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Intro

32 plants

LC-MS spectra from
the 32 plants

Arrays for 13865 genes
from the same plants

Construct a model on
the form

Spectra = expression X
coefficients + noise

Problems: dimension
reduction, variable
selection, validation
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Data types: LC-MS
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Data types: LC-MS
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Data types: LC-MS
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Mode-3

Mode-1

Me~2

Extract signals from 3D tensor ()
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Data types: LC-MS

The easy reduction: Average in the required direction

3405
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Data types: LC-MS

The more meaningful reduction: Decomposition into
mixing matrices and underlying components with some
restraints (non-negativity, sparsity)
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This requires that the individual spectra are exactly the @
same dimension to construct the tensor Y o
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Data types: LC-MS

Intensity

0 100 200 300
Retention time
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Data types: Array
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Data types: Array

151_1 151_2 151_3 151_4 152_1
[1,] 243.5156 170.1290 137.9091 131.3433 138.5385
[2,] 1813.1180 2502.2420 1337.7850 1903.2860 3155.5690
[3,] 6471.4770 1927.5710 1923.8660 1023.3690 1088.7270
[4,] 12794.1900 5849.8330 8092.0160 12470.7900 17349.1100
[5,] 875.2462 649.8030 516.7879 451.6719  694.3333
[6,] 324.4375 139.4516 157.3231 121.8254  260.1695
[13860,] 257.98460 265.31250 299.25000 399.62120 149.66100
[13861,] 96.68852 257.23440 291.28130 178.21540 108.80650
[13862,] 596.07690 264.51560 143.07940 66.92424 52.63768
[13863,]1 56.67742 71.33871 60.19672 88.40984 52.62903
[13864,] 2112.12500 1995.82100 1702.69400 2240.42200 1716.50000
[13865,]1 1259.39400 3086.60700 1551.72900 881.36360 2081.33300
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Data types: Array

How to choose relevant genes? The easy way: Fit linear
model with multiple testing correction (1imma) and
select the genes with the lowest p-values.

Very fast and simple, but is it meaningful?
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Data types: Array

A more interesting approach, clustering by profile. Use
NMF algorithm
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Modelling

At some point data will look like this

obs; 1 -+ samples obs;1 --- samples
: = + - x(B)+(€)
timepoints - -- genes

Multivariate regression with PLS
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Predictions from PLS
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Biological results

e The coefficient matrix can be seen as the effect of
each gene at each time point

e At a given time point (peak) this can be used to
construct a ranked list of genes

e Compare with existing knowledge of genes
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Genetic algorithms

How to determine the number of genes that go into
the model?

Possible solution is to use a genetic algorithm for
the selection

Allows selection from a larger set of genes, not just
the top 100

Fitness measure is the same as before
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Genetic algorithms

e GA is an optimization algorithm

e Chromosomes 111100101010101111000 each have a
fitness measure

e High fitness chromosomes are more likely to have
offspring

e Crossover 111100101010101111000
001010101110101111000

e Mutation 011100101010101111000
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Genetic algorithms
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