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KREIN RESOLVENT FORMULAS FOR ELLIPTIC
BOUNDARY PROBLEMS IN NONSMOOTH DOMAINS *

Abstract. The paper reports on a recent constructioMefunctions and Krein resolvent for-
mulas for general closed extensions of an adjoint pair, leid implementation to boundary
value problems for second-order strongly elliptic operattn smooth domains. The results
are then extended to domains wigh! Holder smoothness, by use of a recently developed
calculus of pseudodifferential boundary operators withsmooth symbols.

1. Introduction

In the study of boundary value problems for ordinary difféi@l equations, the Weyl-
Titchmarshm-function has played an important role for many years; iwd a re-
duction of questions concerning the resolvght- \)~* of a realisatiorA to questions
concerning an associated famM(\) of matrices, holomorphic i € p(A). More-
over, there is a formula describing the difference between A)~1 and the resolvent
of a well-known reference problem in termsMfA), a so-called Krein resolvent for-
mula. The concepts have also been introduced in connectibrilve abstract theories
of extensions of symmetric operators or adjoint pairs irbklit spaces, initiated by
Krein [22] and Vishik [32]. The literature on this is abumiaand we refer to e.g.
Brown, Marletta, Naboko and Wood [10] and Brown, Grubb ando@/{Q] for ac-
counts of the development, and references. For elliptiigatifferential equations
in higher dimensions, concrete interpretationdvidfA) have been taken up in recent
years, e.g. in Amrein and Pearson [5], Behrndt and Langeaf&] in [10]; herévi(A)

is a family of operators defined over the boundary. In thegepaper we report on
the latest development in nonsymmetric cases worked o@fjit uses the early work
of Grubb [14] as an important ingredient.

The interest of this in a context of pseudodifferential @pers is thatV(A)

in elliptic cases, and also in some nonelliptic cases, iseagadifferential operator
(wdo), to whichpdo methods can be applied. The new results in the present aagpe
concerned with situations with a nonsmooth boundary. Oatesyy here is to apply
the nonsmooth pseudodifferential boundary operatmbp) calculus introduced by
Abels [3]. We show that when the domair$! and the given strongly elliptic second-
order operatoA has smooth coefficients, then indeed ktdunction can be defined as
a generalizedido over the boundary, and a KreTn formula holds. Selfatigases have

been treated under various nonsmoothness hypotheses ite8&esnd Mitrea [12],

Posilicano and Raimondi [29], but the present study allomsselfadjoint operators,
and includes a discussion of Neumann-type boundary conditi Besides bounded
domains, we also treat exterior domains and perturbedjzalés.

*Itis a pleasure to dedicate this paper to Prof. Luigi Rodindh® occasion of his 60th birthday.
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The author thanks Helmut Abels for useful conversations.

2. Abstract results

We begin by recalling the theory of extensions &ndunctions established in works
of Brown, Wood and the author [9] and [14].

There is given an adjoint pair of closed, densely definedalirperator#\nin,
Al In a Hilbert spaced:

Amin C (A:*nin)* = Amax, A:nin C (Amm)* = At/*nax-

Let a4 denote the set of linear operators lying between the minamdlmaximal op-
erator:

M :{'E‘lAmmCKCAmaX}a M/:{'E‘llA;ninC'&,CA;nax}-

Write Au asAu for any A, andA'u asA'u for any A'. Assume that there exists an
Ay € o with 0 € p(Ay); thenAj € ar" with 0 € p(A)). We shall defineM-functions

for anyclosedﬂ eEM.
First recall some details from the treatment of extensiorj$4]: Denote

Z=kerAmax, Z =KkerA .
Define the basic non-orthogonal decompositions
D(Amax) = D(Ay)+Z, denotedi = uy+ ug = pr,u+prz u,
D(Amax) = D(A})+Z’, denoted = vy + Vg = pr, V+pry V;
here py = A, *Amax, Pr; =1 —pr,, and pyy = (A) "Alax Pl =1 —pr,. By pR,u=uy
we denote therthogonal projectiorof u ontoV.

The following “abstract Green'’s formula” holds:
1) (Auv) — (U, AV) = ((Au)z/, Vgr) = (U, (A'V)z).
It can be used to show that whére 97 and we setV = m then
{{uz, (Auw} | u € D(A)} is a graph.
Denoting the operator with this graph by we have:

THEOREM1. [14]For the closedA € a7, there is al-1correspondence

T:V — W, closed, densely defined

A closed —— )
withV c Z, W c Z/, closed subspaces.
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Here D(T) = pr; D(A), V =D(T), W = pryy D(A), and

Tu; = (Au)w for all u € D(A), (thedefining equation).

In this correspondence,
0] A corresponds similarly to T: W — V.
(i) kerA=kerT; ranA=ranT + (HSW).
(i) WhenA is invertible,
Al= A\T1+ iv_H Tilpl’w.
Here i,y indicates the injection of into H (it is often left out).
Now provide the operators with a spectral paramgtden this implies, with

7, = ker(Amax—N), Zy= ker(A{naXfX),
D(Amax) =D(A))+2Z), U=U)+U} =pryu+pru, etc.:

COROLLARY 1. LetA € p(Ay). For the closedA € a7, there is al—1corre-
spondence

Ao {TA :Vy — W, closed, densely defined

with\\ C Z,, Wy C Zi, closed subspaces.

Here D(T*) = pry D(A), V4 = D(T}), W, = pr}, D(A*), and

T = ((A—Nu)w for all u € D(A).

Moreover,

(i) ker(A—\) =kerT?;  ran(A—\) = ranT? + (H o W).

(i) Whenh € p(A) Np(A),
(A=)t = (Ay=N) T +iy—n (T plge

This gives a Krein resolvent formula for any closed a1 .

The operatord andT? are related in the following way: Define
EM=1+AA AL PP =1-aAT
EI)\ =1 +X(A;FI 7X)717 F/)\ =1 fX(A;F,)il,

thenE*F* = FAEN = |, EAFA = FAE? = | onH. Moreover,E* andE™ restrict to

homeomorphisms B
EY:VEW, EYwSw,

with inverses denotef} resp.F\,’é. In particularD(T*) = E}D(T).
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THEOREM2. Let G}, = — pry AE iy _n; then
2) (EQ)TE) =T+ Gy,

In other words, T and T are related by the commutative diagram (where the horizonta
maps are homeomorphisms)

A
Vy Ny
T T+GY D(TM) = E)D(T).
W _ w
(EM)

This is a straightforward elaboration of [16], Prop. 2.6.

Now let us introduce boundary triplets akdfunctions. The general setting is
the following: There is given a pair of Hilbert spaces x and two pairs of “boundary

operators”
M H F’l U
:D(Amax) — X, "D(Afa) — X,
) X r6 H

bounded with respect to the graph norm and surjective, $wath t
D(Amin) = D(Amax) Nkerr1nkerTo,  D(Ain) = D(Anay) Nkerry Nkerrg,
and for allu € D(Amax), V € D(Alha0)s
(AU,V) — (U, A'V) = (T1u,T V), — (Tou, F7V) .

Then the three pairsr , X }, {1, o} and{I'}, I} are said to form doundary triplet
(See [10] and [9] for references to the literature on this.)

Note that under our assumptions, the choice

o wenxen ()-(40) ()-(4)

defines a boundary triplet, cf. (1).

Following [10], the boundary triplet is used to define operaAr € ¢ and
AL, € ar’ for any pair of operator§ € £ (X ,# ), T' € L(#, %K) by

(4) D(Ar) = ker(T1 —Tlg), D(A}) =ker("}, — T'Tp).

Then they show:
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ProPOSITIONL. For A € p(At), there is a well-defined M-functionf\iA) de-
termined by

Mr(A):ranlF1—Tlo) — X, My(F1—Tlou=Touforallue z,.
Likewise, forh € p(A},), the function M, (A) is determined similarly by
My (A) iranTy —T'Tg) — o, ML (T —T'To)v=Trgvforallve Z;.
Here, wherp(Ar) # 0,
(Ar)* = At

This was set in relation to Theorem 1 in [9]: Take the boundapjet defined
in (3). Then the formula foD(Ar) in (4) is the same as the defining equation (2)
for D(ﬂ). For the sake of generality, allow also unbounded, densefined, closed
operatorsT : Z — Z'; then in fact the formulas in Proposition 1 still lead to a el
definedM-functionMr (). We denotédr by AandMr (A) by Mz(A), when they come
from the special choice (3) of boundary triplet. Then we have

THEOREM3. LetA correspond to T Z — Z' by Theoreni. For anyA € p(A),
Mi(A) isin £(Z',Z) and satisfies
Mz(A\) = prz(1 = (A= A) " (Amax— M)A, Hizp -
Moreover, Mi(A) relates to T and T by:

Maz) = —(T+Gh ) 1 = —F2(TY)1(F2)", for A € p(A) Np(Ay).

This takes care of those operatdksfor which pr D(A) is dense inZ and
pr; D(A*) is dense inZ'. But the construction extends in a natural way to all the
closedA € a1, giving the following result:

THEOREM4. LetA correspond to TV — W by Theoren. For anyA € p(A),
there is a well-defined (A) € £(W,V), holomorphic in\ and satisfying

() MzN) = prz (I = (A= N) " (Amax— A)A, Liwh -

(i)) When € p(A) Np(Ay),

MzN) = —(T +Gw)

(iii) For A € p(A)N p(Ay), it enters in a Krén resolvent formula

(A=N)"E= (A=) iy, 1 EYME(N) (ED)” Py -

Other Krein-type resolvent formulas in a general framévadrelationscan be
found in Malamud and Mogilevskii [26, Section 5.2].
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3. Neumann-type conditions for second-order operators

The abstract theory can be applied to elliptic realisationsise of suitable mappings
going to and from the boundary, allowing an interpretatioiteirms of boundary con-
ditions. We shall demonstrate this in the strongly elligécond-order case.

Let Q be an open subset ®" of one of the following three types: X} is
bounded, 2)2 is the complement of a bounded set (i.e., is an exterior doynai 3)
there is a balB(0, R) with center 0 and radiuR such thatQ \ B(0,R) = R \ B(0,R)
(we then callQ a perturbed halfspace). More general sets or manifoldsidmaikcon-
sidered in a similar way, namely the so-called admissibleifolils as defined in the
book [19].

The sets will in the present section be assumed t6dater from Section 5
on they will be taken to b€%Y, wherek is an integer> 0 ando €]0,1]. (Recall that
the norm on the Holder spa@9 (V) is

[Ullgkoryy = sup [Du(x)|+ sup [D%u(x)—Du(y)||x—y|"°.)
la|<kxeV |o|=kx#y

We then denot&+o =T.

of 0Q such that by an affine coordinate change for epdly is a box{max.n |yx| <
a;j}, and

QNU; =1y ) [ maxiyd| <aj, fj(y) <yn <aj},
0QNU;j = {(¥,yn) | maxiy <aj yn = fj(y)},

with Ck9-functionsf; such thatfj(y')| < aj for max.n |yk| < aj. The diffeomorphism
(coordinate change)

(5) Fi: (Y.yn) = (Y, yn— fi(Y))

is then alsaC*°. The setdJj must be supplied with a suitable bounded operi et
with closure contained i, to get a full cover of2.

For exterior domains, we coveq similarly, then this must be supplied with
a suitable open sé&iy with closure contained if to get a full cover ofQ; hereUp
contains the complement of a bdlly > R"\ B(0,R)).

For a perturbed halfspace, we cog€ NB(0,R+ 1) as above, and supply this
with Ug = {X| Xn > —¢,|X| > R} to get a full cover ofd.

The boundaryQ will be denoted. We assume in the present section fas
C%; thenX is an(n— 1)-dimensionaC*® manifold without boundary.

LetA= z‘a‘gzaaD“ with C* coefficientsay given on a neighborhocﬁ of Q
(containingUg in the perturbed halfspace case), and uniformly strondjiytie!:

Re $ aa(0& > cof¢? allxe Q. € R",
la]=2
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Cop > 0. The formal adjoin®y’ = 3 ja|<2 D%q = Y |q<28,D? likewise hasC® coeffi-

cientsay and is strongly elliptic o. We asume that the coefficients and all their
derivatives are bounded.

We denote byAmax resp.Amin the maximal resp. minimal realisations Afin
L2(Q) = H; they act likeA in the distribution sense and have the domains

D(Amax) = {u€ L2(Q) | Au€ L2(Q)},  D(Amin) = H5(Q)

(usingLz Sobolev spaces). Similarljy,,, andA ;. denote the maximal and minimal
realisations irL2(Q) of the formal adjointy’; hereAmax = A", Amax= Amin"-

Denoteyju= (aﬂ,u) |z, wheredy, is the derivative along the interior norniaht>.
Letso(X) be the coefficient of-02 whenA is written in terms of normal and tangential
derivatives aK’ € Z; it is bounded with bounded inverse. Denoting

Soy1 =V1, Soy1=Vi,
we have the Green’s formula févvalid for u,v € H3(Q),
6)  (AuV), @) — (UAV) ) = (V1U,YoV)L,() — (YU, VIV + AgYoV)L,(s),

wherezy is a certain first-order differential operator overThe formula extends e.g.
touc H?(Q), ve D(A,), as

(@) (AuV), ) — (UAV) L) = (Vi Yov)3 1 — (You,Viv+ ﬂéYoV)g’,g,

where(-, -)s—s denotes the duality pairing betwekli(%) andH ~5(%). (Cf. Lions and
Magenes [24] for this and the next results.)

The Dirichlet realisatior® is defined as usual by variational theory (the Lax-
Milgram lemma); it is the restriction oAnax with domain

D(Ay) = D(Amax) NHG(Q) = HA(Q) NHE(Q),

where the last equality follows by elliptic regularity thrgoBy addition of a constant to
Aif necessary, we can assume that the spectrulisfcontained ifA € C | ReA > 0}.
ForA e p(Ay), se R, let

Z3(A) ={ue H%Q) | (A—Nu=0};

itis a closed subspace Bff(Q). The trace operatosg, y1 andvs extend by continuity
to continuous maps

Yo ZH(A) — HZ2(2), yi,vi:Z§(A) — HS¥(3),

for all se R. WhenA € p(A)), let K& : ¢ — u denote the Poisson operator from
Hs 32 (%) to H3(Q) solving the semi-homogeneous Dirichlet problem

(8) (A—MNu=0inQ, yu=¢onZ.



278 G. Grubb

It is well-known thaﬂ(& maps homeomorphically
1 ~
K} tHS 2(2) S Z3(A),

for all s € R, with yp acting as an inverse there. The analogous operatdk’fer)_\ is
denoteck;}.

We shall now recall from [9, 14] how the statements in Sec®@ne interpreted
in terms of boundary conditions. In the rest of this sectioa abbreviatéiS(Z) to HS.
With the notation from Section 1,

M=z ZAN)=Z, ZAN=2, ZK)=Z
We denote by, the restriction ofy to a mapping fronZ, (closed subspace bb(Q))
1 . .. 1
toH™z;its adjomtygA goes fromH 2 to Z,:
Yz, 12y & H’%, with adjointyy, : H2 > 7.

There is a similar notation for the primed operators. WhenO, this index is left out.
These homeomorphisms allow “translating” an operatoZ — Z’ to an oper-
atorL:H" 2 — H%, as in the diagram

z— Y K3

(9) T L D(L) =yoD(T),

NI

whereby(TzZ) = (Lyoz,yoz’)%ﬁ%.
We moreover define the Dirichlet-to-Neumann operatorséoha < p(Ay),

(10) P

_ A A oy .
Yo,V1 = V1K, P\I/o,v’l _VlKV )

they are first-order elliptic pseudodifferential operatover, continuous fromHs—2

to HS 3 forall se R, and Fredholm in cask is bounded. (Their pseudodifferential
nature and ellipticity was explained e.g. in [15]).

For general trace maffisandn we write
(11) PonBu—NU, ueZy(A),

when this operator is well-defined.

Introduce the trace operatdrandr’ (from [14], where they were called and
M’) by

(12) M=vi— P\%,leO = VlA\TlAmax; M= Vll - P\//gy\,/lyo = V/l(p\*/)ilA:*nax-
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Herel andl"" mapD(Amax) resp.D(Anay) continuously ontHz. With these pseu-
dodifferential boundary operators there is a generalizezb@s formula validor all
U € D(Amax), V€ D(Al 20"

(13) (AU V)L, () — (UAV) ) = (Fu,yov)3 _1 = (You, r/V),%,%-
In particular,
(14) (Au,w) = (Fu,yow)%i% forallwe Z3(A) =27

(Cf. [14], Th. Il 1.2.) By composition with suitable isomiasA; : HS(Z) — HS (),
(13) can be turned into a standard boundary triplet formula

(15) (AUV) L, (0) — (U, AV) ) = (MU, ToV) L) — (Tou, F1V) L (s),

with M1 :/\%F, F’l :/\%F’, M= F6 = /\,%VO and# = K = Lz(Z).

There is a general “translation” of the abstract resultssiati®n 1 to statements
on closed realisation& of A. First letA correspond td : Z — Z' (i.e., assum¥ = Z,
W = Z'). Then in view of (9) and (14), the defining equation in Theorkis turned
into
,allZ eZ.

(T'u,yoZ) = (Lyou,YoZ)

Nl

1 1_
2 2

1
2
SinceyoZ runs through—F%, this means thdtu = Lypu, also written

viu= (L+ P%vl)you.*

ThusA represents Aleumann-type condition

(16) viu = Cypu, withC =L+ P?

Yo,V1*

This allows all first-ordetpdo’sC to enter, namely by letting act asC — P%vl.
The elliptic caseConsider a Neumann-type boundary condition

17) viu = Cyou,
whereC is a first-order classicaido onZ. LetA be the restriction ofmaxWith domain
D(A) = {u € D(Amax) | viu = Cyou}.

Now the boundary condition satifies the Shapiro-Lopatihs@ndition (iselliptic) if
and only ifL is elliptic; then in fact

(18) D(A) = {u € H?(Q) | viu = Cyou}.

Then the adjoinﬁ* equals the operator that is defined similarly fréhby the bound-
ary condition
viv= (C* —A0)vov,
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likewise elliptic.

When we do the above considerations £or A, we getl? satisfying the dia-
gram

P S N W
T+G), T 1*  D(M) =D(L).
z 5 H?
G N D

A
Here the horizontal maps are homeomorphisms, and they cseng@gyz, E% =Yz,

() "HF2)" = (v) ™% s0

L =y (T+ G2V
In terms ofL*, the boundary condition reads:
viu= (L + P&ovl)you.

=C=L+P)

0V1’

Note thatl* + P}

Yo,V1

Lr=L+P2, —P

Yo,V1 Yo,V1*

As shown in [9], this leads to:

THEOREM 5. Assumptions as in the start of Secti®nwith C* domain and

operator. LetA correspond to T: Z — Z, carried over to L H-3 — H3. ThenA

represents the boundary conditi¢h6). Moreover:
(i) For A e p(Ay), PO, —P} € r(H 2,HZ)and

' Yo V1 Yo,V1

P=L+P0, —P

Yovi T MYove
(i) For A € p(A), there is a related M-functios £ (H i , H*%)

ML) =vyo(l — (A=N)"H(Amax— )Ay iz/—H Yz
(iii) For A € p(A) Np(Ay),

ML(A) = —(L+P?

Yo,V1

—RRy) t= -
(iv) For A € p(Ay),

ker(A—A) = K} kerL?,

ranfA—\) = Yz ranL? + ran(Amin — A),
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so that H\ (ranA—\)) = Z\ (Vg ranL?).

(v) For A € p(A) N p(Ay) there is a Krén resolvent formula:

(A=N) "= (A=At —izn VZAlML(A)(VE/X)fl Prz

(19) = (Ay—A) T KM (KD

(vi) In particular, if C is aydo of order1 such that G- RS |, is elliptic, and
p(A)Np(A,) £ 0, then DL) =HE, and

(20) ML(\) = —(C—P)

is elliptic of order—1 for all A € p(A). HereA satisfieg18) with (16).
Note that with the notation (11§; — P\%,vl = _P\%,vrcvw andM_(\) = P\TrCVo,vO'
Observe the simple last formula in (19), whﬂ& is the Poisson operator for
A— A, the adjoint being a trace operator of class zero.
The Kreln formula is consistent with formulas found forfadjoint cases with
Robin-type conditions in other works, such as Posilicarg],[Posilicano and Rai-
mondi [29], Gesztesy and Mitrea [12], when one observes that

1) (KN =va(Ay—N) Y

this follows from the fact that fop H*%(Z) andv = K{,Xq), f e Ly(Q) andu=
(Ay—\)~1f, one has using Green’s formula (7):

(f, KM = (A= M)u,v) ) — (u, (A — X)V)L2(0)
= (VluaVOV) 1= (y0u7v/lv+ﬂéyov)g7fg = (Vl(AV_)\)ilpr)

_1.
T2

Nl

1
27

N

For the general case &‘corresponding td@ : vV — W with subspace¥ C Z,
W c Z, there is a related “translation” to boundary conditionstdils are given in [9],
let us here just mention some ingredients:

We use the notation in (15) ff. Set

X1 = roD(A) = /\7%V0V C Lz(Z), Y= roD(A*) = /\7%V0W C Lz(Z),
wherel g restricts to homeomorphisms

Mov :V = X1, Tow:W VY.
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ThenT :V — W is carried over td; : X1 — Y; by

Fov

\%

X1

T Ly D(L1) =ToD(T),

Y,
ow +

The boundary condition is:
FoueD(L1), LaFou=pr,1u.
There is a similar reduction fok— A when) € p(Ay), and we find that
Lg\. - Ll + erl/\% (Pyoo,vl - P&O-,Vl)/\% ixlﬂLz(z) .

There is arM-functionM, (A) : Y1 — X defined forA € p(A). It equals—(L})~when

A € p(A)Np(Ay), and there is then a Kreln resolvent formula

(A=2)" = (Ay=N) =iy Mo ML () (M) 2Py

= (Ay=2) 71 = K, MLy (V) (KJ, )

A1 A
hereKly @ X1 C La(2) —= H-2(%) X, L2(Q).

For higher order elliptic operators, and systems, thersian#éar results orM-
functions and Krein resolvent formulas, see [9]. In sudesahere occur interesting
subspace situations wheXeandY are (homeomorphic to) full products of Sobolev
spaces oveX.

4. The nonsmoothyidbo calculus

The study of the smooth case was formulated in [9] in termé&@fiseudodifferential
boundary operatonj(dbo) calculus, which was initiated by Boutet de Monvel [8flan
further developed e.g. in Grubb [17], [19] (we refer to theseks or to [20] for details

on the calculus). Thevdbo theory has been adapted to nonsmooth situations by Abels
in [3], by use of ideas from the adaptationydlo’s to nonsmooth cases by Kumano-
go and Nagase [23], Taylor [30]. The operators consideredli®ls have symbols
that satisfy the usual estimates in the conormal variablgsnn, pointwise in the
space variablg, but are only of clas€%9 in x (so that the symbol estimates hold with
respect taCk%-norm inx). (Fort = k+ o integer, one could repladg® by the so-
called Zygmund spacg' = B, .,, which is slightly larger, and gives the scale of spaces
slightly better interpolation properties, cf. Abels [1, Blit we shall let that aspect lie.)
We call(k,0) the Holder smoothness of the operator and its symbol.
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The theory allows the operators to act bewdgrbased Besov and Bessel-
potential spaces (£ p < ), but we shall here just use it in the cgse- 2 (although
an extension t # 2 would also be interesting). Some important results of {8] a

THEOREMG6. 1° One has that the continuous mapping property

P.+G K\ HUMRLN  HeE)Y
a4 = : X — X
T S/ HStM-3 (RN-1)M HS3 (Rn—l)M’

holds whenz is a Green operator ofR"} of order me Z and class r, with Blder
smoothnesgk, 0), provided that (witht = k+ o)

1. | <Tif N'#0,
2. |s— 3| <tTifM’#£0,
3.s+tm>r— % if N = 0 (class restriction).

2° Leta; and 4, be as inl1°, with symbols aresp. & and constants o, Ty,
my,Ny,... resp. ke, 02,T2,Mp, N, ... Assume that N= Ni,M, = M, so that the op-
erators can be composed. Let¥ min{ky,k2}, 03 = min{o1,02}, 13 = min{11,12},
0 < 8 < min{1,12}. The boundary symbol composition a is a Green symbola
of order my = my + my, class g = max{ri + mp,r2} and Holder smoothnesgs, 03),
defining a Green operatotz. The remainder is continuous:

HSFMs=8(RN )Nz HS(RT )M
A1402 — A3 X — X ,
HS+m37%79(Rn71)M2 Hsfé(Rnfl)M/l
if the following conditions are satisfied:
1. |s<tzands— 0> —12ifN; >0, |s— 3| <t1zands— 3 — 6> -1, if M} >0
2. T+ 0<s+mM <TifN1 >0, ~To+0<s+m— 3 <T2if M1 > 0;

3. s+m>r1—3if Ny >0, s+mg—6>r,— 3 if N2 > 0 (class restrictions).

3° Let 4 be as in1°, and polyhomogeneous and uniformly elliptic with prin-
cipal symbol & (here N= N’ > 0). Then there is a Green operata? (the operator
with symbol(a®)~1 if m = 0) of order —m, class r— m and Hlder smoothnesg, o),
continuous in the opposite direction af such thatt = 23°— 1 is continuous:

HOO@IN SR
R . X — X
Hs—e—% (Rn—l)M’ H s—3 (Rn—l)M

)

if, witht = k+ 0o,
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1. —1+06<s<T;
2. s—3>-1+08ifMorM’' >0;

3.5-0>r—m— % (class restriction).

See [3] (Theorems 1.1, 1.2 and 6.4). For integethe results are worked out
there for symbols in Zygmund spaces, but they imply the tesuith Holder spaces,
see also [1,2]. The class restrictions are imposed even Wigeoperators have™
coefficients.° is called a parametrix of .

Abels has also generalized the calculus of [19] for symbelgetiding on a
parametept to nonsmooth coefficients; again the estimates in the cetangriables
&', &,nn,uare the usual ones, but validxw.r.t. Holder norms.

We recall from the theory ofydo’s thatP is said to be “inx-form” resp. “in
y-form”, when it is defined from a symbal by

Pu—c [ €*p(x £)0(&) &, respPu—c [ & Ep(y.E)u(y)dycE,

c = (2m)~"; the concept extends tpdbo’s. In Theorem 6, all the operators labeled with
2 are inx-form. So is3° whenm = 0; otherwise it is a composition of an operator
in x-form with an order-reducing operator system to the lefe Remark 1 below.
The adjoints of operators ix-form are operators ig-form. [3] does not discuss the
reduction fromy-form to x-form; some indications may be inferred from Taylor [31],
Ch. 1 89. For operators iprform one has at least the results that can be derived from
the above results by transposition.

REMARK 1. An important tool in the calculus is “order-reducing cgters”.
There are two types, one acting over the domain and one amterghe boundary:

AL = OP(8) HU(RT) = HE(RY),
My = OP((€)) - H{(RM) 5 HETR D), allte B,

with inverses/\:fJr resp./\;". HereA" is the “minus-symbol” defined in [18] Prop.
4.2 as a refinement dfi€’) —i&,)". In Theorem 6 3, whereass® is the operator
with symbol (a%)~* whenm = 0, one applies the zero-order constructionatp=

A0 ) , </\m 0 >
a + 7| to defines® = + 2 ) 3%whenm# 0.
( 0 A" 0 A™) 71

It should be noted that when eR. is as in Theorem 6°1 then
(22) AL Py i HSMRY) — HS(RY) for —1<s<T,

whereas the composition rule Theorem“sRows that\" | P, can be written as the
sum of an operator in the calculus QF_ , on p(x,&);) in x-form and a remainder,
such that the sum map-b‘”m*’(RQ) — HS'(RQ) for —1 < § < 1; this gives a mapping
property like in (22) but with-t+r < s< 1+4r. This apparently extends the range, but
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the decompositions into a primary part and a remainder ar¢hecsame/N\" | P, is
not inx-form but is an operator ir-form composed to the left with” , not equal to
OF"()\Q+ on P(x,€)+). Compositions to the right with”  are simpler and preserve
x-form directly. We shall say that operators formed by conipgan operator ix-form
with an order-reducing operator to the left are “in ordedtreedx-form”.

Coordinate changes give some inconveniences in the nonkmalzulus be-
cause, in &k9-setting, the action oD; after aCk9-coordinate change gets Jaco-
bian factors that ar€%~1.9, and higher power®® get coefficients irCk-19/:9 (when
k—la] = 0).

We say that an operator is a generalized Green operator éobfotine respec-
tive types) if it is the sum of an operator defined from symhbwolthe calculus and a
remainder of lower order (fagin an interval, specified in each case or understood from
the context).

5. Resolvent formulas in the case of non-smooth domains

To treat one difficulty at a time, we consider in the followihg case where the domain
is nonsmooth, but the operatéris given with smooth coefficients (this includes of
course constant coefficients).

Let Q be an open set ilR" of one of the three types described in Section 3, of
classCk. We still takeA with C*-coefficients on a neighborho6of Q, as described
in Section 2.

Recall from Grisvard [13] (Th. 1.3.3.1,1.5.1.2,1.4.1.8.3.4):

THEOREM7. LetQ be bounded and'®, lett = k+0o.

1° When® is a C<°-diffeomorphismy integer, then i HS . = uo® e HS_
for || <T.

2° One can forlg| < 1, integer, define K(Z) to be the space of distributions
u onZ such that for each j, u Ffl is in H% on {y’ | max|yx| < a;}. The trace map
Yo: H3(Q) — Hs—2 (%) is well-defined for% < s<T1, and the trace mag : H3(Q) —
Hs-3 (%) is well-defined for% < s< 1. There is a continous right inverse of each map,
and of the two maps jointly fo% <s<T.

3° Let be G291, 11 = k; + 03, then u— ¢u is continuous in B(R") for |s| < 11
if 11 is integer,|s| < 11 if T1 is non-integer.

4° Whent > 2 and A is a second-order differential operator @nin a diver-
gence form (A= — 3 ;  djajk0k + ¥k a0k + ao) With C%1-coefficients, and we define the
associated obligue Neumann trace operators by

(23) VA= %njajkyoak, vy = %nkfﬂkvoaj,
B B
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there holds a Green’s formula

(24)  (AuV)iy(0) — (UAV)L @) = (VAU YOV)Ly(z) — (YoU, VAV = 3 | @YoV) 1, ()
foru,ve H%(Q).

The Green’s formula (24) can be reorganized as (6); forAwith smooth
coefficientsyy, v; anda} getCk—10-coefficients wher® is C°.

We define the Dirichlet realisatiofy, of A, with domainD(Ay) = D(Amax) N
H&(Q) by the usual variational construction, and we shall asstvag; is invertible.
Its adjoint is the analogous operator fgr

By the difference quotient method of Nirenberg [27] one Heet D(A)) =
H2(Q) NH(Q) whent > 2 (this fact is also derived below); detailed proofs are
e.g. found in the textbooks of Evans [11] (I6f-domains) or McLean [25] (fo€11-
domains).

Also the extended Green’s formula (7) is valid wheh 2; this follows by an
extension of the proofin Lions and Magenes [24], as mentdam§l 3] Remark 1.5.3.5.
It follows that the generalized Green'’s formula (13) holdbenl” andl™ are defined

by
(25) M= VlAJlAmam r= Vll(A\*/)ilA;nax-

The local coordinates (cf. (5)) are used to reduce the cusitedtion to the flat
situation; then the boundary becomes straight but nongmess is imposed on the
symbols.

In the following we work out what the nonsmoafidbo method can give for
the Dirichlet problem; this can be regarded as a basic eseeinithe calculus (some
other cases appear in works of Abels and coauthors).

First we consider the case of a uniformly strongly ellipgcand-order operator
onR" — which we for simplicity of notation also calh — with Holder smoothness
(k1,01) andty1 = k1 + 01, together with a Dirichlet trace operator,

A HE(®?)
z( >:HS+2(R”+)H X ;
Yo H%%(Rnfl)
it is continuous for
(26) ~T1<S<T1, S$>-3,

extended tds| < 13 if integer (cf. Theorem 7 3. To prepare for an application of
Theorem 6, we apply order-reducing operators (cf. Remario *gduce to order 0O,
introducing

- ANZZ, H(RE)
(27) a1 = (O /\2) gA:?+ = , : HS(R”Jr) N X )
0 AGYoN=Z,
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for sas in (26) ff. By Theorem 6 it has a parametrix;f of order 0 and class-1
defined from the principal symbols,

H(R?)
(28) 3p=(R Kp): X  —HERD),
Hsﬁ% Rnfl)
for s satisfying
(29) —T+3<s<t, s>-3

here the remaindet; = ﬂﬂ?f — | satisfies
HEORD)  HE(RD)
(30) Rq: X — X ,
Hsfef% (Rnfl) Hsf% Rnfl)
when 0< 8 < min{1,141},

(31) —T+3+6<s<t, s>-3+6.

Then the equati0191193£J = | + R4, also written
I 0 _
(o /\g) ANZB) =1+ Ry,

implies by composition to the left wit ! 92 and to the right wit ! 02 :
0 A 0 A§

2 of! 0Y\ _ . (1 O I 0
:4/\#31(0 A% =1+%, withg = 0 /\62 R1 0 /\3 .

3°=A?+asf((') /?g):(RO KO)

Hence

is a parametrix ofz, with

(32) 48°=1+¢g,
HO(R)) HOORD) HRY)
(33) 3% X — HSP2(RY), = : X - X ,
Hs+%’ Rn—l) Hs—9+g(Rn—l) Hs+% Rn—l)

for sas in (29) resp. (31). With the notation from Remarka®,is in order-reduced
x-form.

Now consider the situation whefehas smooth coefficients and the domain is
nonsmooth. We shall go through the parametrix and inverastaaction in the case
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where the Holder smoothness of the domaifilid) so thatt = 2. We have the direct
operator

H(Q)
(34) a= (A) THSP2(Q) - x|
" He 3 (3)

it is continuous for—% < s$< 0 (recall the restrictios+ 2 < 2 coming from Theorem
72).

Foreach =1,...,J, the diffeomorhism (5) carrie@ NU;j over toVj = { (Y, yn) |
MmaXn|Yk| < @j,0 < yn < a; — fj(y)}, such thattQ NU; is mapped to{(Y,yn) |
MaXn |Yk| < &j, Yn = 0}. When the smooth differential operatiis transformed to
local coordinates in this way, the principal part of the f#sg operatorA has Holder
smoothnes$0,1), so herer; = 1. In each of these charts one constructs a parametrix

39 for i as above (the coefficients é&f can be assumed to be extended[_%ﬂo).

When Q is bounded or is an exterior domain, one uses for thdJged parametrix
of A without changing coordinates. In the perturbed halfspase cfor the set)y
one extend#\ smoothly to@i and uses a smooth version of the above construction.
These parametrices are carried back to the curved situatidpieced together using a
partition of unity subordinate to the cov@dg,Us,...,U;}, as indicated in [19], p. 228
(the first factorp; in each termin (2.4.77) should be replaced by a funationCg (U;)
such than;d; = ¢;, to get preservation of the principal symbol after sumnrgtitlere
the coordinate changes allow the smoothness to remd) Bt cf. [2], in particular
Section 5.3 there. The sum ovds then a parametrix of (34); its composition with
gives the identity plus a remainder of lower order, for valsias indicated above.

In the subsequent compositions below, it will always be ustded that they
take place in local coordinates (after decomposing theatpesin pieces supported in
theU; by use of suitable partitions of unity) and are taken backéodurved situation
afterwards.

In the present construction, we shall actually carry a speparameter along
that will be useful for discussions of invertibility. So wew replace the originally
givenA by A— A, to be studied for large negatise

The parametrix will be of the form
(35) 3°0\) = (RR(\) KO(N)):  x  —HS(Q);
with (k1,01) = (0,1) the condition (29) means tha{% < s< 1, sothat, along with the

restriction coming from Theorem 7, we have altogether that

(36) -I<s<o0
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is allowed. The remainder maps as follows:

HS®(Q)  H%Q)
(37) RA)=aMN)s°N)—1: x - X
H83()  HS*3(%)

for
(38) -3+08<s<o.

In order to get hold of the exact inverse, we shall use an @k of Agmon [4],
which implies a usefuk-dependent estimate of the remainder: Write= |2 (1 > 0),
introduce an extra variabtec S, and replacei by Dy = —id; let

(39) A=A+DZonQx Sh

ThenA is strongly elliptic onQ x St, and by the preceding construction (carried out
with local coordinates respecting the product structure),

4= (;A) has a parametriz°,
0

with mapping properties oB° and the remaindei = 2391 asin (35) and (37)
with Q,> replaced by = Q x S!, > =3 x S
For functionsw of the formw(x,t) = u(x)e*,

Aw= (<A+“2>W) |

Yow

and similarly, the parametrix® and the remaindex_act on such functions lik@©(\)
andg_ (M) applied in thex-coordinate.
Moreover, forw(x,t) = u(x)e¥, u € s (R"),

Wl s(enscsty = [1(L = B+ B2)UO [lLyeny = [1(1+ (]2 + 1) 20(E) I,

with similar relations for Sobolev spaces over other setsrnié as in the right-hand
side are calledH>H-norms; they were extensively used [19], see the Appendireth
for the definition on subsets. The important observatioroig that whens' < s and
w(x,t) = u(x)eHt, then

Wl sy = |1+ €1+ 12)°720(8)
< (WSS + &2+ 12)20(E) L, = (1) [Wllsanncst):

with constants independent ofandp. Analogous estimates hold witk" replaced by
Qorz.
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Applying this principle to the estimates of the remainiervve find that

<
% <ol

3
HS-OM(Q)xHS 8+ 2 H(3)

< c(w~°lull

3
HSK(Q)xHZF 2K

HSM(Q)xHS*%“(Z)
for sasin (38).

For eachs, take a fixed\ with |A| so large thati(u)=® < 1. Thenl + & (\)
has the inversé+ ®'(A\) =1 + Zkzl(—?i(}\))k (converging in the operator norm for
operators oHSH(Q) x HSJF%*“(Z)), and

aM)s°N)(1+&'(\) =1.
This gives a right inverse
B(A) =3°\) +3°N)R'(A) = (RN) K(N)),

with the same Sobolev space continuity@3), and3°(A\)% /(\) of lower order.
Since

o amam= (T A - (6 )
R(A) solves

(41) (A—MNu="f yu=0,

andK(A) solves

(42) (A—MNu=0, yu=u.

For such largé, R(A) coincides with the resolvent @, defined by variational
theory, andK (M) is the Poisson-type operator we callé&iin Section 3;

(43) (A= M) "L HY(Q) — H(Q), K} :H3 (%) — H"(Q),

for s satisfying (36).

The mapping properties extend to all thdor which the operators are well-
defined, especially t& = 0. FOI’A\Tl, this goes as follows: When € H(Q) and
f € H%(Q) with s< 1, f +Au is likewise inH%(Q). ThenAyu = f + Au allows the
conclusionu € H2(Q). The argument works for afl satisfying (36) (for each such
s, there is room to tak® > 0 so small that (38) is satified. Moreover, sint@lf
(Ay—A)~t = —AA1(Ay— ) 1is of lower order thamh, %, A, * equals a nonsmooth
Ydbo plus a lower-order remainder.

The Poisson operator solving (42) can be further descrisddlpws (for all
A € p(Ay)): Thereis arightinversg : HSJf%(Z) — H2(Q) of yo for —3 < s< 0 (cf.
Theorem 7 2). When we sev = u— x ¢, we find thatv should solve

(A=Av=—(A-N)Xd, Yov=0,
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to which we apply the preceding results; then whenp(Ay),
(44) K} =% — (Ay—N)HA-NxK;

solves (42) uniquely. It ma;ﬁs*%’(z) — HS2(Q) for s satisfying (36).
Since our original operator h&f° coefficients, the same construction works for
the adjoint Dirichlet problem, so we also here get the magppnoperties

(45) (K —N) "L H(Q) - HS2(Q), K HS'3(3) — HEH2(Q),

for s satisfying (36).

The conditiors > — 3 prevents the Poisson operator from starting fione (2),
which would be needed for an analysis as in Section 3. Faielyn# is possible to get
supplementing information in other ways.

By (7) we have, analogously to (21), tHé@ is the adjoint of a trace operator of
class 0 as follows:

(46) Ky = (Va(A =217

(it is used here thatyyo(A, — A)~1=0).
Now use the mapping property in (45). The resolvent can beposed withv
fors> -1, so

VH(A,—N) T = (KD T HY(Q) — H%"2(Z) for — 3 <s<0.
It follows that
(47) K} 1 HS2(2) — H¥(Q),

when 0< § < 3. In particulars = 0 is allowed.

Taking this together with the larger values that were covédme (43), we find
that (47) holds for

(48) 0<d <2

the intermediate values are included by interpolation. Afgotes’ by s from here on.

One can analyze the structurel@f for the low values o$further, decomposing
it into terms belonging to the calculus and lower-order rigyti@rs. There is a difficulty
here in the fact that order-reducing operators as well asabqs iny-form enter, and
both types affect the-values for which the decompositions and mapping propeatie
valid (cf. Remark 1). We refrain from including a deeper gs.

There is a similar result fd({f. The adjoints also extend, e.g.
(49) (K{,X)* THS(Q) — HST2(3), for —2<s<0;

recall thatH§(Q) = H%(Q) when|s| < % To sum up, we have shown:
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THEOREMS8. WhenQ is Ct! and A has C-coefficients, the solution operators
K} and K for (8) and its primed version mapH3 (Z) to H¥(Q) for 0 < s < 2. They
are generalized Poisson operators in the sense thatéRjr%sZ], they can be written as
the sum of a Poisson operator oblder smoothnesf), 1), in order-reduced x-form,
and a lower order operator.

The next step is to studg} ,, = V1K) andP\’/é’v,l =ViK, cf. (10)ff.
We have immediately from the mapping properties estaldisimve, that

(50) Ph vy P

1 3
Yov1> Fyos -HS 2(2) — HS 2(2),

when 3 < s< 2. Let us also introduce the operatgf = v} + a4yo, then Green’s
formula (7) takes the form

(51) (AUV)L,(0) = (UAV)L,(9) = (ViU Yov) 1 1 — (You,V1V)

NIw

,ga

foruec H2(Q), v e D(Aha), andP\’g\),, (cf. (11)) likewise maps as in (50) ff. Applying
V1

(51) to functionau, v with Au= 0, A'v= 0, we see thz:\*?\?o’\,1

in each other’s adjoints. Therefd?% v, considered in (50) has the extens(@%\ V,,)*,
) V1

which is continuous fronh-ngf%(Z) to H§+%(Z) for —2<§ < —3. This extends the
statement in (50) to the values0s < % and by interpolation we obtain the validity of
(50)for0<s<?2.

P\%,vl can in the localizations t&") be described as the composition of the op-
eratorv; = Spy1 (with sp € C°1) and a generalized Poisson operator consisting of an
operator in order-reducedform havingC%!-smoothness plus a remainder of lower
order. Forse]%,Z] we can apply Theorem 6 20 the compositions, using thb(@‘ is
locally the sum of a compositioh=% K?(A)A2 (multiplied with smooth cut-off func-
tions) whereK9()) is in x-form, and a remainder of lower order. This implies that
P&O«,Vl’ apart from the remainder term coming frd(@, is the sum of a first-ordepdo

in x-form with C%1-smoothness and a remainder term, mappihigt(Z) to H'(Z) for

it < 1, respH"18(Z) to HY(Z) for —1+8 <t < 1. Withs—3 =t+1,srunsin
13,3[ resp.]2 +6, 3] here, which covers the intervale]3,2] allowed by the other
remainder.

For low values of there is again the difficulty that we are dealing with a com-
position with ingredients of order-reducing operators &mat y-form operators, which
each have different rules for the spaces in which the decesitipas and mapping prop-
erties are valid, and we refrain from a further discussiarhe

Observe moreover thﬂ\mvl is elliptic (the principal symbol is invertible) —
since this is known foP? | ( [4], [15]).

This shows:

andP? , are contained
Yo,V1
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THEOREM 9. Assumptions as in Theoren PV)\OaVl

to HS*%’(Z) for s [0,2]. They are generalized elliptipdo’s of order1, in the sense
that for se]%,Z], they have the form of an elliptic principal part in x-formdblder
smoothnesg), 1) plus a lower order part.

N 1
and P\‘/o,v,l map H 2 (%)

With these mapping properties it is straightforward to fyetfiat ™ andl™’ de-
fined in (25) satisfy the full statement in (12).

When more smoothness @fis assumed, the representatiorPQjVl as the sum
of a principal part irx-form and a lower-order term can of course be extended tetarg
intervals than found above.

6. Interpretation of realisations

We now have all the ingredients to interpret the abstractatterisation of closed
realisationsA in terms of operator§ :V — W recalled in Section 2, to boundary
conditions. In fact, we have the mappings defined from theetoperatoyg

~ 1 1 ~
Yz, 1 Zn = H72(2), Yz, 1HZI(Z) = 2,
and the mappings defined from Poisson-type operators
_1 * . 1
K} tH2(2) = HYQ), (K))":HO(Q) — HZ(%),

as well as the versions with primes. Then the various dedimtrecalled in Section 3
for the smooth case, carryifig : Vi — W, over tol* : H-2(5) — HZ (%) if V = Z,
W =27, resp. toLﬁ : X1 — Y1 in general, are effective in exactly the same way, and all
the diagrams are valid in this situation.

In this way,,& is determined by a Neumann-type boundary condition

viu= (L+PQ,,)you

in the cas&/ = Z, W = Z/, and by a condition involving projections in the generakcas
The adjointA is determined by the boundary condition

viu= (L* + P\’lg’v,l)you

in the case&/ = Z, W = Z' (resp. by a condition involving projections in the general
case), wheré&* is the adjoint ol, considered as a generally unbounded operator from

H-2(Z) toHZ(Z).
There is a well-definet-function M, (A), which coincides with—(L*)~* for

Aep(A)N p(A); here (20) and (19) hold. Suitably modified results hold isesaof
generaV,W.

For the cas®' = Z, W = Z’, we have obtained:
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THEOREM 10. WhenQ is Cb1 and A has € coefficients, bounded with boun-
ded derivatives on a neighborhood®f and is uniformly strongly elliptic, then Theo-
rem5 (i)—(v) and(20) are valid.

Gesztesy and Mitrea have in [12] established Krein resoli@mulas for the
Laplacian under a weaker smoothness hypothesis, namelQttsaC-° with ¢ > %
Here they treaselfadjointrealisations determined by Robin-type boundary condition

(52) yiu = Byou,

with B compact fromH? to H® (assured ifB is of order< 1). Posilicano and Rai-
mondi [29] describe results farelfadjointrealisations in cas@ is C1! and the co-
efficients ofA, when it is written in symmetric divergence form, a2&! satisfying
various hypotheses. They remark that their treatment wimkboundary conditions
(52) with y; replaced by the oblique Neumann trace operato23) connected with
the divergence form. Hei®is taken of ordek 1, so it is a Robin-type perturbation of
the natural Neumann condition.

It is an important point in the present treatment, besidasitldeals with non-

selfadjoint situations, that Neumann-type conditiong (&ith generalpdo’sC of order
1 are included in the detailed discussion.

Furthermore, our pseudodifferential strategy allows fhyaiaation of ellipticity
concepts:

WhenC is a generalized pseudodifferential operator of order 1 ldittler
smoothnes$0,1), L=C— P\%’vl is a generalized pseudodifferential operator of order
1 and Holder smoothne$8,1), and vice versal is elliptic precisely when the model
boundary value problem fa& with the boundary condition (17) is uniquely solvable at
all (X, &) with & = 0 in the boundary cotangent space (this is the Shapiro- Lrogidit
condition). L* is then also elliptic at each € p(Ay) (sinceP} ,, — PQ ,, is of order
<1).

Moreover, there is then a parametrixigfand this can be used to investigate the
regularity of the domain of. Likewise, each.* has a parametrix then. However, we
want to set the true inverseM( (A) in relation to such a parametrix.

Restrict the attention to the case wheéris a first-ordedifferentialoperator on
> with C%1-coefficients; then we can say more abblytA) with the present methods.

Assume a little more, namely that there is a hay: —2€®, e R, such that
when we include\ in the principal symbol oP&o,vl, then the principal symbol df* =
C—PJ} ,, isinvertible for|&'|?+ [u|? > 1 (“parameter-ellipticity”). Les €]3,2]. Asin
Section 5, we can invoke the system foon Q = Q x St (39) coupled with the same
boundary operator (constant in thidirection)

- A . HTQ)
ﬂ(v _c ):HS(Q)*) X :
1—CYo HS*%’(E)

it is elliptic and has a parametri&o. For the functionsi(x,t) = w(x)€H, this gives a
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A-dependent parametrix family for () = (A—)\vl—Cyo) (when|A| > 1) such that
the remainder in the composition with()) is O((p)~®) for A — « on the ray. Then
there is a true inverse of (\), hence ofL*, for suff|C|entIy large\ on the ray. We can
follow this up for the operatdt C- PyO vy overZ which glvesLA when applied to

functionsd(x)e™. Herel has a parametrlk such that’L — I is of negative order;
this gives a parametrik® of L* such that.*[* — I has anO((u)~®) estimate. For
sufficiently large on the ray this allows us to writel, (\) = —(L*)"t as—L* + &
with % _of lower order. More precisely,® is obtained as a composition of an operator
in x-form with an order-reducing operator to the left; it mapmﬁrHS*% to HS*%, and
the remainder maps froms 28 to HS-2. (Thes€]2, 2] run inside the interval where
the parametrix construction for elliptic first-ord¢do’s of Hdlder smoothnes®,1)
works, as in Theorem 6°3and Remark 1.) In this sendé (A) is a generalizedido

of order—1.

Using this information fos = 2, we see tha_(A) mapH% not just toH 2
buttoH2. ThenD(L) = D(L) = HZ andD(A) is in H2(Q).
If, moreoverC* has Holder smoothne&$-%, the adjointd* is of the same type.

In particular, there is selfadjointnessAfandL are formally selfadjoint. This gives a
very satisfactory version of the Krein formula.

THEOREM 11. If, in addition to the hypotheses of Theord®, C is a first-
order differential operator with Elder smoothnes, 1) and the principal symbol of
L* =C— Py, is parameter-elliptic on a raj = —’€®, pe R, then OL) = H2(5),
and M_(A) is for largeA on the ray the sum of an elliptisdo of order—1 and Holder
smoothnes$0,1), in order-reduced x-form, and a lower-order term. The(APC
H2(Q).

If, moreover, C has Hlder smoothnes®, 1), the adjointA* is defined similarly
from of L* with D(L*) = HZ, D(A*) € H2(Q). In particular, A is selfadjoint if A and L
are formally selfadjoint.

From the point of view of the systematic parameter-depeincidaulus of [19],
the symbols o€ andP? VO v, have “regularity = +" whenCis a differential operator,
so there is a parametrix W|th the same “regulatity”.

PseudodifferentiabperatorsC can be included in the discussion if the symbol
classes in [19] are used in a more definitive way (here wbés of order 1, it has
“regularity 1”, and the same will hold for the resulting pripal symbols of.* and
ML (A)). Considerations with finite positive “regularity” play anportantrole in [1,2].
We hope to return to such cases in future works, but here jasted to show what can
be done using Agmon’s principle.
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