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Motivation

A unified approach to celebrated log log-theorems on majorants of analytic
functions.
Actually, we obtain stronger results by replacing original pointwise bounds
with integral ones.

Main tool: a description for radial projections of harmonic measures of
bounded star-shaped domains in the plane (which, in particular, ”explains”
where the log log-conditions come from).

Starting point: classical theorems due to Carleman, Wolf, Levinson, and
Sjöberg, on majorants of analytic functions.
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Class L++

Definition

A nonnegative measurable function M on [a, b] ⊂ R belongs to the class
L++[a, b] if ∫ b

a
log+ log+ M(t) dt <∞.

(Here: h+ = max{h, 0}, h− = h+ − h.)
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log log-theorems

Liouville setting:

Theorem

(T. Carleman 1926) If f ∈ O(C), |f (re iθ)| ≤ M(θ) ∀θ ∈ [0, 2π], and
∀r > 0, with M ∈ L++[0, 2π], then f ≡ const.

This is non-trivial if M is not bounded, because there exist nonconstant
entire functions f such that f (re iθ) is bounded in r for every fixed θ.
Moreover: M1−ε ∈ L++ does not imply f ≡ const.

Alexander Rashkovskii (UiS) Classical and new log log-theorems April 16, 2010 4 / 26



log log-theorems

Liouville setting:

Theorem

(T. Carleman 1926) If f ∈ O(C), |f (re iθ)| ≤ M(θ) ∀θ ∈ [0, 2π], and
∀r > 0, with M ∈ L++[0, 2π], then f ≡ const.

This is non-trivial if M is not bounded, because there exist nonconstant
entire functions f such that f (re iθ) is bounded in r for every fixed θ.
Moreover: M1−ε ∈ L++ does not imply f ≡ const.

Alexander Rashkovskii (UiS) Classical and new log log-theorems April 16, 2010 4 / 26



log log-theorems
Phragmén–Lindelöf setting:

Theorem

(F. Wolf 1939) If f ∈ O(C+) in C+ = {z ∈ C : Im z > 0},
lim supz→R |f (z)| ≤ 1, and

|f (re iθ)| ≤ [M(θ)]εr ∀ε > 0, ∀r > R(ε), ∀θ ∈ (0, π),

with M ∈ L++[0, π], then |f (z)| ≤ 1 on C+.

Theorem

(A.W. McMillan 1944) If f ∈ O(C+), lim supz→R |f (z)| ≤ 1, and

|f (re iθ)| ≤ [M(θ)]r ∀r > R, ∀θ ∈ (0, π),

with M ∈ L++[0, π], then there exists a constant C , independent of f ,
such that |f (x + iy)| ≤ C y on C+.
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log log-theorems
Local setting:

Theorem

(N. Levinson 1939, N. Sjöberg 1939, F. Wolf 1942) If f ∈ O(Q) in
Q = {|x | < 1, |y | < 1}, has the bound |f (x + iy)| ≤ M(y) ∀x + iy ∈ Q,
with M ∈ L++[−1, 1], then ∀K b Q there is a constant CK , independent
of the function f , such that |f (z)| ≤ CK in K .

(Levinson and Sjöberg: M is even and non-increasing for y > 0,
M(0) =∞.)

Further developments of this theorem, including sharpness results and
higher dimensional variants: Domar (1958, 1988), Gurarii (1960), Dyn’kin
(1972), Beurling (1972), Rippon (1978).

Sharpness: M ∈ L++ is necessary, provided M is decreasing and
continuous for y > 0 (Beurling); decreasing and satisfying
M(y) ≥ [M(2y)]C on (0, 1/2) (Rippon).
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log log-theorems

A similar feature of majorants from the class L++ was discovered by
Beurling (1971) in a problem of extension of analytic functions.

Let Q± = Q ∩ C±, and let f ∈ O(Q±) have equal boundary values on
Q ∩ R in the sense of distributions from Q+ and Q−.
If and |f (x + iy)| ≤ M(|y |) with M ∈ L++[0, 1], then f ∈ O(Q).
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log log-theorems

It also appears in relation to holomorphic functions from the MacLane
class: MacLane (1963, 1978), Hornblower (1971), Rippon (1978).

The class consists of functions in D with asymptotical boundary values on
dense subsets of T.
If f ∈ O(D) satisfies f (re iθ) ≤ M(θ) with M ∈ L++[−π, π], then f
belongs to the MacLane class.
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log log-theorems

Next result does not look like a log log-theorem, however (as will be seen
from what follows) it is also about the class L++.

Theorem

(V.I. Matsaev 1960) If an entire function f satisfies the relation

log |f (re iθ)| ≥ −Crα| sin θ|−k ∀θ ∈ (0, π), ∀r > 0,

with some C > 0, α > 1, and k ≥ 0, then it has at most normal type with
respect to the order α, that is, log |f (re iθ)| ≤ Arα + B.
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All these theorems can be formulated in terms of subharmonic functions
(by taking u(z) = log |f (z)| as a pattern), however our main goal is to
replace the pointwise bounds with some integral conditions.
A model situation is the following form of the Phragmén–Lindelöf theorem.

Theorem

(Ahlfors 1937) If u ∈ SH(C+) with nonpositive boundary values on R
satisfies

lim
r→∞

r−1

∫ π

0
u+(re iθ) sin θ dθ = 0,

then u ≤ 0 in C+.

Will show: all these theorems are particular cases of results on a class A
defined below, and the log log-conditions appear as conditions for
continuity of certain logarithmic potentials.
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Class A

Definition

Let ν be a probability measure on [a, b]. Suppose ν(t) := ν([a, t]) is
strictly increasing and continuous, and µ is its inverse (extended as
µ(t) = a for t < 0 and µ(t) = b for t > 1).
We will say that ν ∈ A[a, b] if

lim
δ→0

sup
x

∫ δ

0

µ(x + t)− µ(x − t)

t
dt = 0.
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Relation of the class A to the log log-theorems

Definition

L−[a, b] is the class of all nonnegative integrable functions g on [a, b],
such that ∫ b

a
log− g(s) ds <∞. (1)

Proposition

If the density ν ′ of an absolutely continuous increasing function ν belongs
to L−[a, b], then ν ∈ A[a, b].
Consequently, if a holomorphic function f has a majorant M ∈ L++[a, b],
then log+ |f | has the corresponding integral bound with

ν(t) =

∫ t

a
min{1, 1/M(s)} ds ∈ A[a, b].
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Statements

Entire functions (Carleman+):

Theorem

Let u ∈ SH(C) satisfy ∫ 2π

0
u+(te iθ) dν(θ) ≤ V (t)

with ν ∈ A[0, 2π] and a nondecreasing function V on R+. Then there
exist constants c > 0 and A ≥ 1, independent of u, such that

u(te iθ) ≤ c V (At).

Alexander Rashkovskii (UiS) Classical and new log log-theorems April 16, 2010 13 / 26



Statements
Phragmén-Lindelöf (Wolf+):

Theorem

If u ∈ SH(C+) satisfies lim supz→R u(z) ≤ 0 and

lim
t→∞

t−1

∫ π

0
u+(te iθ) dν(θ) = 0

with ν ∈ A[0, π], then u(z) ≤ 0 ∀z ∈ C+.

(McMillan+)

Theorem

If u ∈ SH(C+) satisfies lim supz→R u(z) ≤ 0 and∫ π

0
u+(te iθ) dν(θ) ≤ t

with ν ∈ A[0, π], then ∃C , independent of u, such that u(x + iy) ≤ C y.
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Statements

Local setting (Levinson-Sjöberg+):

Theorem

Let u ∈ SH(Q) in Q = {x + iy : |x | < 1, |y | < 1} satisfy∫ 1

−1
u+(x + iy) dν(y) ≤ 1 ∀x ∈ (−1, 1)

with ν ∈ A[−1, 1]. Then for each compact set K ⊂ Q there is a constant
CK , independent of the function u, such that u(z) ≤ CK on K .
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Statements

Functions with a lower bound (Matsaev+)

Theorem

Let a function u ∈ SH(C), harmonic in C \ R, satisfy∫ π

−π
u−(re iθ)Φ(| sin θ|) dθ ≤ V (r),

where Φ ∈ L−[0, 1] is nonnegative and nondecreasing, and the function V
is such that r−1−δV (r) is increasing for some δ > 0. Then there are
constants c > 0 and A ≥ 1, independent of u, such that

u(re iθ) ≤ cV (Ar).

Remark. We do not know if the condition on u− can be replaced by a
more general one in terms of the class A.
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Radial projections of harmonic measures

Proofs of the theorems rest on a presentation of measures of the class
A[0, 2π] as radial projections of harmonic measures of star-shaped
domains.

Let Ω be a bounded Jordan domain containing the origin.

ω(z ,E ,Ω) ≡ harmonic measure of E ⊂ ∂Ω at z ∈ Ω: the solution of the
Dirichlet problem in Ω with the boundary data 1 on E and 0 on ∂Ω \ E

ω(0,E ,Ω) generates a measure on the unit circle T by means of the radial
projection ζ 7→ ζ/|ζ|, which we consider as a measure on [0, 2π]:

ω̂Ω(F ) = ω(0, {ζ ∈ ∂Ω : arg ζ ∈ F},Ω), F ⊂ [0, 2π].

The inverse problem: Given a probability measure on the unit circle T, is it
the radial projection of the harmonic measure of any domain Ω?
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Radial projections of harmonic measures (cont’d)

We specify Ω to be strictly star-shaped:

Ω = {re iθ : r < rΩ(θ), 0 ≤ θ ≤ 2π}

with rΩ a positive continuous function on [0, 2π], rΩ(0) = rΩ(2π).

Theorem

Radial projection theorem: A continuous probability measure ν on
[0, 2π] is the radial projection of the harmonic measure of a strictly
star-shaped domain if and only if ν ∈ A[0, 2π].

The theorem was proved (1990) by a method originated by B.Ya. Levin in
theory of majorants in classes of subharmonic functions.

Here: a simplified proof, published in Expo. Math. 2009.
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Proof of Radial Projection Theorem

Step 1: continuity of a potential

Proposition

Let ν be a strictly increasing continuous function [0, 2π]→ [0, 1], and
µ : [0, 1]→ [0, 2π] be its inverse. Then the function

h(z) =

∫ 2π

0
log |e iθ − z | dµ(θ/2π)

is continuous if and only if ν ∈ A[0, 2π].

Proof: Basically, integration by parts and Evans’ theorem (continuity on
the support of the measure implies continuity everywhere). �

Remark. Recall that ν ′ ∈ L− implies ν ∈ L++. On the other hand,
ν ′ ∈ L− iff µ′ belongs to the Zygmund class L log L appearing in
continuity problems for the Hilbert transform.
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Proof of Radial Projection Theorem (cont’d)
Step 2: Sufficiency

Proposition

Every ν ∈ A[0, 2π] has the form ν = ω̂Ω for some strictly star-shaped
domain Ω.

Proof: By Step 1, the function

u(z) =
1

π

∫ 2π

0
log |e iθ − z | dµ(θ/2π) ∈ SH(C) ∩ C (C).

Let v be harmonic conjugate to u in D, v(1) = 0.
By the C-R condition, v ∈ C (D) and v(e iθ) = θ− µ(θ/2π). Therefore, the
function w(z) := z exp{−u(z)− iv(z)} ∈ C (D), arg w(e iθ) = µ(θ/2π).
By the boundary correspondence principle, w maps D conformally to

Ω = w(D) = {re iθ : r < exp{−u(exp{2πiν(θ)})}, 0 ≤ θ ≤ 2π},

so that ω(0,E ,Ω) = ν(arg E ) for any Borel E ⊂ ∂Ω. �
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Proof of Radial Projection Theorem (cont’d)
Step 2: Sufficiency
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1

π
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Proof of Radial Projection Theorem (cont’d)

Step 3: Necessity

Proposition

If Ω = {re iθ : r < rΩ(θ)}, then ω̂Ω ∈ A[0, 2π].

Proof: Let w be the conformal map of D to Ω, w(0) = 0, arg w(1) = 0.

Define f (z) = u(z) + iv(z) = log w(z)
z for |z | ≤ 1 and f (z) = f (|z |−2z) for

|z | > 1. It is analytic in D and continuous in C.

The function λ(z) = u(z) + 1
π

∫ 2π
0 log |e iψ − z | dv(e iψ) can be shown to

be harmonic (⇒ continuous) in C. Therefore, the potential is continuous.

By invariance of harmonic measure, ω̂Ω([0, arg w(e iψ)]) = ψ/2π, so
v(e iψ) = arg w(e iψ)− ψ = µ(ψ/2π)− ψ, where µ(ψ/2π) is the inverse to
the function ω̂Ω([0, arg w(e iψ)]).

Step 1 implies ω̂Ω ∈ A[0, 2π]. �
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Proof of the Integral Variant for Carleman Theorem

Theorem

Let u ∈ SH(C) satisfy
∫ 2π

0 u+(te iθ) dν(θ) ≤ V (t) with ν ∈ A[0, 2π] and a
nondecreasing function V on R+. Then there exist constants c > 0 and
A ≥ 1, independent of u, such that u(te iθ) ≤ c V (At).

Proof: By the Radial Projection Theorem, there exists a strictly
star-shaped domain Ω such that ω(z ,E ,Ω) ≤ c ν(arg E ) for all
z ∈ K b Ω, E ⊂ ∂Ω.
The Poisson-Jensen formula for the function u+(t z) in the domain s Ω,
t ≥ 1, s ≥ 1, implies

u+(t z) ≤ c

∫ 2π

0
u+(s t r(θ)e iθ) dν(θ).

For a transition from ∂(stΩ) to AtT, integrate this w.r.t. s. �
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Proof of the Integral Variant for Wolf Theorem

Theorem

If u ∈ SH(C+) satisfies the conditions lim supz→x0
u(z) ≤ 0 ∀x0 ∈ R and

lim
t→∞

t−1

∫ π

0
u+(te iθ) dν(θ) = 0

with ν ∈ A[0, π], then u(z) ≤ 0 ∀z ∈ C+.

Proof: this follows from the previous Theorem applied to the function u+

extended to C by 0, and standard Phragmén–Lindelöf theorem. �

McMillan+: similar proof
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Proof of Integral Variant for Levinson-Sjöberg Theorem

Theorem

Let u ∈ SH(Q) in Q = {|x | < 1, |y | < 1} satisfy
∫ 1
−1 u+(x + iy) dν(y) ≤ 1

∀x ∈ (−1, 1) with ν ∈ A[−1, 1]. Then for each compact set K ⊂ Q there
is a constant CK , independent of u, such that u(z) ≤ CK on K .

Proof: Same idea as for the theorem on entire functions (Carleman+),
refined adaptation.

By using the Radial Projection Theorem, construct a domain
Ω0 = {x + iy : t1(y) < x < t2(y), −1 < x < 1} ⊂ Q such that the
harmonic measure of any subset E of the curvilinear part of ∂Ω0 at a
given point z0 ∈ Ω0 equals ν(ImE ).

In order to replace the integration over ∂Ω0 by the integration over
vertical intervals, a partition needed. �
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Proof of Integral Variant for Matsaev Theorem

Theorem

Let a function u ∈ SH(C), harmonic in C \ R, satisfy∫ π
−π u−(re iθ)Φ(| sin θ|) dθ ≤ V (r), where Φ ∈ L−[0, 1] is nonnegative and

nondecreasing, and the function V is such that r−1−δV (r) is increasing for
some δ > 0. Then there are constants c > 0 and A ≥ 1, independent of u,
such that u(re iθ) ≤ cV (Ar).

Proof: Using Carleman’s formula for the function u in the domains
{r < |z | < R, | ± arg z − π

2 | <
π
2 − a}, multiplied by Φ(| sin θ|) and

integrated in a ∈ (0, τ) for a sufficiently small τ > 0, one can show there is
a constant C > 0 such that∫ π

−π
u+(re iθ) sin2 θΦ(| sin θ|) dθ ≤ o(V (r)) + C

∫ π

−π
u−(re iθ)Φ(| sin θ|) dθ,

and the result follows from Carleman+. �
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Questions

1. Does an integral variant of Matsaev’s theorem hold for measures ν ∈ A?

2. Is A the largest class of measures for the results to hold?

3. A description of the radial projections for harmonic measures of general
star-shaped domains (including the case of non-bounded domains)?

4. Radial projections for arbitrary domains?

5. Higher dimensional analogues for the Radial Projection Theorem?

6. Application for the MacLane class?

7. Application for Beurling’s extension theorem?
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