Lectures in Noncommutative Geometry Seminar 2005

TRACE FUNCTIONALS AND TRACE DEFECT FORMULAS ...

I. Traces on classical ψdo’s.

We consider:

\[X \] — compact boundaryless \(n \)-dimensional manifold (closed).

\[E \] — hermitian vector bundle over \(X \).

\[\mathcal{A} \] — the ‘algebra’ of classical ψdo’s \(\mathcal{A} \) acting in \(E \).

On pseudodifferential operators:

Recall that a differential operator of order \(m \geq 0 \) on \(\mathbb{R}^n \) can be written:

\[
Au = \sum_{|\alpha| \leq m} a_\alpha(x) D^\alpha u = \mathcal{F}_{\xi \rightarrow x}^{-1} \left(\sum_\alpha a_\alpha(x) \xi^\alpha \hat{u}(\xi) \right)
\]

\[
= \text{OP}(a(x, \xi))u, \text{ with } a(x, \xi) = \sum_\alpha a_\alpha(x) \xi^\alpha.
\]

A classical pseudodifferential symbol of order \(\nu \in \mathbb{R} \):

\[
a(x, \xi) \sim a_\nu(x, \xi) + a_{\nu-1}(x, \xi) + \cdots + a_{\nu-j}(x, \xi) + \cdots
\]
\[a_{\nu-j}(x, t\xi) = t^{\nu-j} a(x, \xi) \text{ for } |\xi| \geq 1, \ t \geq 1. \]

Elliptic, when the principal symbol \(a_{\nu}(x, \xi) \neq 0 \) for \(|\xi| \geq 1 \).

Defines a pseudodifferential operator (\(\psi \text{do} \)):

\[Au = \text{Op}(a)u = \mathcal{F}_{\xi \rightarrow x}^{-1}(a(x, \xi)\hat{u}(\xi)) \]

Continuous from \(H^s(\mathbb{R}^n) \) to \(H^{s-\nu}(\mathbb{R}^n) \). Composition:

\[\text{Op}(a(x, \xi)) \text{Op}(b(x, \xi)) = \text{Op}(a \# b), \text{ where} \]

\[a \# b \sim a \cdot b + \sum_{\alpha \neq 0} \frac{(-i)^{|\alpha|}}{\alpha!} \partial_x^\alpha a \partial_x^\alpha b. \]

Elliptic operators have (approximate) inverses.

\(\Psi \text{do}'s \) are defined on manifolds by use of local coordinates.

Consider \(A \) on a closed manifold \(X \). For \(\nu < -n \), \(A \) is trace-class, \(\text{Tr} \ A = \int_X \text{tr} \ K_A(x, x)dx \). Here \(\text{Tr}([A, A']) = 0 \), where \([A, A'] = AA' - A'A \).

A trace functional \(\ell(A) \) is a linear functional that vanishes on commutators: \(\ell([A, A']) = 0 \). Search for nontrivial trace functionals on higher-order \(\psi \text{do}'s \)!
(I) Wodzicki, Guillemin ca. ‘84: *The noncommutative residue*

\[\res(A) = \int_X \int_{|\xi|=1} \tr a_{-n}(x, \xi) \varphi S(\xi) dx; \]

it has a coordinate invariant meaning. \((\varphi = (2\pi)^{-n} d.) \)

- **Local** (depends only on certain homogeneous terms in \(a \)).
- Defined for all \(A \in A \), unique up to a factor.
- **Vanishes** for \(\nu \notin \mathbb{Z} \).
- **Vanishes** for \(\nu < -n \); does **not** extend \(\text{Tr} \ A \)!

(II) Kontsevich and Vishik ca. ‘94: *The canonical trace TR(A)*

- **Global** (depends on the full structure).
- Defined only for some \(A \), namely in the cases:

 (1) \(\nu < -n \), then \(\text{TR} \ A = \text{Tr} \ A \);

 (2) \(\nu \notin \mathbb{Z} \);

 (3) \(\nu \in \mathbb{Z}, \ n \text{ odd}, A \text{ has even-even parity}; \)

 (4) \(\nu \in \mathbb{Z}, \ n \text{ even}, A \text{ has even-odd parity}. \) (Added by GG.)

(Will give formula later.)
Parity properties:

even-even alternating parity: Even order terms are even in \(\xi \),
\[
a_{\nu-j}(x, -\xi) = (-1)^{\nu-j} a_{\nu-j}(x, \xi) \text{ for } |\xi| \geq 1.
\]
Example: Differential operators and their parametrices.

even-odd alternating parity: Even order terms are odd in \(\xi \),
\[
a_{\nu-j}(x, -\xi) = (-1)^{\nu-j-1} a_{\nu-j}(x, \xi) \text{ for } |\xi| \geq 1.
\]
Example: \(D|D|^{-1}, D \) a selfadj. first-order elliptic diff. op.

The trace property holds in the following sense:
\[
\text{TR}([A, A']) = 0 \text{ in the cases}
\]
\[
(1') \quad \nu + \nu' < -n,
\]
\[
(2') \quad \nu + \nu' \in \mathbb{R} \setminus \mathbb{Z}.
\]
\[
(3') \quad \nu \text{ and } \nu' \in \mathbb{Z}, n \text{ is odd, } A \text{ and } A' \text{ are both even-even or both even-odd.}
\]
\[
(4') \quad \nu \text{ and } \nu' \in \mathbb{Z}, n \text{ is even, } A \text{ is even-odd and } A' \text{ is even-even.}
\]
Both res A and TR A were originally defined by use of

complex powers:

Let P be elliptic of even order $m > 0$, say $P > 0$.

Define $\zeta(A, P, s) = \text{Tr}(AP^{-s})$, the *generalized zeta function*, holomorphic for Re $s > (n + \nu)/m$, extends meromorphically to \mathbb{C} with simple poles in

\[\{(n + \nu - j)/m \mid j \in \mathbb{N}\} \cup \{-k \mid k \in \mathbb{N}\}; \]

here $\mathbb{N} = \{0, 1, 2, \ldots \}$.

In particular, ζ has a Laurent expansion at $s = 0$:

\[\zeta(A, P, s) \sim \frac{1}{s} C_{-1}(A, P) + C_0(A, P) + \sum_{l \geq 1} C_l(A, P) s^l. \]

Then

(I) res $A = m \cdot C_{-1}(A, P)$, the residue at $s = 0$.

(II) In the cases (1)–(4) (with P even-even for (3)–(4)),

$C_{-1}(A, P) = 0$ and

\[\text{TR } A = C_0(A, P). \]

NB! Independent of P!

5
Three operator families:

P: strongly elliptic ps.d.o. on X of even order $m > 0$.

- *Resolvent* $(P - \lambda)^{-1}$,
- *Heat operator* e^{-tP},
- *Power operator* P^{-s} (defined as 0 on ker P).

Can be obtained from one another:

\[
\text{Resolvent } (P - \lambda)^{-1} \quad \xrightarrow{\text{Cauchy int.}} \quad e^{-tP} \quad \text{Heat operator} \\
\text{Laplace transf.}
\]

\[
\text{Cauchy int. } \sim \quad \sim \text{ Mellin transf.}
\]

\[
\Gamma(s)P^{-s}
\]

Power operator

Example of Cauchy integral:

\[
P^{-s} = \frac{i}{2\pi} \int_{\mathcal{C}} \lambda^{-s}(P - \lambda)^{-1} d\lambda.
\]
THREE EQUIVALENT ASYMPTOTIC TRACE EXPANSIONS:

The resolvent trace expansion:

\[
\text{Tr}(A(P - \lambda)^{-N}) \sim \sum_{j \geq 0} \tilde{c}_j (-\lambda)^{-\frac{\nu+n-j}{m}} - N
\]
\[+ \sum_{k \geq 0} (\tilde{c}'_k \log(-\lambda) + \tilde{c}''_k) (-\lambda)^{-k-N},
\]
for \(\lambda \to \infty\) in \(\mathbb{C} \setminus \overline{\mathbb{R}}_+.\) \((N > (\nu + n)/m).\)

The heat trace expansion:

\[
\text{Tr}(Ae^{-tP}) \sim \sum_{j \geq 0} c_j t^{\frac{j-\nu-n}{m}} + \sum_{k \geq 0} (-c'_k \log t + c''_k)t^k
\]
for \(t \to 0^+.\)

The complex power trace expansion:

\[
\Gamma(s) \text{Tr}(AP^{-s}) \sim \sum_{j \geq 0} \frac{c_j}{s + \frac{j-\nu-n}{m}} + \sum_{k \geq 0} \left(\frac{c'_k}{(s+k)^2} + \frac{c''_k}{s+k} \right);
\]
where the right-hand side gives the pole structure of the meromorphic extension. Division by \(\Gamma(s)\) gives simple poles, and

\[
C_{-1}(A, P) = \tilde{c}'_0 = c'_0, \quad C_0(A, P) = \tilde{c}_{n+\nu} + \tilde{c}''_0 = c_{n+\nu} + c''_0;
\]
where we set \(\tilde{c}_{n+\nu} = c_{n+\nu} = 0\) if \(n + \nu \notin \mathbb{N}.\) In cases (1)–(4),

\[
C_0(A, P) = c''_0 = \text{TR} A.
\]
Moreover, in cases (1)–(4),

\[c_0'' = \text{TR}(A) = \int_X \int \text{tr} \, a(x, \xi) \, d\xi \, dx; \]

it has a coordinate invariant meaning. Here \(\int f(x, \xi) \, d\xi \) is a \emph{partie finie} integral, defined as follows: When \(f(x, \xi) \) is a classical symbol of order \(\nu \), then

\[
\int_{|\xi| \leq R} f(x, \xi) \, d\xi \sim \sum_{j \in \mathbb{N}, j \neq n+\nu} a_j(x) R^{n+\nu-j} + a'_0(x) \log R + a''_0(x)
\]

for \(R \to \infty \), and one sets \(\int f(x, \xi) \, d\xi = a''_0(x) \).

Instead of considering powers \(AP^{-s} \), one can deduce these results directly from trace expansions of resolvents \(A(P - \lambda)^{-1} \), using the calculus of G-Seeley ‘95. Details in vol. 366 of AMS Comtemp. Math. Proc., 2005.
II. Trace defect formulas.

Consider $C_0(A, P)$ in general. When (1)–(4) do not hold, $C_0(A, P)$ will depend on P and need not vanish on $[A, A']$. However, there are formulas for the trace defects:

(a) $C_0(A, P) - C_0(A, P') = -\frac{1}{m} \text{res}(A(\log P - \log P'))$,

(b) $C_0([A, A'], P) = -\frac{1}{m} \text{res}(A[A', \log P])$,

showing in particular that they are local. ((a) by Okikiolu ‘95, Konts.-V. ‘95, (a)+(b) by Melrose-Nistor ‘96 unpublished.)

Their proofs go via the holomorphic family P^{-s}, with

$$\frac{d}{ds} P^{-s}|_{s=0} = -\log P.$$

$\log P$ has symbol $m \log |\xi| + b(x, \xi)$, where b is classical of order 0. Thus

$$A(\log P - \log P')$$

is classical of order ν,

$$A(A' \log P - \log PA')$$

is classical of order ν,

so res is defined.
Question: Do similar formulas hold for manifolds with boundary?

A reasonable choice of boundary operator calculus containing elliptic differential boundary problems and their solution operators is the Boutet de Monvel calculus. Can we show similar formulas for such operators?

Problematic fact: Even for $P_T = (-\Delta)_{\text{Dirichlet}}$, the complex powers $(P_T)^s$ and the logarithm $\log(P_T)$ are not in the BdM calculus. But the resolvent $(P_T - \lambda)^{-1}$ does belong to a parameter-dependent version of the BdM calculus.

Subquestion: Can we prove the formulas (a) and (b) using only resolvent information?
III. Some applications of res, TR and $C_0(A, P)$.

Recall: res A is proportional to the residue of $\zeta(A, P, s)$ at $s = 0$, so

$$\text{res } A = 0 \iff \zeta(A, P, s) \text{ is regular at } 0.$$

Holds when A is a diff. op., in particular for $\zeta(I, P, s) \equiv \zeta(P, s)$.

The eta function of a selfadjoint, not semibounded elliptic ψdo:

$$\eta(P, s) = \sum_{\lambda \text{ ev. } \neq 0} \text{sign } \lambda \lambda^{-s} = \zeta(P|P|^{-1}, |P|, s),$$

is not covered by this. Deep result by Atiyah-Patodi-Singer and Gilkey:

$$\text{(\star) res}(P|P|^{-1}) = 0,$$

i.e., $\eta(P, s)$ is regular at $s = 0$. For a Dirac operator D, with

$$D = \sigma(\partial_{x_n} + A) \text{ near } \partial X, \text{ A tangential selfadjoint},$$

the value $\eta(A, 0)$ for A on ∂X is a nonlocal term entering in the index formula for the APS realization of D.

From (\star) one can moreover deduce that res $\Pi = 0$ for any classical ψdo projection Π, a fact with various applications.
Concerning TR and $C_0(A, P)$:

Some people call $C_0(A, P)$ a regularized trace of A, with notation e.g. $\overline{\text{Tr}}(A)$ (Melrose). Enters in an index formula for A:

When B is an approximate inverse (a parametrix),

$$\text{ind } A = \text{Tr}(AB - I) - \text{Tr}(BA - I)$$

$$= C_0(AB - I, P) - C_0(BA - I, P) = C_0([A, B], P)$$

$$= -\frac{1}{m} \text{res}(A[B, \log P]),$$

by the trace defect formula. This is a point of departure for further calculations.
IV. Manifolds with boundary.

Now let X be a compact n-dimensional manifold with smooth boundary $X' = \partial X$ (itself a closed manifold).

Typical operators when $X \subset \mathbb{R}^n$:

$$
\begin{pmatrix}
1 - \Delta \\ \gamma_0
\end{pmatrix}
$$
and its inverse $(Q_+ + G \quad K)$;

γ_0 is the trace operator $u \mapsto u|_{X'}$,

$Q = (1 - \Delta)^{-1} = \text{Op}(\frac{1}{1 + |\xi|^2})$ on \mathbb{R}^n,

$Q_+ = r^+ Q e^+ \ (e^+ \text{ extends by 0, } r^+ \text{ restricts to } X)$,

G is a singular Green operator (the “boundary correction”),

K is a Poisson operator.

Here $R = Q_+ + G$ and K solve the respective semi-homogeneous problems:

$$
\begin{cases}
(1 - \Delta)u = f \text{ in } X, \\
\gamma_0 u = 0 \text{ on } X';
\end{cases}
\quad
\begin{cases}
(1 - \Delta)u = 0 \text{ in } X, \\
\gamma_0 u = g \text{ on } X'.
\end{cases}
$$

13
Boutet de Monvel ‘71 defined pseudodifferential boundary operators (ψdbo’s) in general as systems (Green operators):

\[
\begin{pmatrix}
P_+ + G & K \\
T & S
\end{pmatrix} : C^\infty(X, E) \times C^\infty(X', F) \to C^\infty(X, E') \times C^\infty(X', F'),
\]

where

- \(P \) is a ψdo on a closed manifold \(\tilde{X} \supset X \), \(P_+ = r^+ Pe^+ \),
- \(G \) is a singular Green operator,
- \(T \) is a trace operator from \(X \) to \(X' \),
- \(K \) is a Poisson operator from \(X' \) to \(X \),
- \(S \) is a ψdo on \(X' \).

\(P \) must satisfy the \textit{transmission condition} at \(X' \), assuring that \(P_+ \) preserves smoothness on \(X \). Consider operators of order \(\nu \) with polyhomogeneous symbols of suitable types.

Traces can be studied when \(E = E' \), \(F = F' \); the new object is \(A = P_+ + G : C^\infty(X, E) \to C^\infty(X, E) \). Transmission requires integer order. For \(G \) alone one can study all real orders.
Technical condition: G should be of class 0 (well-defined on $L_2(X)$), for otherwise, order $<-n$ does not assure trace-class.

The noncommutative residue was defined by Fedosov, Golse, Leichtnam and Schrohe ‘96 for $A = P_+ + G$ by:

$$
\text{res}(A) = \int_X \int_{|\xi|=1} \text{tr} p_{-n}(x, \xi) \phi S(\xi) dx \\
+ \int_{X'} \int_{|\xi'|=1} \text{tr}(\text{tr}_n g)_{1-n}(x', \xi') \phi S(\xi') dx';
$$

here tr_n takes the trace in the normal direction to X'; in fact $\text{tr}_n G$ is a classical ψdo on X'.

That this is indeed a residue was shown by G-Schrohe ‘01: As auxiliary operator we can take an elliptic differential operator P_1 of order $m > n + \nu$ on \tilde{X} having a sector V around \mathbb{R}_- in its resolvent set. Then

$$
\text{Tr}(A(P_1 - \lambda)_+^{-1}) \sim \sum_{0 \leq j \leq n+\nu} c_j (-\lambda)^{\frac{n+\nu-j}{m}-1} \\
+ (c'_0 \log(-\lambda) + c''_0)(-\lambda)^{-1} + O(\lambda^{-1-\varepsilon}), \text{ for } \lambda \to \infty \text{ in } V.
$$
There is a corresponding expansion for $\Gamma(s) \text{Tr}(A(P_1^{-s})_+)$. In particular,

$$\text{Tr}(A(P_1^{-s})_+) = \frac{1}{s} C_{-1}(A, P_1, +) + C_0(A, P_1, +) + O(s)$$

for $s \to 0$, with $C_{-1}(A, P_1, +) = c'_0$, $C_0(A, P_1, +) = c_{n+\nu} + c''_0$ (as usual, we set $c_{n+\nu} = 0$ if $\nu + n \notin \mathbb{N}$). By G-Schrohe ‘01,

$$\text{res}(A) = m \cdot C_{-1}(A, P_1, +).$$

Searching for a canonical trace, G-Schrohe ‘04 showed:

(i) $C_0(A, P_1, +)$ is a quasi-trace, in the sense that $C_0(A, P_1, +) - C_0(A, P_2, +)$ and $C_0([A, A'], P_1, +)$ are local.

(ii) The value of $C_0(A, P_1, +)$ is a finite part integral

$$\int_X \int \text{tr} p(x, \xi) d\xi dx + \int_X \int \text{tr} (\text{tr}_n g)(x', \xi') d\xi' dx',$$

modulo local contributions.

But $C_0(A, P_1, +)$ is rarely a canonical trace. Yes, if $\nu < -n$. Yes, if $\nu \notin \mathbb{Z}$, but then only G enters. When $\nu \in \mathbb{Z}$ and $P \neq 0$, parity does not help much, for both dimensions n and $n - 1$.

16
enter at the same time. Cf. the closed manifold conditions:

(3) \(n \) odd and \(A \) even-even, or (4) \(n \) even and \(A \) even-odd.

So, \(C_0(A, P_{1,+}) \) itself becomes the important object!

Trace defect formulas? (See slide 9 for closed manifolds.)

By a proof that completely avoids the issue of how the operators \((P_1^{-s})_+\) and \((\log P_1)_+\) really act, relying instead on resolvent formulations, we have managed to show (G ‘05):

Theorem. Let \(A = P_+ + G, A' = P'_+ + G' \) be given, with two auxiliary elliptic differential operators \(P_1 \) and \(P_2 \).

One can construct \(\psi \)do’s \(S \) and \(S' \) on \(X' \) in a specific way from the given operators such that

(a) \[
C_0(A, P_{1,+}) - C_0(A, P_{2,+})
= -\frac{1}{m} \text{res}_X((P(\log P_1 - \log P_2))_+) - \frac{1}{m} \text{res}_{X'}(S),
\]

(b) \[
C_0([A, A'], P_{1,+})
= -\frac{1}{m} \text{res}_X((P[P', \log P_1])_+) - \frac{1}{m} \text{res}_{X'}(S').
\]
V. Ingredients in the proofs.

P is assumed elliptic with \mathbb{R}_- in the resolvent set.

$Q_\lambda = (P - \lambda)^{-1}$ defined in sector V around \mathbb{R}_-, symbol $q(x, \xi, \lambda) \sim \sum_{j \geq 0} q_{-m-j}(x, \xi, \lambda)$. Then

P^{-s} is a classical ψdo of order $-ms$ (Seeley '67), symbol $p^{(-s)}(x, \xi) \sim \sum_{j \geq 0} p_{-ms-j}^{(-s)}(x, \xi)$, where

$$p_{-ms-j}^{(-s)}(x, \xi) = \frac{i}{2\pi} \int_C \lambda^{-s} q_{-m-j}(x, \xi, \lambda) \, d\lambda;$$

C a closed curve in $\mathbb{C} \setminus \mathbb{R}_-$ encircling the eigenvalues of $p_m(x, \xi)$.

$$\log P = \text{Op}(m \log[\xi] + b(x, \xi)); \quad [\xi] = |\xi| \text{ for } |\xi| \geq 1;$$

$$b(x, \xi) \sim \sum_{j \geq 0} b_{-j}(x, \xi) \text{ classical of order 0,}$$

$$b_{-j}(x, \xi) = \frac{i}{2\pi} \int_C \log \lambda q_{-m-j}(x, \xi, \lambda) \, d\lambda \text{ for } j > 0.$$
Remarkable fact (Scott ‘04, partially known earlier):

\[C_0(I, P) = -\frac{1}{m} \text{res}(\log P). \]

We can show it without using complex powers, by observing:

Lemma 1. The strictly homogeneous symbol \(q_{-m-n}^h(x, \xi, \lambda) \) is integrable at \(\xi = 0 \) and \(\infty \), and

\[C_0(I, P) = \int_X c_n(x), \text{ with } c_n(x) = \int_{\mathbb{R}^n} q_{-m-n}^h(x, \xi, -1) \, d\xi. \]

Lemma 2. When \(f(x, \xi, \lambda) \) is holomorphic in \(\lambda \) on a nbd. of \(\mathbb{R}_- \), with suitable bounds, then (with a curve \(\mathcal{C} \) in \(\mathbb{C} \setminus \mathbb{R}_- \))

\[\frac{1}{2\pi i} \int_{\mathcal{C}} \log \lambda f(x, \xi, \lambda) \, d\lambda = \int_{-\infty}^0 f(x, \xi, t) \, dt. \]

For, \(\log \lambda \) gives a jump of \(2\pi i \) at \(\mathbb{R}_- \); the contributions from \(\log |\lambda| \) cancel out.

Combine this with homogeneity, polar coordinates:

\[\int_{\mathbb{R}^n} q_{-m-n}^h(x, \xi, -1) \, d\xi = \frac{1}{m} \int_{|\eta|=1} \int_{-\infty}^0 q_{-m-n}^h(x, \eta, t) \, dt \phi S(\eta) \]

\[= -\frac{1}{m} \int_{|\eta|=1} \frac{i}{2\pi} \int_{\mathcal{C}} \log \lambda q_{-m-n}^h(x, \eta, \lambda) \, d\lambda \phi S(\eta) \]

\[= -\frac{1}{m} \int_{|\eta|=1} b_n(x, \eta) \phi S(\eta), \]

the inner integral in the residue of \(\log P \)!
The trace defect formulas in the closed manifold case can be proved by calculations where this type of argument is central; we never need to consider P^{-s}, and $\log P$ enters only in a very rudimentary way.

Finally, for the case with boundary, this argument is again central, but a lot of extra efforts are needed to master the contributions from the boundary.

Application e.g. to index formulas:

If $A = P_+ + G \colon C^\infty(X, E) \to C^\infty(X, F)$ is elliptic of order and class 0, and B is a parametrix, then with auxiliary elliptic operators P_1 in E and P_2 in F,

\[
\text{ind } A = C_0(AB - I, P_{2,+}) - C_0(BA - I, P_{1,+}) = C_0(AB, P_{2,+}) - C_0(BA, P_{1,+}) + \frac{1}{m} \text{res}((\log P_2)_+) - \frac{1}{m} \text{res}((\log P_1)_+).
\]

Here $C_0(AB, P_{2,+}) - C_0(BA, P_{1,+})$ is a res with ψdo part $\text{res}((B \log P_2 A - BA \log P_1)_+)$.

20
References

