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My Teaching
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Matematik og Databehandling (block 1, class teacher)

– Mathematical modelling
– Differential equations
– Functions of two variables

Matematik og Planlægning (block 3, lecturer)

– Linear programming
– Convex optimization
– Dynamic programming
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My Research
• Dimension theory,

idZ(Q) = 1 , depth(Z/4Z) = 0.

• Hyperhomological algebra,

AD(R)
D⊗L

R− // BD(R)
RHomR(D,−)

oo is an equivalence.

• Relative homological algebra,

Prod
{

HomZ(M,Q/Z)
∣∣M ∈M} is enveloping.

• Triangulated categories,

K
(

Inj
R[x , y , z]

(xy , z2 + y)

)
is compactly generated.
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A Mathematical Miracle

“I think you should have been more explicit here in step two.”
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Buchberger’s Algorithm
Input

List of equations:
f1(x , y , z, . . .) = a1

...
fr (x , y , z, . . .) = ar

Monomial order:
<lex, <grlex, <grevlex, ...

Buchberger’s
algorithm

“Then a
miracle

occurs...”

//

Output

Gröbner equations:
g1(x , y , z, . . .) = b1

...
gs(x , y , z, . . .) = bs

Buchberger’s algorithm =

SINGULAR
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Gröbner equations
for

mathematicians

Henrik Holm (Mathematics & Computer Science) — Robots, Reactions, Surfaces, and Sudoku
Slide 7/33



Surfaces 1 / 7
Example 1: Steiner surface

x2y2 + x2z2 + y2z2 − xyz = 0
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Surfaces 2 / 7
Example 2: Heart

(2x2 + y2 + z2 − 1)3 − 1
10 x2z3 − y2z3 = 0
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Surfaces 3 / 7
Example 3: Kummer surface

x4 + y4 + z4 − x2y2 − x2z2 − y2z2 − x2 − y2 − z2 = −1
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Surfaces 4 / 7
Example 4: Cayley’s cubic

x2 + y2 + z2 − x2z + y2z − 1 = 0
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Surfaces 5 / 7
There are two ways to describe a hyperplane in 3D-space:

x

y

z

Parametric equation: Cartesian equation:x
y
z

 = t

1
1
1

+ u

3
0
1

 x + 2y − 3z = 0
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Surfaces 6 / 7
Can we find the Cartesian equation from the parametric one?

Parametric equation: Cartesian equation:x
y
z

 =

 t + u
t2 + 2tu
t3 + 3t2u

 z2 − 6xyz + · · · = 0
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Surfaces 7 / 7
We are given the parametric equations:

x = t + u

y = t2 + 2tu

z = t3 + 3t2u

We compute the Gröbner equations:

z2−6xyz+4x3z+4y3−3x2y2 = 0

2ty−2tx2−z+xy = 0

2tz−2tx3−5xz+4y2+x2y = 0

t2−2tx+y = 0
u+t−x = 0

We seek out the equation not depending on t and u.
This is the desired Cartesian equation.
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Gröbner equations
for

other scientists
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Robotics 1 / 6

The position of the robot hand is:

P = P(`1, `2, `3, θ1, θ2) =

(
`2 cos θ1 + `3 cos(θ1 + θ2)

`1 + `2 sin θ1 + `3 sin(θ1 + θ2)

)
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Robotics 2 / 6
The possible positions of the robot hand are:

−8 −4 4 8

2

6

10

14

18

10

6
2

Henrik Holm (Mathematics & Computer Science) — Robots, Reactions, Surfaces, and Sudoku
Slide 17/33



Robotics 3 / 6
The inverse kinematic problem: Given (a,b) ∈ R2, solve:

P =

(
`2 cos θ1 + `3 cos(θ1 + θ2)

`1 + `2 sin θ1 + `3 sin(θ1 + θ2)

)
=

(
a
b

)
for θ1, θ2 (the lengths `1, `2, `3 are assumed to be fixed).

Solution: Gröbner equations don’t work with cos and sin.

ci := cos θi

si := sin θi

ci
2 + si

2 = 1
cos(θ1 + θ2) = cos θ1 cos θ2 − sin θ1 sin θ2 = c1c2 − s1s2

sin(θ1 + θ2) = sin θ1 cos θ2 + sin θ2 cos θ1 = s1c2 + s2c1
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Robotics 3 / 6
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Solution: Gröbner equations don’t work with cos and sin.

ci := cos θi

si := sin θi

ci
2 + si

2 = 1
cos(θ1 + θ2) = cos θ1 cos θ2 − sin θ1 sin θ2 = c1c2 − s1s2

sin(θ1 + θ2) = sin θ1 cos θ2 + sin θ2 cos θ1 = s1c2 + s2c1

Henrik Holm (Mathematics & Computer Science) — Robots, Reactions, Surfaces, and Sudoku
Slide 18/33



Robotics 4 / 6
Hence the inverse kinematic problem becomes:

`2c1 + `3(c1c2 − s1s2) = a
`1 + `2s1 + `3(s1c2 + s2c1) = b

c1
2 + s1

2 = 1
c2

2 + s2
2 = 1

with c1, s1, c2, s2 as unknowns.

The Gröbner equations are:

c2 −
a2+(b−`1)

2−`2
2−`2

3

2`2`3
= 0

s2 +
a2+(b−`1)

2

a`3
s1 − (b−`1)

a2+(b−`1)
2+`2

2−`2
3

2a`2`3
= 0

c1 +
b−`1

a
s1 −

a2+(b−`1)
2+`2

2−`2
3

2a`2
= 0

s1
2 + (b−`1)

a2+(b−`1)
2+`2

2−`2
3

`2(a2+(b−`1)2)
s1 +

(a2+(b−`1)
2+`2

2−`2
3)

2−4a2`2
2

4`2
2(a2+(b−`1)2)

= 0

...which are easily solved for c1, s1, c2, s2.
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Robotics 4 / 6
Hence the inverse kinematic problem becomes:

`2c1 + `3(c1c2 − s1s2) = a
`1 + `2s1 + `3(s1c2 + s2c1) = b

c1
2 + s1

2 = 1
c2

2 + s2
2 = 1

with c1, s1, c2, s2 as unknowns. The Gröbner equations are:

c2 −
a2+(b−`1)

2−`2
2−`2

3

2`2`3
= 0

s2 +
a2+(b−`1)

2

a`3
s1 − (b−`1)

a2+(b−`1)
2+`2

2−`2
3

2a`2`3
= 0

c1 +
b−`1

a
s1 −

a2+(b−`1)
2+`2

2−`2
3

2a`2
= 0

s1
2 + (b−`1)

a2+(b−`1)
2+`2

2−`2
3

`2(a2+(b−`1)2)
s1 +

(a2+(b−`1)
2+`2

2−`2
3)

2−4a2`2
2

4`2
2(a2+(b−`1)2)

= 0

...which are easily solved for c1, s1, c2, s2.
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Robotics 5 / 6
E.g. for `1 = 10, `2 = 6, `3 = 2, and (a,b) = (4,15) one gets:

c2 − 1
24 = 0

s2 + 41
8 s1 − 365

96 = 0
c1 + 5

4 s1 − 73
48 = 0

s1
2 − 365

246 s1 + 3025
5904 = 0

These equations have two solutions:

s1 = sin θ1 = 0.55
c1 = cos θ1 = 0.84
s2 = sin θ2 = 1.00
c2 = cos θ2 = 0.04

or

s1 = sin θ1 = 0.94
c1 = cos θ1 = 0.35
s2 = sin θ2 = −1.00
c2 = cos θ2 = 0.04

It follows that the desired angles are:

θ1 = 34◦

θ2 = 88◦ or θ1 = 70◦

θ2 = 272◦
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Robotics 6 / 6
Lengths Point Angles Angles
`1 = 10
`2 = 6
`3 = 2

(4,15)
θ1 = 34◦

θ2 = 88◦
θ1 = 70◦

θ2 = 272◦
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Enzyme Reactions 1 / 4

E + A
k1 // EA
k2

oo EQ
k10 // E + Q
k9

oo

+ +

B

k3

��

P

k8

��
EAB

k4

OO

k5 // EPQ
k6

oo

k7

OO

E enzyme
A, B substrates
P, Q products

EA, EQ, EAB, EPQ complexes
k1, . . . , k10 rate constants
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Enzyme Reactions 2 / 4
Rate equations:

∂(EA)

∂t
= k1EA + k4(EAB)− k2(EA)− k3(EA)B

∂(EQ)

∂t
= k7(EPQ) + k9EQ − k10(EQ)− k8(EQ)P

∂(EAB)

∂t
= k3(EA)B + k6(EPQ)− k4(EAB)− k5(EAB)

∂(EPQ)

∂t
= k5(EAB) + k8(EQ)P − k6(EPQ)− k7(EPQ)

∂Q
∂t

= k10(EQ)− k9EQ

Steady-state assumption:

∂(EA)

∂t
=
∂(EQ)

∂t
=
∂(EAB)

∂t
=
∂(EPQ)

∂t
= 0.

Constant enzyme concentration:

E0 = E + (EA) + (EQ) + (EAB) + (EPQ).
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Enzyme Reactions 3 / 4

Thus, our assumptions are:

0 = k1EA + k4(EAB)− k2(EA)− k3(EA)B

0 = k7(EPQ) + k9EQ − k10(EQ)− k8(EQ)P

0 = k3(EA)B + k6(EPQ)− k4(EAB)− k5(EAB)

0 = k5(EAB) + k8(EQ)P − k6(EPQ)− k7(EPQ)

E0 = E + (EA) + (EQ) + (EAB) + (EPQ)

Under these assumptions, we wish to express

∂Q
∂t

= k10(EQ)− k9EQ

as a function of only E0, A, B, P, and Q. That is, we want to
eliminate the variables E , (EA), (EQ), (EAB), (EPQ).

Henrik Holm (Mathematics & Computer Science) — Robots, Reactions, Surfaces, and Sudoku
Slide 24/33



Enzyme Reactions 4 / 4
We get 25 Gröbner equations:

g1(E , (EA), (EQ), (EAB), (EPQ),E0,A,B,P,Q, ∂Q
∂t ) = 0

...

g25(E , (EA), (EQ), (EAB), (EPQ),E0,A,B,P,Q, ∂Q
∂t ) = 0

Surprisingly, g1 does not(!) involve the red variables. We get:

∂Q
∂t

=
(k1k3k5k7k10AB − k2k4k6k8k9PQ)E0

k1k3k5k7AB + k1k3k5k8ABP + k1k3k5k10AB +
k1k3k6k8ABP + k1k3k6k10AB + k1k3k7k10AB +
k1k4k6k8AP + k1k4k6k10A + k1k4k7k10A +
k1k5k7k10A + k2k4k6k8P + k2k4k6k9Q + k2k4k6k10 +
k2k4k7k9Q +k2k4k7k10 +k2k4k8k9PQ +k2k5k7k9Q +
k2k5k7k10 + k2k5k8k9PQ + k2k6k8k9PQ +
k3k5k7k9BQ + k3k5k7k10B + k3k5k8k9BPQ +
k3k6k8k9BPQ + k4k6k8k9PQ
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Gröbner equations
for

everybody
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Sudoku 1 / 6
Problem: Complete the 4×4 sudoku:

4

4 2

3 1

Solution:

3 2 1 4

4 1 2 3

2 3 4 1

1 4 3 2
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Sudoku 1 / 6
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Sudoku 2 / 6
x1 x2 x3 x4

x5 x6 x7 x8

x9 x10 x11 x12

x13 x14 x15 x16

There are 40 sudoku equations in the variables x1, . . . , x16:

• Each variable has one of the values 1, 2, 3, or 4:
(x1−1)(x1−2)(x1−3)(x1−4) = 0

...
(x16−1)(x16−2)(x16−3)(x16−4) = 0

• There are no repetitions in the 1st column:{
x1+x5+x9+x13 = 10

x1x5x9x13 = 24
• · · ·
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Sudoku 3 / 6
To complete the sudoku

4

4 2

3 1

we consider the 45 equations in the variables x1, . . . , x16:

The 40 sudoku equations
x4 = 4
x5 = 4
x7 = 2

x10 = 3
x12 = 1
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Sudoku 4 / 6

The Gröbner equations turn out to be:
x1 = 3 x2 = 2 x3 = 1 x4 = 4
x5 = 4 x6 = 1 x7 = 2 x8 = 3
x9 = 2 x10 = 3 x11 = 4 x12 = 1

x13 = 1 x14 = 4 x15 = 3 x16 = 2

Hence we have found the unique solution:

3 2 1 4

4 1 2 3

2 3 4 1

1 4 3 2
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Sudoku 5 / 6

What about the following sudoku (x12 = 1 is removed)?

4

4 2

3

This time the Gröbner equations are:

x1 = 3 x2 = 2 x3 = 1 x4 = 4
x5 = 4 x6 = 1 x7 = 2 x8 = 3
x9 = x16 x10 = 3 x11 = 4 x12 = 3− x16

x13 = 3− x16 x14 = 4 x15 = 3 (x16 −1)(x16 − 2) = 0

Henrik Holm (Mathematics & Computer Science) — Robots, Reactions, Surfaces, and Sudoku
Slide 31/33



Sudoku 6 / 6
Consequently, the sudoku:

4

4 2

3

has exactly two solutions:

3 2 1 4

4 1 2 3

1 3 4 2

2 4 3 1

and

3 2 1 4

4 1 2 3

2 3 4 1

1 4 3 2
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Abstract

Derivation of rate equations for complex enzymatic reactions is a tedious task be-

cause of requirements of manipulation with massive algebraic expressions. This paper

describes a general methodology on how to derive rate equations using Gr€oobner Bases
Theory in Biochemical Kinetics via MAPLE. This method is valid for deriving rate laws

for any enzymatic reactions regardless of the enzyme-containing species which are in-

volved.
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including more than one substrate of product, the task gets harder because of
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