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KREIN RESOLVENT FORMULAS FOR ELLIPTIC

BOUNDARY PROBLEMS IN NONSMOOTH DOMAINS ∗

Abstract. The paper reports on a recent construction ofM-functions and Kreı̆n resolvent for-
mulas for general closed extensions of an adjoint pair, and their implementation to boundary
value problems for second-order strongly elliptic operators on smooth domains. The results
are then extended to domains withC1,1 Hölder smoothness, by use of a recently developed
calculus of pseudodifferential boundary operators with nonsmooth symbols.

1. Introduction

In the study of boundary value problems for ordinary differential equations, the Weyl-
Titchmarshm-function has played an important role for many years; it allows a re-
duction of questions concerning the resolvent(Ã−λ)−1 of a realisatioñA to questions
concerning an associated familyM(λ) of matrices, holomorphic inλ ∈ ρ(Ã). More-
over, there is a formula describing the difference between(Ã−λ)−1 and the resolvent
of a well-known reference problem in terms ofM(λ), a so-called Kreı̆n resolvent for-
mula. The concepts have also been introduced in connection with the abstract theories
of extensions of symmetric operators or adjoint pairs in Hilbert spaces, initiated by
Kreı̆n [22] and Vishik [32]. The literature on this is abundant, and we refer to e.g.
Brown, Marletta, Naboko and Wood [10] and Brown, Grubb and Wood [9] for ac-
counts of the development, and references. For elliptic partial differential equations
in higher dimensions, concrete interpretations ofM(λ) have been taken up in recent
years, e.g. in Amrein and Pearson [5], Behrndt and Langer [6], and in [10]; hereM(λ)
is a family of operators defined over the boundary. In the present paper we report on
the latest development in nonsymmetric cases worked out in [9]; it uses the early work
of Grubb [14] as an important ingredient.

The interest of this in a context of pseudodifferential operators is thatM(λ)
in elliptic cases, and also in some nonelliptic cases, is a pseudodifferential operator
(ψdo), to whichψdo methods can be applied. The new results in the present paper are
concerned with situations with a nonsmooth boundary. Our strategy here is to apply
the nonsmooth pseudodifferential boundary operator (ψdbo) calculus introduced by
Abels [3]. We show that when the domain isC1,1 and the given strongly elliptic second-
order operatorA has smooth coefficients, then indeed theM-function can be defined as
a generalizedψdo over the boundary, and a Kreı̆n formula holds. Selfadjoint cases have
been treated under various nonsmoothness hypotheses in Gesztesy and Mitrea [12],
Posilicano and Raimondi [29], but the present study allows nonselfadjoint operators,
and includes a discussion of Neumann-type boundary conditions. Besides bounded
domains, we also treat exterior domains and perturbed halfspaces.

∗It is a pleasure to dedicate this paper to Prof. Luigi Rodino on the occasion of his 60th birthday.
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2. Abstract results

We begin by recalling the theory of extensions andM-functions established in works
of Brown, Wood and the author [9] and [14].

There is given an adjoint pair of closed, densely defined linear operatorsAmin,
A′min in a Hilbert spaceH:

Amin⊂ (A′min)
∗ = Amax, A′min⊂ (Amin)

∗ = A′max.

LetM denote the set of linear operators lying between the minimaland maximal op-
erator:

M = {Ã | Amin⊂ Ã⊂ Amax}, M ′ = {Ã′ | A′min⊂ Ã′ ⊂ A′max}.

Write Ãu as Au for any Ã, and Ã′u as A′u for any Ã′. Assume that there exists an
Aγ ∈ M with 0 ∈ ρ(Aγ); thenA∗γ ∈ M ′ with 0 ∈ ρ(A∗γ ). We shall defineM-functions

for anyclosedÃ∈M .

First recall some details from the treatment of extensions in [14]: Denote

Z = kerAmax, Z′ = kerA′max.

Define the basic non-orthogonal decompositions

D(Amax) = D(Aγ)+̇Z, denotedu = uγ +uζ = prγ u+prζ u,

D(A′max) = D(A∗γ )+̇Z′, denotedv = vγ′ +vζ′ = prγ′ v+prζ′ v;

here prγ = A−1
γ Amax, prζ = I−prγ, and prγ′ = (A∗γ)

−1A′max, prζ′ = I−prγ′ . By prV u= uV

we denote theorthogonal projectionof u ontoV.

The following “abstract Green’s formula” holds:

(1) (Au,v)− (u,A′v) = ((Au)Z′ ,vζ′)− (uζ,(A
′v)Z).

It can be used to show that wheñA∈M and we setW = prζ′D(Ã∗), then

{{uζ,(Au)W} | u∈ D(Ã)} is a graph.

Denoting the operator with this graph byT, we have:

THEOREM 1. [14] For the closed̃A∈M , there is a1–1correspondence

Ã closed←→
{

T : V→W, closed, densely defined

with V⊂ Z, W ⊂ Z′, closed subspaces.
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Here D(T) = prζ D(Ã), V = D(T), W = prζ′D(Ã∗), and

Tuζ = (Au)W for all u ∈ D(Ã), (thedefining equation).

In this correspondence,

(i) Ã∗ corresponds similarly to T∗ : W→V.

(ii) ker Ã = kerT; ranÃ = ranT +(H⊖W).

(iii) WhenÃ is invertible,

Ã−1 = A−1
γ + iV→H T−1prW .

Here iV→H indicates the injection ofV into H (it is often left out).

Now provide the operators with a spectral parameterλ, then this implies, with

Zλ = ker(Amax−λ), Z′λ̄ = ker(A′max− λ̄),

D(Amax) = D(Aγ)+̇Zλ, u = uλ
γ +uλ

ζ = prλγ u+prλζ u, etc.:

COROLLARY 1. Let λ ∈ ρ(Aγ). For the closed̃A ∈ M , there is a1–1 corre-
spondence

Ã−λ←→
{

Tλ : Vλ→Wλ̄, closed, densely defined

with Vλ ⊂ Zλ, Wλ̄ ⊂ Z′λ̄, closed subspaces.

Here D(Tλ) = prλζ D(Ã), Vλ = D(Tλ), W̄λ = prλ̄ζ′D(Ã∗), and

Tλuλ
ζ = ((A−λ)u)Wλ̄

for all u ∈ D(Ã).

Moreover,

(i) ker(Ã−λ) = kerTλ; ran(Ã−λ) = ranTλ +(H⊖Wλ̄).

(ii) Whenλ ∈ ρ(Ã)∩ρ(Aγ),

(Ã−λ)−1 = (Aγ−λ)−1+ iVλ→H(Tλ)−1prWλ̄
.

This gives a Kreı̆n resolvent formula for any closedÃ∈M .

The operatorsT andTλ are related in the following way: Define

Eλ = I + λ(Aγ−λ)−1, Fλ = I −λA−1
γ ,

E′λ̄ = I + λ̄(A∗γ − λ̄)−1, F ′λ̄ = I − λ̄(A∗γ)
−1,

thenEλFλ = FλEλ = I , E′λ̄F ′λ̄ = F ′λ̄E′λ̄ = I on H. Moreover,Eλ andE′λ̄ restrict to
homeomorphisms

Eλ
V : V

∼→Vλ, E′λ̄W : W
∼→Wλ̄,

with inverses denotedFλ
V resp.F ′λ̄W . In particular,D(Tλ) = Eλ

VD(T).
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THEOREM 2. Let Gλ
V,W =−prW λEλ iV→H ; then

(2) (E′λ̄W)∗TλEλ
V = T +Gλ

V,W.

In other words, T and Tλ are related by the commutative diagram (where the horizontal
maps are homeomorphisms)

Vλ �
Eλ

V V

Wλ̄

Tλ

?

(E′λ̄W)∗
- W

T+Gλ
V,W

?

D(Tλ) = Eλ
VD(T).

This is a straightforward elaboration of [16], Prop. 2.6.

Now let us introduce boundary triplets andM-functions. The general setting is
the following: There is given a pair of Hilbert spacesH , K and two pairs of “boundary
operators” 


Γ1

Γ0


 : D(Amax)→

H
×
K

,




Γ′1

Γ′0


 : D(A′max)→

K
×
H

,

bounded with respect to the graph norm and surjective, such that

D(Amin) = D(Amax)∩kerΓ1∩kerΓ0, D(A′min) = D(A′max)∩kerΓ′1∩kerΓ′0,

and for allu∈ D(Amax), v∈ D(A′max),

(Au,v)− (u,A′v) = (Γ1u,Γ′0v)H − (Γ0u,Γ′1v)K .

Then the three pairs{H ,K }, {Γ1,Γ0} and{Γ′1,Γ′0} are said to form aboundary triplet.
(See [10] and [9] for references to the literature on this.)

Note that under our assumptions, the choice

(3) H = Z′, K = Z,

(
Γ1u
Γ0u

)
=

(
(Au)Z′

uζ

)
,

(
Γ′1v
Γ′0v

)
=

(
(A′v)Z

vζ′

)
,

defines a boundary triplet, cf. (1).

Following [10], the boundary triplet is used to define operators AT ∈ M and
A′T ′ ∈M ′ for any pair of operatorsT ∈ L (K ,H ), T ′ ∈ L (H ,K ) by

(4) D(AT) = ker(Γ1−TΓ0), D(A′T ′) = ker(Γ′1−T ′Γ′0).

Then they show:
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PROPOSITION1. For λ ∈ ρ(AT), there is a well-defined M-function MT(λ) de-
termined by

MT(λ) : ran(Γ1−TΓ0)→ K , MT(Γ1−TΓ0)u = Γ0u for all u∈ Zλ.

Likewise, forλ ∈ ρ(A′T′), the function M′T ′(λ) is determined similarly by

M′T ′(λ) : ran(Γ′1−T′Γ′0)→ H , M′T ′(Γ
′
1−T ′Γ′0)v = Γ′0v for all v∈ Z′λ.

Here, whenρ(AT) 6= /0,
(AT)∗ = A′T∗ .

This was set in relation to Theorem 1 in [9]: Take the boundarytriplet defined
in (3). Then the formula forD(AT) in (4) is the same as the defining equation (2)
for D(Ã). For the sake of generality, allow also unbounded, densely defined, closed
operatorsT : Z→ Z′; then in fact the formulas in Proposition 1 still lead to a well-
definedM-functionMT(λ). We denoteAT by Ã andMT(λ) by MÃ(λ), when they come
from the special choice (3) of boundary triplet. Then we have:

THEOREM3. Let Ã correspond to T: Z→ Z′ by Theorem1. For anyλ ∈ ρ(Ã),
MÃ(λ) is in L (Z′,Z) and satisfies

MÃ(λ) = prζ(I − (Ã−λ)−1(Amax−λ))A−1
γ iZ′→H .

Moreover, M̃A(λ) relates to T and Tλ by:

MÃ(λ) =−(T +Gλ
Z,Z′)

−1 =−Fλ
Z (Tλ)−1(F ′λ̄Z′ )

∗, for λ ∈ ρ(Ã)∩ρ(Aγ).

This takes care of those operatorsÃ for which prζ D(Ã) is dense inZ and

prζ′ D(Ã∗) is dense inZ′. But the construction extends in a natural way to all the

closedÃ∈M , giving the following result:

THEOREM4. Let Ã correspond to T: V→W by Theorem1. For anyλ ∈ ρ(Ã),
there is a well-defined M̃A(λ) ∈ L (W,V), holomorphic inλ and satisfying

(i) MÃ(λ) = prζ(I − (Ã−λ)−1(Amax−λ))A−1
γ iW→H .

(ii) Whenλ ∈ ρ(Ã)∩ρ(Aγ),

MÃ(λ) =−(T +Gλ
V,W)−1.

(iii) For λ ∈ ρ(Ã)∩ρ(Aγ), it enters in a Krĕın resolvent formula

(Ã−λ)−1 = (Aγ−λ)−1− iVλ→H Eλ
VMÃ(λ)(E′λ̄W)∗prWλ̄

.

Other Kreı̆n-type resolvent formulas in a general framework of relationscan be
found in Malamud and Mogilevskiı̆ [26, Section 5.2].
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3. Neumann-type conditions for second-order operators

The abstract theory can be applied to elliptic realisationsby use of suitable mappings
going to and from the boundary, allowing an interpretation in terms of boundary con-
ditions. We shall demonstrate this in the strongly ellipticsecond-order case.

Let Ω be an open subset ofRn of one of the following three types: 1)Ω is
bounded, 2)Ω is the complement of a bounded set (i.e., is an exterior domain), or 3)
there is a ballB(0,R) with center 0 and radiusR such thatΩ \B(0,R) = R

n
+ \B(0,R)

(we then callΩ a perturbed halfspace). More general sets or manifolds could be con-
sidered in a similar way, namely the so-called admissible manifolds as defined in the
book [19].

The sets will in the present section be assumed to beC∞; later from Section 5
on they will be taken to beCk,σ, wherek is an integer≥ 0 andσ ∈ ]0,1]. (Recall that
the norm on the Hölder spaceCk,σ(V) is

‖u‖Ck,σ(V) = sup
|α|≤k,x∈V

|Dαu(x)|+ sup
|α|=k,x6=y

|Dαu(x)−Dαu(y)| |x−y|−σ.)

We then denotek+ σ = τ.

That a bounded domainΩ isCk,σ means that there is an open cover{U j} j=1,...,J

of ∂Ω such that by an affine coordinate change for eachj, U j is a box{maxk≤n |yk| <
a j}, and

Ω∩U j = {(y′,yn) |max
k<n
|yk|< a j , f j(y

′) < yn < a j},

∂Ω∩U j = {(y′,yn) |max
k<n
|yk|< a j , yn = f j(y

′)},

with Ck,σ-functionsf j such that| f j (y′)|< a j for maxk<n |yk|< a j . The diffeomorphism
(coordinate change)

(5) Fj : (y′,yn) 7→ (y′,yn− f j(y
′))

is then alsoCk,σ. The setsU j must be supplied with a suitable bounded open setU0

with closure contained inΩ, to get a full cover ofΩ.

For exterior domains, we cover∂Ω similarly, then this must be supplied with
a suitable open setU0 with closure contained inΩ to get a full cover ofΩ; hereU0

contains the complement of a ball,U0⊃ Rn\B(0,R′).

For a perturbed halfspace, we cover∂Ω∩B(0,R+1) as above, and supply this
with U0 = {x | xn >−ε, |x|> R} to get a full cover ofΩ.

The boundary∂Ω will be denotedΣ. We assume in the present section thatΩ is
C∞; thenΣ is an(n−1)-dimensionalC∞ manifold without boundary.

Let A = ∑|α|≤2aαDα with C∞ coefficientsaα given on a neighborhood̃Ω of Ω
(containingU0 in the perturbed halfspace case), and uniformly strongly elliptic:

Re ∑
|α|=2

aα(x)ξα ≥ c0|ξ|2, all x∈ Ω̃,ξ ∈R
n,
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c0 > 0. The formal adjointA′ = ∑|α|≤2Dαāα = ∑|α|≤2a′αDα likewise hasC∞ coeffi-

cientsa′α and is strongly elliptic oñΩ. We asume that the coefficients and all their
derivatives are bounded.

We denote byAmax resp.Amin the maximal resp. minimal realisations ofA in
L2(Ω) = H; they act likeA in the distribution sense and have the domains

D(Amax) = {u∈ L2(Ω) | Au∈ L2(Ω)}, D(Amin) = H2
0(Ω)

(usingL2 Sobolev spaces). Similarly,A′max andA′min denote the maximal and minimal
realisations inL2(Ω) of the formal adjointA′; hereAmax = A′min

∗, A′max = Amin
∗.

Denoteγ j u= (∂ j
nu)|Σ, where∂n is the derivative along the interior normal~n atΣ.

Let s0(x′) be the coefficient of−∂2
n whenA is written in terms of normal and tangential

derivatives atx′ ∈ Σ; it is bounded with bounded inverse. Denoting

s0γ1 = ν1, s̄0γ1 = ν′1,

we have the Green’s formula forA valid for u,v∈H2(Ω),

(6) (Au,v)L2(Ω)− (u,A′v)L2(Ω) = (ν1u,γ0v)L2(Σ)− (γ0u,ν′1v+A ′0γ0v)L2(Σ),

whereA ′0 is a certain first-order differential operator overΣ. The formula extends e.g.
to u∈H2(Ω), v∈ D(A′max), as

(7) (Au,v)L2(Ω)− (u,A′v)L2(Ω) = (ν1u,γ0v) 1
2 ,− 1

2
− (γ0u,ν′1v+A ′0γ0v) 3

2 ,− 3
2
,

where(·, ·)s,−s denotes the duality pairing betweenHs(Σ) andH−s(Σ). (Cf. Lions and
Magenes [24] for this and the next results.)

The Dirichlet realisationAγ is defined as usual by variational theory (the Lax-
Milgram lemma); it is the restriction ofAmax with domain

D(Aγ) = D(Amax)∩H1
0(Ω) = H2(Ω)∩H1

0(Ω),

where the last equality follows by elliptic regularity theory. By addition of a constant to
A if necessary, we can assume that the spectrum ofAγ is contained in{λ∈C |Reλ > 0}.
For λ ∈ ρ(Aγ), s∈ R, let

Zs
λ(A) = {u∈ Hs(Ω) | (A−λ)u= 0};

it is a closed subspace ofHs(Ω). The trace operatorsγ0, γ1 andν1 extend by continuity
to continuous maps

γ0 : Zs
λ(A)→Hs− 1

2 (Σ), γ1,ν1 : Zs
λ(A)→ Hs− 3

2 (Σ),

for all s∈ R. When λ ∈ ρ(Aγ), let Kλ
γ : ϕ 7→ u denote the Poisson operator from

Hs− 1
2 (Σ) to Hs(Ω) solving the semi-homogeneous Dirichlet problem

(8) (A−λ)u= 0 in Ω, γ0u = ϕ on Σ.
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It is well-known thatKλ
γ maps homeomorphically

Kλ
γ : Hs− 1

2 (Σ)
∼→ Zs

λ(A),

for all s∈ R, with γ0 acting as an inverse there. The analogous operator forA′− λ̄ is
denotedK′λ̄γ .

We shall now recall from [9,14] how the statements in Section2 are interpreted
in terms of boundary conditions. In the rest of this section,we abbreviateHs(Σ) to Hs.
With the notation from Section 1,

Z0
0(A) = Z, Z0

0(A′) = Z′, Z0
λ(A) = Zλ, Z0

λ(A′) = Z′λ.

We denote byγZλ the restriction ofγ0 to a mapping fromZλ (closed subspace ofL2(Ω))

to H−
1
2 ; its adjointγ∗Zλ

goes fromH
1
2 to Zλ:

γZλ : Zλ
∼→H−

1
2 , with adjointγ∗Zλ

: H
1
2
∼→ Zλ.

There is a similar notation for the primed operators. Whenλ = 0, this index is left out.

These homeomorphisms allow “translating” an operatorT : Z→ Z′ to an oper-
atorL : H−

1
2 → H

1
2 , as in the diagram

(9)

Z
γZ - H−

1
2

Z′

T

?

(γ∗
Z′ )
−1
- H

1
2

L

?

D(L) = γ0D(T),

whereby(Tz,z′) = (Lγ0z,γ0z′) 1
2 ,− 1

2
.

We moreover define the Dirichlet-to-Neumann operators for eachλ ∈ ρ(Aγ),

(10) Pλ
γ0,ν1

= ν1Kλ
γ ; P′λ̄γ0,ν′1

= ν′1K′λ̄γ ;

they are first-order elliptic pseudodifferential operators overΣ, continuous fromHs− 1
2

to Hs− 3
2 for all s∈ R, and Fredholm in caseΣ is bounded. (Their pseudodifferential

nature and ellipticity was explained e.g. in [15]).

For general trace mapsβ andη we write

(11) Pλ
β,η : βu 7→ ηu, u∈ Zs

λ(A),

when this operator is well-defined.

Introduce the trace operatorsΓ andΓ′ (from [14], where they were calledM and
M′) by

(12) Γ = ν1−P0
γ0,ν1

γ0 = ν1A−1
γ Amax, Γ′ = ν′1−P′0γ0,ν′1

γ0 = ν′1(A
∗
γ )
−1A′max.
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HereΓ andΓ′ mapD(Amax) resp.D(A′max) continuously ontoH
1
2 . With these pseu-

dodifferential boundary operators there is a generalized Green’s formula validfor all
u∈ D(Amax), v∈ D(A′max):

(13) (Au,v)L2(Ω)− (u,A′v)L2(Ω) = (Γu,γ0v) 1
2 ,− 1

2
− (γ0u,Γ′v)− 1

2 , 1
2
.

In particular,

(14) (Au,w) = (Γu,γ0w) 1
2 ,− 1

2
for all w∈ Z0

0(A′) = Z′.

(Cf. [14], Th. III 1.2.) By composition with suitable isometriesΛt : Hs(Σ)→Hs−t(Σ),
(13) can be turned into a standard boundary triplet formula

(15) (Au,v)L2(Ω)− (u,A′v)L2(Ω) = (Γ1u,Γ′0v)L2(Σ)− (Γ0u,Γ′1v)L2(Σ),

with Γ1 = Λ 1
2
Γ, Γ′1 = Λ 1

2
Γ′, Γ0 = Γ′0 = Λ− 1

2
γ0 andH = K = L2(Σ).

There is a general “translation” of the abstract results in Section 1 to statements
on closed realisations̃A of A. First letÃ correspond toT : Z→ Z′ (i.e., assumeV = Z,
W = Z′). Then in view of (9) and (14), the defining equation in Theorem 1 is turned
into

(Γu,γ0z′) 1
2 ,− 1

2
= (Lγ0u,γ0z′) 1

2 ,− 1
2
, all z′ ∈ Z′.

Sinceγ0z′ runs throughH−
1
2 , this means thatΓu = Lγ0u, also written

ν1u = (L+P0
γ0,ν1

)γ0u.∗

ThusÃ represents aNeumann-type condition

(16) ν1u = Cγ0u, with C = L+P0
γ0,ν1

.

This allows all first-orderψdo’sC to enter, namely by lettingL act asC−P0
γ0,ν1

.

The elliptic case:Consider a Neumann-type boundary condition

(17) ν1u = Cγ0u,

whereC is a first-order classicalψdo onΣ. Let Ã be the restriction ofAmax with domain

D(Ã) = {u∈D(Amax) | ν1u = Cγ0u}.

Now the boundary condition satifies the Shapiro-Lopatinskiı̆ condition (iselliptic) if
and only ifL is elliptic; then in fact

(18) D(Ã) = {u∈H2(Ω) | ν1u = Cγ0u}.

Then the adjoint̃A∗ equals the operator that is defined similarly fromA′ by the bound-
ary condition

ν′1v = (C∗−A ′0)γ0v,
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likewise elliptic.

When we do the above considerations forÃ−λ, we getLλ satisfying the dia-
gram

Z
Eλ

Z - Zλ
γZλ - H−

1
2

Z′

T+Gλ
Z,Z′

?

(F ′λ̄
Z′ )
∗
- Z′λ̄

Tλ

?

(γ∗
Z′

λ̄
)−1

- H
1
2

Lλ

?

D(Lλ) = D(L).

Here the horizontal maps are homeomorphisms, and they compose asγZλEλ
Z = γZ,

(γ∗Z′
λ̄
)−1(F ′λ̄Z′ )

∗ = (γ∗Z′)
−1, so

Lλ = γ−1
Z (T +Gλ

Z,Z′)γ
∗
Z′ .

In terms ofLλ, the boundary condition reads:

ν1u = (Lλ +Pλ
γ0,ν1

)γ0u.

Note thatLλ +Pλ
γ0,ν1

= C = L+P0
γ0,ν1

, so

Lλ = L+P0
γ0,ν1
−Pλ

γ0,ν1
.

As shown in [9], this leads to:

THEOREM 5. Assumptions as in the start of Section3, with C∞ domain and
operator. LetÃ correspond to T: Z→ Z′, carried over to L: H−

1
2 → H

1
2 . ThenÃ

represents the boundary condition(16). Moreover:

(i) For λ ∈ ρ(Aγ), P0
γ0,ν1
−Pλ

γ0,ν1
∈ L (H− 1

2 ,H
1
2 ) and

Lλ = L+P0
γ0,ν1
−Pλ

γ0,ν1
.

(ii) For λ ∈ ρ(Ã), there is a related M-function∈ L (H 1
2 ,H−

1
2 )

ML(λ) = γ0
(
I − (Ã−λ)−1(Amax−λ)

)
A−1

γ iZ′→H γ∗Z′ .

(iii) For λ ∈ ρ(Ã)∩ρ(Aγ),

ML(λ) =−(L+P0
γ0,ν1
−Pλ

γ0,ν1
)−1 =−(Lλ)−1.

(iv) For λ ∈ ρ(Aγ),

ker(Ã−λ) = Kλ
γ kerLλ,

ran(Ã−λ) = γ∗Z′
λ̄
ranLλ + ran(Amin−λ),
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so that H\ (ran(Ã−λ)) = Z′λ̄ \ (γ
∗
Z′

λ̄
ranLλ).

(v) For λ ∈ ρ(Ã)∩ρ(Aγ) there is a Krĕın resolvent formula:

(Ã−λ)−1 = (Aγ−λ)−1− iZλ→H γ−1
Zλ

ML(λ)(γ∗Z′
λ̄
)−1prZ′

λ̄

= (Aγ−λ)−1−Kλ
γ ML(λ)(K′λ̄γ )∗.(19)

(vi) In particular, if C is aψdo of order1 such that C−P0
γ0,ν1

is elliptic, and

ρ(Ã)∩ρ(Aγ) 6= /0, then D(L) = H
3
2 , and

(20) ML(λ) =−(C−Pλ
γ0,ν1

)−1

is elliptic of order−1 for all λ ∈ ρ(Ã). HereÃ satisfies(18)with (16).

Note that with the notation (11),C−Pλ
γ0,ν1

=−Pλ
γ0,ν1−Cγ0

, andML(λ) = Pλ
ν1−Cγ0,γ0

.

Observe the simple last formula in (19), whereKλ
γ is the Poisson operator for

A−λ, the adjoint being a trace operator of class zero.

The Kreı̆n formula is consistent with formulas found for selfadjoint cases with
Robin-type conditions in other works, such as Posilicano [28], Posilicano and Rai-
mondi [29], Gesztesy and Mitrea [12], when one observes that

(21) (K′λ̄γ )∗ = ν1(Aγ−λ)−1;

this follows from the fact that forϕ ∈ H−
1
2 (Σ) and v = K′λ̄γ ϕ, f ∈ L2(Ω) and u =

(Aγ−λ)−1 f , one has using Green’s formula (7):

( f ,K′λ̄γ ϕ)L2(Ω) = ((A−λ)u,v)L2(Ω)− (u,(A′− λ̄)v)L2(Ω)

= (ν1u,γ0v) 1
2 ,− 1

2
− (γ0u,ν′1v+A ′0γ0v) 3

2 ,− 3
2

= (ν1(Aγ−λ)−1 f ,ϕ) 1
2 ,− 1

2
.

For the general case of̃A corresponding toT : V →W with subspacesV ⊂ Z,
W⊂ Z′, there is a related “translation” to boundary conditions. Details are given in [9],
let us here just mention some ingredients:

We use the notation in (15) ff. Set

X1 = Γ0D(Ã) = Λ− 1
2
γ0V ⊂ L2(Σ), Y1 = Γ0D(Ã∗) = Λ− 1

2
γ0W⊂ L2(Σ),

whereΓ0 restricts to homeomorphisms

Γ0,V : V
∼→ X1, Γ0,W : W

∼→Y1.
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ThenT : V→W is carried over toL1 : X1→Y1 by

V
Γ0,V

- X1

W

T

?

(Γ∗0,W)−1
- Y1

L1

?

D(L1) = Γ0D(T),

The boundary condition is:

Γ0u∈D(L1), L1Γ0u = prY1
Γ1u.

There is a similar reduction for̃A−λ whenλ ∈ ρ(Aγ), and we find that

Lλ
1 = L1 +prY1

Λ 1
2
(P0

γ0,ν1
−Pλ

γ0,ν1
)Λ 1

2
iX1→L2(Σ) .

There is anM-functionML1(λ) :Y1→X1 defined forλ∈ ρ(Ã). It equals−(Lλ
1)
−1 when

λ ∈ ρ(Ã)∩ρ(Aγ), and there is then a Kreı̆n resolvent formula

(Ã−λ)−1 = (Aγ−λ)−1− iVλ→H Γ−1
0,Vλ

ML1(λ)(Γ∗0,Wλ̄
)−1prWλ̄

= (Aγ−λ)−1−Kλ
γ,X1

ML1(λ)(K′λ̄γ,Y1
)∗;

hereKλ
γ,X1

: X1⊂ L2(Σ)
Λ 1

2−→ H−
1
2 (Σ)

Kλ
γ−→ L2(Ω).

For higher order elliptic operators, and systems, there aresimilar results onM-
functions and Kreı̆n resolvent formulas, see [9]. In such cases there occur interesting
subspace situations whereX andY are (homeomorphic to) full products of Sobolev
spaces overΣ.

4. The nonsmoothψdbo calculus

The study of the smooth case was formulated in [9] in terms of the pseudodifferential
boundary operator (ψdbo) calculus, which was initiated by Boutet de Monvel [8] and
further developed e.g. in Grubb [17], [19] (we refer to theseworks or to [20] for details
on the calculus). Theψdbo theory has been adapted to nonsmooth situations by Abels
in [3], by use of ideas from the adaptation ofψdo’s to nonsmooth cases by Kumano-
go and Nagase [23], Taylor [30]. The operators considered byAbels have symbols
that satisfy the usual estimates in the conormal variablesξ′,ξ,ηn, pointwise in the
space variablex, but are only of classCk,σ in x (so that the symbol estimates hold with
respect toCk,σ-norm in x). (For τ = k+ σ integer, one could replaceCk,σ by the so-
called Zygmund spaceCτ = Bτ

∞,∞, which is slightly larger, and gives the scale of spaces
slightly better interpolation properties, cf. Abels [1,2], but we shall let that aspect lie.)
We call(k,σ) the Hölder smoothness of the operator and its symbol.
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The theory allows the operators to act beweenLp-based Besov and Bessel-
potential spaces (1< p < ∞), but we shall here just use it in the casep = 2 (although
an extension top 6= 2 would also be interesting). Some important results of [3] are:

THEOREM 6. 1◦ One has that the continuous mapping property

A =




P+ +G K

T S


 :

Hs+m(Rn
+)N

×
Hs+m− 1

2 (Rn−1)M
→

Hs(Rn
+)N′

×
Hs− 1

2 (Rn−1)M′

holds whenA is a Green operator onRn
+ of order m∈ Z and class r, with Ḧolder

smoothness(k,σ), provided that (withτ = k+ σ)

1. |s|< τ if N′ 6= 0,

2. |s− 1
2|< τ if M ′ 6= 0,

3. s+m> r− 1
2 if N 6= 0 (class restriction).

2◦ LetA1 andA2 be as in1◦, with symbols a1 resp. a2 and constants k1,σ1,τ1,
m1,N1, . . . resp. k2,σ2,τ2,m2,N2, . . . . Assume that N′2 = N1,M′2 = M1, so that the op-
erators can be composed. Let k3 = min{k1,k2}, σ3 = min{σ1,σ2}, τ3 = min{τ1,τ2},
0 < θ < min{1,τ2}. The boundary symbol composition a1 ◦n a2 is a Green symbol a3
of order m3 = m1 + m2, class r3 = max{r1 + m2, r2} and Hölder smoothness(k3,σ3),
defining a Green operatorA3. The remainder is continuous:

A1A2−A3 :
Hs+m3−θ(Rn

+)N2

×
Hs+m3− 1

2−θ(Rn−1)M2

→
Hs(Rn

+)N′1

×
Hs− 1

2 (Rn−1)M′1

,

if the following conditions are satisfied:

1. |s|< τ3 and s−θ >−τ2 if N′1 > 0, |s− 1
2|< τ3 and s− 1

2−θ >−τ2 if M ′1 > 0;

2. −τ2 + θ < s+m1 < τ2 if N1 > 0,−τ2 + θ < s+m1− 1
2 < τ2 if M1 > 0;

3. s+m1 > r1− 1
2 if N1 > 0, s+m3−θ > r2− 1

2 if N2 > 0 (class restrictions).

3◦ Let A be as in1◦, and polyhomogeneous and uniformly elliptic with prin-
cipal symbol a0 (here N= N′ > 0). Then there is a Green operatorB 0 (the operator
with symbol(a0)−1 if m = 0) of order−m, class r−m and Ḧolder smoothness(k,σ),
continuous in the opposite direction ofA , such thatR = A B 0− I is continuous:

R :
Hs−θ(Rn

+)N

×
Hs−θ− 1

2 (Rn−1)M′
→

Hs(Rn
+)N

×
Hs− 1

2 (Rn−1)M
,

if, with τ = k+ σ,
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1. −τ+ θ < s< τ;

2. s− 1
2 >−τ+ θ if M or M ′ > 0;

3. s−θ > r−m− 1
2 (class restriction).

See [3] (Theorems 1.1, 1.2 and 6.4). For integerτ, the results are worked out
there for symbols in Zygmund spaces, but they imply the results with Hölder spaces,
see also [1, 2]. The class restrictions are imposed even whenthe operators haveC∞

coefficients.B 0 is called a parametrix ofA .

Abels has also generalized the calculus of [19] for symbols depending on a
parameterµ to nonsmooth coefficients; again the estimates in the cotangent variables
ξ′,ξ,ηn,µ are the usual ones, but valid inx w.r.t. Hölder norms.

We recall from the theory ofψdo’s thatP is said to be “inx-form” resp. “in
y-form”, when it is defined from a symbolp by

Pu= c
Z

eix·ξ p(x,ξ)û(ξ)dξ, resp.Pu= c
Z

ei(x−y)·ξ p(y,ξ)u(y)dydξ,

c= (2π)−n; the concept extends toψdbo’s. In Theorem 6, all the operators labeled with
A are inx-form. So isB 0 whenm = 0; otherwise it is a composition of an operator
in x-form with an order-reducing operator system to the left, see Remark 1 below.
The adjoints of operators inx-form are operators iny-form. [3] does not discuss the
reduction fromy-form to x-form; some indications may be inferred from Taylor [31],
Ch. 1 §9. For operators iny-form one has at least the results that can be derived from
the above results by transposition.

REMARK 1. An important tool in the calculus is “order-reducing operators”.
There are two types, one acting over the domain and one actingover the boundary:

Λr
−,+ = OP(λr

−(ξ))+ : Ht(Rn
+)
∼→Ht−r(Rn

+),

Λr
0 = OP′(〈ξ′〉r) : Ht(Rn−1)

∼→Ht−r(Rn−1), all t ∈ R,

with inversesΛ−r
−,+ resp.Λ−r

0 . Hereλr
− is the “minus-symbol” defined in [18] Prop.

4.2 as a refinement of(〈ξ′〉 − iξn)
r . In Theorem 6 3◦, whereasB 0 is the operator

with symbol (a0)−1 when m = 0, one applies the zero-order construction toA1 =

A

(
Λ−m
−,+ 0
0 Λ−m

0

)
to defineB 0 =

(
Λ−m
−,+ 0
0 Λ−m

0

)
B 0

1 whenm 6= 0.

It should be noted that when e.g.P+ is as in Theorem 6 1◦, then

(22) Λr
−,+P+ : Hs+m(Rn

+)→Hs−r(Rn
+) for − τ < s< τ,

whereas the composition rule Theorem 6 2◦ shows thatΛr
−,+P+ can be written as the

sum of an operator in the calculus OP′(λr
−,+ ◦n p(x,ξ)+) in x-form and a remainder,

such that the sum mapsHs′+m+r(Rn
+)→Hs′(Rn

+) for−τ < s′ < τ; this gives a mapping
property like in (22) but with−τ+ r < s< τ+ r. This apparently extends the range, but
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the decompositions into a primary part and a remainder are not the same;Λr
−,+P+ is

not in x-form but is an operator inx-form composed to the left withΛr
−,+, not equal to

OP′(λr
−,+ ◦n p(x,ξ)+). Compositions to the right withΛr

−,+ are simpler and preserve
x-form directly. We shall say that operators formed by composing an operator inx-form
with an order-reducing operator to the left are “in order-reducedx-form”.

Coordinate changes give some inconveniences in the nonsmooth calculus be-
cause, in aCk,σ-setting, the action ofD j after aCk,σ-coordinate change gets Jaco-
bian factors that areCk−1,σ, and higher powersDα get coefficients inCk−|α|,σ (when
k−|α| ≥ 0).

We say that an operator is a generalized Green operator (of one of the respec-
tive types) if it is the sum of an operator defined from symbolsin the calculus and a
remainder of lower order (fors in an interval, specified in each case or understood from
the context).

5. Resolvent formulas in the case of non-smooth domains

To treat one difficulty at a time, we consider in the followingthe case where the domain
is nonsmooth, but the operatorA is given with smooth coefficients (this includes of
course constant coefficients).

Let Ω be an open set inRn of one of the three types described in Section 3, of
classCk,σ. We still takeA with C∞-coefficients on a neighborhood̃Ω of Ω, as described
in Section 2.

Recall from Grisvard [13] (Th. 1.3.3.1, 1.5.1.2, 1.4.1.1, 1.5.3.4):

THEOREM 7. Let Ω be bounded and Ck,σ, let τ = k+ σ.

1◦ WhenΦ is a Ck,σ-diffeomorphism,τ integer, then u∈ Hs
loc =⇒ u◦Φ ∈ Hs

loc
for |s| ≤ τ.

2◦ One can for|s| ≤ τ, integer, define Hs(Σ) to be the space of distributions
u on Σ such that for each j, u◦F−1

j is in Hs on {y′ | max|yk| ≤ a j}. The trace map

γ0 : Hs(Ω)→ Hs− 1
2 (Σ) is well-defined for12 < s≤ τ, and the trace mapγ1 : Hs(Ω)→

Hs− 3
2 (Σ) is well-defined for32 < s≤ τ. There is a continous right inverse of each map,

and of the two maps jointly for32 < s≤ τ.

3◦ Letϕ be Ck1,σ1, τ1 = k1+σ1, then u7→ϕu is continuous in Hs(Rn) for |s| ≤ τ1

if τ1 is integer,|s|< τ1 if τ1 is non-integer.

4◦ Whenτ ≥ 2 and A is a second-order differential operator onΩ in a diver-
gence form (A=−∑ j ,k ∂ ja jk∂k+∑k ak∂k +a0) with C0,1-coefficients, and we define the
associated oblique Neumann trace operators by

(23) νA = ∑
j ,k

n ja jkγ0∂k, νA′ = ∑
j ,k

nkā jkγ0∂ j ,
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there holds a Green’s formula

(24) (Au,v)L2(Ω)− (u,A′v)L2(Ω) = (νAu,γ0v)L2(Σ)− (γ0u,νA′v−∑k
nkākγ0v)L2(Σ),

for u,v∈ H2(Ω).

The Green’s formula (24) can be reorganized as (6); for ourA with smooth
coefficients,ν1, ν′1 andA ′0 getCk−1,σ-coefficients whenΩ is Ck,σ.

We define the Dirichlet realisationAγ of A, with domainD(Aγ) = D(Amax)∩
H1

0(Ω) by the usual variational construction, and we shall assume thatAγ is invertible.
Its adjoint is the analogous operator forA′.

By the difference quotient method of Nirenberg [27] one has that D(Aγ) =
H2(Ω) ∩H1

0(Ω) when τ ≥ 2 (this fact is also derived below); detailed proofs are
e.g. found in the textbooks of Evans [11] (forC2-domains) or McLean [25] (forC1,1-
domains).

Also the extended Green’s formula (7) is valid whenτ ≥ 2; this follows by an
extension of the proof in Lions and Magenes [24], as mentioned in [13] Remark 1.5.3.5.
It follows that the generalized Green’s formula (13) holds,whenΓ andΓ′ are defined
by

(25) Γ = ν1A−1
γ Amax, Γ′ = ν′1(A

∗
γ )
−1A′max.

The local coordinates (cf. (5)) are used to reduce the curvedsituation to the flat
situation; then the boundary becomes straight but nonsmoothness is imposed on the
symbols.

In the following we work out what the nonsmoothψdbo method can give for
the Dirichlet problem; this can be regarded as a basic exercise in the calculus (some
other cases appear in works of Abels and coauthors).

First we consider the case of a uniformly strongly elliptic second-order operator
on Rn

+ — which we for simplicity of notation also callA — with Hölder smoothness
(k1,σ1) andτ1 = k1 + σ1, together with a Dirichlet trace operator,

A =

(
A
γ0

)
: Hs+2(Rn

+)→
Hs(Rn

+)
×

Hs+ 3
2 (Rn−1)

;

it is continuous for

(26) −τ1 < s< τ1, s>− 3
2,

extended to|s| ≤ τ1 if integer (cf. Theorem 7 3◦). To prepare for an application of
Theorem 6, we apply order-reducing operators (cf. Remark 1)to reduce to order 0,
introducing

(27) A1 =

(
I 0
0 Λ2

0

)
AΛ−2
−,+ =




AΛ−2
−,+

Λ2
0γ0Λ−2

−,+


 : Hs(Rn

+)→
Hs(Rn

+)
×

Hs− 1
2 (Rn−1)

,
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for s as in (26) ff. By Theorem 6 3◦ it has a parametrixB 0
1 of order 0 and class−1

defined from the principal symbols,

(28) B 0
1 =

(
R0

1 K0
1

)
:

Hs(Rn
+)
×

Hs− 1
2 (Rn−1)

→Hs(Rn
+),

for ssatisfying

(29) −τ1 + 1
2 < s< τ1, s>− 3

2;

here the remainderR1 = A1B
0
1 − I satisfies

(30) R1 :
Hs−θ(Rn

+)
×

Hs−θ− 1
2 (Rn−1)

→
Hs(Rn

+)
×

Hs− 1
2 (Rn−1)

,

when 0< θ < min{1,τ1},

(31) −τ1 + 1
2 + θ < s< τ1, s>− 3

2 + θ.

Then the equationA1B
0
1 = I +R1, also written

(
I 0
0 Λ2

0

)
AΛ−2
−,+B

0
1 = I +R1,

implies by composition to the left with

(
I 0
0 Λ−2

0

)
and to the right with

(
I 0
0 Λ2

0

)
:

AΛ−2
−,+B

0
1

(
I 0
0 Λ2

0

)
= I +R , with R =

(
I 0
0 Λ−2

0

)
R1

(
I 0
0 Λ2

0

)
.

Hence

B 0 = Λ−2
−,+B

0
1

(
I 0
0 Λ2

0

)
=
(
R0 K0

)

is a parametrix ofA , with

A B 0 = I +R ,(32)

B 0 :
Hs(Rn

+)
×

Hs+ 3
2 (Rn−1)

→ Hs+2(Rn
+), R :

Hs−θ(Rn
+)

×
Hs−θ+ 3

2 (Rn−1)

→
Hs(Rn

+)
×

Hs+ 3
2 (Rn−1)

,(33)

for s as in (29) resp. (31). With the notation from Remark 1,B 0 is in order-reduced
x-form.

Now consider the situation whereA has smooth coefficients and the domain is
nonsmooth. We shall go through the parametrix and inverse construction in the case
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where the Hölder smoothness of the domain is(1,1) so thatτ = 2. We have the direct
operator

(34) A =

(
A
γ0

)
: Hs+2(Ω)→

Hs(Ω)
×

Hs+ 3
2 (Σ)

,

it is continuous for− 3
2 < s≤ 0 (recall the restrictions+2≤ 2 coming from Theorem

7 2◦).

For eachi = 1, . . . ,J, the diffeomorhism (5) carriesΩ∩U j over toVj = {(y′,yn) |
maxk<n |yk| < a j , 0 < yn < a j − f j (y′)}, such that∂Ω∩U j is mapped to{(y′,yn) |
maxk<n |yk| < a j , yn = 0}. When the smooth differential operatorA is transformed to
local coordinates in this way, the principal part of the resulting operatorA has Hölder
smoothness(0,1), so hereτ1 = 1. In each of these charts one constructs a parametrix

B 0 for

(
A
γ0

)
as above (the coefficients ofA can be assumed to be extended toR

n
+).

When Ω is bounded or is an exterior domain, one uses for the setU0 a parametrix
of A without changing coordinates. In the perturbed halfspace case, for the setU0

one extendsA smoothly toR
n
+ and uses a smooth version of the above construction.

These parametrices are carried back to the curved situationand pieced together using a
partition of unity subordinate to the cover{U0,U1, . . . ,UJ}, as indicated in [19], p. 228
(the first factorϕi in each term in (2.4.77) should be replaced by a functionηi ∈C∞

0 (Ui)
such thatηiϕi = ϕi , to get preservation of the principal symbol after summation). Here
the coordinate changes allow the smoothness to remain at(0,1); cf. [2], in particular
Section 5.3 there. The sum overi is then a parametrix of (34); its composition withA
gives the identity plus a remainder of lower order, for valuessas indicated above.

In the subsequent compositions below, it will always be understood that they
take place in local coordinates (after decomposing the operators in pieces supported in
theUi by use of suitable partitions of unity) and are taken back to the curved situation
afterwards.

In the present construction, we shall actually carry a spectral parameter along
that will be useful for discussions of invertibility. So we now replace the originally
givenA by A−λ, to be studied for large negativeλ.

The parametrix will be of the form

(35) B 0(λ) =
(
R0(λ) K0(λ)

)
:

Hs(Ω)
×

Hs+ 3
2 (Σ)

→ Hs+2(Ω);

with (k1,σ1) = (0,1) the condition (29) means that− 1
2 < s< 1, so that, along with the

restriction coming from Theorem 7, we have altogether that

(36) − 1
2 < s≤ 0
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is allowed. The remainder maps as follows:

(37) R (λ) = A (λ)B 0(λ)− I :
Hs−θ(Ω)
×

Hs−θ+ 3
2 (Σ)

→
Hs(Ω)
×

Hs+ 3
2 (Σ)

for

(38) − 1
2 + θ < s≤ 0.

In order to get hold of the exact inverse, we shall use an old trick of Agmon [4],
which implies a usefulλ-dependent estimate of the remainder: Write−λ = µ2 (µ> 0),
introduce an extra variablet ∈ S1, and replaceµ by Dt =−i∂t ; let

(39) Â = A+D2
t on Ω×S1.

ThenÂ is strongly elliptic onΩ×S1, and by the preceding construction (carried out
with local coordinates respecting the product structure),

Â =

(
Â
γ0

)
has a parametrix̂B 0,

with mapping properties of̂B 0 and the remainder̂R = Â B̂ 0− I as in (35) and (37)
with Ω,Σ replaced bŷΩ = Ω×S1, Σ̂ = Σ×S1.

For functionsw of the formw(x,t) = u(x)eiµt,

Âw =

(
(A+µ2)w

γ0w

)
,

and similarly, the parametrix̂B 0 and the remainder̂R act on such functions likeB 0(λ)
andR (λ) applied in thex-coordinate.

Moreover, forw(x, t) = u(x)eiµt , u∈ S (Rn),

‖w‖Hs(Rn×S1) ≃ ‖(1−∆ +µ2)su(x)‖L2(Rn) ≃ ‖(1+ |ξ|2+µ2)s/2û(ξ)‖L2,

with similar relations for Sobolev spaces over other sets. Norms as in the right-hand
side are calledHs,µ-norms; they were extensively used [19], see the Appendix there
for the definition on subsets. The important observation is now that whens′ < s and
w(x, t) = u(x)eiµt, then

‖w‖Hs′ (Rn×S1) ≃ ‖(1+ |ξ|2+µ2)s′/2û(ξ)‖L2

≤ 〈µ〉s′−s‖(1+ |ξ|2+µ2)s/2û(ξ)‖L2 ≃ 〈µ〉s−s′‖w‖Hs(Rn×S1),

with constants independent ofu andµ. Analogous estimates hold withRn replaced by
Ω or Σ.



290 G. Grubb

Applying this principle to the estimates of the remainderR̂ , we find that

‖R (λ)u‖
Hs,µ(Ω)×Hs+ 3

2 ,µ(Σ)
≤ cs‖u‖

Hs−θ,µ(Ω)×Hs−θ+ 3
2 ,µ(Σ)

≤ c′s〈µ〉−θ‖u‖
Hs,µ(Ω)×Hs+ 3

2 ,µ
(Σ)

for sas in (38).

For eachs, take a fixedλ with |λ| so large thatc′s〈µ〉−θ ≤ 1
2. ThenI + R (λ)

has the inverseI +R ′(λ) = I + ∑k≥1(−R (λ))k (converging in the operator norm for

operators onHs,µ(Ω)×Hs+ 3
2 ,µ(Σ)), and

A (λ)B 0(λ)(I +R ′(λ)) = I .

This gives a right inverse

B (λ) = B 0(λ)+B 0(λ)R ′(λ) =
(
R(λ) K(λ)

)
,

with the same Sobolev space continuity asB 0(λ), andB 0(λ)R ′(λ) of lower order.
Since

(40) A (λ)B (λ) =

(
(A−λ)R(λ) (A−λ)K(λ)

γ0R(λ) γ0K(λ)

)
=

(
I 0
0 I

)
,

R(λ) solves

(41) (A−λ)u= f , γ0u = 0,

andK(λ) solves

(42) (A−λ)u= 0, γ0u = ψ.

For such largeλ, R(λ) coincides with the resolvent ofAγ defined by variational
theory, andK(λ) is the Poisson-type operator we calledKλ

γ in Section 3;

(43) (Aγ−λ)−1 : Hs(Ω)→Hs+2(Ω), Kλ
γ : Hs+ 3

2 (Σ)→ Hs+2(Ω),

for ssatisfying (36).

The mapping properties extend to all theλ for which the operators are well-
defined, especially toλ = 0. For A−1

γ , this goes as follows: Whenu ∈ H1(Ω) and
f ∈ Hs(Ω) with s < 1, f + λu is likewise inHs(Ω). ThenAγu = f + λu allows the
conclusionu∈ Hs+2(Ω). The argument works for alls satisfying (36) (for each such
s, there is room to takeθ > 0 so small that (38) is satified. Moreover, sinceA−1

γ −
(Aγ−λ)−1 = −λA−1

γ (Aγ−λ)−1 is of lower order thanA−1
γ , A−1

γ equals a nonsmooth
ψdbo plus a lower-order remainder.

The Poisson operator solving (42) can be further described as follows (for all
λ ∈ ρ(Aγ)): There is a right inverseK : Hs+ 3

2 (Σ)→Hs+2(Ω) of γ0 for− 3
2 < s≤ 0 (cf.

Theorem 7 2◦). When we setv = u−K ϕ, we find thatv should solve

(A−λ)v=−(A−λ)K ϕ, γ0v = 0,
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to which we apply the preceding results; then whenλ ∈ ρ(Aγ),

(44) Kλ
γ = K − (Aγ−λ)−1(A−λ)K ;

solves (42) uniquely. It mapsHs+ 3
2 (Σ)→Hs+2(Ω) for ssatisfying (36).

Since our original operator hadC∞ coefficients, the same construction works for
the adjoint Dirichlet problem, so we also here get the mapping properties

(45) (A′γ− λ̄)−1 : Hs(Ω)→ Hs+2(Ω), K′λ̄γ : Hs+ 3
2 (Σ)→ Hs+2(Ω),

for ssatisfying (36).

The conditions>− 1
2 prevents the Poisson operator from starting fromH−

1
2 (Σ),

which would be needed for an analysis as in Section 3. Fortunately, it is possible to get
supplementing information in other ways.

By (7) we have, analogously to (21), thatKλ
γ is the adjoint of a trace operator of

class 0 as follows:

(46) Kλ
γ = (ν′1(A′γ− λ̄)−1)∗;

(it is used here thatA ′0γ0(A′γ− λ̄)−1 = 0).

Now use the mapping property in (45). The resolvent can be composed withν′1
for s>− 1

2, so

ν′1(A′γ−λ)−1 = (Kλ
γ )∗ : Hs(Ω)→ Hs+ 1

2 (Σ) for − 1
2 < s≤ 0.

It follows that

(47) Kλ
γ : Hs′− 1

2 (Σ)→ Hs′(Ω),

when 0≤ s′ < 1
2. In particular,s′ = 0 is allowed.

Taking this together with the larger values that were covered by (43), we find
that (47) holds for

(48) 0≤ s′ ≤ 2;

the intermediate values are included by interpolation. We denotes′ by s from here on.

One can analyze the structure ofKλ
γ for the low values ofs further, decomposing

it into terms belonging to the calculus and lower-order remainders. There is a difficulty
here in the fact that order-reducing operators as well as operators iny-form enter, and
both types affect thes-values for which the decompositions and mapping properties are
valid (cf. Remark 1). We refrain from including a deeper analysis.

There is a similar result forK′λ̄γ . The adjoints also extend, e.g.

(49) (K′λ̄γ )∗ : Hs
0(Ω)→ Hs+ 1

2 (Σ), for −2≤ s≤ 0;

recall thatHs
0(Ω) = Hs(Ω) when|s|< 1

2. To sum up, we have shown:
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THEOREM8. WhenΩ is C1,1 and A has C∞-coefficients, the solution operators
Kλ

γ and K′λ̄γ for (8) and its primed version map Hs−
1
2 (Σ) to Hs(Ω) for 0≤ s≤ 2. They

are generalized Poisson operators in the sense that for s∈ ]3
2,2], they can be written as

the sum of a Poisson operator of Hölder smoothness(0,1), in order-reduced x-form,
and a lower order operator.

The next step is to studyPλ
γ0,ν1

= ν1Kλ
γ andP′λ̄γ0,ν′1

= ν′1K′λ̄γ , cf. (10) ff.

We have immediately from the mapping properties established above, that

(50) Pλ
γ0,ν1

,P′λ̄γ0,ν′1
: Hs− 1

2 (Σ)→Hs− 3
2 (Σ),

when 3
2 < s≤ 2. Let us also introduce the operatorν′′1 = ν′1 + A ′0γ0, then Green’s

formula (7) takes the form

(51) (Au,v)L2(Ω)− (u,A′v)L2(Ω) = (ν1u,γ0v) 1
2 ,− 1

2
− (γ0u,ν′′1v) 3

2 ,− 3
2
,

for u∈H2(Ω), v∈D(A′max), andP′λ̄γ0,ν′′1
(cf. (11)) likewise maps as in (50) ff. Applying

(51) to functionsu,v with Au= 0, A′v = 0, we see thatPλ
γ0,ν1

andP′λ̄γ0,ν′′1
are contained

in each other’s adjoints. ThereforePλ
γ0,ν1

considered in (50) has the extension(P′λ̄γ0,ν′′1
)∗,

which is continuous fromHs′+ 3
2 (Σ) to Hs′+ 1

2 (Σ) for −2≤ s′ < − 3
2. This extends the

statement in (50) to the values 0≤ s< 1
2, and by interpolation we obtain the validity of

(50) for 0≤ s≤ 2.

Pλ
γ0,ν1

can in the localizations toRn
+ be described as the composition of the op-

eratorν1 = s0γ1 (with s0 ∈C0,1) and a generalized Poisson operator consisting of an
operator in order-reducedx-form havingC0,1-smoothness plus a remainder of lower
order. Fors∈ ]3

2,2] we can apply Theorem 6 2◦ to the compositions, using thatKλ
γ is

locally the sum of a compositionΛ−2
−,+K0

1(λ)Λ2
0 (multiplied with smooth cut-off func-

tions) whereK0
1(λ) is in x-form, and a remainder of lower order. This implies that

Pλ
γ0,ν1

, apart from the remainder term coming fromKλ
γ , is the sum of a first-orderψdo

in x-form with C0,1-smoothness and a remainder term, mappingHt+1(Σ) to Ht(Σ) for
|t| < 1, resp.Ht+1−θ(Σ) to Ht(Σ) for −1+ θ < t < 1. With s− 1

2 = t + 1, s runs in
]1
2, 5

2[ resp. ]1
2 + θ, 5

2[ here, which covers the intervals∈ ]3
2,2] allowed by the other

remainder.

For low values ofs there is again the difficulty that we are dealing with a com-
position with ingredients of order-reducing operators andx- or y-form operators, which
each have different rules for the spaces in which the decompositions and mapping prop-
erties are valid, and we refrain from a further discussion here.

Observe moreover thatPλ
γ0,ν1

is elliptic (the principal symbol is invertible) —
since this is known forP0

γ0,γ1
( [4], [15]).

This shows:
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THEOREM 9. Assumptions as in Theorem8. Pλ
γ0,ν1

and P′λ̄γ0,ν′1
map Hs− 1

2 (Σ)

to Hs− 3
2 (Σ) for s∈ [0,2]. They are generalized ellipticψdo’s of order1, in the sense

that for s∈ ]3
2,2], they have the form of an elliptic principal part in x-form ofHölder

smoothness(0,1) plus a lower order part.

With these mapping properties it is straightforward to verify that Γ andΓ′ de-
fined in (25) satisfy the full statement in (12).

When more smoothness ofΩ is assumed, the representation ofPλ
γ0,ν1

as the sum
of a principal part inx-form and a lower-order term can of course be extended to larger
intervals than found above.

6. Interpretation of realisations

We now have all the ingredients to interpret the abstract characterisation of closed
realisationsÃ in terms of operatorsT : V →W recalled in Section 2, to boundary
conditions. In fact, we have the mappings defined from the trace operatorγ0

γZλ : Zλ
∼→H−

1
2 (Σ), γ∗Zλ

: H
1
2 (Σ)

∼→ Zλ,

and the mappings defined from Poisson-type operators

Kλ
γ : H−

1
2 (Σ)→ H0(Ω), (Kλ

γ )∗ : H0(Ω)→ H
1
2 (Σ),

as well as the versions with primes. Then the various definitions recalled in Section 3
for the smooth case, carryingTλ : Vλ→Wλ̄ over toLλ : H−

1
2 (Σ)→ H

1
2 (Σ) if V = Z,

W = Z′, resp. toLλ
1 : X1→Y1 in general, are effective in exactly the same way, and all

the diagrams are valid in this situation.

In this way,Ã is determined by a Neumann-type boundary condition

ν1u = (L+P0
γ0,ν1

)γ0u

in the caseV = Z, W = Z′, and by a condition involving projections in the general case.

The adjointÃ is determined by the boundary condition

ν′1u = (L∗+P′0γ0,ν′1
)γ0u

in the caseV = Z, W = Z′ (resp. by a condition involving projections in the general
case), whereL∗ is the adjoint ofL, considered as a generally unbounded operator from
H−

1
2 (Σ) to H

1
2 (Σ).

There is a well-definedM-functionML(λ), which coincides with−(Lλ)−1 for
λ ∈ ρ(Aγ)∩ρ(Ã); here (20) and (19) hold. Suitably modified results hold in cases of
generalV,W.

For the caseV = Z, W = Z′, we have obtained:
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THEOREM 10. WhenΩ is C1,1 and A has C∞ coefficients, bounded with boun-
ded derivatives on a neighborhood ofΩ, and is uniformly strongly elliptic, then Theo-
rem5 (i)–(v) and(20)are valid.

Gesztesy and Mitrea have in [12] established Kreı̆n resolvent formulas for the
Laplacian under a weaker smoothness hypothesis, namely that Ω is C1,σ with σ > 1

2.
Here they treatselfadjointrealisations determined by Robin-type boundary conditions

(52) γ1u = Bγ0u,

with B compact fromH1 to H0 (assured ifB is of order< 1). Posilicano and Rai-
mondi [29] describe results forselfadjointrealisations in caseΩ is C1,1 and the co-
efficients ofA, when it is written in symmetric divergence form, areC0,1 satisfying
various hypotheses. They remark that their treatment worksfor boundary conditions
(52) with γ1 replaced by the oblique Neumann trace operatorνA (23) connected with
the divergence form. HereB is taken of order< 1, so it is a Robin-type perturbation of
the natural Neumann condition.

It is an important point in the present treatment, besides that it deals with non-
selfadjoint situations, that Neumann-type conditions (17) with generalψdo’sC of order
1 are included in the detailed discussion.

Furthermore, our pseudodifferential strategy allows the application of ellipticity
concepts:

When C is a generalized pseudodifferential operator of order 1 andHölder
smoothness(0,1), L = C−P0

γ0,ν1
is a generalized pseudodifferential operator of order

1 and Hölder smoothness(0,1), and vice versa.L is elliptic precisely when the model
boundary value problem forA with the boundary condition (17) is uniquely solvable at
all (x′,ξ′) with ξ′ 6= 0 in the boundary cotangent space (this is the Shapiro-Lopatinskiı̆
condition). Lλ is then also elliptic at eachλ ∈ ρ(Aγ) (sincePλ

γ0,ν1
−P0

γ0,ν1
is of order

< 1).

Moreover, there is then a parametrix ofL, and this can be used to investigate the
regularity of the domain ofL. Likewise, eachLλ has a parametrix then. However, we
want to set the true inverse−ML(λ) in relation to such a parametrix.

Restrict the attention to the case whereC is a first-orderdifferentialoperator on
Σ with C0,1-coefficients; then we can say more aboutML(λ) with the present methods.

Assume a little more, namely that there is a rayλ = −µ2eiθ, µ∈ R, such that
when we includeλ in the principal symbol ofPλ

γ0,ν1
, then the principal symbol ofLλ =

C−Pλ
γ0,ν1

is invertible for|ξ′|2 + |µ|2≥ 1 (“parameter-ellipticity”). Lets∈ ]3
2,2]. As in

Section 5, we can invoke the system forÂ on Ω̂ = Ω×S1 (39) coupled with the same
boundary operator (constant in thet-direction)

Â =

(
Â

ν1−Cγ0

)
: Hs(Ω̂)→

Hs−2(Ω̂)
×

Hs− 3
2 (Σ̂)

;

it is elliptic and has a parametrix̂B 0. For the functionsu(x,t) = w(x)eiµt , this gives a
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λ-dependent parametrix family forA (λ) =
(
A−λν1−Cγ0

)
(when|λ| ≥ 1) such that

the remainder in the composition withA (λ) is O(〈µ〉−θ) for λ→ ∞ on the ray. Then
there is a true inverse ofA (λ), hence ofLλ, for sufficiently largeλ on the ray. We can
follow this up for the operator̂L = C− P̂γ0,ν1 over Σ̂, which givesLλ when applied to

functionsϕ(x′)eiµt . HereL̂ has a parametrix̂̃L such that̂L̂̃L− I is of negative order;
this gives a parametrix̃Lλ of Lλ such thatLλL̃λ− I has anO(〈µ〉−θ) estimate. For
sufficiently largeλ on the ray this allows us to writeML(λ) = −(Lλ)−1 as−L̃λ + R
with R of lower order. More precisely,̃Lλ is obtained as a composition of an operator
in x-form with an order-reducing operator to the left; it maps fromHs− 3

2 to Hs− 1
2 , and

the remainder maps fromHs− 3
2−θ to Hs− 1

2 . (Thes∈ ]3
2,2] run inside the interval where

the parametrix construction for elliptic first-orderψdo’s of Hölder smoothness(0,1)
works, as in Theorem 6 3◦ and Remark 1.) In this sense,ML(λ) is a generalizedψdo
of order−1.

Using this information fors= 2, we see thatML(λ) mapH
1
2 not just toH−

1
2 ,

but toH
3
2 . ThenD(L) = D(Lλ) = H

3
2 andD(Ã) is in H2(Ω).

If, moreover,C∗ has Hölder smoothnessC0,1, the adjoint̃A∗ is of the same type.
In particular, there is selfadjointness ifA andL are formally selfadjoint. This gives a
very satisfactory version of the Kreı̆n formula.

THEOREM 11. If, in addition to the hypotheses of Theorem10, C is a first-
order differential operator with Ḧolder smoothness(0,1) and the principal symbol of

Lλ = C−Pλ
γ0,ν1

is parameter-elliptic on a rayλ =−µ2eiθ, µ∈ R, then D(L) = H
3
2 (Σ),

and ML(λ) is for largeλ on the ray the sum of an ellipticψdo of order−1 and Hölder
smoothness(0,1), in order-reduced x-form, and a lower-order term. Then D(Ã) ⊂
H2(Ω).

If, moreover, C∗ has Ḧolder smoothness(0,1), the adjointÃ∗ is defined similarly

from of L∗ with D(L∗) = H
3
2 , D(Ã∗)⊂H2(Ω). In particular, Ã is selfadjoint if A and L

are formally selfadjoint.

From the point of view of the systematic parameter-dependent calculus of [19],
the symbols ofC andPλ

γ0,ν1
have “regularityν = +∞” whenC is a differential operator,

so there is a parametrix with the same “regularity+∞”.

PseudodifferentialoperatorsC can be included in the discussion if the symbol
classes in [19] are used in a more definitive way (here whenC is of order 1, it has
“regularity 1”, and the same will hold for the resulting principal symbols ofLλ and
ML(λ)). Considerations with finite positive “regularity” play animportant role in [1,2].
We hope to return to such cases in future works, but here just wanted to show what can
be done using Agmon’s principle.
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