Weekly notice \#11

The lectures in week 15: We discussed the Cantor set Z. After this, $\S 6.1$ was completed.

The lectures in week 16: Product measures. Theorems of Fubini and Tonelli.

Homework - to be handed in to the TA in week 18: 3MI-Exam January '00; Exercises 2 and 4 (see below)

The problem sessions in week 18: W11.1, W11.2, W11.3, 6.14, 6.15, 6.17 (you may here assume that X and Y are countable), 6.18, 6.19, 6.20.

Problem W11.1: Let (X, \mathbb{E}, μ) be a σ-finite measure space and let $f: X \times X \rightarrow \mathbb{C}$ be a measurable function that satisfies $f(x, y)=-f(y, x)$. Show that if $f \in \mathcal{L}(\mu \otimes \mu)$ then

$$
\int_{X}\left(\int_{X} f(x, y) d \mu(x)\right) d \mu(y)=0 .
$$

Give an example of a function f which satisfies $f(x, y)=-f(y, x)$ and for which the integral above is defined and $\neq 0$. [Hint: Consider a suitable rational function $q(x, y)$ in two variables in $[0,1) \times[0,1]$, i.e., $q(x, y)=p_{1}(x, y) / p_{2}(x, y)$ with p_{1}, p_{2} polynomials.]

Problem W11.2: Let I_{p}, I_{q} be standard intervals in \mathbb{R}^{p} and \mathbb{R}^{q}, respectively. Let f be a real Borel function on \mathbb{R}^{k}, where $k=p+q$. Show that if

$$
\int_{I_{q}} \int_{I_{p}}|f(x, y)| d x d y<\infty
$$

then both double integrals

$$
\int_{I_{q}} \int_{I_{p}} f(x, y) d x d y \quad \text { and } \quad \int_{I_{p}} \int_{I_{q}} f(x, y) d y d x
$$

exist and are equal.

Problem W11.3: (Addendum to exercise 6.14) Let (X, \mathbb{E}, μ) be a σ-finite measure space and let $f \in \mathcal{M}^{+}(X, \mathbb{E})$ (with finite values). Show that

$$
\int_{X} f d \mu=\int_{0}^{\infty} \mu\left(f^{-1}(] t, \infty[)\right) d t
$$

[Hint: Look at the product space $(X \times \mathbb{R}, \mathbb{E} \otimes \mathbb{B}, \mu \otimes m)$ and at the sets

$$
\begin{equation*}
G(f)=\{(x, t) \mid 0 \leq t<f(x)\} \subseteq X \times \mathbb{R} \tag{1}
\end{equation*}
$$

Don't forget to skow that $G(f) \in \mathbb{E} \otimes \mathbb{B}$. This may be done by first looking at the case where f is simple and then by using that $G(f)=\cup_{n=1}^{\infty} G\left(s_{n}\right)$ if $s_{n} \nearrow f$.]

Remark: The function $t \mapsto \mu\left(f^{-1}(] t, \infty[)\right)$ is decreasing and hence, actually, the generalized Riemann integral exists. One can thus define the Lebesgue integral w.r.t. an arbitrary (σ-finite) measure μ by (1) above.

January 2000 Exercise 2: Let E be the set of points $(x, y) \in \mathbb{R}^{2}$ for which either x or y is rational. Show that E is a Borel subset of \mathbb{R}^{2} and determine $m_{2}(E)$, where m_{2} denotes the Lebesgue measure on \mathbb{R}^{2}.

January 2000 Exercise 4: Set

$$
A=\left\{(x, y) \in \mathbb{R}^{2} \mid 0<x \leq y \leq \pi / 2\right\} \subseteq \mathbb{R}^{2}
$$

and let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be given by

$$
f(x, y)= \begin{cases}\cos (y) / y & \text { if }(x, y) \in A \\ 0 & \text { if }(x, y) \in \mathbb{R}^{2} \backslash A\end{cases}
$$

Carefully explain why

$$
\int_{\mathbb{R}^{2}} f(x, y) \operatorname{dm}_{2}(x, y)=\int_{\mathbb{R}}\left(\int_{\mathbb{R}} f(x, y) \operatorname{dm}(x)\right) \operatorname{dm}(y)=\int_{\mathbb{R}}\left(\int_{\mathbb{R}} f(x, y) \operatorname{dm}(y)\right) d m(x)
$$ and then compute the integral.

