A Landing Theorem of Periodic Rays for a Class of ETF

A.Deniz C.L.Petersen

Roskilde University, University of Barcelona

A.Deniz C.L.Petersen A Landing Theorem of Periodic Rays for a Class of ETF

Let P(z) be a polynomial with degree $d \ge 2$. Then there exists a neighborhood U of ∞ and R > 1, and a unique conformal isomorphism Φ tangent to the identity at ∞ that conjugates P restricted to U to $z \to z^d$ restricted to $\mathbb{C} \setminus \overline{\mathbb{D}}_R$.

Let P(z) be a polynomial with degree $d \ge 2$. Then there exists a neighborhood U of ∞ and R > 1, and a unique conformal isomorphism Φ tangent to the identity at ∞ that conjugates P restricted to U to $z \to z^d$ restricted to $\mathbb{C} \setminus \overline{\mathbb{D}}_R$. A ray of external argument θ is defined by

$$R_P(\theta) = \Phi^{-1}(\{re^{2i\pi\theta}, r > R > 1\})$$

Let P(z) be a polynomial with degree $d \ge 2$. Then there exists a neighborhood U of ∞ and R > 1, and a unique conformal isomorphism Φ tangent to the identity at ∞ that conjugates P restricted to U to $z \to z^d$ restricted to $\mathbb{C} \setminus \overline{\mathbb{D}}_R$. A ray of external argument θ is defined by

$$R_P(\theta) = \Phi^{-1}(\{re^{2i\pi\theta}, r > R > 1\})$$

If K(P) is connected, then Φ extends to a conformal isomorphism:

 $\Phi: \mathbb{C} \setminus K(P) \to \mathbb{C} \setminus \overline{\mathbb{D}}.$

and $R_P(\theta) = \Phi^{-1}(\{re^{2i\pi\theta}, r > 1\}).$

If K(P) is connected, then Φ extends to a conformal isomorphism:

 $\Phi: \mathbb{C} \setminus K(P) \to \mathbb{C} \setminus \overline{\mathbb{D}}.$

and $R_P(\theta) = \Phi^{-1}(\{re^{2i\pi\theta}, r > 1\}).$

If K(P) is connected, then Φ extends to a conformal isomorphism:

 $\Phi: \mathbb{C} \setminus K(P) \to \mathbb{C} \setminus \overline{\mathbb{D}}.$

and $R_P(\theta) = \Phi^{-1}(\{re^{2i\pi\theta}, r > 1\}).$

Theorem (Sullivan-Douady-Hubbard)

If K(P) is connected, then every periodic external ray lands at a periodic point, which is either repelling or parabolic.

A.Deniz C.L.Petersen A Landing Theorem of Periodic Rays for a Class of ETF

What is a dynamic ray tail?

Injective, continuous curve $g_{\underline{s}}: (t, \infty) \to \mathbb{C}$ in escaping set.

What is a dynamic ray tail?

Injective, continuous curve $g_{\underline{s}}:(t,\infty) \to \mathbb{C}$ in escaping set.

- Devaney, Krych (1984): escaping set *I*(*f*) consists of curves to ∞ for *z* → λ*e^z*, λ ∈ (0, 1/*e*).
- Devaney, Goldberg, Hubbard (1986): existence of certain curves to ∞ in I(f) for arbitrary exponential maps.
- Devaney, Tangerman (1985): generalize this result to a subclass of *B*.
- Schleicher,Zimmer (2003): escaping points can be connected to ∞ by a curve consisting of escaping points for any exponential map.
- Baranski (2007): for a subclass of ETF, every component of the Julia set is a curve tending to ∞.
- Rottenfusser, Ruckert, Rempe, Schleicher (2009): for *f* ∈ B of finite order or a finite composition of such maps, every point in *I*(*f*) can be connected to ∞ by a curve γ, such that *fⁿ*|_γ → ∞ uniformly.

What is ray landing?

$g_{\underline{s}}$ lands if $\lim_{t \to 0} g_{\underline{s}}(t)$ exists.

A.Deniz C.L.Petersen A Landing Theorem of Periodic Rays for a Class of ETF

What is ray landing?

$g_{\underline{s}}$ lands if $\lim_{t\to 0} g_{\underline{s}}(t)$ exists.

- **Rempe (2002):** If a periodic dynamic ray does not intersect the post singular set of an exponential map, it lands.
- Schleicher,Zimmer (2003): If the singular orbit bounded for an exponential map, every periodic dynamic rays land at a periodic point, if it escapes, then periodic ray lands unless $g_{\sigma^n(\underline{s})}(t) = 0.$
- **Rempe (2005):** If singular value does not escape to ∞, then all periodic dynamic rays land for exponentials.
- Rempe (2008): Let $f \in B$, and $\gamma : (-\infty, 1] \to I(f)$ with $f(\gamma(t)) = \gamma(t+1)$. Then γ lands at a repelling or parabolic fixed point of f if and only if there exists some domain U such that $U \subset f(U)$, $f : U \to f(U)$ is a covering map and $\gamma(-\infty, T] \subset U$ for some T < 0.

Landing of rays

Landing together

Theorem

Let f be a transcendental entire map of finite order or finite composition of finite order maps, with bounded post-singular set. Then all periodic dynamic rays land and the landing points are either repelling or parabolic periodic points.

Theorem

Let f be a transcendental entire map of finite order or finite composition of finite order maps, with bounded post-singular set. Then all periodic dynamic rays land and the landing points are either repelling or parabolic periodic points.

- U_0 : unbounded connected component of $\mathbb{C} \setminus P$,
- U₁: connected component of f^{-k}(U₀), which contains periodic ray g_s with period k,
- $F: [0,\infty) \to [0,\infty)$: model dynamics satisfying:

$$f(g_{\underline{s}}(t)) = g_{\sigma(\underline{s})}(F(t))$$

Theorem

Let f be a transcendental entire map of finite order or finite composition of finite order maps, with bounded post-singular set. Then all periodic dynamic rays land and the landing points are either repelling or parabolic periodic points.

- U_0 : unbounded connected component of $\mathbb{C} \setminus P$,
- U₁: connected component of f^{-k}(U₀), which contains periodic ray g_s with period k,
- $F: [0,\infty) \to [0,\infty)$: model dynamics satisfying:

$$f(g_{\underline{s}}(t)) = g_{\sigma(\underline{s})}(F(t))$$

Lemma

Suppose there exists a sequence of points $\{t_n\}$, $t_n \in \mathbb{R}^+$ converging to 0, such that $\lim_{n\to\infty} g_{\underline{s}}(t_n) = w \in \overline{U_1}$. Then $\lim_{t\to 0} g_{\underline{s}}(t) = w$.

Is ∞ an accumulation point?

Is ∞ an accumulation point?

NO!! There exists strong contraction near ∞ .

NO!! There exists strong contraction near ∞ .

Proposition

Let U be a hyperbolic domain with an isolated boundary point z_0 and let $\{w_i\}_{i\in\mathbb{N}}$ be a sequence in U such that $w_i \to z_0$ as $i \to \infty$ and $d_U(w_i, w_{i+1}) \leq \delta$. Let $V = U \setminus \{w_i\}_{i\in\mathbb{N}}$. Given a neighborhood ω of z_0 , which is simply connected and relatively compact in $U \cup \{z_0\}$, there exists $\kappa > 0$, such that

$$0 < rac{\lambda_U(z)}{\lambda_V(z)} \leq \kappa < 1.$$

NO!! There exists strong contraction near ∞ .

Proposition

Let U be a hyperbolic domain with an isolated boundary point z_0 and let $\{w_i\}_{i\in\mathbb{N}}$ be a sequence in U such that $w_i \to z_0$ as $i \to \infty$ and $d_U(w_i, w_{i+1}) \leq \delta$. Let $V = U \setminus \{w_i\}_{i\in\mathbb{N}}$. Given a neighborhood ω of z_0 , which is simply connected and relatively compact in $U \cup \{z_0\}$, there exists $\kappa > 0$, such that

$$0 < rac{\lambda_U(z)}{\lambda_V(z)} \le \kappa < 1.$$

• $U_0 \setminus U_1$ contains a sequence of points $\{w_i\}$ with $d_{U_0}(w_i, w_{i+1}) < \delta$ for some $\delta > 0$ and $w_i \to \infty$ as $i \to \pm \infty$.

A.Deniz C.L.Petersen A Landing Theorem of Periodic Rays for a Class of ETF

A.Deniz C.L.Petersen A Landing Theorem of Periodic Rays for a Class of ETF

A.Deniz C.L.Petersen A Landing Theorem of Periodic Rays for a Class of ETF

A.Deniz C.L.Petersen A Landing Theorem of Periodic Rays for a Class of ETF

Lemma

If $V \subset U \subsetneq \mathbb{C}$ are hyperbolic subsets, there exists continuous and increasing function $\kappa : [0, \infty[\rightarrow [0, 1[\text{ with } \kappa(0) = 0, \text{ such that} \\ \forall z \in V, \\ \lambda u(z)$

$$0 < \frac{\lambda_U(z)}{\lambda_V(z)} \le \kappa(d_U(z, \partial V)) < 1.$$

Lemma

If $V \subset U \subsetneq \mathbb{C}$ are hyperbolic subsets, there exists continuous and increasing function $\kappa : [0, \infty[\rightarrow [0, 1[with \kappa(0) = 0, such that \forall z \in V,]$

$$0 < rac{\lambda_U(z)}{\lambda_V(z)} \leq \kappa(d_U(z,\partial V)) < 1.$$

$$\kappa(d)=-rac{e^{2d}-1}{2e^d}\log(rac{e^d-1}{e^d+1}), \ \ d=d_U(z,\partial V).$$

Lemma

Let $U \subseteq \hat{\mathbb{C}}$ be hyperbolic, with an isolated boundary point z_0 and $\hat{U} = U \cup \{z_0\}$, be an open and connected domain. Then, there exists $\pi_* : \mathbb{D} \to \hat{U}$ holomorphic map with $\pi_*(0) = z_0$, $\pi'_*(0) \neq 0$, and $\pi_*| : \mathbb{D}^* \to U$ is a covering map with degree 1 at z = 0.

$$d_{\mathbb{D}^*}(\hat{z}, \hat{w}_i) < -\frac{\pi}{\log r}$$

$$d_{\mathbb{D}^*}(\hat{z}, \hat{w}_i) < \delta - \frac{\pi}{\log r}$$

For all z in a simply connected neighborhood of ∞ :

٢

$$\frac{\lambda_{U_0}(z)}{\lambda_{U_1}(z)} \leq \kappa(r,\delta) = -\frac{e^{-2\frac{\pi}{\log r}}-1}{2e^{-\frac{\pi}{\log r}}}\log\big(\frac{e^{-\frac{\pi}{\log r}}-1}{e^{-\frac{\pi}{\log r}}+1}\big) < 1$$

For all z in a simply connected neighborhood of ∞ :

$$\frac{\lambda_{U_0}(z)}{\lambda_{U_1}(z)} \leq \kappa(r,\delta) = -\frac{e^{-2\frac{\pi}{\log r}}-1}{2e^{-\frac{\pi}{\log r}}}\log\big(\frac{e^{-\frac{\pi}{\log r}}-1}{e^{-\frac{\pi}{\log r}}+1}\big) < 1$$

٢

$$\frac{\lambda_{U_0}(z)}{\lambda_{U_1}(z)} \leq \kappa(r,\delta) = -\frac{e^{2(\delta - \frac{\pi}{\log r})} - 1}{2e^{(\delta - \frac{\pi}{\log r})}}\log\big(\frac{e^{(\delta - \frac{\pi}{\log r})} - 1}{e^{(\delta - \frac{\pi}{\log r})} + 1}\big) < 1$$

THANK YOU FOR YOUR ATTENTION!