
Forum Math. 27 (2015), 2413–2452
DOI 10.1515/forum-2013-6029

Forum Mathematicum
© de Gruyter 2015

K-groups for rings of finite Cohen–Macaulay type

Henrik Holm

Communicated by Andrew Ranicki

Abstract. For a local Cohen–Macaulay ring R of finite CM-type, Yoshino has applied
methods of Auslander and Reiten to compute the Grothendieck group K0 of the category
modR of finitely generated R-modules. For the same type of rings, we compute in this
paper the first Quillen K-group K1.modR/. We also describe the group homomorphism
R� ! K1.modR/ induced by the inclusion functor projR! modR and illustrate our
results with concrete examples.
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1 Introduction

Throughout this introduction, R denotes a commutative noetherian local Cohen–
Macaulay ring. The lower K-groups of R are known:

K0.R/ Š Z and K1.R/ Š R�:

For n 2 ¹0; 1º the classical K-group Kn.R/ of the ring coincides with Quillen’s
K-group Kn.projR/ of the exact category of finitely generated projective R-mod-
ules; and if R is regular, then Quillen’s resolution theorem shows that the inclu-
sion functor projR! modR induces an isomorphism Kn.projR/ Š Kn.modR/.
If R is non-regular, then these groups are usually not isomorphic. The groups
Kn.modR/ are often denoted Gn.R/ and they are classical objects of study called
the G-theory of R. A celebrated result of Quillen is that G-theory is well-behaved
under (Laurent) polynomial extensions:

Gn.RŒt �/ Š Gn.R/ and Gn.RŒt; t�1�/ Š Gn.R/˚ Gn�1.R/:

Auslander and Reiten [4] and Butler [9] computed K0.modƒ/ for an Artin
algebra ƒ of finite representation type. Using similar techniques, Yoshino [32]
computed K0.modR/ in the case where R has finite (as opposed to tame or wild)
CM-type.
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2414 H. Holm

Theorem (Yoshino [32, Theorem (13.7)]). Assume that R is henselian and that it
has a dualizing module. IfR has finite CM-type, then there is a group isomorphism

K0.modR/ Š Coker‡;

where‡ WZt ! ZtC1 is the Auslander–Reiten homomorphism from Definition 2.3.

We mention that Yoshino’s result is as much a contribution to algebraic K-theo-
ry as it is to the representation theory of the category MCMR of maximal Cohen–
Macaulay R-modules. Indeed, the inclusion functor MCMR! modR induces
an isomorphism Kn.MCMR/ Š Kn.modR/ for every n. The theory of maximal
Cohen–Macaulay modules, which originates from algebraic geometry and integral
representations of finite groups, is a highly active area of research.

In this paper, we build upon results and techniques of Auslander–Reiten [4],
Bass [7], Lam [20], Leuschke [21], Quillen [24], Vaserstein [28,29], Yoshino [32]
to compute the group K1.modR/ when R has finite CM-type. Our main result is
Theorem 2.12; it asserts that there is an isomorphism

K1.modR/ Š AutR.M/ab=„;

where M is any representation generator of the category of maximal Cohen–
Macaulay R-modules and AutR.M/ab is the abelianization of its automorphism
group. The subgroup „ is more complicated to describe; it is determined by the
Auslander–Reiten sequences and defined in Definition 2.10. Observe that in con-
trast to K0.modR/, the group K1.modR/ is usually not finitely generated.

We also prove that if one writes M D R˚M 0, then the group homomorphism
R� Š K1.projR/! K1.modR/ induced by the inclusion functor projR! modR
can be identified with the map

�WR� ! AutR.M/ab=„ given by r 7!

 
r1R 0

0 1M 0

!
:

The paper is organized as follows: In Section 2 we formulate our main result,
Theorem 2.12. This theorem is not proved until Section 8, and the intermediate
Section 3 (on the Gersten–Sherman transformation), Section 4 (on Auslander’s and
Reiten’s theory for coherent pairs), Section 5 (on Vaserstein’s result for semilo-
cal rings), Section 6 (on certain equivalences of categories), and Section 7 (on
Yoshino’s results for the abelian category Y) prepare the ground.

In Section 9 and Section 10 we apply our main theorem to compute the group
K1.modR/ and the homomorphism �WR� ! K1.modR/ in some concrete ex-
amples. For example, for the simple curve singularity R D kŒŒT 2; T 3�� we obtain
K1.modR/ Š kŒŒT ��� and show that the homomorphism �W kŒŒT 2; T 3��� ! kŒŒT ���
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K-groups for rings of finite Cohen–Macaulay type 2415

is the inclusion. It is well known that if R is artinian with residue field k, then one
has K1.modR/ Š k�. We apply Theorem 2.12 to confirm this isomorphism for
the ring R D kŒX�=.X2/ of dual numbers and to show that the homomorphism
�WR� ! k� is given by aC bX 7! a2.

We end this introduction by mentioning a related preprint [23] of Navkal. Al-
though the present work and the paper of Navkal have been written completely
independently (this fact is also pointed out in the latest version of [23]), there is
a significant overlap between the two manuscripts: Navkal’s main result [23, The-
orem 1.2] is the existence of a long exact sequence involving the G-theory of the
rings R and EndR.M/op (where M is a particular representation generator of the
category of maximal Cohen–Macaulay R-modules) and the K-theory of certain
division rings. In [23, Section 5], Navkal applies his main result to give some de-
scription of the group K1.modR/ for the ring R D kŒŒT 2; T 2nC1�� where n > 1.
We point out that the techniques used in this paper and in Navkal’s work are quite
different.

2 Formulation of the main theorem

Let R be a commutative noetherian local Cohen–Macaulay ring. By modR we
denote the abelian category of finitely generated R-modules. The exact categories
of finitely generated projective modules and of maximal Cohen–Macaulay modu-
les over R are written projR and MCMR, respectively. The goal of this section is
to state our main Theorem 2.12; its proof is postponed to Section 8.

Setup 2.1. Throughout this paper, .R;m; k/ is a commutative noetherian local
Cohen–Macaulay ring satisfying the following assumptions.

(1) R is henselian.

(2) R admits a dualizing module.

(3) R has finite CM-type, that is, up to isomorphism, there are only finitely many
non-isomorphic indecomposable maximal Cohen–Macaulay R-modules.

Note that (1) and (2) hold if R is m-adically complete. Since R is henselian,
the category modR is Krull–Schmidt by [32, Proposition (1.18)]; this fact will be
important a number of times in this paper.

Set M0 D R and let M1; : : : ;Mt be a set of representatives for the isomor-
phism classes of non-free indecomposable maximal Cohen–MacaulayR-modules.
Let M be any representation generator of MCMR, that is, a finitely generated
R-module such that addRM D MCMR (where addRM denotes the category of
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2416 H. Holm

R-modules that are isomorphic to a direct summand of some finite direct sum of
copies of M ). For example, M could be the square-free module

M DM0 ˚M1 ˚ � � � ˚Mt : (2.1.1)

We denote by E D EndR.M/ the endomorphism ring of M .
It follows from [32, Theorem (4.22)] thatR is an isolated singularity, and hence

by [32, Theorem (3.2)] the category MCMR admits Auslander–Reiten sequences.
Let

0! �.Mj /! Xj !Mj ! 0 .1 6 j 6 t / (2.1.2)

be the Auslander–Reiten sequence in MCMR ending in Mj , where � is the Aus-
lander–Reiten translation.

Remark 2.2. The one-dimensional Cohen–Macaulay rings of finite CM-type are
classified by Cimen [10, 11], Drozd and Roı̆ter [12], Green and Reiner [18], and
Wiegand [30,31]. The two-dimensional complete Cohen–Macaulay rings of finite
CM-type that contains the complex numbers are classified by Auslander [2], Es-
nault [14], and Herzog [19]. They are the invariant rings R D CŒŒX; Y ��G where
G is a non-trivial finite subgroup of GL2.C/. In this case, M D CŒŒX; Y �� is a re-
presentation generator for MCMR which, unlike the one in (2.1.1), need not be
square-free.

Definition 2.3. For each Auslander–Reiten sequence (2.1.2) we have

Xj ŠM
n0j
0 ˚M

n1j
1 ˚ � � � ˚M

ntj
t

for uniquely determined n0j ; n1j ; : : : ; ntj > 0. Consider the element

�.Mj /CMj � n0jM0 � n1jM1 � � � � � ntjMt

in the free abelian group ZM0 ˚ ZM1 ˚ � � � ˚ ZMt , and write this element as

y0jM0 C y1jM1 C � � � C ytjMt ;

where y0j ; y1j ; : : : ; ytj 2 Z. Then define the Auslander–Reiten matrix ‡ as the
.t C 1/ � t matrix with entries in Z whose j th column is .y0j ; y1j ; : : : ; ytj /.
When ‡ is viewed as a homomorphism of abelian groups ‡ WZt ! ZtC1 (el-
ements in Zt and ZtC1 are viewed as column vectors), we refer to it as the
Auslander–Reiten homomorphism.

Example 2.4. Let R D CŒŒX; Y;Z��=.X3CY 4CZ2/. BesidesM0 D R there are
exactly t D 6 non-isomorphic indecomposable maximal Cohen–Macaulay mod-
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K-groups for rings of finite Cohen–Macaulay type 2417

ules, and the Auslander–Reiten sequences have the following form,

0!M1 !M2 !M1 ! 0;

0!M2 !M1 ˚M3 !M2 ! 0;

0!M3 !M2 ˚M4 ˚M6 !M3 ! 0;

0!M4 !M3 ˚M5 !M4 ! 0;

0!M5 !M4 !M5 ! 0;

0!M6 !M0 ˚M3 !M6 ! 0I

see [32, (13.9)]. The 7 � 6 Auslander–Reiten matrix ‡ is therefore given by

‡ D

0BBBBBBBBBBB@

0 0 0 0 0 �1

2 �1 0 0 0 0

�1 2 �1 0 0 0

0 �1 2 �1 0 �1

0 0 �1 2 �1 0

0 0 0 �1 2 0

0 0 �1 0 0 2

1CCCCCCCCCCCA
:

In this case, the Auslander–Reiten homomorphism ‡ WZ6 ! Z7 is clearly injec-
tive.

One hypothesis in our main result, Theorem 2.12 below, is that the Auslander–
Reiten homomorphism‡ over the ringR in question is injective. We are not aware
of an example where ‡ is not injective. The following lemma covers the situation
of the rational double points, that is, the invariant rings R D kŒŒX; Y ��G , where
k is an algebraically closed field of characteristic 0 and G is a non-trivial finite
subgroup of SL2.k/; see [5].

Lemma 2.5. Assume that R is complete, integrally closed, non-regular, Goren-
stein, of Krull dimension 2, and that the residue field k is algebraically closed.
Then the Auslander–Reiten homomorphism ‡ is injective.

Proof. Let 1 6 j 6 t be given and consider the expression

�.Mj /CMj �n0jM0�n1jM1�� � ��ntjMt D y0jM0Cy1jM1C� � �CytjMt

in the free abelian group ZM0 ˚ ZM1 ˚ � � � ˚ ZMt , see Definition 2.3. Let � be
the Auslander–Reiten quiver of MCMR. We recall from [5, Theorem 1] that the
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2418 H. Holm

arrows in � occur in pairs ı //
ıoo , and that collapsing each pair to an undi-

rected edge gives an extended Dynkin diagram Q�. Moreover, removing the vertex
corresponding to M0 D R and any incident edges gives a Dynkin graph �.

Now, Xj has a direct summand Mk if and only if there is an arrow Mk !Mj
in � . Also, the Auslander–Reiten translation � satisfies �.Mj / DMj by [5, proof
of Theorem 1]. Combined with the structure of the Auslander–Reiten quiver, this
means that

ykj D

8̂<̂
:
2 if k D j ,
�1 if there is an edge Mk Mj in Q�,
0 otherwise.

Hence the t � t matrix ‡0 with .y1j ; : : : ; ytj / as j th column, where 1 6 j 6 t ,
is the Cartan matrix of the Dynkin graph �; cf. [8, Definition 4.5.3]. This matrix
is invertible by [15, Exercise (21.18)]. Deleting the first row .y01; : : : ; y0t / in the
Auslander–Reiten matrix ‡ , we get the invertible matrix ‡0, and consequently,
‡ WZt ! ZtC1 determines an injective homomorphism.

For a groupG we denote byGab its abelianization, i.e.,Gab D G=ŒG;G�, where
ŒG;G� is the commutator subgroup of G.

We refer to the following as the tilde construction. It associates to every auto-
morphism ˛WX ! X of a maximal Cohen–Macaulay moduleX an automorphism
Q̨ WM q !M q of the smallest power q of the representation generatorM such that
X is a direct summand of M q .

Construction 2.6. The chosen representation generator M for MCMR has the
formM DM

m0
0 ˚ � � � ˚M

mt
t for uniquely determined integersm0; : : : ; mt > 0.

For any module X DM n0
0 ˚ � � � ˚M

nt
t in MCMR, we define natural numbers,

q D q.X/ D min¹p 2 N j pmj > nj for all 0 6 j 6 tº;

vj D vj .X/ D qmj � nj > 0;

and a module Y DM v0
0 ˚ � � � ˚M

vt
t in MCMR. Let  WX ˚ Y Š

�!M q be the
R-isomorphism that maps an element

..x0; : : : ; x t /; .y0
; : : : ; y

t
// 2 X˚Y D .M

n0
0 ˚� � �˚M

nt
t /˚.M

v0
0 ˚� � �˚M

vt
t /;

where xj 2M
nj
j and y

j
2M

vj
j , to the element

..z01; : : : ; z t1/; : : : ; .z0q; : : : ; z tq// 2M
q
D .M

m0
0 ˚ � � � ˚M

mt
t /q;

where zj1; : : : ; zjq 2M
mj
j are given by

.zj1; : : : ; zjq/ D .xj ; yj
/ 2M

qmj
j DM

njCvj
j :
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K-groups for rings of finite Cohen–Macaulay type 2419

Now, given ˛ in AutR.X/, we define Q̨ to be the uniquely determined element
in AutR.M q/ that makes the following diagram commutative,

X ˚ Y
 

Š

//

˛˚1Y Š

��

M q

Q̨Š

��

X ˚ Y
 

Š
// M q .

The automorphism Q̨ of M q has the form Q̨ D . Q̨ ij / for uniquely determined en-
domorphisms Q̨ ij of M , that is, Q̨ ij 2 E D EndR.M/. Hence Q̨ D . Q̨ ij / can nat-
urally be viewed as an invertible q � q matrix with entries in E.

Example 2.7. Let M DM0 ˚ � � � ˚Mt and X DMj . Then q D 1 and

Y DM0 ˚ � � � ˚Mj�1 ˚MjC1 ˚ � � � ˚Mt :

The isomorphism  WX ˚ Y !M maps

.xj ; .x0; : : : ; xj�1; xjC1; : : : ; xt // 2 X ˚ Y

to
.x0; : : : ; xj�1; xj ; xjC1; : : : ; xt / 2M:

Therefore, for ˛ 2 AutR.X/ D AutR.Mj /, Construction 2.6 yields the following
automorphism of M ,

Q̨ D  .˛ ˚ 1Y / 
�1
D 1M0 ˚ � � � ˚ 1Mj�1 ˚ ˛ ˚ 1MjC1 ˚ � � � ˚ 1Mt

;

which is an invertible 1 � 1 matrix with entry in E D EndR.M/.

The following result on Auslander–Reiten sequences is quite standard. We pro-
vide a few proof details along with the appropriate references.

Proposition 2.8. Let there be given Auslander–Reiten sequences in MCMR,

0! �.M/! X !M ! 0 and 0! �.M 0/! X 0 !M 0 ! 0:

If ˛WM !M 0 is a homomorphism, then there exist homomorphisms ˇ and 
 that
make the following diagram commutative,

0 // �.M/




��

// X

ˇ

��

// M

˛

��

// 0

0 // �.M 0/ // X 0 // M 0 // 0.

Furthermore, if ˛ is an isomorphism, then so are ˇ and 
 .
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2420 H. Holm

Proof. Write �WX !M and �0WX 0 !M 0. It suffices to prove the existence of ˇ
such that �0ˇ D ˛�, because then the existence of 
 follows from diagram chasing.

As 0! �.M 0/! X 0 !M 0 ! 0 is an Auslander–Reiten sequence, it suffices
by [32, Lemma (2.9)] to show that ˛�WX !M 0 is not a split epimorphism. Sup-
pose that there do exist � WM 0 ! X with ˛�� D 1M 0 . Hence ˛ is a split epimor-
phism. As M is indecomposable, ˛ must be an isomorphism. Thus

��˛ D ˛�1.˛��/˛ D 1M ;

which contradicts the fact that � is not a split epimorphism.
Finally, the fact that the maps ˇ and 
 are isomorphisms if ˛ is so follows

from [32, Lemma (2.4)].

The choice requested in Construction 2.9 is possible by Proposition 2.8.

Construction 2.9. Choose for each 1 6 j 6 t and every ˛ 2 AutR.Mj / elements
ǰ;˛ 2 AutR.Xj / and 
j;˛ 2 AutR.�.Mj // that make the next diagram commute,

0 // �.Mj /

Š 
j;˛

��

// Xj

Š ǰ;˛

��

// Mj

Š ˛

��

// 0

0 // �.Mj / // Xj // Mj // 0;

(2.9.1)

here the row(s) is the j th Auslander–Reiten sequence (2.1.2).

As shown in Lemma 5.1, the endomorphism ring E D EndR.M/ of the chosen
representation generator M is semilocal, that is, E=J.E/ is semisimple. Thus, if
the ground ring R, and hence also the endomorphism ring E, is an algebra over
the residue field k and char.k/ ¤ 2, then a result by Vaserstein [29, Theorem 2]
yields that the canonical homomorphism �E WE

�
ab ! KC

1.E/ is an isomorphism.
Here KC

1.E/ is the classical K1-group of the ring E; see paragraph 3.1. Its inverse,

��1E D detE WKC
1.E/! E�ab D AutR.M/ab;

is called the generalized determinant map. The details are discussed in Section 5.
We are now in a position to define the subgroup „ of AutR.M/ab that appears in
our main Theorem 2.12 below.

Definition 2.10. Let .R;m; k/ be a ring satisfying the hypotheses in Setup 2.1.
Assume, in addition, that R is an algebra over k and that one has char.k/ ¤ 2.
Define a subgroup „ of AutR.M/ab as follows.

� Choose for each 1 6 j 6 t and each ˛ 2 AutR.Mj / elements ǰ;˛ 2 AutR.Xj /
and 
j;˛ 2 AutR.�.Mj // as in Construction 2.9.
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K-groups for rings of finite Cohen–Macaulay type 2421

� Let Q̨ , Q̌j;˛, and Q
j;˛ be the invertible matrices with entries in E obtained by
applying the tilde Construction 2.6 to ˛, ǰ;˛, and 
j;˛.

Let „ be the subgroup of AutR.M/ab generated by the elements

.detE Q̨ /.detE Q̌j;˛/�1.detE Q
j;˛/;

where j ranges over ¹1; : : : ; tº and ˛ over AutR.Mj /.

A priori the definition of the group „ involves certain choices. However, it
follows from Proposition 8.8 that „ is actually independent of the choices made.

Remark 2.11. In specific examples it is convenient to consider the simplest possi-
ble representation generator

M DM0 ˚M1 ˚ � � � ˚Mt :

In this case, Example 2.7 shows that Q̨ and Q
j;˛ are 1 � 1 matrices with entries
in E, that is, Q̨ ; Q
j;˛ 2 E�, and consequently detE Q̨ D Q̨ and detE Q
j;˛ D Q
j;˛ as
elements in E�ab.

We are now in a position to state our main result.

Theorem 2.12. Let .R;m; k/ be a ring satisfying the hypotheses in Setup 2.1.
Assume that R is an algebra over its residue field k with char.k/ ¤ 2, and that the
Auslander–Reiten homomorphism ‡ WZt ! ZtC1 from Definition 2.3 is injective.

Let M be any representation generator of MCMR. There is an isomorphism

K1.modR/ Š AutR.M/ab=„;

where „ is the subgroup of AutR.M/ab given in Definition 2.10.
Furthermore, if incW projR! modR is the inclusion functor andM D R˚M 0,

then
K1.inc/WK1.projR/! K1.modR/

may be identified with the homomorphism

�WR� ! AutR.M/ab=„ given by r 7!

 
r1R 0

0 1M 0

!
:

As mentioned in the introduction, the proof of Theorem 2.12 spans Section 3
to Section 8. Applications and examples are presented in Sections 9 and 10. The
interested reader could go ahead and read Sections 9–10 right away, since these
sections are practically independent of Sections 3–8.
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2422 H. Holm

3 The Gersten–Sherman transformation

To prove Theorem 2.12, we need to compare and/or identify various K-groups. The
relevant definitions and properties of these K-groups are recalled below. The (so-
called) Gersten–Sherman transformation is our most valuable tool for comparing
K-groups, and the main part of this section is devoted to this natural transforma-
tion. Readers who are familiar with K-theory may skip this section altogether.

In the following, the Grothendieck group functor is denoted by G.

3.1. Let A be a unital ring.
The classical K0-group of A is defined as KC

0.A/ D G.projA/, that is, the Gro-
thendieck group of the category of finitely generated projective A-modules.

The classical K1-group of A is defined as KC
1.A/ D GL.A/ab, i.e., the abelian-

ization of the infinite (or stable) general linear group; see, e.g., Bass [7, Chapter V].

3.2. Let C be any category. Its loop category �C is the category whose objects
are pairs .C; ˛/ with C 2 C and ˛ 2 AutC .C /. A morphism .C; ˛/! .C 0; ˛0/ in
�C is a commutative diagram in C ,

C

˛ Š

��

 
// C 0

˛0Š

��

C
 
// C 0:

3.3. Let C be a skeletally small exact category. Its loop category�C is also skele-
tally small, and it inherits a natural exact structure from C . Bass’ K1-group (also
called Bass’ universal determinant group) of C , which we denote by KB

1.C/, is the
Grothendieck group of�C , that is, G.�C/, modulo the subgroup generated by all
elements of the form

.C; ˛/C .C; ˇ/ � .C; ˛ˇ/;

where C 2 C and ˛; ˇ 2 AutC .C /; see the book of Bass [7, Chapter VIII, Sec-
tion 1] or Rosenberg [25, Definition 3.1.6]. For .C; ˛/ in �C we denote by ŒC; ˛�
its image in KB

1.C/.

3.4. For every C in C one has

ŒC; 1C �C ŒC; 1C � D ŒC; 1C 1C � D ŒC; 1C �

in KB
1.C/. Consequently, ŒC; 1C � is the neutral element in KB

1.C/.
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3.5. For a unital ring A there is by [25, Theorem 3.1.7] a natural isomorphism

�AWKC
1.A/

Š
�! KB

1.projA/:

The isomorphism �A maps � 2 GLn.A/, to the class ŒAn; �� 2 KB
1.projA/. Here

� is viewed as an automorphism of the row space An (a free left A-module), that
is, � acts by multiplication from the right.

The inverse map ��1A acts as follows. Let ŒP; ˛� be in KB
1.projA/. Choose anyQ

in projA and any isomorphism  WP ˚Q! An with n 2 N. In KB
1.projA/ one

has

ŒP; ˛� D ŒP; ˛�C ŒQ; 1Q� D ŒP ˚Q;˛ ˚ 1Q� D ŒA
n;  .˛ ˚ 1Q/ 

�1�:

The automorphism  .˛ ˚ 1Q/ 
�1 of (the row space) An can be identified with

a matrix in ˇ 2 GLn.A/. The action of ��1A on ŒP; ˛� is now ˇ’s image in KC
1.A/.

3.6. Quillen defines in [24] functors KQ
n from the category of skeletally small exact

categories to the category of abelian groups. More precisely,

KQ
n.C/ D �nC1.BQC ; 0/

where Q is Quillen’s Q-construction and B denotes the classifying space.
The functor KQ

0 is naturally isomorphic to the Grothendieck group functor G;
see [24, Section 2, Theorem 1]. For a ring A there is a natural isomorphism
KQ
1 .projA/ Š KC

1.A/; see for example Srinivas [27, Corollary (2.6) and Theo-
rem (5.1)].

Gersten sketches in [17, Section 5] the construction of a natural transformation
�WKB

1 ! KQ
1 of functors on the category of skeletally small exact categories. The

details of this construction were later given by Sherman [26, Section 3], and for
this reason we refer to � as the Gersten–Sherman transformation1. Examples due
to Gersten and Murthy [17, Propositions 5.1 and 5.2] show that for a general skele-
tally small exact category C , the homomorphism �C WKB

1.C/! KQ
1 .C/ is neither

injective nor surjective. For the exact category projA, whereA is a ring, it is known
that KB

1.projA/ and KQ
1 .projA/ are isomorphic, indeed, they are both isomorphic

to the classical K-group KC
1.A/; see paragraphs 3.5 and 3.6. Therefore, a natural

question arises: is �projA an isomorphism? Sherman answers this question affir-
matively in [26, pp. 231–232]; in fact, in [26, Theorem 3.3] it is proved that �C
is an isomorphism for every semisimple exact category, that is, an exact category
in which every short exact sequence splits. We note these results of Gersten and
Sherman for later use.

1 In the papers by Gersten [17] and Sherman [26], the functor KB
1 is denoted by Kdet

1 .
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2424 H. Holm

Theorem 3.7. There exists a natural transformation �WKB
1 ! KQ

1 , which we call
the Gersten–Sherman transformation, of functors on the category of skeletally
small exact categories such that �projAWKB

1.projA/! KQ
1 .projA/ is an isomor-

phism for every ring A.

We will also need the next result on the Gersten–Sherman transformation. Re-
call that a length category is an abelian category in which every object has finite
length.

Theorem 3.8. If A is a skeletally small length category with only finitely many sim-
ple objects (up to isomorphism), then �AWKB

1.A/! KQ
1 .A/ is an isomorphism.

Proof. We begin with a general observation. Given skeletally small exact cate-
gories C1 and C2, there are exact projection functors pj WC1�C2 ! Cj (j D 1; 2).
From the “elementary properties” of Quillen’s K-groups listed in [24, Section 2],
it follows that the homomorphism

.KQ
1 .p1/;K

Q
1 .p2//WK

Q
1 .C1 � C2/! KQ

1 .C1/˚ KQ
1 .C2/

is an isomorphism. A similar argument shows that .KB
1.p1/;K

B
1.p2// is an iso-

morphism. Since �WKB
1 ! KQ

1 is a natural transformation, it follows that �C1�C2

is an isomorphism if and only if �C1 and �C2 are isomorphisms.
Denote by Ass the full subcategory of A consisting of all semisimple objects.

Note that Ass is a Serre subcategory of A, and hence Ass is itself an abelian cate-
gory. Let i WAss ,! A be the (exact) inclusion and consider the commutative dia-
gram

KB
1.Ass/

�Ass
��

KB
1.i/

Š

// KB
1.A/

�A

��

KQ
1 .Ass/

KQ
1.i/

Š

// KQ
1 .A/.

Since A is a length category, Bass’ and Quillen’s devissage theorems [7, Chap-
ter VIII, Section 3, Theorem (3.4) (a)] and [24, Section 5, Theorem 4] show that
KB
1.i/ and KQ

1 .i/ are isomorphisms. Hence, it suffices to argue that �Ass is an iso-
morphism. By assumption there is a finite set ¹S1; : : : ; Snº of representatives of
the isomorphism classes of simple objects in A. Note that every object A in Ass
has unique decompositionA D Sa11 ˚ � � � ˚ S

an
n where a1; : : : ; an 2 N0; we used

here the assumption that A has finite length to conclude that the cardinal num-
bers ai must be finite. Since one has HomA.Si ; Sj / D 0 for i ¤ j , it follows that
there is an equivalence of abelian categories,

Ass ' .addS1/ � � � � � .addSn/:
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Consider the ring Di D EndA.Si /
op. As Si is simple, Schur’s lemma gives that

Di is a division ring. It easy to see that the functor HomA.Si ;�/WA! ModDi
induces an equivalence addSi ' projDi . By Theorem 3.7, �projD1 ; : : : ; �projDn are
isomorphisms, so it follows from the equivalence above, and the general observa-
tion in the beginning af the proof, that �Ass is an isomorphism, as desired.

Note that in this section, superscripts “C” (for classical), “B” (for Bass), and
“Q” (for Quillen) have been used to distinguish between various K-groups. In the
rest of the paper, K-groups without superscripts refer to Quillen’s K-groups.

4 Coherent pairs

We recall a few results and notions from the paper [4] by Auslander and Reiten
which are central in the proof of our main Theorem 2.12. Throughout this section,
A denotes a skeletally small additive category.

Definition 4.1. A pseudo (or weak) kernel of a morphism gWA! A0 in A is a mor-
phism f WA00 ! A in A such that gf D 0, and which satisfies that every diagram
in A as below can be completed (but not necessarily in a unique way),

B

h
��

0

  ~~

A00
f

// A
g
// A0.

We say that A has pseudo kernels if every morphism in A has a pseudo kernel.

Observation 4.2. Let A be a full additive subcategory of an abelian category M.
An A-precover of an object M 2M is a morphism uWA!M with A 2 A with
the property that for every morphism u0WA0 !M with A0 2 A there exists a (not
necessarily unique) morphism vWA0 ! A such that uv D u0. Following [13, Def-
inition 5.1.1] we say that A is precovering (or contravariantly finite) in M if ev-
ery object M 2M has an A-precover. In this case, A has pseudo kernels. In-
deed, if i WK ! A is the kernel in M of gWA! A0 in A, and if f WA00 ! K is an
A-precover of K, then if WA00 ! A is a pseudo kernel of g.

Definition 4.3. Let B be a full additive subcategory of A. Auslander–Reiten [4]
call .A;B/ a coherent pair if A has pseudo kernels in the sense of Definition 4.1,
and B is precovering in A.

If .A;B/ is a coherent pair, then also B has pseudo kernels by [4, Proposi-
tion 1.4 (a)].
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2426 H. Holm

Definition 4.4. Write Mod A for the abelian category of additive contravariant
functors A! Ab, where Ab is the category of abelian groups. Denote by mod A

the full subcategory of Mod A consisting of finitely presented functors.

4.5. If the category A has pseudo kernels, then mod A is abelian, and the inclusion
functor mod A! Mod A is exact, see [4, Proposition 1.3].

If .A;B/ is a coherent pair, see paragraph 4.3, then the exact restriction

Mod A! Mod B

maps mod A to mod B by [4, Proposition 1.4 (b)]. In this case, there are functors

Ker r
i
�! mod A

r
�! mod B; (4.5.1)

where r is the restriction and i the inclusion functor. The kernel of r , that is,

Ker r D ¹F 2 mod A j F.B/ D 0 for all B 2 Bº;

is a Serre subcategory of the abelian category mod A. Moreover, the quotient
.mod A/=.Ker r/, in the sense of Gabriel [16], is equivalent to the category mod B,
and the canonical functor mod A! .mod A/=.Ker r/ may be identified with r .
These assertions are proved in [4, Proposition 1.5]. Therefore (4.5.1) induces by
Quillen’s localization theorem [24, Section 5, Theorem 5] a long exact sequence
of K-groups,

� � � ���! Kn.Ker r/
Kn.i/
���! Kn.mod A/

Kn.r/
����! Kn.mod B/ ���! � � �

� � � ���! K0.Ker r/
K0.i/
���! K0.mod A/

K0.r/
����! K0.mod B/ ���! 0.

(4.5.2)

5 Semilocal rings

A ring A is semilocal if A=J.A/ is semisimple. Here J.A/ is the Jacobson radi-
cal of A. If A is commutative, then this definition is equivalent to A having only
finitely many maximal ideals; see Lam [20, Proposition (20.2)].

Lemma 5.1. Let R be a commutative noetherian semilocal ring, and let M ¤ 0
be a finitely generated R-module. Then the ring EndR.M/ is semilocal.

Proof. As the ring R is commutative and noetherian, EndR.M/ is a module-finite
R-algebra. Since R is semilocal, the assertion now follows from [20, Proposi-
tion (20.6)].
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5.2. Denote by A� the group of units in a ring A, and let #AWA� ! KC
1.A/ be the

composite of the group homomorphisms

A� Š GL1.A/ ,! GL.A/� GL.A/ab D KC
1.A/: (5.2.1)

Some authors refer to #A as the Whitehead determinant. If A is semilocal, then
#A is surjective by Bass [7, Chapter V, Section 9, Theorem (9.1)]. As the group
KC
1.A/ is abelian, one has ŒA�; A�� � Ker#A, and we write �AWA�ab ! KC

1.A/ for
the induced homomorphism.

Vaserstein [28] showed that the inclusion ŒA�; A�� � Ker#A is strict for the
semilocal ring A D M2.F2/ where F2 is the field with two elements. In [28, The-
orem 3.6 (a)] it is shown that if A is semilocal, then Ker#A is the subgroup of
A� generated by elements of the form .1C ab/.1C ba/�1 where a; b 2 A and
1C ab 2 A�.

If A is semilocal, that is, A=J.A/ is semisimple, then by the Artin–Wedderburn
Theorem there is an isomorphism of rings

A=J.A/ Š Mn1.D1/ � � � � �Mnt .Dt /;

where D1; : : : ;Dt are division rings, and n1; : : : ; nt are natural numbers all of
which are uniquely determined by A. The next result is due to Vaserstein [29, The-
orem 2].

Theorem 5.3. Let A be semilocal and write A=J.A/ Š Mn1.D1/�� � ��Mnt .Dt /.
If none of the rings Mni .Di / is M2.F2/, and at most one of the rings Mni .Di /

is M1.F2/ D F2, then one has Ker#A D ŒA�; A��. In particular, #A induces an
isomorphism

�AWA
�
ab
Š
�! KC

1.A/:

Remark 5.4. Note that if A is a semilocal ring which is an algebra over a field k
with characteristic¤ 2, then the hypothesis in Theorem 5.3 is satisfied.

IfA is a commutative semilocal ring, then Ker#A and the commutator subgroup
ŒA�; A��D¹1º are identical, i.e., the surjective homomorphism

#AD �AWA
�
! KC

1.A/

is an isomorphism. Indeed, the determinant homomorphisms detnWGLn.A/! A�

induce a homomorphism detAWKC
1.A/! A� that evidently satisfies

detA �A D 1A� :

Since �A is surjective, it follows that �A is an isomorphism with ��1A D detA.
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2428 H. Holm

Definition 5.5. Let A be a ring for which the homomorphism �AWA
�
ab ! KC

1.A/

from paragraph 5.2 is an isomorphism; for example, A could be a commutative
semilocal ring or a noncommutative semilocal ring satisfying the assumptions in
Theorem 5.3. The inverse ��1A is denoted by detA, and we call it the generalized
determinant.

Remark 5.6. Let � be an m � n and let � be an n � p matrix with entries in
a ring A. Denote by “ � ” the product Mm�n.A

op/ �Mn�p.A
op/! Mm�p.A

op/.
Then

.� � �/T D �T �T ;

where �T �T is computed using the product Mp�n.A/ �Mn�m.A/! Mp�m.A/.
Thus, transposition .�/T WGLn.Aop/! GLn.A/ is an anti-isomorphism (this is
also noted in [7, Chapter V, Section 7]), which induces an isomorphism

.�/T WKC
1.A

op/! KC
1.A/:

Lemma 5.7. Let A be a ring for which the generalized determinant detA D ��1A
exists; cf. Definition 5.5. For every invertible matrix � with entries in A one has an
equality detAop.�T / D detA.�/ in the abelian group .Aop/�ab D A

�
ab.

Proof. Clearly, there is a commutative diagram

A�ab

�A Š

��

.Aop/�ab

�AopŠ

��

KC
1.A/

Š

.�/T
// KC

1.A
op/.

It follows that one has ��1Aop ı .�/
T D ��1A , that is, detAop ı .�/T D detA.

6 Some useful functors

Throughout this section, A is a ring andM is a fixed left A-module. We denote by
E D EndA.M/ the endomorphism ring ofM . Note thatM D A;EM has a natural
left-A-left-E–bimodule structure.

6.1. There is a pair of adjoint functors

ModA
HomA.M;�/

//
Mod.Eop/:

�˝EM

oo
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It is easily seen that they restrict to a pair of quasi-inverse equivalences,

addAM
HomA.M;�/

'
//
proj.Eop/:

�˝EM

oo

Auslander referred to this phenomenon as projectivization; see [6, Chapter I, Sec-
tion 2].

Let F 2 Mod.addAM/, i.e., F W addAM ! Ab is a contravariant additive func-
tor, see Definition 4.4. The compatibleE-module structure on the given A-module
M induces an Eop-module structure on the abelian group FM which is given by
z˛ D .F˛/.z/ for ˛ 2 E and z 2 FM .

Proposition 6.2. There are quasi-inverse equivalences of abelian categories

Mod.addAM/

eM

'
//
Mod.Eop/;

fM

oo

where eM (evaluation) and fM (functorfication) are defined as follows,

eM .F / D FM and fM .Z/ D Z ˝E HomA.�;M/jaddAM ;

for F in Mod.addAM/ and Z in Mod.Eop/. They restrict to quasi-inverse equiva-
lences between categories of finitely presented objects

mod.addAM/

eM

'
//
mod.Eop/:

fM

oo

Proof. For Z in Mod.Eop/ the canonical isomorphism

Z
Š
�! Z ˝E E D Z ˝E HomA.M;M/ D eMfM .Z/

is natural in Z. Thus, the functors idMod.Eop/ and eMfM are naturally isomorphic.
For F in Mod.addAM/ there is a natural transformation

fM eM .F / D FM ˝E HomA.�;M/jaddAM
ı
�! F I (6.2.1)

for X in addAM the homomorphism ıX WFM ˝E HomA.X;M/! FX is given
by z ˝  7! .F /.z/. Note that ıM is an isomorphism as it may be identified
with the canonical isomorphism FM ˝E EE

Š
�! FM in Ab. As the functors in

(6.2.1) are additive, it follows that ıX is an isomorphism for every X 2 addAM ,
that is, ı is a natural isomorphism. Since (6.2.1) is natural in F , the functors fM eM
and idMod.addAM/ are naturally isomorphic.

It is straightforward to verify that the functors eM and fM map finitely pre-
sented objects to finitely presented objects.
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2430 H. Holm

Observation 6.3. In the case M D A one has E D EndA.M/ D Aop, and there-
fore Proposition 6.2 yields an equivalence fAWmodA! mod.projA/ given by

X 7! X ˝Aop HomA.�; A/jprojA:

It is easily seen that the functor fA is naturally isomorphic to the functor given by

X 7! HomA.�; X/jprojA:

We will usually identify fA with this functor.

Definition 6.4. The functor yM W addAM ! mod.addAM/ which forX 2 addAM
is given by yM .X/ D HomA.�; X/jaddAM is called the Yoneda functor.

Let A be a full additive subcategory of an abelian category M. If A is closed
under extensions in M, then A has a natural induced exact structure. However, one
can always equip A with the trivial exact structure. In this structure, the “exact
sequences” (sometimes called conflations) are only the split exact ones. When
viewing A as an exact category with the trivial exact structure, we denote it A0.

Lemma 6.5. Assume that A is commutative and noetherian and let M 2 modA.
SetE D EndA.M/ and assume thatEop has finite global dimension. For the exact
Yoneda functor yM W .addAM/0 ! mod.addAM/, see Definition 6.4, the homo-
morphisms Kn.yM /, where n > 0, and KB

1.yM / are isomorphisms.

Proof. By application of Kn to the commutative diagram

.addAM/0

yM
��

HomA.M;�/

'

// proj.Eop/

inc
��

mod.addAM/
eM

'
// mod.Eop/

it follows that Kn.yM / is an isomorphism if and only if Kn.inc/ is an isomorphism.
The latter holds by Quillen’s resolution theorem [24, Section 4, Theorem 3], since
Eop has finite global dimension. A similar argument shows that KB

1.yM / is an iso-
morphism. This time one needs to apply Bass’ resolution theorem; see [7, Chap-
ter VIII, Section 4, Theorem (4.6)].

Since K0 may be identified with the Grothendieck group functor, cf. para-
graph 3.6, the following result is well known. In any case, it is straightforward
to verify.
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Lemma 6.6. Assume that modA is Krull–Schmidt. Let N D N n1
1 ˚ � � � ˚N

ns
s be

a finitely generated A-module, where N1; : : : ; Ns are non-isomorphic indecom-
posable A-modules and n1; : : : ; ns > 0. The homomorphism of abelian groups

 N WZN1 ˚ � � � ˚ ZNs ! K0..addAN/0/

given by Nj 7! ŒNj � is an isomorphism.

7 The abelian category Y

By the assumptions in Setup 2.1, the ground ring R has a dualizing module. It fol-
lows from Auslander and Buchweitz [3, Theorem A] that MCMR is precovering
in modR. Actually, in our case MCMR equals addRM for some finitely generated
R-moduleM (a representation generator), and it is easily seen that every category
of this form is precovering in modR. By Observation 4.2 we have a coherent pair
.MCMR; projR/, which by paragraph 4.5 yields a Gabriel localization sequence

Y D Ker r
i
�! mod.MCMR/

r
�! mod.projR/: (7.0.1)

Here r is the restriction functor, Y D Ker r , and i is the inclusion. Since an additive
functor vanishes on projR if and only if it vanishes on R, one has

Y D ¹F 2 mod.MCMR/ j F.R/ D 0º:

The following two results about the abelian category Y are due to Yoshino. The
first result is [32, (13.7.4)]; the second is (proofs of) [32, Lemma (4.12) and Propo-
sition (4.13)].

Theorem 7.1. Every object in Y has finite length, i.e., Y is a length category.

Theorem 7.2. Consider for 1 6 j 6 t the Auslander–Reiten sequence (2.1.2) end-
ing inMj . The functorFj defined by the following exact sequence in mod.MCMR/,

0! HomR.�; �.Mj //! HomR.�; Xj /! HomR.�;Mj /! Fj ! 0;

is a simple object in Y. Conversely, every simple functor in Y is naturally isomor-
phic to Fj for some 1 6 j 6 t .

Proposition 7.3. Let i WY ! mod.MCMR/ be the inclusion functor from (7.0.1)
and ‡ WZt ! ZtC1 be the Auslander–Reiten homomorphism; see Definition 2.3.
The homomorphisms K0.i/ and ‡ are isomorphic.

Brought to you by | Copenhagen University Library  (Det Kongelige Bibliotek)
Authenticated

Download Date | 8/10/15 1:25 PM



2432 H. Holm

Proof. We claim that the following diagram of abelian groups is commutative,

ZM1 ˚ � � � ˚ ZMt
‡
//

' Š

��

ZM0 ˚ ZM1 ˚ � � � ˚ ZMt

 MŠ
��

K0..MCMR/0/

K0.yM /Š
��

K0.Y/
K0.i/

// K0.mod.MCMR//.

The homomorphism ' is defined byMj 7! ŒFj �whereFj 2 Y is described in The-
orem 7.2. From Theorems 7.1 and 7.2 and the proof of Rosenberg [25, Theo-
rem 3.1.8 (1)] (or the proof of Theorem 3.8), it follows that ' is an isomorphism.
The module M is a representation generator for MCMR, see Setup 2.1, and  M
is the isomorphism given in Lemma 6.6. Finally, yM is the Yoneda functor from
Definition 6.4. By Leuschke [21, Theorem 6] the ringEop, whereE D EndR.M/,
has finite global dimension, and thus Lemma 6.5 implies that K0.yM / is an iso-
morphism.

From the definitions of the relevant homomorphims, it is straightforward to see
that the diagram is commutative; indeed, both K0.i/' and K0.yM / M‡ map
a generator Mj to the element ŒFj � 2 K0.mod.MCMR//.

8 Proof of the main theorem

Throughout this section, we fix the notation in Setup 2.1. Thus, R is a commuta-
tive noetherian local Cohen–Macaulay ring satisfying conditions Setup 2.1 (1)–(3),
M is any representation generator of MCMR, and E is its endomorphism ring.

We shall frequently make use of the Gabriel localization sequence (7.0.1), and
i and r always denote the inclusion and the restriction functor in this sequence.

Remark 8.1. Let C be an exact category. As in the paragraph preceding Lem-
ma 6.5, we denote by C0 the category C equipped with the trivial exact structure.
Note that the identity functor idC WC0 ! C is exact and the induced homomor-
phism KB

1.idC /WKB
1.C0/! KB

1.C/ is surjective, indeed, one has

KB
1.idC /.ŒC; ˛�/ D ŒC; ˛�:

Lemma 8.2. Consider the restriction functor r Wmod.MCMR/! mod.projR/ and
the identity functor idMCMRW .MCMR/0 ! MCMR. The homomorphisms KB

1.r/

and KB
1.idMCMR/ are isomorphic, in particular, KB

1.r/ is surjective by Remark 8.1.
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Proof. Consider the commutative diagram of exact categories and exact functors

.MCMR/0
idMCMR

//

yM

��

MCMR

j
��

modR

' fR
��

mod.MCMR/
r
// mod.projR/;

where yM is the Yoneda functor from Definition 6.4, j is the inclusion, and fR
is the equivalence from Observation 6.3. We will prove the lemma by arguing that
the vertical functors induce isomorphisms on the level of KB

1 .
The ring Eop has finite global dimension by Leuschke [21, Theorem 6], and

hence Lemma 6.5 gives that KB
1.yM / is an isomorphism. Since fR is an equiv-

alence, KB
1.fR/ is obviously an isomorphism. To argue that KB

1.j / is an isomor-
phism, we apply Bass’ resolution theorem [25, Theorem 3.1.14]. We must check
that the subcategory MCMR of modR satisfies conditions (1)–(3) of [25, The-
orem 3.1.14]. Condition (1) follows as MCMR is precovering in modR. As R is
Cohen–Macaulay, every module in modR has a resolution of finite length by mod-
ules in MCMR, see [32, Proposition (1.4)]; thus condition (2) holds. Condition (3)
requires that MCMR is closed under kernels of epimorphisms; this is well known
from, e.g., [32, Proposition (1.3)].

Next we show some results on the Gersten–Sherman transformation; see Sec-
tion 3.

Lemma 8.3. The map
�C WKB

1.C/! K1.C/

is an isomorphism for C D mod.MCMR/.

Proof. As � is a natural transformation, there is a commutative diagram

KB
1.proj.Eop//

�proj.Eop/
��

KB
1.inc/

// KB
1.mod.Eop//

�mod.Eop/
��

KB
1.fM /

// KB
1.mod.MCMR//

�mod.MCMR/

��

K1.proj.Eop//
K1.inc/

// K1.mod.Eop//
K1.fM /

// K1.mod.MCMR//,

where fM Wmod.Eop/! mod.MCMR/ is the equivalence from Proposition 6.2
and inc is the inclusion of proj.Eop/ into mod.Eop/.
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From Leuschke [21, Theorem 6], the noetherian ring Eop has finite global
dimension. Hence Bass’ and Quillen’s resolution theorems, [7, Chapter VIII, Sec-
tion 4, Theorem (4.6)] (see also Rosenberg [25, Theorem 3.1.14]) and [24, Sec-
tion 4, Theorem 3], imply that KB

1.inc/ and K1.inc/ are isomorphisms. Since fM
is an equivalence, KB

1.fM / and K1.fM / are isomorphisms as well. Consequently,
�mod.MCMR/ is an isomorphism if and only if �proj.Eop/ is an isomorphism, and the
latter holds by Theorem 3.7.

The goal is to compute Quillen’s K-group K1.modR/ for the ringR in question.
For our proof of Theorem 2.12, it is crucial that this group can be naturally iden-
tified with Bass’ K-group KB

1.modR/. To put Proposition 8.4 in perspective, we
remind the reader that the Gersten–Sherman transformation �modA is not surjective
for the ring A D ZC2; see [17, Proposition 5.1].

Proposition 8.4. If the Auslander–Reiten homomorphism from Definition 2.3 is
injective, then the following assertions hold:

(a) The homomorphism �modRWKB
1.modR/! K1.modR/ is an isomorphism.

(b) There is an exact sequence

KB
1.Y/

KB
1.i/
���! KB

1.mod.MCMR//
KB
1.r/
����! KB

1.mod.projR// ����! 0:

Proof. The Gabriel localization sequence (7.0.1) induces by paragraph 4.5 a long
exact sequence of Quillen K-groups,

� � � ���! K1.Y/
K1.i/
���! K1.mod.MCMR//

K1.r/
����! K1.mod.projR//

���! K0.Y/
K0.i/
���! � � � .

By Proposition 7.3, we may identify K0.i/ with the Auslander–Reiten homomor-
phism, which is assumed to be injective. Therefore, the bottom row in the follow-
ing commutative diagram of abelian groups is exact,

KB
1.Y/

KB
1.i/

//

�YŠ

��

KB
1.mod.MCMR//

KB
1.r/

//

�mod.MCMR/Š

��

KB
1.mod.projR//

�mod.projR/

��

// 0

K1.Y/
K1.i/

// K1.mod.MCMR//
K1.r/

// K1.mod.projR// // 0.

The vertical homomorphisms are given by the Gersten–Sherman transformation;
see Section 3. It follows from Theorems 7.1 and 7.2 that Y is a length category
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with only finitely many simple objects; thus �Y is an isomorphism by Theorem 3.8.
And �mod.MCMR/ is an isomorphism by Lemma 8.3. Since ri D 0, it follows that
KB
1.r/K

B
1.i/ D 0 holds, and a diagram chase now shows that

Im KB
1.i/ D Ker KB

1.r/:

Furthermore KB
1.r/ is surjective by Lemma 8.2. This proves part (b).

The Five Lemma now implies that �mod.projR/ is an isomorphism. Since the cate-
gory mod.projR/ is equivalent to modR, see Observation 6.3, it follows that �modR

is an isomorphism as well. This proves (a).

We will also need the following classical notion.

Definition 8.5. Let M be an abelian category, and letM be an object in M. A pro-
jective cover of M is an epimorphism "WP �M in M, where P is projective,
such that every endomorphism ˛WP ! P satisfying "˛ D " is an automorphism.

Lemma 8.6. Let there be given a commutative diagram

P

˛

��

"
// // M

'

��

P
"
// // M

in an abelian category M, where "WP �M is a projective cover ofM . If ' is an
automorphism, then ˛ is an automorphism.

Proof. As P is projective and " is an epimorphism, there exists ˇWP ! P such
that "ˇ D '�1". By assumption one has "˛ D '". Hence

"˛ˇ D '"ˇ D ''�1" D ";

and similarly, "ˇ˛ D ". As " is a projective cover, we conclude that ˛ˇ and ˇ˛
are automorphisms of P , and thus ˛ must be an automorphism.

The following lemma explains the point of the tilde Construction 2.6.

Lemma 8.7. Consider the isomorphism �Eop WKC
1.E

op/! KB
1.proj.Eop// in para-

graph 3.5. Let X 2 MCMR and ˛ 2 AutR.X/ be given, and Q̨ be the invertible
matrix with entries in E obtained by applying Construction 2.6 to ˛. There is an
equality

�Eop. Q̨T / D ŒHomR.M;X/;HomR.M; ˛/�:
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2436 H. Holm

Proof. Write .M;�/ for HomR.M;�/, and let  WX ˚ Y Š
�!M q be as in Con-

struction 2.6. TheR-module isomorphism induces an isomorphism ofEop-mod-
ules

.M;X/˚ .M; Y / D .M;X ˚ Y /
.M; /
����!
Š

.M;M q/ Š Eq:

Consider the automorphism of the free Eop-module Eq given by

.M; /..M; ˛/˚ 1.M;Y //.M; /
�1
D .M; .˛ ˚ 1Y / 

�1/ D .M; Q̨ /:

We view elements in the R-module M q as columns and elements in Eq as rows.
The isomorphism Eq Š .M;M q/ identifies a row vector ˇ D .ˇ1; : : : ; ˇq/ 2 Eq

with the R-linear map ˇT WM !M q whose coordinate functions are ˇ1; : : : ; ˇq .
Then the coordinate functions of .M; Q̨ /.ˇT / D Q̨ ı ˇT are the entries in the col-
umn Q̨ˇT , where the matrix product used is

Mq�q.E/ �Mq�1.E/! Mq�1.E/:

Thus, the action of .M; Q̨ / on a row ˇ 2 Eq is the row . Q̨ˇT /T 2 Eq . In view of
Remark 5.6 one has . Q̨ˇT /T D ˇ � Q̨T , where “ � ” is the product

M1�q.E
op/ �Mq�q.E

op/! M1�q.E
op/:

Consequently, over the ring Eop, the automorphism .M; Q̨ / of the Eop-module Eq

acts on row vectors by multiplication with Q̨T from the right. These arguments
show that ��1Eop applied to Œ.M;X/; .M; ˛/� is Q̨T ; see paragraph 3.5.

Proposition 8.8. Suppose, in addition to the blanket assumptions for this section,
that R is an algebra over its residue field k and that char.k/ ¤ 2. Then there is a
group isomorphism

� WAutR.M/ab
Š
�! KB

1.mod.MCMR//

given by
˛ 7! ŒHomR.�;M/jMCMR;HomR.�; ˛/jMCMR�:

Furthermore, there is an equality,

�.„/ D Im KB
1.i/:

Here „ is the subgroup of AutR.M/ab given in Definition 2.10, and

i WY ! mod.MCMR/

is the inclusion functor from the Gabriel localization sequence (7.0.1).
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Proof. We define � to be the composite of the following isomorphisms,

AutR.M/ab D E
�
ab D .E

op/�ab
Š

�Eop
// KC

1.E
op/

Š

�Eop
// KB

1.proj.Eop//

Š

KB
1.|/

// KB
1.mod.Eop//

Š

KB
1.fM /

// KB
1.mod.MCMR//:

(8.8.1)

The ringE, and hence also its opposite ringEop, is semilocal by Lemma 5.1. By
assumption,R is a k-algebra, and hence so isEop. Thus, in view of Remark 5.4 and
the assumption char.k/ ¤ 2, we get the isomorphism �Eop from Theorem 5.3. It
maps ˛ 2 AutR.M/ab to the image of the 1�1matrix .˛/ 2 GL.Eop/ in KC

1.E
op/.

The isomorphism �Eop is described in paragraph 3.5; it maps � 2 GLn.Eop/ to
the class Œ.EE /n; �� 2 KB

1.proj.Eop//.
The third map in (8.8.1) is induced by the inclusion | W proj.Eop/! mod.Eop/.

By Leuschke [21, Theorem 6] the noetherian ring Eop has finite global dimension
and hence Bass’ resolution theorem [7, Chapter VIII, Section 4, Theorem (4.6)],
or Rosenberg [25, Theorem 3.1.14], implies that KB

1.|/ is an isomorphism. It maps
an element ŒP; ˛� 2 KB

1.proj.Eop// to ŒP; ˛� 2 KB
1.mod.Eop//.

The fourth and last isomorphism KB
1.fM / in (8.8.1) is induced by the equiva-

lence fM Wmod.Eop/! mod.MCMR/ from Proposition 6.2.
Thus, � is an isomorphism that maps an element ˛ 2 AutR.M/ab to the class

ŒEE ˝E HomR.�;M/jMCMR; .˛ �/˝E HomR.�;M/jMCMR�;

which is evidently the same as the class

ŒHomR.�;M/jMCMR;HomR.�; ˛/jMCMR�:

It remains to show the equality �.„/ D Im KB
1.i/. By the definition (8.8.1) of

� this is tantamount to showing that KB
1.|/�Eop�Eop.„/ D KB

1.fM /
�1.Im KB

1.i//.
As eM is a quasi-inverse of fM , see Proposition 6.2, we have

KB
1.fM /

�1
D KB

1.eM /;

and hence we need to show the equality

KB
1.|/�Eop�Eop.„/ D KB

1.eM /.Im KB
1.i//: (8.8.2)
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By Definition 2.10, the group „ is generated by all elements of the form

�j;˛ WD .detE Q̨ /.detE Q̌j;˛/�1.detE Q
j;˛/ 2 E�ab

for j 2 ¹1; : : : ; tº and ˛ 2 AutR.Mj /; here the automorphisms ǰ;˛ 2 AutR.Xj /
and 
j;˛ 2 AutR.�.Mj // are choices such that the diagram (2.9.1) is commutative.
It follows from Lemma 5.7 that

�j;˛ D .detEop Q̨T /.detEop Q̌T
j;˛/
�1.detEop Q
Tj;˛/ 2 .E

op/�ab:

By Definition 5.5 the homomorphism detEop is the inverse of �Eop , and conse-
quently the group �Eop.„/ is generated by the elements

� 0j;˛ WD �Eop.�j;˛/ D Q̨
T . Q̌Tj;˛/

�1
Q
Tj;˛ 2 KC

1.E
op/:

Thus �Eop�Eop.„/ is generated by the elements

� 00j;˛ WD �Eop.� 0j;˛/ 2 KB
1.proj.Eop//;

and it follows from Lemma 8.7 that

� 00j;˛ D ŒHomR.M;Mj /;HomR.M; ˛/� � ŒHomR.M;Xj /;HomR.M; ǰ;˛/�

C ŒHomR.M; �.Mj //;HomR.M; 
j;˛/�:

Thus, the group KB
1.|/�Eop�Eop.„/ on the left-hand side in (8.8.2) is generated by

the elements KB
1.|/.�

00
j;˛/. Note that KB

1.|/.�
00
j;˛/ is nothing but � 00j;˛ viewed as an

element in KB
1.mod.Eop//. We have reached the following conclusion:

The group KB
1.|/�Eop�Eop.„/ is generated by the elements � 00j;˛, where

j ranges over ¹1; : : : ; tº and ˛ over all automorphisms of Mj .

To give a useful set of generators of the group KB
1.eM /.Im KB

1.i// on the right-
hand side in (8.8.2), recall from Theorems 7.1 and 7.2 that every element in Y has
finite length and that the simple objects in Y are, up to isomorphism, exactly the
functors F1; : : : ; Ft . Thus, by [25, (proof of) Theorem 3.1.8 (2)] the group KB

1.Y/

is generated by all elements of the form ŒFj ; '�, where j 2 ¹1; : : : ; tº and ' is an
automorphism of Fj . It follows that the group Im KB

1.i/ is generated by the ele-
ments KB

1.i/.ŒFj ; '�/. Note that KB
1.i/.ŒFj ; '�/ is nothing but ŒFj ; '� viewed as

an element in KB
1.mod.MCMR//. By definition of the functor eM , see Proposi-

tion 6.2, one has

�j;' WD KB
1.eM /.ŒFj ; '�/ D ŒFjM;'M �:

We have reached the following conclusion:

The group KB
1.eM /.Im KB

1.i// is generated by the elements �j;' , where
j ranges over ¹1; : : : ; tº and ' over all automorphisms of Fj .
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With the descriptions of the generators � 00j;˛ and �j;' at hand, we are now in
a position to prove the identity (8.8.2).

Consider an arbitrary generator � 00j;˛ in the group KB
1.|/�Eop�Eop.„/. Recall

from Theorem 7.2 that there is an exact sequence in mod.MCMR/,

0! HomR.�; �.Mj //! HomR.�; Xj /! HomR.�;Mj /! Fj ! 0:

Thus, the commutative diagram (2.9.1) in MCMR induces a commutative diagram
in mod.MCMR/ with exact row(s),

0 // HomR.�; �.Mj //

Š HomR.�;
j;˛/
��

// HomR.�; Xj /

Š HomR.�; ǰ;˛/
��

// HomR.�;Mj /

Š HomR.�;˛/
��

// Fj

Š '

��

// 0

0 // HomR.�; �.Mj // // HomR.�; Xj / // HomR.�;Mj / // Fj // 0,

where ' is the uniquely determined natural endotransformation of Fj that makes
this diagram commutative. Note that the map ' is an automorphism by the Five
Lemma, and thus ŒFj ; '� is a well-defined element in KB

1.mod.MCMR//. The dia-
gram above is an exact sequence in the loop category �.mod.MCMR//, see para-
graphs 3.2 and 3.3, so in the group KB

1.mod.MCMR// there is an equality:

ŒFj ; '� D ŒHomR.�;Mj /;HomR.�; ˛/� � ŒHomR.�; Xj /;HomR.�; ǰ;˛/�

C ŒHomR.�; �.Mj //;HomR.�; 
j;˛/�:

Applying the homomorphism KB
1.eM / to this equality, we get �j;' D � 00j;˛. These

arguments show that every generator � 00j;˛ has the form �j;' for some ', and hence
the inclusion “�” in (8.8.2) is established.

Conversely, we shall now consider an arbitrary generator �j;' in the group
KB
1.eM /.Im KB

1.i//. As the category MCMR is a Krull–Schmidt variety in the
sense of Auslander [1, Chapter II, Section 2], it follows by [1, Chapter II, Propo-
sition 2.1 (b, c)] and [1, Chapter I, Proposition 4.7] that HomR.�;Mj /� Fj is
a projective cover in mod.MCMR/ in the sense of Definition 8.5. In particular,
' lifts to a natural transformation  of HomR.�;Mj /, which must be an auto-
morphism by Lemma 8.6. Thus we have a commutative diagram in mod.MCMR/,

HomR.�;Mj /

 Š

��

// // Fj

Š '

��

HomR.�;Mj / // // Fj .

As the Yoneda functor

yM WMCMR! mod.MCMR/
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2440 H. Holm

is fully faithful, see [32, Lemma (4.3)], there exists a unique automorphism ˛

of Mj such that  D HomR.�; ˛/. For this particular ˛, the arguments above
show that �j;' D � 00j;˛. Thus every generator �j;' has the form � 00j;˛ for some ˛,
and hence the inclusion “�” in (8.8.2) holds.

Observation 8.9. For any commutative noetherian local ring R, there is an iso-
morphism �RWR

� Š�! KB
1.projR/ given by the composite of

R�
�R
��!
Š

KC
1.R/

�R
��!
Š

KB
1.projR/:

The first map is described in paragraph 5.2; it is an isomorphism by Srinivas
[27, Example (1.6)]. The second isomorphism is discussed in paragraph 3.5. Thus,
�R maps r 2 R� to ŒR; r1R�.

We are finally in a position to prove the main result.

Proof of Theorem 2.12. By Proposition 8.4 we can identify K1.modR/ with the
group KB

1.modR/. Recall that i and r denote the inclusion and restriction functors
from the localization sequence (7.0.1). By the relations that define KB

1.modR/, see
paragraph 3.3, there is a homomorphism �0WAutR.M/! KB

1.modR/ given by
˛ 7! ŒM; ˛�. Since KB

1.modR/ is abelian, �0 induces a homomorphism � , which
is displayed as the upper horizontal map in the following diagram,

AutR.M/ab

� Š

��

�
// KB

1.modR/

KB
1.fR/Š

��

KB
1.mod.MCMR//

KB
1.r/

// KB
1.mod.projR//.

(8.9.1)

Here � is the isomorphism from Proposition 8.8, and the isomorphism KB
1.fR/ is

induced by the equivalence fR from Observation 6.3. The diagram (8.9.1) is com-
mutative, indeed, KB

1.r/� and KB
1.fR/� both map ˛ 2 AutR.M/ab to the class

ŒHomR.�;M/jprojR;HomR.�; ˛/jprojR�:

By Lemma 8.2 the homomorphism KB
1.r/ is surjective, and hence so is � . Ex-

actness of the sequence in Proposition 8.4 (b) and commutativity of the diagram
(8.9.1) show that Ker� D ��1.Im KB

1.i//. Therefore Proposition 8.8 implies that
there is an equality Ker� D „, and it follows that � induces an isomorphism

b� WAutR.M/ab=„
Š
�! KB

1.modR/:

This proves the first assertion in Theorem 2.12.
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To prove the second assertion, let incW projR! modR denote the inclusion
functor. Note that the Gersten–Sherman transformation identifies the homomor-
phisms K1.inc/ and KB

1.inc/; indeed �projR is an isomorphism by Theorem 3.7
and �modR is an isomorphism by Proposition 8.4 (a). Thus, we must show that
KB
1.inc/ can be identified with the homomorphism �WR� ! AutR.M/ab=„ given

by r 7! r1R ˚ 1M 0 (recall that we have writtenM D R˚M 0). To this end, let us
consider the isomorphism �RWR

� ! KB
1.projR/ from Observation 8.9 given by

r 7! ŒR; r1R�. The fact that KB
1.inc/ and � are isomorphic maps now follows from

the diagram

R�

Š�R

��

�
// AutR.M/ab=„

b�Š

��

KB
1.projR/

KB
1.inc/

// KB
1.modR/,

which is commutative. Indeed, for r 2 R� one has

.b��/.r/ D ŒM; r1R ˚ 1M 0 � D ŒR; r1R�C ŒM 0; 1M 0 � D ŒR; r1R�
D .KB

1.inc/�R/.r/;

where the penultimate equality is by paragraph 3.4.

9 Abelianization of automorphism groups

To apply Theorem 2.12, one must compute AutR.M/ab, i.e., the abelianization of
the automorphism group of the representation generator M . In Proposition 9.6 we
compute AutR.M/ab for the R-module M D R˚m, which is a representation
generator for MCMR if m happens to be the only non-free indecomposable maxi-
mal Cohen–Macaulay module over R. Specific examples of rings for which this is
the case will be studied in Section 10. Throughout this section,A denotes any ring.

Definition 9.1. Let N1; : : : ; Ns be A-modules, and set N D N1 ˚ � � � ˚Ns . We
view elements in N as column vectors.

For ' 2 AutA.Ni / we denote by di .'/ the automorphism of N which has as its
diagonal 1N1 ; : : : ; 1Ni�1 ; '; 1NiC1 ; : : : ; 1Ns and 0 in all other entries.

For i ¤ j and� 2 HomA.Nj ; Ni /we denote by eij .�/ the automorphism ofN
with diagonal 1N1 ; : : : ; 1Ns , and whose only non-trivial off-diagonal entry is � in
position .i; j /.

Lemma 9.2. LetN1; : : : ; Ns be A-modules and setN D N1 ˚ � � � ˚Ns . If 2 2 A
is a unit, i ¤ j and � 2 HomA.Nj ; Ni /, then eij .�/ is a commutator in AutA.N /.
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Proof. The commutator of ' and  in AutA.N / is

Œ';  � D ' '�1 �1:

It is easily verified that eij .�/ D Œeij .
�
2
/; dj .�1Nj /� if i ¤ j .

The idea in the proof above is certainly not new. It appears, for example, already
in Litoff [22, proof of Theorem 2] in the case s D 2. Of course, if s > 3, then
eij .�/ is a commutator even without the assumption that 2 is a unit; see, e.g.,
[25, Lemma 2.1.2 (c)].

Lemma 9.3. LetX and Y be non-isomorphicA-modules with local endomorphism
rings. Let '; 2 EndA.X/ and assume that  factors through Y . Then one has
 … AutA.X/. Furthermore, ' 2 AutA.X/ if and only if ' C  2 AutA.X/.

Proof. Write  D  00 0 with  0WX ! Y and  00WY ! X . If  is an automor-
phism, then  00 is a split epimorphism and hence an isomorphism as Y is inde-
composable. This contradicts the assumption that X and Y are not isomorphic.
The second assertion now follows as AutA.X/ is the set of units in the local
ring EndA.X/.

Proposition 9.4. Let N1; : : : ; Ns be pairwise non-isomorphic A-modules with lo-
cal endomorphism rings. An endomorphism

˛ D .˛ij / 2 EndA.N1 ˚ � � � ˚Ns/ with ˛ij 2 HomA.Nj ; Ni /

is an automorphism if and only if ˛11; ˛22; : : : ; ˛ss are automorphisms.
Furthermore, every ˛ in AutA.N / can be written as a product of automorphisms

of the form di . � / and eij . � /, cf. Definition 9.1.

Proof. “Only if” part: Assume that ˛ D .˛ij / is an automorphism with inverse
ˇ D .ˇij / and let i D 1; : : : ; s be given. In the local ring EndA.Ni / one has

1Ni D

sX
jD1

˛ij ǰ i ;

and hence one of the terms ˛ij ǰ i must be an automorphism. As ˛ij ǰ i is not
an automorphism for j ¤ i , see Lemma 9.3, it follows that ˛i iˇi i is an automor-
phism. In particular, ˛i i has a right inverse and ˇi i has a left inverse, and since the
ring EndA.Ni / is local, this means that ˛i i and ˇi i are both automorphisms.

“If” part: By induction on s > 1. The assertion is trivial for s D 1. Now let s > 1.
Assume that ˛11; ˛22; : : : ; ˛ss are automorphisms. Recall the notation from Def-
inition 9.1. By composing ˛ with es1.�˛s1˛�111 / � � � e31.�˛31˛

�1
11 /e21.�˛21˛

�1
11 /
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from the left and with e12.�˛�111 ˛12/e13.�˛
�1
11 ˛13/ � � � e1s.�˛

�1
11 ˛1s/ from the

right, one gets an endomorphism of the form

˛0 D

 
˛11 0

0 ˇ

!
D d1.˛11/

 
1N1 0

0 ˇ

!
;

where ˇ 2 EndA.N2 ˚ � � � ˚Ns/ is an .s � 1/ � .s � 1/ matrix with diagonal en-
tries given by j̨j � j̨1˛

�1
11 ˛1j for j D 2; : : : ; s. By applying Lemma 9.3 to the

situation ' D j̨j � j̨1˛
�1
11 ˛1j and  D j̨1˛

�1
11 ˛1j , it follows that the diagonal

entries in ˇ are all automorphisms. By the induction hypothesis, ˇ is now an au-
tomorphism and can be written as a product of automorphisms of the form di . � /

and eij . � /. Consequently, the same is true for ˛0, and hence also for ˛.

Corollary 9.5. Assume that 2 2 A is a unit and let N1; : : : ; Ns be pairwise non-
isomorphic A-modules with local endomorphism rings. The homomorphism

�WAutA.N1/ � � � � � AutA.Ns/! AutA.N1 ˚ � � � ˚Ns/

given by �.'1; : : : ; 's/ D d1.'1/ � � � ds.'s/ induces a surjective homomorphism

�abWAutA.N1/ab ˚ � � � ˚ AutA.Ns/ab ! AutA.N1 ˚ � � � ˚Ns/ab:

Proof. By Proposition 9.4 every element in AutA.N1 ˚ � � � ˚Ns/ is a product
of automorphisms of the form di . � / and eij . � /. As 2 2 A is a unit, Lemma 9.2
yields that every element of the form eij . � / is a commutator; thus in the group
AutA.N1 ˚ � � � ˚Ns/ab every element is a product of elements of the form di . � /,
so �ab is surjective.

As noted above, Lemma 9.2, and consequently also Corollary 9.5, holds without
the assumption that 2 2 A is a unit provided that s > 3.

In the following, we write Œ � �mWR� R=m D k for the quotient homomor-
phism.

Proposition 9.6. Let .R;m; k/ be any commutative local ring such that 2 2 R is
a unit. Assume that m is not isomorphic to R and that the endomorphism ring
EndR.m/ is commutative and local. There is an isomorphism of abelian groups

ıWAutR.R˚m/ab
Š
�! k� ˚ AutR.m/

given by  
˛11 ˛22

˛21 ˛22

!
7�!

�
Œ˛11.1/�m; ˛11˛22 � ˛21˛12

�
:
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Proof. First note that the image of any homomorphism ˛Wm! R is contained in
the module m. Indeed if Im˛ ª m, then u D ˛.a/ is a unit for some a 2 m, and
thus ˛.u�1a/ D 1. It follows that ˛ is surjective, and hence a split epimorphism
as R is free. Since m is indecomposable, ˛ must be an isomorphism, which is
a contradiction.

Therefore, given an endomorphism 
˛11 ˛12

˛21 ˛22

!
2 EndR.R˚m/ D

 
HomR.R;R/ HomR.m; R/
HomR.R;m/ HomR.m;m/

!
;

we may by (co)restriction view the entries ˛ij as elements in the endomorphism
ring EndR.m/. As this ring is assumed to be commutative, the determinant map

EndR.R˚m/! EndR.m/ given by .˛ij / 7! ˛11˛22 � ˛21˛12

preserves multiplication. If .˛ij / 2 AutR.R˚m/, then Proposition 9.4 implies
that ˛11 2 AutR.R/ and ˛22 2 AutR.m/, and thus ˛11˛22 2 AutR.m/. By apply-
ing Lemma 9.3 to ' D ˛11˛22 � ˛21˛12 and  D ˛21˛12 we get ' 2 AutR.m/,
and hence the determinant map is a group homomorphism

AutR.R˚m/! AutR.m/:

The map AutR.R˚m/! k� defined by .˛ij / 7! Œ˛11.1/�m is also a group
homomorphism. Indeed, entry .1; 1/ in the product .˛ij /.ˇij / is ˛11ˇ11C˛12ˇ21.
Here ˛12 is a homomorphism m! R, and hence ˛12ˇ21.1/ 2 m by the argu-
ments in the beginning of the proof. Consequently one has

Œ.˛11ˇ11 C ˛12ˇ21/.1/�m D Œ.˛11ˇ11/.1/�m D Œ˛11.1/ˇ11.1/�m

D Œ˛11.1/�mŒˇ11.1/�m:

These arguments and the fact that the groups k� and AutR.m/ are abelian show
that the map ı described in the proposition is a well-defined group homomorphism.
Evidently, ı is surjective; indeed, for Œr�m 2 k� and ' 2 AutR.m/ one has

ı

 
r1R 0

0 r�1'

!
D .Œr�m; '/:

To show that ı is injective, assume that ˛ 2 AutR.R˚m/ab with the property that
ı.˛/ D .Œ1�m; 1m/. By Corollary 9.5 we can assume that ˛ D .˛ij / is a diagonal
matrix. We write ˛11 D r1R for some unit r 2 R. Since ı.˛/ D .Œr�m; r˛22/, we
conclude that r 2 1Cm and ˛22 D r�11m, that is, ˛ has the form

˛ D

 
r1R 0

0 r�11m

!
with r 2 1Cm:
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Thus, proving injectivity of ı amounts to showing that every automorphism ˛

of the form above belongs to the commutator subgroup of AutR.R˚m/. As
r � 1 2 m, the map .r � 1/1R gives a homomorphism R! m. Since one has
r.r�1�1/ D 1�r 2 m and r … m, it follows that r�1�1 2 m. Thus .r�1�1/1R
gives another homomorphism R! m. If �Wm ,! R denotes the inclusion, then
one has2 

r1R 0

0 r�11m

!
D

 
1R 0

.r�1 � 1/1R 1m

! 
1R �

0 1m

!

�

 
1R 0

.r � 1/1R 1m

! 
1R �r�1�

0 1m

!
:

The right-hand of this equality is a product of matrices of the form eij . � /, and
since 2 2 R is a unit the desired conclusion now follows from Lemma 9.2.

10 Examples

We begin with a trivial example.

Example 10.1. If R is regular, then there are isomorphisms

K1.modR/ Š K1.projR/ Š KC
1.R/ Š R

�:

The first isomorphism is by Quillen’s resolution theorem [24, Section 4, Theo-
rem 3], the second one is mentioned in paragraph 3.6, and the third one is well
known; see, e.g., [27, Example (1.6)]. Theorem 2.12 confirms this result, indeed,
as M D R is a representation generator for MCMR D projR one has

AutR.M/ab D R
�:

As there are no Auslander–Reiten sequences in this case, the subgroup „ is gen-
erated by the empty set, so „ D 0.

We now illustrate how Theorem 2.12 applies to compute K1.modR/ for the ring
R D kŒX�=.X2/. The answer is well known to be k�, indeed, for any commutative
artinian local ring R with residue field k one has K1.modR/ Š k� by [24, Sec-
tion 5, Corollary 1].

Example 10.2. Let R D kŒX�=.X2/ be the ring of dual numbers over a field k
with char.k/ ¤ 2. Denote by incW projR! modR the inclusion functor. The ho-

2 The identity comes from the standard proof of Whitehead’s lemma; see, e.g., [27, Lemma (1.4)].
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momorphism K1.inc/ may be identified with the map

�WR� ! k� given by aC bX 7! a2:

Proof. The maximal ideal m D .X/ is the only non-free indecomposable max-
imal Cohen–Macaulay R-module, so M D R˚m is a representation generator
for MCMR; see (2.1.1). There is an isomorphism k ! EndR.m/ of R-algebras
given by a 7! a1m, in particular, EndR.m/ is commutative. Via this isomorphism,
k� corresponds to AutR.m/. The Auslander–Reiten sequence ending in m is

0! m
�
�! R

X
�! m! 0;

where � is the inclusion. The Auslander–Reiten homomorphism

‡ D

 
�1

2

!
WZ! Z2

is injective, so Theorem 2.12 can be applied. Note that for every a1m 2 AutR.m/,
where a 2 k�, there is a commutative diagram

0 // m

a1mŠ

��

�
// R

a1RŠ

��

X
// m

a1mŠ

��

// 0

0 // m
�
// R

X
// m // 0.

Applying the tilde Construction 2.6 to the automorphisms a1m and a1R, one gets

ea1m D

 
1R 0

0 a1m

!
and ea1R D

 
a1R 0

0 1m

!
I

see Example 2.7. In view of Definition 2.10 and Remark 2.11, the subgroup „
of AutR.R˚m/ab is therefore generated by all elements of the form

�a WD .ea1m/.ea1R/�1.ea1m/ D

 
a�11R 0

0 a21m

!
where a 2 k�:

Denote by ! the composite of the isomorphisms

AutR.R˚m/ab
ı
�!
Š
k� ˚ AutR.m/ �!

Š
k� ˚ k�;

where ı is the isomorphism from Proposition 9.6. As !.�a/ D .a�1; a/, we get
that !.„/ D ¹.a�1; a/ j a 2 k�º and thus ! induces the first group isomorphism
below,

AutR.R˚m/ab=„
!
�!
Š
.k� ˚ k�/=!.„/

�
�!
Š
k�I

Brought to you by | Copenhagen University Library  (Det Kongelige Bibliotek)
Authenticated

Download Date | 8/10/15 1:25 PM



K-groups for rings of finite Cohen–Macaulay type 2447

the second isomorphism is induced by the surjective homomorphism

k� ˚ k� ! k� given by .b; a/ 7! ba;

whose kernel is exactly !.„/. In view of Theorem 2.12 and the isomorphisms !
and � above, it follows that K1.modR/ Š k�.

Theorem 2.12 asserts that K1.inc/ may be identified with the homomorphism

�WR� ! AutR.R˚m/ab=„ given by r 7!

 
r1R 0

0 1m

!
:

It remains to note that the isomorphism �! identifies � with the homomorphism �

described in the example, indeed, one has �!� D �.

Example 10.2 shows that for R D kŒX�=.X2/ the canonical homomorphism

R� Š K1.projR/
K1.inc/
����! K1.modR/ Š k�

is not an isomorphism. It turns out that if k is algebraically closed with character-
istic zero, then there exists a non-canonical isomorphism between R� and k�.

Proposition 10.3. Let R D kŒX�=.X2/ where k is an algebraically closed field
with characteristic p > 0. The following assertions hold.

(a) If p > 0, then the groups R� and k� are not isomorphic.

(b) If p D 0, then there exists a (non-canonical) group isomorphism R� Š k�.

Proof. There is a group isomorphismR� ! k�˚kC given by aCbX 7! .a; b=a/

where kC denotes the underlying abelian group of the field k.
(a) Let ' D .'1; '2/W k� ! k� ˚ kC be any group homomorphism. As k is al-

gebraically closed, every element in x 2 k� has the form x D yp for some y 2 k�.
Therefore

'.x/ D '.yp/ D '.y/p D .'1.y/; '2.y//
p
D .'1.y/

p; p'2.y// D .'1.x/; 0/;

which shows that ' is not surjective.
(b) Since p D 0, the abelian group kC is divisible and torsion free. Therefore

kC Š Q.I / for some index set I . There exist algebraic field extensions of Q of
any finite degree, and these are all contained in the algebraically closed field k.
Thus jI j D dimQ k must be infinite, and it follows that jI j D jkj.

The abelian group k� is also divisible, but it has torsion. Write

k� Š T ˚ .k�=T /;
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where T D ¹x 2 k� j 9n 2 NW xn D 1º is the torsion subgroup of k�. For the di-
visible torsion free abelian group k�=T one has k�=T Š Q.J / for some index
set J . It is not hard to see that jJ j must be infinite, and hence jJ j D jk�=T j. As
jT j D @0, it follows that jkj D jk�j D @0 C jJ j D jJ j.

Since jJ j D jkj D jI j, one gets

k� Š T ˚Q.J /
Š T ˚Q.J /

˚Q.I /
Š k� ˚ kC:

The artinian ringR D kŒX�=.X2/ from Example 10.2 has length ` D 2 and this
power is also involved in the description of the homomorphism � D K1.inc/. The
next result shows that this is no coincidence. As Proposition 10.4 might be well
known to experts, and since we do not really need it, we do not give a proof.

Proposition 10.4. Let .R;m; k/ be a commutative artinian local ring of length `.
The group homomorphism R� Š K1.projR/! K1.modR/ Š k� induced by the
inclusion incW projR! modR is the composition of the homomorphisms

R�
�
��! k�

.�/`

��! k�;

where � WR� R=m D k is the canonical quotient map and . � /` is the `th power.

Our next example is a non-artinian ring, namely the simple curve singularity
of type (A2) studied by, e.g., Herzog [19, Satz 1.6] and Yoshino [32, Proposi-
tion (5.11)].

Example 10.5. Let R D kŒŒT 2; T 3�� where k is an algebraically closed field with
char.k/ ¤ 2. Denote by incW projR! modR the inclusion functor. The homo-
morphism K1.inc/ may be identified with the inclusion map

�WR� D kŒŒT 2; T 3��� ,! kŒŒT ���:

Proof. The maximal ideal m D .T 2; T 3/ is the only non-free indecomposable
maximal Cohen–Macaulay R-module, so M D R˚m is a representation gener-
ator for MCMR; see (2.1.1). Even though T is not an element in R D kŒŒT 2; T 3��,
multiplication by T is a well-defined endomorphism of m. Thus there is a ring
homomorphism

�W kŒŒT ��! EndR.m/ given by h 7! h1m:

It is not hard to see that � is injective. To prove that it is surjective, i.e., that one
has EndR.m/=kŒŒT �� D 0, note that there is a short exact sequence of R-modules,

0! kŒŒT ��=R! EndR.m/=R! EndR.m/=kŒŒT ��! 0:
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To see that
EndR.m/=kŒŒT �� D 0;

it suffices to argue that the R-module EndR.m/=R is simple. As noted in the be-
ginning of the proof of Proposition 9.6, the inclusion m ,! R induces an isomor-
phism EndR.m/ Š HomR.m; R/, so by applying HomR.�; R/ to the short exact
sequence 0! m! R! k ! 0, it follows that

EndR.m/=R Š Ext1R.k; R/:

The latter module is isomorphic to k sinceR is a one-dimensional Gorenstein ring.
Note that via the isomorphism �, the group kŒŒT ��� corresponds to AutR.m/.
The Auslander–Reiten sequence ending in m is

0 �����! m
.1 �T /t

�����! R˚m
.T 2 T /
�����! m �����! 0:

Since the Auslander–Reiten homomorphism‡ D
�
�1
1

�
WZ! Z2 is injective, The-

orem 2.12 can be applied. We regard elements in R˚m as column vectors. Let
˛ D h1m 2 AutR.m/, where h 2 kŒŒT ���, be given. Write h D f C gT for some
f 2 R� and g 2 R. It is straightforward to verify that there is a commutative dia-
gram

0 // m

Š 
D .f �gT /1m

��

.1 �T /t
// R˚m

Š ˇ D

 
f g

gT 2 f

!
��

.T 2 T /
// m

Š ˛D .fCgT /1m

��

// 0

0 // m
.1 �T /t

// R˚m
.T 2 T /

// m // 0.

Note that ˇ really is an automorphism; indeed, its inverse is given by

ˇ�1 D .f 2 � g2T 2/�1

 
f �g

�gT 2 f

!
:

We now apply the tilde Construction 2.6 to ˛, ˇ, and 
 ; by Example 2.7 we get

Q̨ D

 
1 0

0 f C gT

!
; Q̌ D ˇ; and Q
 D

 
1 0

0 f � gT

!
:

In view of Definition 2.10 and Remark 2.11, the subgroup „ of AutR.R˚m/ab
is therefore generated by all the elements

�h WD Q̨ Q̌
�1
Q
 D .f 2 � g2T 2/�1

 
f �g.f � gT /

�gT 2.f C gT / f .f 2 � g2T 2/

!
:
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Denote by ! the composite of the isomorphisms,

AutR.R˚m/ab
ı

�����!
Š

k� ˚ AutR.m/
1˚��1

�����!
Š

k� ˚ kŒŒT ���;

where ı is the isomorphism from Proposition 9.6. Note that

ı.�h/ D .Œf �m; 1m/ D .h.0/; 1m/

and hence !.�h/ D .h.0/; 1/. It follows that !.„/ D k� ˚ ¹1º and thus ! induces
a group isomorphism

!WAutR.R˚m/ab=„
Š
�! .k� ˚ kŒŒT ���/=!.„/ D kŒŒT ���:

In view of this isomorphism, Theorem 2.12 shows that K1.modR/ Š kŒŒT ���. The-
orem 2.12 also asserts that K1.inc/ may be identified with the homomorphism

�WR� ! AutR.R˚m/ab=„ given by f 7!

 
f 1R 0

0 1m

!
:

It remains to note that the isomorphism ! identifies � with the inclusion map �
described in the example, indeed, one has !� D �.
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