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Conformally invariant Random Curves in the plane.

2d Statistical Mechanics:

• E.g. boundaries between phases

• Often one gets curves joining boundary points

• Critical temperatures...

Percolation; Brownian frontier; etc., etc. ....



Pictures: Oded Schramm



Percolation interface / SLE(6) / Smirnov 2001
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Scaling limit: SLE(κ)

• Curves (κ < 4) growing in fictious time, constructed with an

explicit equation

∂tgt(z) =
2

gt(z)−B(κ t)
, g0(z) = z.

• Statistics of the full curve less explicit.



Scaling limit: SLE(κ)

• Curves (κ < 4) growing in fictious time, constructed with an

explicit equation

∂tgt(z) =
2

gt(z)−B(κ t)
, g0(z) = z.

• Statistics of the full curve less explicit.

Proposal of Peter Jones: construct natural random Jordan curves

by describing statistics of homeomorphisms of line or circle.
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Closed Jordan curves in Ĉ ←→ Homeomorphisms φ : T→ T.
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Conformal welding:

Closed Jordan curves in Ĉ ←→ Homeomorphisms φ : T→ T.

Jordan curve Γ ⊂ Ĉ splits Ĉ \ Γ = Ω+ ∪Ω−.

Take Riemann mappings:

f+ : D→ Ω+ and f− : D∞ → Ω−

f− and f+ extend continuously to T = ∂D = ∂D∞ ⇒

get homeo : φ =
(
f+

)−1
◦ f− : T→ T
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The Welding problem: invert this !

Given homeo φ : T→ T, find Γ and Riemann maps f± so that

φ =
(
f+

)−1
◦ f− : T→ T

Problem: Not possible for every homeomorphism φ !
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Welding by QuasiConformal homeomorphisms:

Conformally invariant structures by:

∂z̄f = µ(z)∂zf with |µ(z)| ≤ k < 1 a.e.

• Has always homeomorphic solutions F : C→ C

• Any solution f : Ω→ Ω′ has form f = h ◦ F ,

h holomorphic in F (Ω).



Suppose first that φ : T→ T is a restriction

φ = f |T,

where f : Ĉ→ Ĉ is a quasiconformal homeo:
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Suppose first that φ : T→ T is a restriction

φ = f |T,

where f : Ĉ→ Ĉ is a quasiconformal homeo:

∂z̄f = µ(z)∂zf with |µ(z)| ≤ k < 1 a.e.

Solve, with a homeo F ,

∂z̄F =

{
µ(z)∂zF if x ∈ D
0 if x ∈ D∞

Then: f− := F |D∞ : D∞ → Ω− is conformal and Γ = F (T) = f−(T)

is a Jordan curve.



Beltrami equation: Now have two global solutions

∂z̄f = µ(z)∂zf, ∂z̄F = µ(z)χD ∂zF

Uniqueness of solutions in the uniformly elliptic case ‖µ‖∞ < 1:

⇒ F (z) = f+ ◦ f(z), z ∈ D (!)

Here

f+ : D = f(D)→ F (D) := Ω+ is conformal.



Beltrami equation: Now have two global solutions

∂z̄f = µ(z)∂zf, ∂z̄F = µ(z)χD ∂zF

Uniqueness of solutions in the uniformly elliptic case ‖µ‖∞ < 1:

⇒ F (z) = f+ ◦ f(z), z ∈ D (!)

Here

f+ : D = f(D)→ F (D) := Ω+ is conformal.

f± solve welding: Since F |D∞ := f− and f |T = φ then

φ(z) = f |T(z) = f−1
+ ◦ f−(z), z ∈ T.
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φ is quasisymmetric:

|φ(s+ t)− φ(s)|
|φ(s− t)− φ(s)|

≤ K <∞, s, t ∈ T = R/Z

These have QC extensions with |µ| ≤ m(K) < 1.



Have now reduction to Beltrami equation: When does this work?

When is φ : T→ T a restriction φ = f |T of a qc homeo f : Ĉ→ Ĉ ?

In the uniformly elliptic case (i.e. ‖µ‖∞ < 1), this happens ⇔
φ is quasisymmetric:

|φ(s+ t)− φ(s)|
|φ(s− t)− φ(s)|

≤ K <∞, s, t ∈ T = R/Z

These have QC extensions with |µ| ≤ m(K) < 1.

In the random setting: Our φ : T → T will not be quasisymmetric

and our Beltrami will not be uniformly elliptic !



→ Degenerate elliptic systems/ Degenerate Beltrami equations.

→ Existence of homeomorphic solutions not obvious.

→ Uniqueness not obvious.
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Random homeomorphisms φ : T→ T ?

We take

φ(t) =

∫ t
0
eβX(s) ds∫ 1

0
eβX(s) ds

where

• X = X(t) is a Gaussian random field, the restriction of

2D Gaussian free field on the unit circle,

• 0 ≤ β < β0, where β0 is a ”critical value”.



Recall: Gaussian random variables are determined by their

expectation (take zero) and covariance.

Gaussian free field (GFF), restricted to T:

• X(ζ) is a Gaussian random field with covariance

EX(ζ)X(ξ) = log
1

|ζ − ξ|
, ζ, ξ ∈ T.

(Conformally invariant modulo constants !)

• X is D′(T) -valued random field: need some care!



Existence:

Set

X =
∞∑
n=1

1
√
n

(
An cos(2πnt) +Bn sin(2πnt)

)
, t ∈ [0,1),

where

An ∼ N(0,1) ∼ Bn (n ≥ 1)

are independent standard Gaussians.



Bacry - Muzy; A Geometric approach:

• X(s) =
∫
U+sW

(
dxdy
y2

)
, s ∈ R.

• W is the (periodic) white noise in H.
(w.r.t. hyperbolic measure in H)

———————————



Bacry - Muzy; A Geometric approach:

• X(s) =
∫
U+sW

(
dxdy
y2

)
, s ∈ R.

• W is the (periodic) white noise in H.
(w.r.t. hyperbolic measure in H)

• U := {(x, y) ∈ H : −1/2 < x < 1/2, y > 2
π tan(|πx|)}.

[Roughly, U ' { 2|x| < y < 1/2, |x| ≤ 1/4}]

———————————
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Random homeomorphisms φ : T→ T: We take

φ(t) =
∫ t

0
eβX(s)ds/

∫ 1

0
eβX(s)ds, T = R/Z,

where 0 ≤ β <
√

2 =: β0 and X is the restriction of GFF on T.

• X is D′(T)-valued random field: How to define φ(t) ?!

• Regularize : eβXε(s) : = eβXε(s)/EeβXε(s); martingale in ε↘ 0.

• Almost surely : eβXε(s) : ds converges weakly to a random Borel

measure τ(ds) ≡ : eβX(s) : ds on T.



Random measure: Properties of τ(ds) = : eβX(s) : ds for β <
√

2

• τ has no atoms

• E τ(I)p <∞, for −∞ < p < 2/β2 and all intervals I ⊂ T

Hence by Hölder, the distortion

|φ(s+ t)− φ(s)|
|φ(s− t)− φ(s)|

=
τ([s, s+ t])

τ([s− t, s])
∈ Lp(ω), p < 2/β2.



Theorem (A-J-K-S). Let φ = φβ be the random homeomorphism

φ(s) = τ([0, s])/τ([0,1])

with τ(ds) = : eβX(s) : ds and β <
√

2.

Then a.s. in ω, the random homeo φ admits a conformal welding

(Γ, f+, f−).

The Jordan curve Γ is unique, up to a Möbius transformation.
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Then a.s. in ω, the random homeo φ admits a conformal welding

(Γ, f+, f−).

The Jordan curve Γ is unique, up to a Möbius transformation.

(ii) Dependence on β is continuous ’pathwise’.



Theorem (A-J-K-S). Let φ = φβ be the random homeomorphism

φ(s) = τ([0, s])/τ([0,1])

with τ(ds) = : eβX(s) : ds and β <
√

2.

Then a.s. in ω, the random homeo φ admits a conformal welding

(Γ, f+, f−).

The Jordan curve Γ is unique, up to a Möbius transformation.

(iii) The proof works as well for ψ = φβ ◦ (φ̃
β̃

)−1,

where β, β̃ <
√

2 and φβ and φ̃
β̃

are independent copies of (*).



Outline of proof.

1. Extension of φ to f : C→ C by a Beurling-Ahlfors-type extension

=⇒ bound for µ = ∂̄f/∂f in terms of the measure τ .

2. Existence for Beltrami equation by a method of Lehto, to control

moduli of annuli

3. The crucial ingredient for step 2: Probabilistic large deviation

estimate for the Lehto integrals which control moduli of annuli

4. Uniqueness of welding: theorem of Jones-Smirnov on removability

of Hölder curves



Extension: Many ways to extend f : S1 → S1 to F : C→ C.

Beurling-Ahlfors: Extend h : R→ R to upper half plane by

F (x+ iy) =
1

2

∫ 1

0
(h(x+ ty) + h(x− ty) + i(h(x+ ty)− h(x− ty))dt.

Map to disc and reflect to |z| > 1.

To solve Beltrami need to control µ = ∂z̄F/∂zF ,
i.e. look for upper bounds for distortion

K(z) :=
1 + |µ(z)|
1− |µ(z)|

.



Lehto integral. Solve degenerate Beltrami

∂z̄F = χD(z)µ(z)∂zF, F (z) = z +O(1/z)

with the random µ to get Γ = F (∂D).

Idea by Lehto: control images of annuli under F by

L(ζ, r, R) =
∫ R
r

1∫ 2π
0 K

(
ζ + ρeiθ

)
dθ

dρ

ρ
, K(z) =

1 + |µ(z)|
1− |µ(z)|



Lehto integral. Solve degenerate Beltrami

∂z̄F = χD(z)µ(z)∂zF, F (z) = z +O(1/z)

with the random µ to get Γ = F (∂D).

Idea by Lehto: control images of annuli under F by

d(A) ≤ 16D(A) e−2π2L(ζ,r,R).

• A = A(ζ, r, R) annulus, center ζ, radii r,R.

• d(A) inner and D(A) outer diameter of F (A)



Existence and Hölder: Suppose for all ζ, L(ζ, r,1) ≥ −c log r.

Then

diam[f(B(ζ, r))] ≤ 80r2π2c

• Implies existence for Beltrami via equicontinuity of regularized

solutions !

• Implies Hölder continuity of f .

• Need also prove K ∈ L1(D) to get f ∈W1,1 and for equicontinuity

of inverse maps



Existence and Hölder: Suppose for all ζ, L(ζ, r,1) ≥ −c log r.

Then

diam[f(B(ζ, r))] ≤ 80r2π2c

• Key estimate: L(ζ, r,1) ≥ −c log r with high probability:

Prob
(
L(ζ, ρn,1) < nδ

)
≤ ρ−(1+δ)n (ρ = 2−N)

• Suffices to consider uniform grids ζi ∈ ∂D = T, i = 1, . . . ρ−2n.

• Then, by Borel-Cantelli, for a.e. ω: for n > n(ω),

L(ζi, ρ
n,1) > nδ, i = 1, . . . ρ−2n.

=⇒ Hölder continuity a.e. in ω



Distortion: Local and scale invariant distortion bound !

Distortion of the extension in the Whitney cube at scale 2−n depends

on distortion of the random homeo at the same scale and place.

For all z in Whitney cube spanned by dyadic interval I ∈ Dn,

K(z) :=
1 + |µ(z)|
1− |µ(z)|

≤ C
∑
J,J ′

τ(J)

τ(J ′)

Here J, J ′ ∈ Dn+5 contained in I and its dyadic neighbors.



Distortion: Local and scale invariant distortion bound !

Distortion of the extension in the Whitney cube at scale 2−n depends

on distortion of the random homeo at the same scale and place.

For all z in Whitney cube spanned by dyadic interval I ∈ Dn,

K(z) :=
1 + |µ(z)|
1− |µ(z)|

≤ C
∑
J,J ′

τ(J)

τ(J ′)

Linear and local bound essential to cover all β <
√

2.



Uniqueness for welding follows from Hölder continuity:

Suppose f± and f ′± are two solutions, mapping D,D∞ onto Ω± and

Ω′±. Show:

f ′± = Φ ◦ f±, Φ : Ĉ → Ĉ Möbius.

Now

Ψ(z) :=

 f ′+ ◦
(
f+

)−1
(z) if z ∈ Ω+

f ′− ◦ (f−)−1 (z) if z ∈ Ω−

is conformal outside Γ = ∂Ω±.

Result of Jones-Smirnov: Hölder curves are conformally removable

i.e. Ψ extends conformally to Ĉ i.e.it is Möbius.
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Relation to SLE:

• The original suggestion of P. Jones conjectured ’unspecified’ relation
of the welding curve of φβ to SLEκ with κ = 2β2.

• [Duplantier& Sheffield 2010]: a program to connect SLE to expo-
nentials of Gaussian free fields.

• [Binder& Smirnov 2010, unpublished]: multifractal spectrum (for
harmonic measure) of the welding curve of (φβ)−1 ◦ φ̃β (here φ̃β is an
independent copy of φβ) agrees with known heuristics for SLEκ with
κ = 2β2.

• [Sheffield 2010, November, manuscript] states that SLEκ is indeed
obtained from ’welding’ of two weighted ’quantum wedges’ ! Locally
this corresponds to welding of (φβ)−1 ◦ φ̃β, again with κ = 2β2.



THANKS !


