Classical and new log log-theorems

Alexander Rashkovskii

University of Stavanger, Norway
April 16, 2010

Motivation

A unified approach to celebrated log log-theorems on majorants of analytic functions.
Actually, we obtain stronger results by replacing original pointwise bounds with integral ones.

Main tool: a description for radial projections of harmonic measures of
bounded star-shaped domains in the plane (which, in particular, "explains" where the $\log \log$-conditions come from).

Starting point: classical theorems due to Carleman, Wolf, Levinson, and Sjöberg, on majorants of analytic functions.

Motivation

A unified approach to celebrated log log-theorems on majorants of analytic functions.
Actually, we obtain stronger results by replacing original pointwise bounds with integral ones.

Main tool: a description for radial projections of harmonic measures of bounded star-shaped domains in the plane (which, in particular, "explains" where the log log-conditions come from).

Starting point: classical theorems due to Carleman, Wolf, Levinson, and Sjöberg, on majorants of analytic functions.

Motivation

A unified approach to celebrated log log-theorems on majorants of analytic functions.
Actually, we obtain stronger results by replacing original pointwise bounds with integral ones.

Main tool: a description for radial projections of harmonic measures of bounded star-shaped domains in the plane (which, in particular, "explains" where the log log-conditions come from).

Starting point: classical theorems due to Carleman, Wolf, Levinson, and Sjöberg, on majorants of analytic functions.

Class \mathcal{L}^{++}

Definition

A nonnegative measurable function M on $[a, b] \subset \mathbb{R}$ belongs to the class $\mathcal{L}^{++}[a, b]$ if

$$
\int_{a}^{b} \log ^{+} \log ^{+} M(t) d t<\infty
$$

(Here: $h^{+}=\max \{h, 0\}, h^{-}=h^{+}-h$.)

log log-theorems

Liouville setting:
Theorem
(T. Carleman 1926) If $f \in \mathcal{O}(\mathbb{C}),\left|f\left(r e^{i \theta}\right)\right| \leq M(\theta) \forall \theta \in[0,2 \pi]$, and $\forall r>0$, with $M \in \mathcal{L}^{++}[0,2 \pi]$, then $f \equiv$ const.

This is non-trivial if M is not bounded, because there exist nonconstant entire functions f such that $f\left(r e^{i \theta}\right)$ is bounded in r for every fixed θ. Moreover: $M^{1-\epsilon} \in \mathcal{L}^{++}$does not imply $f \equiv$ const.

log log-theorems

Liouville setting:

Theorem

(T. Carleman 1926) If $f \in \mathcal{O}(\mathbb{C}),\left|f\left(r e^{i \theta}\right)\right| \leq M(\theta) \forall \theta \in[0,2 \pi]$, and $\forall r>0$, with $M \in \mathcal{L}^{++}[0,2 \pi]$, then $f \equiv$ const.

This is non-trivial if M is not bounded, because there exist nonconstant entire functions f such that $f\left(r e^{i \theta}\right)$ is bounded in r for every fixed θ. Moreover: $M^{1-\epsilon} \in \mathcal{L}^{++}$does not imply $f \equiv$ const.

log log-theorems

Phragmén-Lindelöf setting:
Theorem
(F. Wolf 1939) If $f \in \mathcal{O}\left(\mathbb{C}_{+}\right)$in $\mathbb{C}_{+}=\{z \in \mathbb{C}: \operatorname{Im} z>0\}$, $\lim \sup _{z \rightarrow \mathbb{R}}|f(z)| \leq 1$, and

$$
\left|f\left(r e^{i \theta}\right)\right| \leq[M(\theta)]^{\epsilon r} \quad \forall \epsilon>0, \forall r>R(\epsilon), \forall \theta \in(0, \pi),
$$

with $M \in \mathcal{L}^{++}[0, \pi]$, then $|f(z)| \leq 1$ on \mathbb{C}_{+}.

with $M \in \mathcal{L}^{++}[0, \pi]$, then there exists a constant C, independent of f,
such that $|f(x+i y)| \leq C y$ on \mathbb{C}_{+}.

log log-theorems

Phragmén-Lindelöf setting:
Theorem
(F. Wolf 1939) If $f \in \mathcal{O}\left(\mathbb{C}_{+}\right)$in $\mathbb{C}_{+}=\{z \in \mathbb{C}: \operatorname{Im} z>0\}$, $\lim _{\sup _{z \rightarrow \mathbb{R}}}|f(z)| \leq 1$, and

$$
\left|f\left(r e^{i \theta}\right)\right| \leq[M(\theta)]^{\epsilon r} \quad \forall \epsilon>0, \forall r>R(\epsilon), \forall \theta \in(0, \pi),
$$

with $M \in \mathcal{L}^{++}[0, \pi]$, then $|f(z)| \leq 1$ on \mathbb{C}_{+}.

Theorem

(A.W. McMillan 1944) If $f \in \mathcal{O}\left(\mathbb{C}_{+}\right)$, $\limsup _{z \rightarrow \mathbb{R}}|f(z)| \leq 1$, and

$$
\left|f\left(r e^{i \theta}\right)\right| \leq[M(\theta)]^{r} \quad \forall r>R, \forall \theta \in(0, \pi),
$$

with $M \in \mathcal{L}^{++}[0, \pi]$, then there exists a constant C, independent of f, such that $|f(x+i y)| \leq C y$ on \mathbb{C}_{+}.

log log-theorems

Local setting:

Theorem
(N. Levinson 1939, N. Sjöberg 1939, F. Wolf 1942) If $f \in \mathcal{O}(Q)$ in $Q=\{|x|<1,|y|<1\}$, has the bound $|f(x+i y)| \leq M(y) \forall x+i y \in Q$, with $M \in \mathcal{L}^{++}[-1,1]$, then $\forall K \in Q$ there is a constant C_{K}, independent of the function f, such that $|f(z)| \leq C_{K}$ in K.
(Levinson and Sjöberg: M is even and non-increasing for $y>0$, $M(0)=\infty$.)
\square (1972), Beurling (1972), Rippon (1978)

Sharpness: $M \in \mathcal{L}^{++}$is necessary, provided M is decreasing and continuous for $y>0$ (Beurling); decreasing and satisfying $M(y) \geq[M(2 y)]^{C}$ on ($0,1 / 2$) (Rippon).

log log-theorems

Local setting:

Theorem
(N. Levinson 1939, N. Sjöberg 1939, F. Wolf 1942) If $f \in \mathcal{O}(Q)$ in $Q=\{|x|<1,|y|<1\}$, has the bound $|f(x+i y)| \leq M(y) \forall x+i y \in Q$, with $M \in \mathcal{L}^{++}[-1,1]$, then $\forall K \in Q$ there is a constant C_{K}, independent of the function f, such that $|f(z)| \leq C_{K}$ in K.
(Levinson and Sjöberg: M is even and non-increasing for $y>0$, $M(0)=\infty$.)

Further developments of this theorem, including sharpness results and higher dimensional variants: Domar (1958, 1988), Gurarii (1960), Dyn'kin (1972), Beurling (1972), Rippon (1978).

Sharpness: $M \in \mathcal{L}^{++}$is necessary, provided M is decreasing and continuous for $y>0$ (Beurling); decreasing and satisfying

log log-theorems

Local setting:

Theorem

(N. Levinson 1939, N. Sjöberg 1939, F. Wolf 1942) If $f \in \mathcal{O}(Q)$ in $Q=\{|x|<1,|y|<1\}$, has the bound $|f(x+i y)| \leq M(y) \forall x+i y \in Q$, with $M \in \mathcal{L}^{++}[-1,1]$, then $\forall K \Subset Q$ there is a constant C_{K}, independent of the function f, such that $|f(z)| \leq C_{K}$ in K.
(Levinson and Sjöberg: M is even and non-increasing for $y>0$, $M(0)=\infty$.)

Further developments of this theorem, including sharpness results and higher dimensional variants: Domar $(1958,1988)$, Gurarii (1960), Dyn'kin (1972), Beurling (1972), Rippon (1978).

Sharpness: $M \in \mathcal{L}^{++}$is necessary, provided M is decreasing and continuous for $y>0$ (Beurling); decreasing and satisfying $M(y) \geq[M(2 y)]^{C}$ on ($0,1 / 2$) (Rippon).

log log-theorems

A similar feature of majorants from the class \mathcal{L}^{++}was discovered by Beurling (1971) in a problem of extension of analytic functions.
Let $Q_{ \pm}=Q \cap \mathbb{C}_{ \pm}$, and let $f \in \mathcal{O}\left(Q_{ \pm}\right)$have equal boundary values on $Q \cap \mathbb{R}$ in the sense of distributions from Q_{+}and Q_{-}. If and $|f(x+i y)| \leq M(|y|)$ with $M \in \mathcal{L}^{++}[0,1]$, then $f \in \mathcal{O}(Q)$.

log log-theorems

It also appears in relation to holomorphic functions from the MacLane class: MacLane (1963, 1978), Hornblower (1971), Rippon (1978).

The class consists of functions in \mathbb{D} with asymptotical boundary values on dense subsets of \mathbb{T}. If $f \in \mathcal{O}(\mathbb{D})$ satisfies $f\left(r e^{i \theta}\right) \leq M(\theta)$ with $M \in \mathcal{L}^{++}[-\pi, \pi]$, then f belongs to the MacLane class.

log log-theorems

Next result does not look like a log log-theorem, however (as will be seen from what follows) it is also about the class \mathcal{L}^{++}.

Theorem
(V.I. Matsaev 1960) If an entire function f satisfies the relation

$$
\log \left|f\left(r e^{i \theta}\right)\right| \geq-C r^{\alpha}|\sin \theta|^{-k} \quad \forall \theta \in(0, \pi), \forall r>0
$$

with some $C>0, \alpha>1$, and $k \geq 0$, then it has at most normal type with respect to the order α, that is, $\log \left|f\left(r e^{i \theta}\right)\right| \leq A r^{\alpha}+B$.

All these theorems can be formulated in terms of subharmonic functions (by taking $u(z)=\log |f(z)|$ as a pattern), however our main goal is to replace the pointwise bounds with some integral conditions.
A model situation is the following form of the Phragmén-Lindelöf theorem

Will show: all these theorems are particular cases of results on a class \mathcal{A} defined below, and the log log-conditions appear as conditions for continuity of certain logarithmic potentials.

All these theorems can be formulated in terms of subharmonic functions (by taking $u(z)=\log |f(z)|$ as a pattern), however our main goal is to replace the pointwise bounds with some integral conditions.
A model situation is the following form of the Phragmén-Lindelöf theorem.
Theorem
(Ahlfors 1937) If $u \in \mathrm{SH}\left(\mathbb{C}_{+}\right)$with nonpositive boundary values on \mathbb{R} satisfies

$$
\lim _{r \rightarrow \infty} r^{-1} \int_{0}^{\pi} u^{+}\left(r e^{i \theta}\right) \sin \theta d \theta=0
$$

then $u \leq 0$ in \mathbb{C}_{+}.

Will show: all these theorems are particular cases of results on a class \mathcal{A} defined below, and the log log-conditions appear as conditions for continuity of certain logarithmic potentials.

All these theorems can be formulated in terms of subharmonic functions (by taking $u(z)=\log |f(z)|$ as a pattern), however our main goal is to replace the pointwise bounds with some integral conditions.
A model situation is the following form of the Phragmén-Lindelöf theorem.

Theorem

(Ahlfors 1937) If $u \in \mathrm{SH}\left(\mathbb{C}_{+}\right)$with nonpositive boundary values on \mathbb{R} satisfies

$$
\lim _{r \rightarrow \infty} r^{-1} \int_{0}^{\pi} u^{+}\left(r e^{i \theta}\right) \sin \theta d \theta=0
$$

then $u \leq 0$ in \mathbb{C}_{+}.

Will show: all these theorems are particular cases of results on a class \mathcal{A} defined below, and the log log-conditions appear as conditions for continuity of certain logarithmic potentials.

Class \mathcal{A}

Definition

Let ν be a probability measure on $[a, b]$. Suppose $\nu(t):=\nu([a, t])$ is strictly increasing and continuous, and μ is its inverse (extended as $\mu(t)=a$ for $t<0$ and $\mu(t)=b$ for $t>1$).
We will say that $\nu \in \mathcal{A}[a, b]$ if

$$
\lim _{\delta \rightarrow 0} \sup _{x} \int_{0}^{\delta} \frac{\mu(x+t)-\mu(x-t)}{t} d t=0
$$

Relation of the class \mathcal{A} to the log log-theorems

Definition

$\mathcal{L}^{-}[a, b]$ is the class of all nonnegative integrable functions g on $[a, b]$, such that

$$
\begin{equation*}
\int_{a}^{b} \log ^{-} g(s) d s<\infty \tag{1}
\end{equation*}
$$

Proposition

If the density ν^{\prime} of an absolutely continuous increasing function ν belongs to $\mathcal{L}^{-}[a, b]$, then $\nu \in \mathcal{A}[a, b]$.
Consequently, if a holomorphic function f has a majorant $M \in \mathcal{L}^{++}[a, b]$, then $\log ^{+}|f|$ has the corresponding integral bound with

$$
\nu(t)=\int_{a}^{t} \min \{1,1 / M(s)\} d s \in \mathcal{A}[a, b] .
$$

Statements

Entire functions (Carleman+):
Theorem
Let $u \in \operatorname{SH}(\mathbb{C})$ satisfy

$$
\int_{0}^{2 \pi} u^{+}\left(t e^{i \theta}\right) d \nu(\theta) \leq V(t)
$$

with $\nu \in \mathcal{A}[0,2 \pi]$ and a nondecreasing function V on \mathbb{R}_{+}. Then there exist constants $c>0$ and $A \geq 1$, independent of u, such that

$$
u\left(t e^{i \theta}\right) \leq c V(A t)
$$

Statements

Phragmén-Lindelöf (Wolf+):
Theorem
If $u \in \mathrm{SH}\left(\mathbb{C}_{+}\right)$satisfies $\lim \sup _{z \rightarrow \mathbb{R}} u(z) \leq 0$ and

$$
\lim _{t \rightarrow \infty} t^{-1} \int_{0}^{\pi} u^{+}\left(t e^{i \theta}\right) d \nu(\theta)=0
$$

with $\nu \in \mathcal{A}[0, \pi]$, then $u(z) \leq 0 \forall z \in \mathbb{C}_{+}$.

Statements

Phragmén-Lindelöf (Wolf+):
Theorem
If $u \in \mathrm{SH}\left(\mathbb{C}_{+}\right)$satisfies $\lim \sup _{z \rightarrow \mathbb{R}} u(z) \leq 0$ and

$$
\lim _{t \rightarrow \infty} t^{-1} \int_{0}^{\pi} u^{+}\left(t e^{i \theta}\right) d \nu(\theta)=0
$$

with $\nu \in \mathcal{A}[0, \pi]$, then $u(z) \leq 0 \forall z \in \mathbb{C}_{+}$.
(McMillan+)
Theorem
If $u \in \operatorname{SH}\left(\mathbb{C}_{+}\right)$satisfies $\lim \sup _{z \rightarrow \mathbb{R}} u(z) \leq 0$ and

$$
\int_{0}^{\pi} u^{+}\left(t e^{i \theta}\right) d \nu(\theta) \leq t
$$

with $\nu \in \mathcal{A}[0, \pi]$, then $\exists C$, independent of u, such that $u(x+i y) \leq C y$.

Statements

Local setting (Levinson-Sjöberg+):
Theorem
Let $u \in \operatorname{SH}(Q)$ in $Q=\{x+i y:|x|<1,|y|<1\}$ satisfy

$$
\int_{-1}^{1} u^{+}(x+i y) d \nu(y) \leq 1 \quad \forall x \in(-1,1)
$$

with $\nu \in \mathcal{A}[-1,1]$. Then for each compact set $K \subset Q$ there is a constant C_{K}, independent of the function u, such that $u(z) \leq C_{K}$ on K.

Statements

Functions with a lower bound (Matsaev +)
Theorem
Let a function $u \in \mathrm{SH}(\mathbb{C})$, harmonic in $\mathbb{C} \backslash \mathbb{R}$, satisfy

$$
\int_{-\pi}^{\pi} u^{-}\left(r e^{i \theta}\right) \Phi(|\sin \theta|) d \theta \leq V(r)
$$

where $\Phi \in \mathcal{L}^{-}[0,1]$ is nonnegative and nondecreasing, and the function V is such that $r^{-1-\delta} V(r)$ is increasing for some $\delta>0$. Then there are constants $c>0$ and $A \geq 1$, independent of u, such that

$$
u\left(r e^{i \theta}\right) \leq c V(A r)
$$

Remark. We do not know if the condition on u^{-}can be replaced by a more general one in terms of the class \mathcal{A}.

Radial projections of harmonic measures

Proofs of the theorems rest on a presentation of measures of the class $\mathcal{A}[0,2 \pi]$ as radial projections of harmonic measures of star-shaped domains.
Let Ω be a bounded Jordan domain containing the origin.
$\omega(z, E, \Omega) \equiv$ harmonic measure of $E \subset \partial \Omega$ at $z \in \Omega$: the solution of the
Dirichlet problem in Ω with the boundary data 1 on E and 0 on $\partial \Omega \backslash E$
$\omega(0, E, \Omega)$ generates a measure on the unit circle \mathbb{T} by means of the radial
projection $\zeta \mapsto \zeta /|\zeta|$, which we consider as a measure on $[0,2 \pi]$:

$$
\widehat{\omega}(F)=\omega(0,\{\zeta \in \partial \Omega: \arg \zeta \in F\}, \Omega), \quad F \subset[0,2 \pi] .
$$

The inverse problem: Given a probability measure on the unit circle \mathbb{T}, is it
the radial projection of the harmonic measure of any domain Ω ?

Radial projections of harmonic measures

Proofs of the theorems rest on a presentation of measures of the class $\mathcal{A}[0,2 \pi]$ as radial projections of harmonic measures of star-shaped domains.

Let Ω be a bounded Jordan domain containing the origin.
$\omega(z, E, \Omega) \equiv$ harmonic measure of $E \subset \partial \Omega$ at $z \in \Omega$: the solution of the Dirichlet problem in Ω with the boundary data 1 on E and 0 on $\partial \Omega \backslash E$

Radial projections of harmonic measures

Proofs of the theorems rest on a presentation of measures of the class $\mathcal{A}[0,2 \pi]$ as radial projections of harmonic measures of star-shaped domains.

Let Ω be a bounded Jordan domain containing the origin.
$\omega(z, E, \Omega) \equiv$ harmonic measure of $E \subset \partial \Omega$ at $z \in \Omega$: the solution of the Dirichlet problem in Ω with the boundary data 1 on E and 0 on $\partial \Omega \backslash E$
$\omega(0, E, \Omega)$ generates a measure on the unit circle \mathbb{T} by means of the radial projection $\zeta \mapsto \zeta /|\zeta|$, which we consider as a measure on $[0,2 \pi]$:

$$
\widehat{\omega}_{\Omega}(F)=\omega(0,\{\zeta \in \partial \Omega: \arg \zeta \in F\}, \Omega), \quad F \subset[0,2 \pi] .
$$

The inverse problem: Given a probability measure on the unit cir
the radial projection of the harmonic measure of any domain Ω ?

Radial projections of harmonic measures

Proofs of the theorems rest on a presentation of measures of the class $\mathcal{A}[0,2 \pi]$ as radial projections of harmonic measures of star-shaped domains.

Let Ω be a bounded Jordan domain containing the origin.
$\omega(z, E, \Omega) \equiv$ harmonic measure of $E \subset \partial \Omega$ at $z \in \Omega$: the solution of the Dirichlet problem in Ω with the boundary data 1 on E and 0 on $\partial \Omega \backslash E$
$\omega(0, E, \Omega)$ generates a measure on the unit circle \mathbb{T} by means of the radial projection $\zeta \mapsto \zeta /|\zeta|$, which we consider as a measure on $[0,2 \pi]$:

$$
\widehat{\omega}_{\Omega}(F)=\omega(0,\{\zeta \in \partial \Omega: \arg \zeta \in F\}, \Omega), \quad F \subset[0,2 \pi] .
$$

The inverse problem: Given a probability measure on the unit circle \mathbb{T}, is it the radial projection of the harmonic measure of any domain Ω ?

Radial projections of harmonic measures (cont'd)

We specify Ω to be strictly star-shaped:

$$
\Omega=\left\{r e^{i \theta}: r<r_{\Omega}(\theta), 0 \leq \theta \leq 2 \pi\right\}
$$

with r_{Ω} a positive continuous function on $[0,2 \pi], r_{\Omega}(0)=r_{\Omega}(2 \pi)$.
Theorem

> Radial projection theorem: A continuous probability measure ν on $[0,2 \pi]$ is the radial projection of the harmonic measure of a strictly star-shaped domain if and only if $\nu \in \mathcal{A}[0,2 \pi]$.

The theorem was proved (1990) by a method originated by B. Ya. Levin in theory of majorants in classes of subharmonic functions.

Here: a simplified proof, published in Expo. Math. 2009.

Radial projections of harmonic measures (cont'd)

We specify Ω to be strictly star-shaped:

$$
\Omega=\left\{r e^{i \theta}: r<r_{\Omega}(\theta), 0 \leq \theta \leq 2 \pi\right\}
$$

with r_{Ω} a positive continuous function on $[0,2 \pi], r_{\Omega}(0)=r_{\Omega}(2 \pi)$.

Theorem

Radial projection theorem: A continuous probability measure ν on $[0,2 \pi]$ is the radial projection of the harmonic measure of a strictly star-shaped domain if and only if $\nu \in \mathcal{A}[0,2 \pi]$.

The theorem was proved (1990) by a method originated by B.Ya. Levin in theory of majorants in classes of subharmonic functions. Here: a simplified proof, published in Expo. Math 2009

Radial projections of harmonic measures (cont'd)

We specify Ω to be strictly star-shaped:

$$
\Omega=\left\{r e^{i \theta}: r<r_{\Omega}(\theta), 0 \leq \theta \leq 2 \pi\right\}
$$

with r_{Ω} a positive continuous function on $[0,2 \pi], r_{\Omega}(0)=r_{\Omega}(2 \pi)$.

Theorem

Radial projection theorem: A continuous probability measure ν on $[0,2 \pi]$ is the radial projection of the harmonic measure of a strictly star-shaped domain if and only if $\nu \in \mathcal{A}[0,2 \pi]$.

The theorem was proved (1990) by a method originated by B.Ya. Levin in theory of majorants in classes of subharmonic functions.

Here: a simplified proof, published in Expo. Math. 2009.

Proof of Radial Projection Theorem

Step 1: continuity of a potential

```
Proposition
Let \(\nu\) be a strictly increasing continuous function \([0,2 \pi] \rightarrow[0,1]\), and
\(\mu:[0,1] \rightarrow[0,2 \pi]\) be its inverse. Then the function
\(h(z)=\int_{0}^{2 \pi} \log \left|e^{i \theta}-z\right| d \mu(\theta / 2 \pi)\)
is continuous if and only if \(\nu \in \mathcal{A}[0,2 \pi]\).
```

Proof: Basically, integration by parts and Evans' theorem (continuity on
the support of the measure implies continuity everywhere).
Remark. Recall that $\nu^{\prime} \in \mathcal{L}^{-}$implies $\nu \in \mathcal{L}^{++}$. On the other hand,
$\nu^{\prime} \in \mathcal{L}^{-}$iff μ^{\prime} belongs to the Zygmund class $\mathbf{L} \log \mathbf{L}$ appearing in
continuity problems for the Hilbert transform.

Proof of Radial Projection Theorem

Step 1: continuity of a potential

Proposition

Let ν be a strictly increasing continuous function $[0,2 \pi] \rightarrow[0,1]$, and $\mu:[0,1] \rightarrow[0,2 \pi]$ be its inverse. Then the function

$$
h(z)=\int_{0}^{2 \pi} \log \left|e^{i \theta}-z\right| d \mu(\theta / 2 \pi)
$$

is continuous if and only if $\nu \in \mathcal{A}[0,2 \pi]$.
Proof: Basically, integration by parts and Evans' theorem (continuity on the support of the measure implies continuity everywhere).

Remark. Recall that $\nu^{\prime} \in \mathcal{L}^{-}$implies $\nu \in \mathcal{L}^{++}$. On the other hand, $\nu^{\prime} \in \mathcal{L}^{-}$iff μ^{\prime} belongs to the $\mathbf{Z y g m u n d}$ class $\mathbf{L} \log \mathbf{L}$ appearing in continuity problems for the Hilbert transform.

Proof of Radial Projection Theorem

Step 1: continuity of a potential

Proposition

Let ν be a strictly increasing continuous function $[0,2 \pi] \rightarrow[0,1]$, and $\mu:[0,1] \rightarrow[0,2 \pi]$ be its inverse. Then the function

$$
h(z)=\int_{0}^{2 \pi} \log \left|e^{i \theta}-z\right| d \mu(\theta / 2 \pi)
$$

is continuous if and only if $\nu \in \mathcal{A}[0,2 \pi]$.
Proof: Basically, integration by parts and Evans' theorem (continuity on the support of the measure implies continuity everywhere).
Remark. Recall that $\nu^{\prime} \in \mathcal{L}^{-}$implies $\nu \in \mathcal{L}^{++}$. On the other hand, $\nu^{\prime} \in \mathcal{L}^{-}$iff μ^{\prime} belongs to the Zygmund class $\mathbf{L} \log \mathbf{L}$ appearing in continuity problems for the Hilbert transform.

Proof of Radial Projection Theorem (cont'd)

Step 2: Sufficiency

Proposition

Every $\nu \in \mathcal{A}[0,2 \pi]$ has the form $\nu=\widehat{\omega}_{\Omega}$ for some strictly star-shaped domain Ω.

Proof: By Step 1, the function

$$
u(z)=\frac{1}{\pi} \int_{0}^{2 \pi} \log \left|e^{i \theta}-z\right| d \mu(\theta / 2 \pi) \in \mathrm{SH}(\mathbb{C}) \cap C(\mathbb{C}) .
$$

Let v be harmonic conjugate to u in $\mathbb{D}, v(1)=0$

By the boundary correspondence principle, w maps \mathbb{D} conformally to

Proof of Radial Projection Theorem (cont'd)

Step 2: Sufficiency

Proposition

Every $\nu \in \mathcal{A}[0,2 \pi]$ has the form $\nu=\widehat{\omega}_{\Omega}$ for some strictly star-shaped domain Ω.

Proof: By Step 1, the function

$$
u(z)=\frac{1}{\pi} \int_{0}^{2 \pi} \log \left|e^{i \theta}-z\right| d \mu(\theta / 2 \pi) \in \mathrm{SH}(\mathbb{C}) \cap C(\mathbb{C})
$$

Proof of Radial Projection Theorem (cont'd)

Step 2: Sufficiency

Proposition

Every $\nu \in \mathcal{A}[0,2 \pi]$ has the form $\nu=\widehat{\omega}_{\Omega}$ for some strictly star-shaped domain Ω.

Proof: By Step 1, the function

$$
u(z)=\frac{1}{\pi} \int_{0}^{2 \pi} \log \left|e^{i \theta}-z\right| d \mu(\theta / 2 \pi) \in \mathrm{SH}(\mathbb{C}) \cap C(\mathbb{C})
$$

Let v be harmonic conjugate to u in $\mathbb{D}, v(1)=0$.
By the $\mathrm{C}-\mathrm{R}$ condition, $v \in C(\overline{\mathbb{D}})$ and $v\left(e^{i \theta}\right)=\theta-\mu(\theta / 2 \pi)$. Therefore, the function $w(z):=z \exp \{-u(z)-i v(z)\} \in C(\overline{\mathbb{D}})$, $\arg w\left(e^{i \theta}\right)=\mu(\theta / 2 \pi)$.

Proof of Radial Projection Theorem (cont'd)

Step 2: Sufficiency

Proposition

Every $\nu \in \mathcal{A}[0,2 \pi]$ has the form $\nu=\widehat{\omega}_{\Omega}$ for some strictly star-shaped domain Ω.

Proof: By Step 1, the function

$$
u(z)=\frac{1}{\pi} \int_{0}^{2 \pi} \log \left|e^{i \theta}-z\right| d \mu(\theta / 2 \pi) \in \mathrm{SH}(\mathbb{C}) \cap C(\mathbb{C})
$$

Let v be harmonic conjugate to u in $\mathbb{D}, v(1)=0$.
By the $\mathrm{C}-\mathrm{R}$ condition, $v \in C(\overline{\mathbb{D}})$ and $v\left(e^{i \theta}\right)=\theta-\mu(\theta / 2 \pi)$. Therefore, the function $w(z):=z \exp \{-u(z)-i v(z)\} \in C(\overline{\mathbb{D}})$, $\arg w\left(e^{i \theta}\right)=\mu(\theta / 2 \pi)$.
By the boundary correspondence principle, w maps \mathbb{D} conformally to

$$
\Omega=w(\mathbb{D})=\left\{r e^{i \theta}: r<\exp \{-u(\exp \{2 \pi i \nu(\theta)\})\}, 0 \leq \theta \leq 2 \pi\right\}
$$

so that $\omega(0, E, \Omega)=\nu(\arg E)$ for any Borel $E \subset \partial \Omega$.

Proof of Radial Projection Theorem (cont'd)

Step 3: Necessity

Proposition

```
If \Omega={re}\mp@subsup{}{}{i0}:r<\mp@subsup{r}{\Omega}{}(0)}\mathrm{ , then }\mp@subsup{\widehat{\omega}}{\Omega}{}\in\mathcal{A}[0,2\pi]
```

```
Proof: Let w be the conformal map of \mathbb{D to \Omega,w(0)=0, arg w(1)=0.}
Define f(z)=u(z)+iv(z)=\operatorname{log}\frac{w(z)}{z}\mathrm{ for }|z|\leq1 and f(z)=f(|z\mp@subsup{|}{}{-2}z) for
|z|>1. It is analytic in \mathbb{D}\mathrm{ and continuous in }\mathbb{C}\mathrm{ .}
The function \lambda(z)=u(z)+\frac{1}{\pi}\mp@subsup{\int}{0}{2\pi}\operatorname{log}|\mp@subsup{e}{}{i\psi}-z|dv(\mp@subsup{e}{}{i\psi})\mathrm{ can be shown to}
be harmonic ( }=>\mathrm{ continuous) in }\mathbb{C}\mathrm{ . Therefore, the potential is continuous.
By invariance of harmonic measure, \widehat{\omega}}\Omega([0, arg w( (e|\psi)])=\psi/2\pi, s
v(\mp@subsup{e}{}{i\psi})=\operatorname{arg}w(\mp@subsup{e}{}{i\psi})-\psi=\mu(\psi/2\pi)-\psi\mathrm{ , where }\mu(\psi/2\pi) is the inverse to
the function \widehat{\omega}}\Omega([0,\operatorname{arg}w(\mp@subsup{e}{}{i\psi})])
```

Step 1 implies $\widehat{\omega}_{\Omega} \in \mathcal{A}[0,2 \pi]$

Proof of Radial Projection Theorem (cont'd)

Step 3: Necessity

Proposition

If $\Omega=\left\{r e^{i \theta}: r<r_{\Omega}(\theta)\right\}$, then $\widehat{\omega}_{\Omega} \in \mathcal{A}[0,2 \pi]$.
Proof: Let w be the conformal map of \mathbb{D} to $\Omega, w(0)=0, \arg w(1)=0$.
Define $f(z)=u(z)+i v(z)=\log \frac{w(z)}{z}$ for $|z| \leq 1$ and $f(z)=f\left(|z|^{-2} z\right)$ for $|z|>1$. It is analytic in \mathbb{D} and continuous in \mathbb{C}.

By invariance of harmonic measure, $\widehat{\omega}_{\Omega}\left(\left[0, \arg w\left(e^{i \psi}\right)\right]\right)=\psi / 2 \pi$, so

the function $\widehat{\omega}_{\Omega}\left(\left[0, \arg w\left(e^{i \psi}\right)\right]\right)$.
Step 1 implies $\widehat{\omega}_{\Omega} \in \mathcal{A}[0,2 \pi]$.

Proof of Radial Projection Theorem (cont'd)

Step 3: Necessity

Proposition

If $\Omega=\left\{r e^{i \theta}: r<r_{\Omega}(\theta)\right\}$, then $\widehat{\omega}_{\Omega} \in \mathcal{A}[0,2 \pi]$.
Proof: Let w be the conformal map of \mathbb{D} to $\Omega, w(0)=0, \arg w(1)=0$.
Define $f(z)=u(z)+i v(z)=\log \frac{w(z)}{z}$ for $|z| \leq 1$ and $f(z)=f\left(|z|^{-2} z\right)$ for $|z|>1$. It is analytic in \mathbb{D} and continuous in \mathbb{C}.
The function $\lambda(z)=u(z)+\frac{1}{\pi} \int_{0}^{2 \pi} \log \left|e^{i \psi}-z\right| d v\left(e^{i \psi}\right)$ can be shown to be harmonic (\Rightarrow continuous) in \mathbb{C}. Therefore, the potential is continuous.

By invariance of harmonic measure, $\widehat{\omega}_{\Omega}\left(\left[0, \arg w\left(e^{i \psi}\right)\right]\right)=\psi / 2 \pi$, so the function $\widehat{\omega}_{\Omega}\left(\left[0, \arg w\left(e^{i \psi}\right)\right]\right)$.

Sten 1 implies $\widehat{\omega}_{\Omega} \in A[0,2 \pi]$

Proof of Radial Projection Theorem (cont'd)

Step 3: Necessity

Proposition

If $\Omega=\left\{r e^{i \theta}: r<r_{\Omega}(\theta)\right\}$, then $\widehat{\omega}_{\Omega} \in \mathcal{A}[0,2 \pi]$.
Proof: Let w be the conformal map of \mathbb{D} to $\Omega, w(0)=0, \arg w(1)=0$.
Define $f(z)=u(z)+i v(z)=\log \frac{w(z)}{z}$ for $|z| \leq 1$ and $f(z)=f\left(|z|^{-2} z\right)$ for $|z|>1$. It is analytic in \mathbb{D} and continuous in \mathbb{C}.
The function $\lambda(z)=u(z)+\frac{1}{\pi} \int_{0}^{2 \pi} \log \left|e^{i \psi}-z\right| d v\left(e^{i \psi}\right)$ can be shown to be harmonic (\Rightarrow continuous) in \mathbb{C}. Therefore, the potential is continuous.

By invariance of harmonic measure, $\widehat{\omega}_{\Omega}\left(\left[0, \arg w\left(e^{i \psi}\right)\right]\right)=\psi / 2 \pi$, so $v\left(e^{i \psi}\right)=\arg w\left(e^{i \psi}\right)-\psi=\mu(\psi / 2 \pi)-\psi$, where $\mu(\psi / 2 \pi)$ is the inverse to the function $\widehat{\omega}_{\Omega}\left(\left[0, \arg w\left(e^{i \psi}\right)\right]\right)$.

Step 1 implies $\widehat{\omega}_{\Omega} \in \mathcal{A}[0,2 \pi]$

Proof of Radial Projection Theorem (cont'd)

Step 3: Necessity

Proposition

If $\Omega=\left\{r e^{i \theta}: r<r_{\Omega}(\theta)\right\}$, then $\widehat{\omega}_{\Omega} \in \mathcal{A}[0,2 \pi]$.
Proof: Let w be the conformal map of \mathbb{D} to $\Omega, w(0)=0, \arg w(1)=0$.
Define $f(z)=u(z)+i v(z)=\log \frac{w(z)}{z}$ for $|z| \leq 1$ and $f(z)=f\left(|z|^{-2} z\right)$ for $|z|>1$. It is analytic in \mathbb{D} and continuous in \mathbb{C}.
The function $\lambda(z)=u(z)+\frac{1}{\pi} \int_{0}^{2 \pi} \log \left|e^{i \psi}-z\right| d v\left(e^{i \psi}\right)$ can be shown to be harmonic (\Rightarrow continuous) in \mathbb{C}. Therefore, the potential is continuous.

By invariance of harmonic measure, $\widehat{\omega}_{\Omega}\left(\left[0, \arg w\left(e^{i \psi}\right)\right]\right)=\psi / 2 \pi$, so $v\left(e^{i \psi}\right)=\arg w\left(e^{i \psi}\right)-\psi=\mu(\psi / 2 \pi)-\psi$, where $\mu(\psi / 2 \pi)$ is the inverse to the function $\widehat{\omega}_{\Omega}\left(\left[0, \arg w\left(e^{i \psi}\right)\right]\right)$.

Step 1 implies $\widehat{\omega}_{\Omega} \in \mathcal{A}[0,2 \pi]$.

Proof of the Integral Variant for Carleman Theorem

Theorem
Let $u \in \mathrm{SH}(\mathbb{C})$ satisfy $\int_{0}^{2 \pi} u^{+}\left(t e^{i \theta}\right) d \nu(\theta) \leq V(t)$ with $\nu \in \mathcal{A}[0,2 \pi]$ and a nondecreasing function V on \mathbb{R}_{+}. Then there exist constants $c>0$ and $A \geq 1$, independent of u, such that $u\left(t e^{i \theta}\right) \leq c V(A t)$.

Proof: By the Radial Projection Theorem, there exists a strictly star-shaped domain Ω such that $\omega(z, E, \Omega) \leq c \nu(\arg E)$ for all $z \in K \Subset \Omega, E \subset \partial \Omega$.
The Poisson-Jensen formula for the function $u^{+}(t z)$ in the domain $s \Omega$, $t \geq 1, s \geq 1$, implies

For a transition from $\partial(s t \Omega)$ to $A t \mathbb{T}$, integrate this w.r.t. s.

Proof of the Integral Variant for Carleman Theorem

Theorem

Let $u \in \mathrm{SH}(\mathbb{C})$ satisfy $\int_{0}^{2 \pi} u^{+}\left(t e^{i \theta}\right) d \nu(\theta) \leq V(t)$ with $\nu \in \mathcal{A}[0,2 \pi]$ and a nondecreasing function V on \mathbb{R}_{+}. Then there exist constants $c>0$ and $A \geq 1$, independent of u, such that $u\left(t e^{i \theta}\right) \leq c V(A t)$.

Proof: By the Radial Projection Theorem, there exists a strictly star-shaped domain Ω such that $\omega(z, E, \Omega) \leq c \nu(\arg E)$ for all $z \in K \Subset \Omega, E \subset \partial \Omega$.

[^0]
Proof of the Integral Variant for Carleman Theorem

Theorem

Let $u \in \mathrm{SH}(\mathbb{C})$ satisfy $\int_{0}^{2 \pi} u^{+}\left(t e^{i \theta}\right) d \nu(\theta) \leq V(t)$ with $\nu \in \mathcal{A}[0,2 \pi]$ and a nondecreasing function V on \mathbb{R}_{+}. Then there exist constants $c>0$ and $A \geq 1$, independent of u, such that $u\left(t e^{i \theta}\right) \leq c V(A t)$.

Proof: By the Radial Projection Theorem, there exists a strictly star-shaped domain Ω such that $\omega(z, E, \Omega) \leq c \nu(\arg E)$ for all $z \in K \in \Omega, E \subset \partial \Omega$.
The Poisson-Jensen formula for the function $u^{+}(t z)$ in the domain $s \Omega$, $t \geq 1, s \geq 1$, implies

$$
u^{+}(t z) \leq c \int_{0}^{2 \pi} u^{+}\left(s t r(\theta) e^{i \theta}\right) d \nu(\theta) .
$$

Proof of the Integral Variant for Carleman Theorem

Theorem

Let $u \in \mathrm{SH}(\mathbb{C})$ satisfy $\int_{0}^{2 \pi} u^{+}\left(t e^{i \theta}\right) d \nu(\theta) \leq V(t)$ with $\nu \in \mathcal{A}[0,2 \pi]$ and a nondecreasing function V on \mathbb{R}_{+}. Then there exist constants $c>0$ and $A \geq 1$, independent of u, such that $u\left(t e^{i \theta}\right) \leq c V(A t)$.

Proof: By the Radial Projection Theorem, there exists a strictly star-shaped domain Ω such that $\omega(z, E, \Omega) \leq c \nu(\arg E)$ for all $z \in K \in \Omega, E \subset \partial \Omega$.
The Poisson-Jensen formula for the function $u^{+}(t z)$ in the domain $s \Omega$, $t \geq 1, s \geq 1$, implies

$$
u^{+}(t z) \leq c \int_{0}^{2 \pi} u^{+}\left(s t r(\theta) e^{i \theta}\right) d \nu(\theta) .
$$

For a transition from $\partial(s t \Omega)$ to $A t \mathbb{T}$, integrate this w.r.t. s.

Proof of the Integral Variant for Wolf Theorem

Theorem
If $u \in \operatorname{SH}\left(\mathbb{C}_{+}\right)$satisfies the conditions $\lim \sup _{z \rightarrow x_{0}} u(z) \leq 0 \quad \forall x_{0} \in \mathbb{R}$ and

$$
\lim _{t \rightarrow \infty} t^{-1} \int_{0}^{\pi} u^{+}\left(t e^{i \theta}\right) d \nu(\theta)=0
$$

with $\nu \in \mathcal{A}[0, \pi]$, then $u(z) \leq 0 \forall z \in \mathbb{C}_{+}$.

Proof: this follows from the previous Theorem applied to the function u_{+} extended to \mathbb{C} by 0 , and standard Phragmén-Lindelöf theorem. McMillan+: similar proof

Proof of the Integral Variant for Wolf Theorem

Theorem
If $u \in \mathrm{SH}\left(\mathbb{C}_{+}\right)$satisfies the conditions $\lim \sup _{z \rightarrow x_{0}} u(z) \leq 0 \quad \forall x_{0} \in \mathbb{R}$ and

$$
\lim _{t \rightarrow \infty} t^{-1} \int_{0}^{\pi} u^{+}\left(t e^{i \theta}\right) d \nu(\theta)=0
$$

with $\nu \in \mathcal{A}[0, \pi]$, then $u(z) \leq 0 \forall z \in \mathbb{C}_{+}$.

Proof: this follows from the previous Theorem applied to the function u_{+} extended to \mathbb{C} by 0 , and standard Phragmén-Lindelöf theorem.

McMillan+: similar proof

Proof of the Integral Variant for Wolf Theorem

Theorem

If $u \in \operatorname{SH}\left(\mathbb{C}_{+}\right)$satisfies the conditions $\lim \sup _{z \rightarrow x_{0}} u(z) \leq 0 \quad \forall x_{0} \in \mathbb{R}$ and

$$
\lim _{t \rightarrow \infty} t^{-1} \int_{0}^{\pi} u^{+}\left(t e^{i \theta}\right) d \nu(\theta)=0
$$

with $\nu \in \mathcal{A}[0, \pi]$, then $u(z) \leq 0 \forall z \in \mathbb{C}_{+}$.
Proof: this follows from the previous Theorem applied to the function u_{+} extended to \mathbb{C} by 0 , and standard Phragmén-Lindelöf theorem.

McMillan+: similar proof

Proof of Integral Variant for Levinson-Sjöberg Theorem

Theorem
Let $u \in \operatorname{SH}(Q)$ in $Q=\{|x|<1,|y|<1\}$ satisfy $\int_{-1}^{1} u^{+}(x+i y) d \nu(y) \leq 1$ $\forall x \in(-1,1)$ with $\nu \in \mathcal{A}[-1,1]$. Then for each compact set $K \subset Q$ there is a constant C_{K}, independent of u, such that $u(z) \leq C_{K}$ on K.

Proof: Same idea as for the theorem on entire functions (Carleman +), refined adaptation

By using the Radial Projection Theorem, construct a domain $\Omega_{0}=\left\{x+i y: t_{1}(y)<x<t_{2}(y),-1<x<1\right\} \subset Q$ such that the harmonic measure of any subset E of the curvilinear part of $\partial \Omega_{0}$ at a given point $z_{0} \in \Omega_{0}$ equals $\nu(\operatorname{Im} E)$

In order to replace the integration over $\partial \Omega_{0}$ by the integration over vertical intervals, a partition needed

Proof of Integral Variant for Levinson-Sjöberg Theorem

Theorem
Let $u \in \operatorname{SH}(Q)$ in $Q=\{|x|<1,|y|<1\}$ satisfy $\int_{-1}^{1} u^{+}(x+i y) d \nu(y) \leq 1$ $\forall x \in(-1,1)$ with $\nu \in \mathcal{A}[-1,1]$. Then for each compact set $K \subset Q$ there is a constant C_{K}, independent of u, such that $u(z) \leq C_{K}$ on K.

Proof: Same idea as for the theorem on entire functions (Carleman+), refined adaptation.

Proof of Integral Variant for Levinson-Sjöberg Theorem

Theorem

Let $u \in \operatorname{SH}(Q)$ in $Q=\{|x|<1,|y|<1\}$ satisfy $\int_{-1}^{1} u^{+}(x+i y) d \nu(y) \leq 1$ $\forall x \in(-1,1)$ with $\nu \in \mathcal{A}[-1,1]$. Then for each compact set $K \subset Q$ there is a constant C_{K}, independent of u, such that $u(z) \leq C_{K}$ on K.

Proof: Same idea as for the theorem on entire functions (Carleman+), refined adaptation.

By using the Radial Projection Theorem, construct a domain $\Omega_{0}=\left\{x+i y: t_{1}(y)<x<t_{2}(y),-1<x<1\right\} \subset Q$ such that the harmonic measure of any subset E of the curvilinear part of $\partial \Omega_{0}$ at a given point $z_{0} \in \Omega_{0}$ equals $\nu(\operatorname{Im} E)$.

In order to replace the integration over $\partial \Omega_{0}$ by the integration over vertical intervals, a partition needed

Proof of Integral Variant for Levinson-Sjöberg Theorem

Theorem

Let $u \in \operatorname{SH}(Q)$ in $Q=\{|x|<1,|y|<1\}$ satisfy $\int_{-1}^{1} u^{+}(x+i y) d \nu(y) \leq 1$ $\forall x \in(-1,1)$ with $\nu \in \mathcal{A}[-1,1]$. Then for each compact set $K \subset Q$ there is a constant C_{K}, independent of u, such that $u(z) \leq C_{K}$ on K.

Proof: Same idea as for the theorem on entire functions (Carleman+), refined adaptation.

By using the Radial Projection Theorem, construct a domain $\Omega_{0}=\left\{x+i y: t_{1}(y)<x<t_{2}(y),-1<x<1\right\} \subset Q$ such that the harmonic measure of any subset E of the curvilinear part of $\partial \Omega_{0}$ at a given point $z_{0} \in \Omega_{0}$ equals $\nu(\operatorname{Im} E)$.

In order to replace the integration over $\partial \Omega_{0}$ by the integration over vertical intervals, a partition needed.

Proof of Integral Variant for Matsaev Theorem

Theorem

Let a function $u \in \mathrm{SH}(\mathbb{C})$, harmonic in $\mathbb{C} \backslash \mathbb{R}$, satisfy $\int_{-\pi}^{\pi} u^{-}\left(r e^{i \theta}\right) \Phi(|\sin \theta|) d \theta \leq V(r)$, where $\Phi \in \mathcal{L}^{-}[0,1]$ is nonnegative and nondecreasing, and the function V is such that $r^{-1-\delta} V(r)$ is increasing for some $\delta>0$. Then there are constants $c>0$ and $A \geq 1$, independent of u, such that $u\left(r e^{i \theta}\right) \leq c V(A r)$.

and the result follows from Carleman +

Proof of Integral Variant for Matsaev Theorem

Theorem

Let a function $u \in \mathrm{SH}(\mathbb{C})$, harmonic in $\mathbb{C} \backslash \mathbb{R}$, satisfy $\int_{-\pi}^{\pi} u^{-}\left(r e^{i \theta}\right) \Phi(|\sin \theta|) d \theta \leq V(r)$, where $\Phi \in \mathcal{L}^{-}[0,1]$ is nonnegative and nondecreasing, and the function V is such that $r^{-1-\delta} V(r)$ is increasing for some $\delta>0$. Then there are constants $c>0$ and $A \geq 1$, independent of u, such that $u\left(r e^{i \theta}\right) \leq c V(A r)$.

Proof: Using Carleman's formula for the function u in the domains $\left\{r<|z|<R,\left| \pm \arg z-\frac{\pi}{2}\right|<\frac{\pi}{2}-a\right\}$, multiplied by $\Phi(|\sin \theta|)$ and integrated in $a \in(0, \tau)$ for a sufficiently small $\tau>0$, one can show there is a constant $C>0$ such that
$\int_{-\pi}^{\pi} u^{+}\left(r e^{i \theta}\right) \sin ^{2} \theta \Phi(|\sin \theta|) d \theta \leq o(V(r))+C \int_{-\pi}^{\pi} u^{-}\left(r e^{i \theta}\right) \Phi(|\sin \theta|) d \theta$, and the result follows from Carleman+.

Questions

1. Does an integral variant of Matsaev's theorem hold for measures $\nu \in \mathcal{A}$?
2. Is \mathcal{A} the largest class of measures for the results to hold?
3. A description of the radial projections for harmonic measures of general star-shaped domains (including the case of non-bounded domains)?
4. Radial projections for arbitrary domains?
5. Higher dimensional analogues for the Radial Projection Theorem?
6. Application for the Maclane class?
7. Application for Beurling's extension theorem?

Questions

1. Does an integral variant of Matsaev's theorem hold for measures $\nu \in \mathcal{A}$?
2. Is \mathcal{A} the largest class of measures for the results to hold?
3. A description of the radial projections for harmonic measures of general star-shaped domains (including the case of non-bounded domains)?
4. Radial projections for arbitrary domains?
5. Higher dimensional analogues for the Radial Projection Theorem?
6. Application for the MacLane class?
7. Anplication for Reurling's extension theorem?

Questions

1. Does an integral variant of Matsaev's theorem hold for measures $\nu \in \mathcal{A}$?
2. Is \mathcal{A} the largest class of measures for the results to hold?
3. A description of the radial projections for harmonic measures of general star-shaped domains (including the case of non-bounded domains)?
4. Radial projections for arbitrary domains?
5. Higher dimensional analogues for the Radial Projection Theorem?
6. Application for the Maclane class?
7. Application for Beurling's extension theorem?

Questions

1. Does an integral variant of Matsaev's theorem hold for measures $\nu \in \mathcal{A}$?
2. Is \mathcal{A} the largest class of measures for the results to hold?
3. A description of the radial projections for harmonic measures of general star-shaped domains (including the case of non-bounded domains)?
4. Radial projections for arbitrary domains?
5. Higher dimensional analogues for the Radial Projection Theorem?
6. Application for the MacLane class?
7. Application for Beurling's extension theorem?

Questions

1. Does an integral variant of Matsaev's theorem hold for measures $\nu \in \mathcal{A}$?
2. Is \mathcal{A} the largest class of measures for the results to hold?
3. A description of the radial projections for harmonic measures of general star-shaped domains (including the case of non-bounded domains)?
4. Radial projections for arbitrary domains?
5. Higher dimensional analogues for the Radial Projection Theorem?
6. Application for the MacLane class?
7. Application for Beurling's extension theorem?

Questions

1. Does an integral variant of Matsaev's theorem hold for measures $\nu \in \mathcal{A}$?
2. Is \mathcal{A} the largest class of measures for the results to hold?
3. A description of the radial projections for harmonic measures of general star-shaped domains (including the case of non-bounded domains)?
4. Radial projections for arbitrary domains?
5. Higher dimensional analogues for the Radial Projection Theorem?
6. Application for the MacLane class?
7. Application for Beurling's extension theorem?

Questions

1. Does an integral variant of Matsaev's theorem hold for measures $\nu \in \mathcal{A}$?
2. Is \mathcal{A} the largest class of measures for the results to hold?
3. A description of the radial projections for harmonic measures of general star-shaped domains (including the case of non-bounded domains)?
4. Radial projections for arbitrary domains?
5. Higher dimensional analogues for the Radial Projection Theorem?
6. Application for the MacLane class?
7. Application for Beurling's extension theorem?

L．Ahlfors，On Phragmén－Lindelöf＇s principle，Trans．Amer．Math． Soc． 41 （1937），no．1，1－8．

目 A．Beurling，Analytic continuation across a linear boundary，Acta Math． 128 （1971），153－182．

围 T．Carleman，Extension d＇un théorème de Liouville，Acta Math． 48 （1926），363－366．
固 Y．Domar，On the existence of a largest subharmonic minorant of a given function，Ark．Mat． 3 （1958），no．5，429－440．

E－Y．Domar，Uniform boundness in families related to subharmonic functions，J．London Math．Soc．（2） 38 （1988），485－491．
E．E．M．Dyn＇kin，Growth of an analytic function near its set of singular points，Zap．Nauch．Semin．LOMI 30 （1972），158－160．（Russian）
E．M．Dyn＇kin，The pseudoanalytic extension，J．Anal．Math． 60 （1993），45－70．

E．M．Dyn＇kin，An asymptotic Cauchy problem for the Laplace equation，Ark．Mat． 34 （1996），245－264．
圊 V．P．Gurarii，On N．Levinson＇s theorem on normal families of subharmonic functions，Zap．Nauch．Semin．LOMI 19 （1970）， 215－220．（Russian）
R．J．M．Hornblower，A growth condition for the MacLane class，Proc． London Math．Soc． 23 （1971），371－384．
B．Ya．Levin，Relation of the majorant to a conformal map．II，Teorija Funktsii，Funktsional．Analiz i ih Prilozh． 52 （1989），3－21（Russian）； translation in J．Soviet Math． 52 （1990），no．5，3351－3364．

嗇 B．Ya．Levin，Lectures on Entire Functions．Transl．Math．Monographs， vol．150．AMS，Providence，RI， 1996.
（ N．Levinson，Gap and Density Theorems．Amer．Math．Colloq．Publ． 26．New York， 1940.
囯 G．R．MacLane，A growth condition for class \mathcal{A} ，Michigan Math．J． 25 （1978），263－287．

回 V.I. Matsaev, On the growth of entire functions that admit a certain estimate from below, Dokl. AN SSSR 132 (1960), no. 2, 283-286 (Russian); translation in Sov. Math., Dokl. 1 (1960), 548-552.
圊 V.I. Matsaev and E.Z. Mogulskii, A division theorem for analytic functions with a given majorant, and some of its applications, Zap. Nauch. Semin. LOMI 56 (1976), 73-89. (Russian)
(R.W. McMillan, A Phragmén Lindelöf theorem, Amer. J. Math. 66 (1944), No. 3, 405-410.
(R.Yu. Rashkovskii, Theorems on compactness of families of subharmonic functions, and majorants of harmonic measures, Dokl. Akad. Nauk SSSR 312 (1990), no. 3, 536-538; translation in Soviet Math. Dokl. 41(1990), no. 3, 460-462.
A.Yu. Rashkovskii, Majorants of harmonic measures and uniform boundness of families of subharmonic functions. In: Analytical Methods in Probability Theory and Operator Theory. V.A. Marchenko (ed.). Kiev, Naukova Dumka, 1990, 115-127. (Russian)
A.Yu. Rashkovskii, On radial projection of harmonic measure. In: Operator theory and Subharmonic Functions. V.A. Marchenko (ed.). Kiev, Naukova Dumka, 1991, 95-102. (Russian)
P.J. Rippon, On a growth condition related to the MacLane class, J. London Math. Soc. (2) 18 (1978), no. 1, 94-100.
N. Sjöberg, Sur les minorantes sousharmoniques d'une fonction donnée, Neuvieme Congr. Math. Scand. 1938. Helsinki, 1939, 309-319.
R. Wolf, An extension of the Phragmén-Lindelöf theorem, J. London Math. Soc. 14 (1939), 208-216.
R. Wolf, On majorants of subharmonic and analytic functions, Bull. Amer. Math. Soc. 49 (1942), 952.

國 H. Yoshida, A boundedness criterion for subharmonic functions, J. London Math. Soc. (2) 24 (1981), 148-160.

[^0]: For a transition from $\partial(s t \Omega)$ to $A t \mathbb{T}$, integrate this w.r.t. s.

