{f(x)}{x} d x\right| \leq \sqrt[4]{27}\left(\int_{1}^{\infty}|f(x)|^{4} d x\right)^{\frac{1}{4}}
$$

for all $f \in \mathcal{L}_{4}([1, \infty[, m)$.
3MI-Exam January 2002; Exercise 5: Consider the function

$$
f \sum_{n 1}^{\infty}(-1)^{n-1} \sqrt{n} \cdot 1_{\left[n, n+\frac{1}{n^{3}}\right]} .
$$

Show that $f \in \mathcal{L}_{2}(\mathbb{R}, m)$. What is its norm?

