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The discovery by Alfred Haar in 1933, cf. [6], of a translation invariant measure
on any locally compact topological group must surely rank as one of the high
moments in 20th century mathematics. Although the existence was known for all
the classical groups, a result of such sweeping generality was thought improbable
by most experts. John von Neumann used afterwards to tell with a wry smile how
he had tried to talk Haar out of Haar measure. He made amends by giving an easy
proof in [8] of the existence of Haar measure for compact groups.

Haar proves the existence by resorting to a choice. Since he assumes the group
to be second countable this can be accomplished by a Cantor diagonal process.
His argument can be adapted to the general case, but then the axiom of choice
seems to be needed for the existence. (But see Remark 1.) However, already in
1935 von Neumann, [9] and André Weil proved (independently) that the measure
was unique up to a multiplicative constant. Weil’s argument is quite elementary,
and can be reproduced using only a few fact about the convolution product and the
partition of unit. A shorter but slightly more advanced proof is obtained by applying
Fubini’s theorem (though only in the “Fubinito version” for continuous functions
with compact support) to the product of two Haar integrals on G × G, cf. [10,
6.6.12]. Von Neumann’s argument is the shortest, but it uses the Radon-Nikodym
theorem for measures (albeit only in the case where one measure is dominated by
the other, so that the existence of the Radon-Nikodym derivative is immediate from
L2−theory), and the full (Tonelli) version of Fubini’s theorem. Strictly speaking
the argument is therefore only valid for σ−compact groups (including all connected
groups).

The point of this note is to show that Haar’s theorem is not really that difficult
to prove, given a certain mathematical maturity, and that it does not take an
elaborate textbook to reproduce it. The proof used for the existence is due to Weil,
[11], and builds on Haar’s original ideas. It is reproduced in [7, §29] and [5, 14.1]
and seems unsurpassable in elegance. For the benefit of the readers discrimination
we reproduce all three proofs of the uniqueness mentioned above. Throughout the
paper we have used the by now standard theory of the Daniell integral, identifying
the class of inner regular Borel measures on a locally compact set X with the set of
positive linear functionals on Cc(X), see [4], [2], [7, §12 ] or [10, Chapter 6]. The
notation follows that of [10].
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Definitions. Let G be a locally compact, Hausdorff topological group with unit
element e, and consider positive functions f and g in the algebra Cc(G) of contin-
uous functions on G with compact supports. If g 6= 0 there is for each y in G a
constant t > 0 and x in G, such that f(y) < tg(x−1y). It follows by a standard
compactness argument that we can find a finite set of left translates of g, such that

f ≤
∑

tngxn
,

where gx(y) = g(x−1y). We define (f : g) to be the infimum of all numbers
∑
tn

that arise in this form. The number (f : g), which roughly measures the size of f
relative to g, has some simple properties which we list below.

(i) (fx: g) = (f : g) for every x in G (left invariance)
(ii) ((f1 + f2): g) ≤ (f1: g) + (f2: g) (subadditivity)

(iii) (tf : g) = (f : t−1g) = t(f : g) for all t > 0 (homogeneity)
(iv) If f1 ≤ f2 then (f1: g) ≤ (f2: g) (monotonicity)
(v) (f :h) ≤ (f : g)(g:h) (comparability)

(vi) (f : g) ≥ ‖f‖∞‖g‖−1
∞ (non-triviality)

Only the last two conditions are not immediate from the definition. But if
f ≤

∑
tngxn

and g ≤
∑
smhym

, then

f(z) ≤
∑

tng(x−1
n z) ≤

∑
tnsmh(y−1

m x−1
n z) =

∑
tnsmhxnym

(z) .

Consequently (f :h) ≤
∑
tnsm (=

∑
tn
∑
sm), and thus (v) follows. To prove (vi)

note that if f ≤
∑
tngxn and f(y) = ‖f‖∞, then

‖f‖∞ = f(y) ≤
∑

tng(x−1
n y) ≤

∑
tn‖g‖∞ ;

whence ‖f‖∞ ≤ (f : g)‖g‖∞, as desired.

Lemma. For each triple (f0, f1, f2) in Cc(G)+ and ε > 0, there is a neighbourhood
E of e in G such that for every non-zero g in Cc(G)+ with support in E we have

(f1: g) + (f2: g) ≤ ((f1 + f2): g) + ε(f0: g) .

Proof. Choose a function h in Cc(G)+ such that h(y) = ‖f1 + f2‖∞ whenever
f1(y) + f2(y) > 0. Then take δ > 0 such that (3δ + 2δ2)(h: f0) ≤ ε and let
f = f1 + f2 + δh. Define hi in Cc(G)+ for i = 1, 2 such that hif = fi. Since
both h1 and h2 are uniformly continuous on G, having compact supports, there is
a neighbourhood E of e such that x−1y ∈ E implies that |hi(x) − hi(y)| < δ for
i = 1, 2. If therefore g ∈ Cc(G)+ with support in E, then, whenever f ≤

∑
tngxn ,

we can estimate

fi(y) = hi(y)f(y) ≤
∑

tnhi(y)g(x−1
n y) ≤

∑
tn(hi(xn) + δ)g(x−1

n y) .

It follows that (fi: g) ≤
∑
tn(hi(xn) + δ) and since h1 + h2 ≤ 1 this implies that

(f1: g) + (f2: g) ≤
∑

tn(1 + 2δ) .

Consequently, by (ii) and (iii) (note that f1 + f2 ≤ h) we get

(f1: g) + (f2: g) ≤ (1 + 2δ)(f : g) ≤ (1 + 2δ)(((f1 + f2): g) + δ(h: g))

≤ ((f1 + f2): g) + (2δ + (1 + 2δ)δ)(h: g)

≤ ((f1 + f2): g) + (3δ + 2δ2)(h: f0)(f0: g) ≤ ((f1 + f2): g) + ε(f0: g) .

�



HAAR INTEGRAL 3

Theorem 1. There exists a non-trivial left invariant Radon integral on G.

Proof. Let (gλ) denote the net of functions in Cc(G)+ such that gλ(e) = 1, where
gλ ≺ gµ if gµ ≤ gλ. Fix once and for all a non-zero function f0 in Cc(G)+, and for
every f in Cc(G)+ define

Iλ(f) = (f : gλ)(f0: gλ)−1 .

Evidently the function f → Iλ(f) is left invariant, subadditive, homogeneous and
monotone, cf. (i)–(iv). Moreover, we see from condition (v) that

(∗) 0 < (f0: f)−1 ≤ Iλ(f) ≤ (f : f0) .

Finally it follows from the Lemma that for every ε > 0 we have
(vii) Iλ(f1) + Iλ(f2) ≤ Iλ(f1 + f2) + ε

eventually. If we therefore choose a universal subnet of (gλ), cf. [10, 1.3.8], then
I(f) = lim Iλ(f) will exist for every f in Cc(G)+ by (∗), and define a positive,
left invariant and additive functional I on Cc(G)+ by (i), (ii), (iii) and (vii). Since
Iλ(f0) = I(f0) = 1 this functional is non-zero, and thus its linear extension to
Cc(G) defines a non-trivial Radon integral on G. �

Theorem 2. The Haar integral on G is unique up to a multiplicative constant.

First Proof. Let
∫

denote any non-zero left invariant Radon integral on G. Without
loss of generality we may assume that

∫
f0 = 1, and must show that

∫
= I, where

I is the integral found in Theorem 1.
If f ≤

∑
tngxn

for some f, g in Cc(G)+, then evidently
∫
f ≤

∑
tn
∫
g, from

which we conclude that
∫
f ≤ (f : g)

∫
g. With (gλ) the net considered in Theorem

1, put γλ = (
∫
gλ)−1. Then the estimate above shows that

(∗) γλ = γλ

∫
f0 ≤ (f0: gλ)

for all λ.
Now put uλ = γλgλ, and note that the net (uλ) is an approximative unit for the

convolution product on Cc(G) in the uniform topology. For each f in Cc(G)+ and
ε > 0 we therefore eventually have

f(y) ≤
∫
f(x)uλ(x−1y) dx+ 1

2ε

for all y.
Let C be a compact subset of G supporting f , and for a fixed λ and ε2 ≤

1
2ε(
∫
f)−1 choose a finite open covering (En) of C and elements xn in En, such

that
uλ(x−1y) < uλ(x−1

n y) + ε2

for all x in En and y in C. Choosing a partition of unit subordinate to (En) on C,
cf. [10, 1.7.12], we can find a family of functions hn in Cc(G)+ with

∑
hn|C = 1,

such that each hn is supported in En. It follows that∫
f(x)uλ(x−1y) dx =

∑∫
f(x)hn(x)uλ(x−1y) dx ≤∑∫

f(x)hn(x) dxuλ(x−1
n y) +

∑∫
f(x)hn(x)ε2 dx =

∑
tnuλ(x−1

n y) + ε2

∫
f ,
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where tn =
∫
fhn. If we therefore choose a function h in Cc(G)+ such that h|C = 1,

then our two estimates combine to show that

(∗∗) f(y) ≤
∑

tnuλ(x−1
n y) + εh(y)

for all y in G. Thus, (f−εh)+ ≤
∑
tn(uλ)xn , whence ((f−εh)+:uλ) ≤

∑
tn =

∫
f .

Since uλ = γλgλ this, by (iii), means that

((f − εh)+): gλ) ≤ γλ
∫
f .

Using that f = (f − εh) + εh ≤ (f − εh)+ + εh we have by (ii) and (iv) that
eventually

(f : gλ) ≤ γλ
∫
f + ε(h: gλ) .

Combined with (∗) this shows that

Iλ(f) = (f : gλ)(f0: gλ)−1 ≤ γλ(f0: gλ)−1

∫
f + εIλ(h) ≤

∫
f + εIλ(h) .

Passing to the limit along the universal net, as in Theorem 1, gives I(f) ≤
∫
f +

εI(h), and since ε is arbitrary we conclude that I(f) ≤
∫
f for every f in Cc(G)+.

But then
∫
− I is a positive, left invariant Radon integral on G, and since we have

(
∫
− I)(f0) = 0 it must be the zero integral (by invariance), whence

∫
= I, as

desired. �

Remark 1. As shown by Henri Cartan, the inequality (∗∗), above, even in the two-
sided form ‖f −

∑
tn(uλ)xn

‖∞ ≤ ε, can be established directly, without resorting
to the convolution with any Haar integrals, cf. [3]. The non-trivial argument uses
the almost additive functionals Iλ in lieu of the integral. This inequality then shows
that the full net (Iλ(f)) actually is convergent for each f in Cc(G)+, avoiding the
need to choose a universal subnet. The existence of the Haar integral is therefore
independent of the axiom of choice. A full discussion of these implications and a
proof that simultaneaously establishes existence and uniqueness can be found in
[1].

Second Proof. In the net (gλ) considered in Theorem 1 we consider the subnet
consisting of symmetric functions (g(y−1) = g(y)), replacing if necessary each gλ
by the function x → gλ(x)gλ(x−1). If now

∫
x

and
∫
y

are left invariant Radon
integrals on G we consider the numbers γλ = (

∫
x
gλ)(

∫
y
gλ)−1. Since γλ > 0 for all

λ we may assume, passing if necessary to a further subnet, that either γλ → γ or
γ−1
λ → γ for some γ ≥ 0. Interchanging

∫
x

and
∫
y

transforms the second situation
into the first, which we may therefore assume to hold.

Using Fubini’s theorem, cf. [10, 6.6.6], see also Remark 2, applied to the product
integral

∫
x
⊗
∫
y

on G×G, together with the translation invariance of
∫
x

and
∫
y
, we

get for any f in Cc(G) and every symmetric gλ∫
y

∫
x

f(x)gλ(y) dx dy =
∫
x

∫
y

f(x)gλ(y) dy dx =
∫
x

∫
y

f(x)gλ(x−1y) dy dx∫
y

∫
x

f(x)g(x−1y) dx dy =
∫
y

∫
x

f(yx)gλ(x−1) dx dy =
∫
y

∫
x

f(yx)gλ(x) dx dy .
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For each ε > 0 we can find a compact neighbourhood E of e, such that for all x
in E we have

∫
y
|f(yx) − f(y)| dy ≤ ε, cf. [10, 6.6.11]. Since the support of gλ is

contained in E eventually, this, combined with the equality above and the definition
of γ, gives∣∣∣∫

x

f(x) dx− γ
∫
y

f(y) dy
∣∣∣ = lim

(∫
y

gλ

)−1∣∣∣∫
x

∫
y

(f(x)gλ(y)− gλ(x)f(y)) dy dx
∣∣∣

= lim
(∫

y

gλ

)−1∣∣∣∫
x

∫
y

(f(yx)− f(y))gλ(x) dy dx
∣∣∣ ≤ lim sup

(∫
y

gλ

)−1
∫
x

εgλ = εγ .

Since ε and f were arbitrary we conclude that
∫
x

= γ
∫
y
. �

Remark 2. If
∫
x

and
∫
y

are Radon integrals on locally compact Hausdorff spaces
X and Y , respectively, the product integral

∫
x
⊗
∫
y

on X × Y is defined so that
the Fubinito theorem, mentioned in the second proof, above, is built into the con-
struction. For any f in Cc(X × Y ) choose c = a ⊗ b in Cc(X) ⊗ Cc(Y ) so that
fc = f and 0 ≤ c ≤ 1. By the Stone-Weierstrass theorem we can then for each
ε > 0 find a finite tensor product fε =

∑
gn ⊗ hn such that ‖f − fε‖∞ ≤ ε

and fεc = fε. This shows at once that both functions x →
∫
y
f(x, y) dy and

y →
∫
x
f(x, y) dx are continuous with compact supports on X and Y , respectively,

and that
∫
x

∫
y
f(e, y) dy dx =

∫
y

∫
x
f(x, y) dx dy( =

∫
x
⊗
∫
y
(f) ). Indeed, the result

is trivial for fε, and the functionals g →
∫
x
ga and h →

∫
y
hb are uniformly con-

tinuous on Cb(X) and Cb(Y ), respectively, so that the approximation of f by fε is
respected.

Third Proof. Let again
∫
x

and
∫
y

be left invariant Radon integrals on G, which we
assume to be σ−compact. In order to prove that

∫
y

is proportional to
∫
x

we may
assume that

∫
y
≤
∫
x
, replacing if necessary

∫
x

with
∫
x

+
∫
y
. By the Radon-Nikodym

theorem, cf. [10, 6.5.4], there is a function h in L∞x (G), with 0 ≤ h(x) ≤ 1 almost
everywhere, such that

∫
y
f =

∫
x
fh for all f in Cc(G). This implies that for each z

in G we have∫
x

f(x)h(x) dx =
∫
y

f(y) dy =
∫
y

f(zy) dy =
∫
x

f(zx)h(x) dx =
∫
x

f(x)h(z−1x) dx .

Consequently,
∫
x
f(x)(h(x)−h(z−1x)) dx = 0 for every f in Cc(G), whence h = hz

almost everywhere. Fubini’s theorem, applied to the product integral
∫
x
⊗
∫
x

on
G × G and the function (x, z) → h(z−1x) − h(x), now shows that the function
x→

∫
x
|h(z−1x)− h(x)| dz =

∫
x
|h(z−1)− h(x)| dz equals zero almost everywhere.

It follows that h is constant almost everywhere, as desired. �
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