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1. Introduction

1The zeta function of a Laplacian ∆ is ζ(∆, s) = trace(∆−s), where ∆−s is taken to be
zero in the nullspace of ∆.

Minakshisundaram and Pleijel [MP] showed that for the Laplacian on a compact mani-
foldX with empty boundary, the zeta function has a meromorphic extension to the complex
plane C. Later, Atiyah and Bott suggested the use of zeta functions in proving an index
formula

(1.1) ind(P ) =

∫

X

α(x) dx,

for an elliptic operator P . The density α(x) dx is determined locally by the symbol of P .
One version of this proof, given in Section 2 below, uses the zeta functions of ∆1 = P ∗P
and ∆2 = PP ∗.

If ∂X = X ′ is not empty, the zeta method gives an analogous formula for the index of
a realization PB of P given by a differential boundary condition Bu = 0 on ∂X ,

(1.2) ind(PB) =

∫

X

α(x) dx+

∫

X′

β(x′) dx′,

with densities αdx and β dx′ locally determined by the symbols of P and B.
However, good differential boundary conditions do not always exist. In particular, they

do not always exist for the geometrically interesting first order operators studied by Atiyah,
Patodi and Singer [APS]. Near ∂X , these have the form

(1.3) P = σ( ∂
∂xn

+A)

*Work partially supported by NSF grant DMS-9004655.

1This work was printed in J. Geom. An. 6 (1996), 31–77.

1



2 GRUBB AND SEELEY

where xn is a coordinate normal to the boundary, σ is a morphism between vector bundles,
and A is a selfadjoint elliptic first order differential operator on X ′ = ∂X . The operator
A determines an orthogonal projection

Π≥ = projection on eigenspaces of A with eigenvalue ≥ 0.

The boundary condition

(1.4) Π≥u = 0 on ∂X

determines a realization of P , which we call P≥. In the case that σ and A are independent
of xn (the “cylindrical” case), [APS] found

(1.5) ind(P≥) =

∫

X

α(x) dx− 1
2η(A, 0) − 1

2ν0(A).

Here α(x) dx is the same density as in (1.1) and (1.2); η(A, 0) is the analytic continuation
to s = 0 of the eta function

η(A, s) = trace(A|A|−s−1),

a regularized signature of A; and ν0(A) is the nullity of A. The proof in [APS] used heat
asymptotics of the Laplacians

(1.6) ∆1 = P≥
∗P≥ and ∆2 = P≥P≥

∗,

but did not obtain separate expansions for Tr(e−t∆1) and Tr(e−t∆2). Partial expansions
for these (with n+ 1 terms plus a remainder), sufficient to obtain the index formula, have
been obtained recently in [G2], even for the case where σ and A depend on xn.

The main result of the present paper is to obtain, in the cylindrical case, and by relatively
elementary means, a complete description of the singularities of Γ(s)ζ(∆i, s), and more gen-
erally of Γ(s) Tr(D∆−s

1 ), Γ(s) Tr(D∆−s
2 ), Γ(s) Tr(DP∆−s

1 ), and Γ(s) Tr(DP ∗∆−s
2 ), where

D is a differential operator on X ′. We also allow some variation in the boundary condition
(1.4). The singularities of Γ(s)ζ(∆i, s) at s = 0 give the index formula (1.5). The full set
of singularities gives the complete expansion of the corresponding heat traces TrDe−t∆i

and so on, as t → 0. However, in the actual calculation of the full set of coefficients it
is advantageous to work with the power functions ζ(∆i, s), etc., because they are directly
related to the power functions of A by product formulas.

The factor D plays no role in the index question, but has been useful in the study of
other invariants by Branson and Gilkey [BG] in the case of differential operators, and will
presumably be useful in this more general case as well.

The simplifying feature of the cylindrical case is that we can write a very accurate
approximation of the resolvent using functions of the tangential operator A in (1.3). The
noncylindrical case requires a somewhat new approach to these resolvent expansions; this
is taken up in another article [GS].
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Another recent approach to the index formula (1.5), due to Melrose [M], imposes the
boundary condition implicitly by adding an infinite cylinder to X . Then e−t∆i is no
longer trace class, but a modified notion of trace can still be used. Our approach is less
sophisticated.

As to organization, Section 2 establishes notation, states the main results and some
consequences, explains the relation between zeta functions and resolvent traces, and recalls
the essential facts about these functions for the case of boundaryless manifolds. Section
3 analyzes the Tr(D∆−s

i ), giving the zeta function of ∆i when D = I. Section 4 treats
Tr(DP∆−s

1 ) and Tr(DP ∗∆−s
2 ), giving the eta functions of P≥ and P≥

∗ when D = I.
Section 5 gives the expansions of the corresponding heat traces.

We are grateful to P. B. Gilkey and R. B. Melrose for useful conversations and encour-
agement.

2. Notation and statement of results

2.1 General representation formulas.

Suppose that Q is a closed operator in a Hilbert space having a resolvent (Q − λ)−1

which is meromorphic at λ = 0 and holomorphic in some sector | arg(−λ)| < α, with
‖(Q− λ)−1‖ = O(|λ|−1). Then the “power function” Z(Q, s) is defined for Re s > 0 by

(2.1) Z(Q, s) = i
2π

∫

C
λ−s(Q− λ)−1dλ

where C is a curve

(2.2)
Cθ,r0

= {λ = reiθ | ∞ > r ≥ r0 } + {λ = r0e
iθ′ | θ ≥ θ′ ≥ −θ }

+ {λ = rei(2π−θ) | r0 ≤ r <∞},

with π − α < θ ≤ π, and r0 chosen so that (Q− λ)−1 is holomorphic for 0 < |λ| ≤ r0. If
Q is invertible then Z(Q, s) = Q−s; in any case, Z(Q, s) = 0 on the nullspace of Q, since∫
C λ

−s−1dλ = 0.
If Z(Q, s) is trace class for some s, then Q has a zeta function

(2.3) ζ(Q, s) = TrZ(Q, s)

and, for appropriate operators D, a “modified” zeta function

(2.4) ζ(D,Q, s) = TrDZ(Q, s).

Similarly, under appropriate conditions, we define

(2.5) Y (Q, s) = QZ(Q∗Q, s+1
2

) = i
2π

∫

C
λ−(s+1)/2Q(Q∗Q− λ)−1dλ

and the eta functions

(2.6) η(Q, s) = TrY (Q, s), η(D,Q, s) = TrDY (Q, s).
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When Q is selfadjoint,

(2.7)
∑

λ∈sp(Q)\{0}
|λ|−s = ζ(Q2, s

2 ),
∑

λ∈sp(Q)\{0}
signλ|λ|−s = η(Q, s),

with summation over the eigenvalues, repeated according to multiplicities.
The operators Q for our zeta and eta functions arise as follows. On an n-dimensional

manifold X with boundary ∂X = X ′, we consider a first order differential operator

P : C∞(E1) → C∞(E2)

between sections of hermitian vector bundles E1 and E2 over X . The restriction of Ei to
the boundary X ′ is denoted E′

i. A neighborhood of the boundary has the form X ′ × [0, c],
and we assume that Ei is isomorphic to the pull-back of E′

i there, and P is represented as

(2.8) P = σ(∂xn
+A) on X ′ × [0, c],

where σ is a unitary morphism from E′
1 to E′

2, and A is an elliptic first order differential
operator in C∞(E′

1), selfadjoint in L2(X
′, E′

1) with respect to some smooth measure dx′.
σ and A are independent of xn, and the measure dx on X equals dx′dxn on X ′× [0, c] (the
“cylindrical” case). Also in the rest of X , P is assumed elliptic.

Let Vλ denote the eigenspace of A with eigenvalue λ. We have orthogonal projections

(2.9)

Π> = projection on ⊕
λ>0

Vλ,

Π0 = projection on V0, ν0 = dimV0,

Π≥ = Π> + Π0.

The notation V0(Q), Π0(Q), ν0(Q), will be used also for other selfadjoint operators in the
following.

We denote by P≥ the operator P acting on the domain

(2.10) D(P≥) = { u ∈ H1(X,E1) | Π≥(u|X′) = 0 };

here H1(X,E) is the Sobolev space of order 1 of sections in E. More generally, for an
orthogonal projection B with

(2.11) Range (Π>) ⊂ Range (B) ⊂ Range (Π≥)

we shall study PB , defined as the operator P acting on the domain where B(u|X′) = 0.

We extend the operator P to an operator P̃ on the double X̃ of X as indicated in [APS,

p. 55] (switching the roles of E1 and E2 on X̃ \X); the extended bundles are denoted by

Ẽ1 and Ẽ2. Denote P̃ ∗P̃ = ∆̃1 and P̃ P̃ ∗ = ∆̃2. For an operator Q on C∞(X̃, Ẽi), we
denote by Q+ its restriction to X , i.e.,

(2.12) Q+ = r+Qe+,
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where e+ denotes extension by zero on X̃ \X and r+ denotes restriction to X . When Q
is of trace class with a continuous kernel K(x, y, Q) (so that TrQ =

∫ eX trK(x, x,Q) dx,
where tr denotes the trace of the endomorphism in the vector bundle fibre), we set

(2.13) Tr+(Q) = Tr(Q+) =

∫

X

trK(x, x,Q)dx.

Likewise, we set

(2.14) ζ+(D,Q, s) = Tr+(DZ(Q, s)).

The operators D in the modified zeta and eta functions in (2.4) and (2.6) will be
differential operators (for suitable choices of i, j)

(2.15) Dij : C∞(Ej) → C∞(Ei) (i, j = 1, 2),

that on X ′ × [0, c] act like tangential operators D′
ij on X ′, constant in xn. (Concerning

non-tangential choices, see Remark 4.3 below.)
In stating our main results, we use the notation (explained in more detail in (3.14) ff.)

(2.16) Ft(s) =
Γ(s+ t)

Γ(t)Γ(s+ 1)
.

Theorem 2.1. The generalized zeta functions ζ(Dii,∆i, s) decompose as follows:

(2.17) Γ(s)ζ(Dii,∆i, s) =

Γ(s)[ζ+(Dii, ∆̃i, s) + 1
4(F 1

2
(s) − 1)ζ(D′′

ii, A
2, s) + (−1)i 1

4F 1
2
(s)η(D′′

ii, A, 2s)]

+ 1
s [Tr+(DiiΠ0(∆̃i)) − Tr(DiiΠ0(∆i)) + (−1)i 1

4 Tr(D′′
iiΠ0(A))] + hi(s);

with D′′
11 = D′

11, D
′′
22 = σ∗D′

22σ, and hi(s) entire. In particular, the zeta functions satisfy:

(2.18) Γ(s)ζ(∆i, s) = Γ(s)[ζ+(∆̃i, s) + 1
4 (F 1

2
(s) − 1)ζ(A2, s) + (−1)i 1

4F 1
2
(s)η(A, 2s)]

+ 1
s [Tr+(Π0(∆̃i)) − ν0(∆i) + (−1)i 1

4ν0(A)] + hi(s).

Theorem 2.2. The generalized eta functions decompose as follows:

Γ(s) Tr(D12P∆−s
1 ) = Γ(s)

[
Tr+(D12P ∆̃−s

1 ) + 1
4
(F 1

2
(s− 1) − 1)η(D′

12σ,A, 2s− 1)
]

+ 1
4
√

π
Tr(D′

12σΠ0(A))(s− 1
2)−1 + h1(s),(2.19)

Γ(s) Tr(D21P
∗∆−s

2 ) = Γ(s)
[
Tr+(D21P

∗∆̃−s
2 ) + 1

4 (F 1
2
(s− 1) − 1)η(σ∗D′

21, A, 2s− 1)
]

+ 1
4
√

π
Tr(σ∗D′

21Π0(A))(s− 1
2 )−1 + h2(s),

where hi(s) is entire.

In these theorems, the zeta and eta functions on the right hand side have meromorphic
extensions to C; see Lemma 2.5 below. Hence, so do those on the left.

The index theorem in [APS] can be deduced from Theorem 2.1, as follows.
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Corollary 2.3. The index of P≥ is given by

ind(P≥) =

∫

X

α0 − 1
2
η(A),

where α0 is the standard index form for P as an operator on a manifold without boundary,
and η(A) is the eta-invariant

η(A) = η(A, 0) + ν0(A).

Proof. The nonzero eigenvalues of ∆1 = P≥
∗P≥ and ∆2 = P≥P≥

∗ coincide, so ζ(∆1, s) =
ζ(∆2, s). We use (2.18) to express these zeta functions. The other zeta functions appearing
there are regular at 0, and the eta function appears with opposite sign on each side of our
equality, so the eta function is also regular at s = 0. Since F 1

2
(0) = 1, we find

ζ+(∆̃1, 0) + Tr+(Π0(∆̃1)) − 1
4η(A, 0)− 1

4ν0(A) − ν0(∆1)

= ζ+(∆̃2, 0) + Tr+(Π0(∆̃2)) + 1
4η(A, 0) + 1

4ν0(A) − ν0(∆2).

So

(2.20) ind(P≥) = ν0(∆1) − ν0(∆2)

=
[
ζ+(∆̃1, 0) + Tr+ Π0(∆̃1) − ζ+(∆̃2, 0) − Tr+ Π0(∆̃2)

]
− 1

2
[η(A, 0) + ν0(A)] .

The first sum in brackets is the standard index form for P̃ on X̃ (see below), but integrated
just over X . This proves the Corollary.

To identify the bracketed term in (2.20), we use the well-known Lemma 2.5 below. In
fact, by (2.23), the term is the integral over X of the fibre trace of

K(x, x, Z(∆̃1, 0)) + K0(x, x, ∆̃1) −K(x, x, Z(∆̃2, 0)) −K0(x, x, ∆̃2)

= cn(x, ∆̃1) − cn(x, ∆̃2).

The integral over X̃ of this trace is
∫ eX tr[cn(x, ∆̃1) − cn(x, ∆̃2)] dx = ζ(∆̃1) + Tr Π0(∆̃1) − ζ(∆̃2) − TrΠ0(∆̃2)

= TrΠ0(∆̃1) − TrΠ0(∆̃2) = ind(P̃ ).

Thus tr[cn(x, ∆̃1) − cn(x, ∆̃2)]dx is the standard index form for P̃ on X̃ (which has been

calculated explicitly when P̃ is a twisted Dirac operator, cf. e.g. [APS]). �

Note that this proof, like that in [APS], shows that η(A, s) is regular at s = 0, since the
existence of lims→0 η(A, s) is assured by the convergence of the other terms.

When E1 = E2, Theorem 2.2 gives the behavior of the eta functions

η(P≥, 2s) = Tr(P∆
−s− 1

2

1 ) and η(P≥
∗, 2s) = Tr(P ∗∆

−s− 1
2

2 ).

Douglas and Wojciechowski [DW, Th. 4.3] showed, in the case of generalized Dirac opera-
tors with dimX odd, ν0(A) = 0, that η(P≥, 2s) is meromorphic with the same singularity

structure as Tr+(P ∆̃−s
1 ). This also follows from:
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Corollary 2.4. 1◦ Suppose that E1 = E2 and, in (2.8), σ∗ = −σ, σA = −Aσ. Then
η(A, s) ≡ 0, and

(2.22)
Γ(s+ 1

2 )η(P≥, 2s) = Γ(s+ 1
2 ) Tr+(P ∆̃−s

1 ) + 1
4
√

π s
Tr(σΠ0(A)) + h1(s),

Γ(s+ 1
2
)η(P≥

∗, 2s) = Γ(s+ 1
2
) Tr+(P ∗∆̃−s

2 ) − 1
4
√

π s
Tr(σΠ0(A)) + h2(s),

with hi entire.

2◦ Moreover, when P is a generalized Dirac operator, the residue of η(P≥, 2s) at s = 0
equals 1

4π Tr(σΠ0(A)) and the residue of η(P≥
∗, 2s) at s = 0 equals −1

4π Tr(σΠ0(A)). In the
situation of [DW, Theorem A.1], these residues are zero.

Proof. Since σA = −Aσ,

Tr(σA|A|−2s−1) = −Tr(Aσ|A|−2s−1) = −Tr(σ|A|−2s−1A) = −Tr(σA|A|−2s−1),

using a circular permutation, so η(A, s) ≡ 0. Then (2.22) follows from Theorem 2.2.

For generalized Dirac operators, Tr(P ∆̃−s
i ) is regular at s = 0 by Bismut and Freed

[BF] (or see Branson and Gilkey [BG, Theorem 3.4]). Dividing by Γ(s+ 1
2 ), we see that the

residue of η(P≥, 2s) at s = 0 is indeed 1
4π

Tr(σΠ0(A)). Similarly, the residue of η(P≥
∗, 2s)

at s = 0 is 1
4π Tr(σ∗Π0(A)) = −1

4π Tr(σΠ0(A)), since σ∗ = −σ.

In the situation of [DW, Th. A.1], kerA = V0(A) can be decomposed into an orthogonal

direct sum V0,+ ⊕ V0,− with σ : V0,+
∼→ V0,−. Then Tr(σΠ0(A)) = 0. �

Generalizations of these results to the realizations PB (cf. (2.11)) are given at the end
of Sections 3 and 4.

For Dirac operators on manifolds X of odd dimension, there also exist local elliptic
boundary conditions (cf. e.g. Singer [Si]), where the singularity structure of the zeta and
eta functions is found as in Gilkey and Smith [GiS].

2.2 Description of the singularities.

In the case where Dij is just a morphism ϕ we will list explicitly all the singularities of
Γ(s)ζ(ϕ,∆i, s), leaving other cases to the interested reader. For this, we need the following

well-known result. It will be used with n1 = n, X1 = X̃ , Q = ∆̃i, and with n1 = n − 1,
X1 = X ′, Q = A2.

Lemma 2.5. Let Q be a second order elliptic differential operator in a hermitian C∞

vector bundle E over a compact n1-dimensional manifold X1 without boundary, such that
Q is selfadjoint ≥ 0 in L2(X1, E) with respect to some smooth measure on X1. Let D be
a differential operator in E of order d ≥ 0.

Denote the orthogonal projection onto the nullspace V0(Q) of Q by Π0(Q); it is the
integral operator with C∞ kernel K0(x, y, Q) =

∑
1≤l≤ν0

ul(x) ⊗ ul(y), where the ul are a

smooth orthonormal basis of V0. Denote
∑

1≤l≤ν0
(Dul(x)) ⊗ ul(y) = D(x)K0(x, y, Q).

For Re s > n1

2
+d, DZ(Q, s) is trace class and has a continuous kernel K(x, y,DZ(Q, s)).

The kernel at x = y, and the trace of DZ(Q, s) (also denoted ζ(D,Q, s)), extend mero-
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morphically to C, as follows:

(2.23)

Γ(s)K(x, x,DZ(Q, s)) +
D(x)K0(x, x,Q)

s
∼

∞∑

j=0

cj(x,D,Q)

s+ j−n1−d
2

,

Γ(s) Tr(DZ(Q, s)) +
Tr(DΠ0(Q))

s
∼

∞∑

j=0

cj(D,Q)

s+ j−n1−d
2

,

with cj(D,Q) =
∫

X1
tr cj(x,D,Q) dx, where ∼ means that the left hand side minus the

sum for j ≤ N in the right hand side is holomorphic for Re s > n1+d−N−1
2

, any N . The
coefficients cj(x,D,Q) are C∞ sections of Hom(E,E), determined by differential operators
in the symbols of Q and D in local coordinates, and the hermitian metric in E and the
smooth measure on X1. For j + d odd, cj(x,D,Q) = 0.

The functions Γ(s)K(x, x,DZ(Q, s)) and Γ(s) Tr(DZ(Q, s)) are O(e−δ| Im s|), any δ < π
2 ,

for | Im s| ≥ 1, C1 ≤ Re s ≤ C2 (any real C1 and C2).

Remark 2.6. When Q is a pseudodifferential operator, there is a related result, where
one must however include double poles at the negative integers −k for Γ(s) times the
zeta function, as pointed out in Duistermaat and Guillemin [DG]. This means that the
zeta function itself can have nonvanishing simple poles at the negative integers. Only for
differential operators can one be sure that these poles vanish. In [S], the restriction to
differential operators for this property is left out of the summary, bottom of page 290.

At a certain point we shall need the next coefficient in the Laurent series for
Γ(s)ζ(D,Q, s) at a pole (it is generally not locally determined). We denote it by c′j :

(2.24) c′j(D,Q) = lim
s→−j+n1+d

2

[
Γ(s)ζ(D,Q, s)− cj(D,Q)

s+ j−n1−d
2

]
.

Now, to work out the singularities of Γ(s)ζ(ϕ,∆1, s), we need the constants

(2.25)

βm = [residue of 1
4
F 1

2
(s) at s = −1

2
−m] =

(−1)m

4m!
√
π Γ( 1

2
−m)

,

γk = 1
4 (F 1

2
(k
2 ) − 1) = 1

4

[ Γ(k+1
2

)
√
π Γ(1 + k

2
)
− 1

]
,

εm = [residue of 1
4F 1

2
(s)Γ(s) at s = −1

2 −m] =
(−1)m+1

4m!
√
π (m+ 1

2
)
;

here m = 0, 1, 2, . . . , and the k are integers avoiding negative odd numbers. Define more-
over β′

m as the residue of 1
4
F 1

2
(s)(s+ 1

2
+m)−1 at s = −1

2
−m.

Let ϕ be a C∞ morphism in E1 that equals ϕ0 := ϕ|X′ on X ′ × [0, c].
From Lemma 2.5 we have, omitting vanishing coefficients,

Γ(s)ζ+(ϕ, ∆̃1, s) ∼
∞∑

k=0

c2k,+(ϕ, ∆̃1)

s+ k − n
2

− Tr+
(
ϕΠ0(∆̃1)

)

s
,
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where cj,+(ϕ, ∆̃1) =
∫

X
tr cj(x, ϕ, ∆̃1) dx. Likewise, since A acts on X ′ of dimension n−1,

Γ(s)ζ(ϕ0, A2, s) ∼
∞∑

k=0

c2k(ϕ0, A2)

s+ k − n−1
2

− Tr
(
ϕ0Π0(A)

)

s
,

and

(2.26)

Γ(s)F 1
2
(s)η(ϕ0, A, 2s) =

1√
π s

Γ(s+ 1
2 )ζ(ϕ0A,A2, s+ 1

2 )

∼
∑

0≤k

c2k+1(ϕ
0A,A2)√

π (n
2
− k − 1)(s+ k + 1 − n

2
)

+
η(ϕ0, A, 0)

s
if n is odd,

∼
∑

0≤k 6= n
2
−1

c2k+1(ϕ
0A,A2)√

π (n
2 − k − 1)(s+ k + 1 − n

2 )

+
cn−1(ϕ

0A,A2)√
π s2

+
c′n−1(ϕ

0A,A2)√
π s

if n is even,

where c′n−1(ϕ
0, A2) is defined as in (2.24). When ϕ0 = 1 then η(A, 2s) is regular at s = 0

(Corollary 2.3), i.e. cn−1(A,A
2) = 0 and c′n−1(A,A

2) =
√
π η(A, 0).

We use these expansions in Theorem 2.1 with i = 1, to find:

Corollary 2.7. When n is even, the singularities of Γ(s)ζ(ϕ,∆1, s) consist of the fol-
lowing four sums:

(i) From Γ(s)ζ+(ϕ, ∆̃1, s) + 1
s

Tr+(ϕΠ0(∆̃1)),

∑

k≥0

c2k,+(ϕ, ∆̃1)

s+ k − n
2

.

(ii) From 1
4
(F 1

2
(s) − 1)Γ(s)ζ(ϕ0, A2, s), noting that F 1

2
(0) = 1,

∑

0≤k< n
2

γn−1−2kc2k(ϕ0, A2)

s+ k − n−1
2

+
∑

k≥n
2

[βk−n
2
c2k(ϕ0, A2)

(s+ k − n−1
2 )2

+
βk−n

2
c′2k(ϕ0, A2) + (β′

k−n
2

− 1
4
)c2k(ϕ0, A2)

s+ k − n−1
2

]
.

(iii) From −1
4F 1

2
(s)Γ(s)η(ϕ0, A, 2s),

−1
4

∑

0≤k 6= n
2
−1

c2k+1(ϕ
0A,A2)√

π (n
2 − k − 1)(s+ k + 1 − n

2 )
− cn−1(ϕ

0A,A2)

4
√
π s2

− c′n−1(ϕ
0A,A2)

4
√
π s

.

(iv) From the remaining terms in 1
s
,

−1
s

[
Tr(ϕΠ0(∆1)) + 1

4
Tr(ϕ0Π0(A))

]
.

The poles of F 1
2
(s) at the negative half-integers here give rise to double poles since they

coincide with poles of Γ(s)ζ(ϕ0, A2, s).
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Corollary 2.8. When n is odd, the singularities of Γ(s)ζ(ϕ,∆1, s) consist of the fol-
lowing four sums:

(i) From Γ(s)ζ+(ϕ, ∆̃1, s) + 1
s Tr+(ϕΠ0(∆̃1)),

∑

k≥0

c2k,+(ϕ, ∆̃1)

s+ k − n
2

.

(ii) From 1
4
(F 1

2
(s) − 1)Γ(s)ζ(ϕ0, A2, s),

∑

k≥0

γn−1−2kc2k(ϕ0, A2)

s+ k − n−1
2

+
∑

m≥0

εmζ(ϕ
0, A2,−m− 1

2 )

s+m+ 1
2

.

(iii) From −1
4F 1

2
(s)Γ(s)η(ϕ0, A, 2s),

−1
4

∑

k≥0

c2k+1(ϕ
0A,A2)√

π (n
2
− k − 1)(s+ k + 1 − n

2
)
− η(ϕ0, A, 0)

4s
.

(iv) From the remaining terms in 1
s
,

−1
s

[
Tr(ϕΠ0(∆1)) + 1

4 Tr(ϕ0Π0(A))
]
.

The poles of F 1
2
(s) at the negative half-integers here give rise to simple poles, picking

up the values ζ(ϕ0, A2,−m− 1
2 ) of ζ(ϕ0, A2, s) between its poles.

There are similar formulas for ∆2, with ϕ0 replaced by σ∗ϕ0σ and a change of sign in
the contributions from the eta function and the nullspace of A.

Note that the coefficients cj and cj,+ are determined by the symbols of the operators,
whereas the coefficients c′j and ζ(ϕ0, A2,−m− 1

2 ) cannot be expected to be so.
One can likewise describe the pole structure of the eta functions of ∆i determined in

Theorem 2.2; see Section 4.
We conclude this section with a result used in the proofs of Theorems 2.1 and 2.2,

relating resolvents and zeta functions. This same proposition can be used to deduce Lemma
2.5 from the resolvent expansion in [S] or [Sh].

Proposition 2.9. Suppose that f is meromorphic at 0 with Laurent expansion

f(λ) =
∞∑

−k

bj(−λ)j , |λ| ≤ ρ,

that f is holomorphic in the open sector Sδ0
= {λ ∈ C | | argλ − π| < δ0 } (for some

δ0 ≤ π), and f(λ) = O(|λ|−α) for some α ∈ ]0, 1] as λ → ∞, uniformly in each sector Sδ

for δ < δ0. Let C be a curve Cπ,r0
as in (2.2) (a Laurent loop), with 0 < r0 < %. Set

f0(λ) = f(λ) − ∑−1
−k bj(−λ)j , and

(2.27) ζ(s) = i
2π

∫

C
λ−sf(λ) dλ, Re s > 1 − α,



ZETA AND ETA FUNCTIONS 11

with λ−s = r−se−isθ, r > 0 and |θ| ≤ π. Then

ζ(s) =
sinπs

π

∫ ∞

0

r−sf0(−r) dr, 1 − α < Re s < 1, and(2.28)

f0(−λ) = 1
2i

∫

Re s=σ

λs−1 ζ(s)

sinπs
ds, 1 − α < σ < 1.(2.29)

The function πζ(s)
sin πs

is meromorphic for Re s > 1−α, having simple poles at s = j+ 1 with

residues (−1)j+1ζ(j + 1) = −bj , j = 0, 1, 2, . . . .
Moreover, the following properties a) and b) are equivalent:
a) f has an asymptotic expansion as λ goes to infinity

(2.30) f(−λ) ∼
∞∑

j=0

mj∑

l=0

aj,lλ
−αj (logλ)l, 0 < αj ↗ +∞, mj ∈ {0, 1, 2, . . .},

uniformly for −λ in Sδ, for each δ < δ0.

b)
πζ(s)

sinπs
is meromorphic on C with the singularity structure

(2.31)
πζ(s)

sinπs
∼ −

∞∑

j=−k

bj
s− j − 1

+

∞∑

j=0

mj∑

l=0

aj,ll!

(s+ αj − 1)l+1

(in the sense that for large N , the left hand side minus the sums for j ≤ N in the right
hand side is holomorphic for 1 − αN < Re s < N + 1); and for each real C1, C2 and each
δ < δ0,

(2.32)

∣∣∣∣
ζ(s)

sinπs

∣∣∣∣ ≤ C(C1, C2, δ)e
−δ| Im s|, for | Im s| ≥ 1, C1 ≤ Re s ≤ C2.

Thus the singularities of ϕ(s) = πζ(s)
sin πs in Re s < 1 are determined by the expansion

(2.30) and the singular Laurent terms of f(λ) at λ = 0. In particular, the coefficient of

λ−αj in (2.30) is the residue of πζ(s)
sin πs

at s = 1 − αj plus, if αj is integer, the coefficient
of λ−αj in the Laurent expansion of f(−λ) at λ = 0. The coefficient of λ−αj (logλ) is the

coefficient of (s− (1 − αj))
−2 in the Laurent expansion of −πζ(s)

sin πs
at s = 1 − αj .

Proof. For j ≤ −1 and Re s > 0,
∫
C λ

j−sdλ = 0, since the contour can be closed at ∞ in

{| argλ| < π}. So the singular part of f ,
∑−1

−k bj(−λ)j , is “killed” by the integral over C
in (2.27). For the remaining part f0, the circular part of C can be reduced to the origin if
Re s < 1, reducing (2.27) to (2.28) (note that f0 is O(|λ|−α) too).

The inversion (2.29) requires growth estimates for ζ(s). Replacing the integration curve
by C(δ) := Cπ−δ,0, 0 < δ < δ0, we have that

(2.33) |ζ(s)| =
∣∣∣ i
2π

∫

C(δ)

λ−sf0(λ) dλ
∣∣∣ = O(e(π−δ)| Im s|), 1 − α < C1 ≤ Re s ≤ C2 < 1.
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For, when λ = rei(π−δ), we can use the estimate

(2.34)
∣∣∣
∫ ∞

0

r−sei(π−δ)(1−s)O((1 + r)−α) dr
∣∣∣ ≤ Ce(π−δ)| Im s|,

and there is a similar estimate on the other half of C(δ).
Now let

(2.35) ϕ(s) =

∫ ∞

0

r−sf0(−r) dr =
πζ(s)

sinπs
.

Since (sinπs)−1 is O(e−π| Im s|) for | Im s| ≥ 1, we have by (2.33) that ϕ(σ+iτ) = O(e−δ|τ |)
for 1−α < C1 ≤ σ ≤ C2 < 1. Also, ϕ(σ+ iτ) is the Fourier transform F̂ (τ) of the function
F (x) = e(1−σ)xf0(−ex). Since f0(λ) = O(|λ|−α), F (x) decays exponentially as x → ±∞,
for 1 − α < σ < 1. By Fourier inversion, F (x) = 1

2π

∫ ∞
−∞ eixτϕ(σ + iτ)dτ , giving (2.29),

for λ > 0. It extends to | argλ| < δ0 by analytic continuation.
It is seen from (2.27) that ζ(s) is holomorphic for Re s > 1 − α; and since ζ(j + 1) =

−i
2π

∫
|λ|=r0

λ−j−1f(λ) dλ = (−1)jbj , j = 0, 1, 2, . . . , πζ(s)
sin πs

is meromorphic for Re s > 1 − α,

having simple poles with residues −bj .
Now suppose that a) holds; then

(2.36) f0(−λ) =

N−1∑

j=0

mj∑

l=0

aj,lλ
−αj (logλ)l −

−1∑

j=−k

bjλ
j +O(|λ|−αN+ε) for λ→ ∞,

for αN ≥ k, any ε > 0. Note that

∫ 1

0

rj−s dr =
−1

s− j − 1
for Re s < j + 1,

∫ ∞

1

rβ−s(log r)l dr =
l!

(s− β − 1)l+1
for Re s > β + 1

(the cases l > 0 follow from the case l = 0 by application of ∂l
s); the right hand sides

extend meromorphically to C. Then we get from (2.35), for arbitrarily large N :

ϕ(s) =

∫ 1

0

[N−1∑

j=0

bjr
j−s + r−sO(rN)

]
dr

+

∫ ∞

1

[N−1∑

j=0

mj∑

l=0

aj,lr
−αj−s(log r)l −

−1∑

j=−k

bjr
j−s + r−sO(r−αN+ε)

]
dr

= −
N−1∑

j=−k

bj
s− j − 1

+

N−1∑

j=0

mj∑

l=0

aj,ll!

(s+ αj − 1)l+1
+ hN (s)

where hN is holomorphic for 1 − αN + ε < Re s < N + 1, and the other terms are
meromorphic on C. This gives the singularities (2.31).
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To show the decay, we use the integral in (2.33) and expand on each piece of C(δ):

(2.37)

ζ(s) = − i
2π

(∫ 1

0

+

∫ ∞

1

(rei(π−δ))−sf0(re
i(π−δ))ei(π−δ) dr

)

+ i
2π

(∫ 1

0

+

∫ ∞

1

(rei(−π+δ))−sf0(re
i(−π+δ))ei(−π+δ) dr

)
.

The first integral from 0 to 1 is written as

−i
2π

∫ 1

0

(rei(π−δ))−sf0(re
i(π−δ))ei(π−δ) dr

= −i
2π

∫ 1

0

N−1∑

j=0

ei(j+1−s)(π−δ)bjr
j−s dr +

∫ 1

0

r−sei(π−δ)(1−s)O(rN ) dr

=
N−1∑

j=0

−ei(j+1−s)(π−δ)bj
j + 1 − s

+ ei(π−δ)(1−s)

∫ 1

0

r−sO(rN ) dr.

Let | Im s| ≥ 1. The sum over j extends meromorphically to C, and its terms are
O(e(π−δ)| Im s|) for −∞ < C1 ≤ Re s ≤ C2 <∞. The last term exists and is O(e(π−δ)| Im s|)
when Re s < N+1. Similar considerations hold for the other integral from 0 to 1. In the in-
tegrals from 1 to ∞ we expand as in (2.36), obtaining functions that are O(e(π−δ)| Im s|) for
Re s > 1−αN+ε. We conclude that the estimate in (2.33) extends to 1−αN < Re s < N+1,
| Im s| ≥ 1, for arbitrarily large N . Dividing by sinπs we find that ϕ(s) satisfies (2.32).
This shows a) =⇒ b).

Conversely, assume b). Then f0(−λ) is given by (2.29), and we obtain the expansion
(2.30) by shifting the contour of integration past the poles of ζ(s)/ sinπs. The remainder
after all terms up to the singularity s = 1 − αN is given by the integral (2.29) but with
σ < 1 − αN ; it is O(|λ|−αN+ε) on Sδ. �

Corollary 2.10. When f(λ) and ζ(s) are as in Proposition 2.9, then Γ(s)ζ(s) is mero-
morphic on C with the singularity structure

(2.38) Γ(s)ζ(s) ∼
j=−1∑

j=−k

−b̃j
s− j − 1

+

∞∑

j=0

mj∑

l=0

ãj,ll!

(s+ αj − 1)l+1
, b̃j =

bj
Γ(−j) , ãj,l =

aj,l

Γ(αj)
.

When δ0 >
π
2
, one has moreover, for any δ′ < δ0 − π

2
, any real C1 and C2:

(2.39) |Γ(s)ζ(s)| ≤ C′(C1, C2, δ)e
−δ′| Im s|, for | Im s| ≥ 1, C1 ≤ Re s ≤ C2.

Proof. Since π(sinπs)−1 = Γ(s)Γ(1 − s), (2.38) results from (2.31) by multiplication by
Γ(1 − s)−1, whose zeros cancel the poles bj/(s − j − 1), j ≥ 0. If δ − π/2 = δ′ > 0, the

estimate |ζ(s)| ≤ Ce(π−δ)| Im s| shown in the proof of Proposition 2.9 (and assured by (2.32))
implies (2.39), since Γ(s) is O(e(−

π
2
+ε)| Im s|) for | Im s| ≥ 1, −∞ < C1 ≤ Re s ≤ C2 < ∞,

any ε > 0. (Cf. e.g. the assertion in Bourbaki [B, p. 182]:

(2.40) |Γ(s)| ∼
√

2π | Im s|Re s− 1
2 e−

π
2
| Im s| for | Im s| → ∞,

valid for fixed Re s or Re s in compact intervals of R.) �
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3. The zeta function expansions

3.1 Approximating the resolvent.

For λ ∈ C \ R+ and A as in (1.1), set

Aλ = (A2 − λ)1/2, A′ = A+ Π0(A),

cf. (2.9) ff. As in (2.10), P≥ is the realization of P with boundary condition Π≥(u|∂X) = 0.
Then (P≥)∗ is the realization of P ∗ defined by the boundary condition Π<(σ∗u|∂X) = 0,
Π< = I − Π≥; and the selfadjoint operators

∆1 = P≥
∗P≥ and ∆2 = P≥P≥

∗

are the realizations of P ∗P resp. PP ∗ defined by the boundary condition

{
Π≥γ0u = 0,

(Π<γ1 + AΠ<γ0)u = 0;
resp.

{
Π<γ0σ

∗u = 0,

(−Π≥γ1 + AΠ≥γ0)σ
∗u = 0;

where γju = ∂j
nu|∂X . They are elliptic (cf. e.g. [G2, Th. 2.1]), and the ∆i−λ are invertible

for λ ∈ C \ R+ since the ∆i are selfadjoint ≥ 0. Denoting γu = {γ0u, γ1u} and adding
the first line composed with the invertible operator Aλ to the second line (as noted in
[G2, (3.8) ff.], this gives the most convenient λ-dependence of the solution operator for the
inhomogeneous problem), we can also write the boundary conditions as

B1,λγu = 0 resp. B2,λγσ
∗u = 0,

where

(3.1)
B1,λγu = (AλΠ≥ +AΠ<)γ0u+ Π<γ1u,

B2,λγu = (AλΠ< +AΠ≥)γ0u− Π≥γ1u.

Along with the realizations, we consider the full systems describing inhomogeneous
boundary problems

(3.2) A1,λ =

(
P ∗P − λ
B1,λγ

)
, A2,λ =

(
PP ∗ − λ
B2,λγσ

∗

)
.

The resolvents of ∆1 and ∆2 enter as the first blocks in their inverses:

(3.3) A−1
i,λ = Bi,λ = (Ri,λ Ki,λ ) = ( (∆i − λ)−1 Ki,λ ) ;

here Ki,λ is a Poisson operator, cf. [BM], [G1]. For the operators extended to the double

X̃, we denote

(3.4) Qi,λ = (∆̃i − λ)−1;
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then (cf. (2.12))

(3.5) Ri,λ = Qi,λ,+ +Gi,λ,

where Gi,λ is the singular Green operator (s.g.o) part adjusting the boundary values. Ri,λ

is holomorphic in λ outside the spectrum of ∆i, and Qi,λ,+ is holomorphic outside the spec-

trum of ∆̃i, so Gi,λ is holomorphic outside a discrete subset of R+. The expansion of Qi,λ,+

is known, and we will obtain the expansion of Gi,λ by comparison to the corresponding
s.g.o on the cylinder

(3.6) X0 = X ′ × R+

(where the liftings of E′
i are denoted E0

i ).
On this cylinder, consider the operator P 0 = σ(∂n + A) and its realization P 0

≥, with

Laplacians ∆0
1 = P 0∗

≥ P 0
≥ and ∆0

2 = P 0
≥P

0∗
≥ . We then have formulas similar to (3.2), (3.3),

where the operators are provided with an upper index 0; in particular, the resolvents are:

R0
i,λ = Q0

i,λ,+ +G0
i,λ, Q0

i,λ = (∆̃0
i − λ)−1,

where the ∆̃0
i act in bundles over the double X̃0 = X ′ × R, and subscript “+” denotes

restriction to X0 as in (2.12); note that

∆̃0
1 = −∂2

n + A2, ∆̃0
2 = −∂2

n + σA2σ∗, on X0.

We can write the s.g.o G0
i,λ explicitly in terms of the special operator

(3.7) (Gλu)(x
′, xn) =

∫ ∞

0

e−(xn+yn)Aλu(x′, yn) dyn.

When G is an operator defined by Gu =
∫ ∞
0

G(xn, yn)u(x′, yn) dyn, where G is a function
of xn, yn valued in operators in x′, we call G(xn, yn) the normal kernel of G, and define its
normal trace as

trnG =

∫ ∞

0

G(xn, xn) dxn,

when it exists. The normal kernel of Gλ is e−(xn+yn)Aλ , and the normal trace is

(3.8) trnGλ =

∫ ∞

0

e−2xnAλ dxn = (2Aλ)−1.

The following formulas are derived in [G2]; they can be verified directly:

(3.9)

G0
1,λ = Ge,λ +Go,λ − Π0(A)

2
√
−λ
Gλ, G0

2,λ = σ(Ge,λ −Go,λ + Π0(A)

2
√
−λ
Gλ)σ∗,

Ge,λ = −|A|
2Aλ(|A|+Aλ)

Gλ = ( −A2

2λAλ
+ |A|

2λ
)Gλ,

Go,λ = −1
2(|A|+Aλ)

A
|A′|Gλ = (− A

2λ + Aλ

2λ
A

|A′|)Gλ.
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In the last expressions we have used that 1/(|A| + Aλ) = (|A| − Aλ)/(A2 − (A2 − λ)) =
|A|/λ − Aλ/λ. The indices e and o refer to the evenness and oddness of the principal
symbols with respect to ξ′. (The parity alternates between even and odd in the sequences
of lower order symbols.) We have changed the definition of Go,λ slightly from [G2]; the
present Go,λ is 0 in the nullspace V0(A), and the contribution from V0(A) to G0

i,λ is taken

out as a separate term. Moreover, the conjugation by σ is now included in G0
2,λ. All the

operators are defined and holomorphic for λ ∈ C \ R+. From (3.8), (3.9) follow:

(3.10) trnGe,λ = −A2

4λA2
λ

+ |A|
4Aλλ

, trnGo,λ = −A
4λAλ

+ 1
4λ

A
|A′| .

For our purposes, near ∂X , the true s.g.o Gi,λ can be replaced by the cylindrical version
G0

i,λ.

Lemma 3.1. Let χ ∈ C∞
0 (R) with χ(xn) = 1 for |xn| < c

3
, χ(xn) = 0 for |xn| > 2c

3
.

Then G1,λ − χG0
1,λχ is trace class in L2(X,E1) with norm O(|λ|−N ) for |λ| → ∞ with

arg λ ∈ [δ, 2π − δ], any δ > 0. The same is true of ∂k
λ[G1,λ − χG0

1,λχ] for k = 1, 2, . . . , and

of expressions DG1,λ − χD′G0
1,λχ, where D is a differential operator, constant in xn near

X ′ and equal to D′ there.
Similar estimates hold for G2,λ−χG0

2,λχ in L2(X,E2), and for the operators (1−χ)G0
i,λ

and G0
i,λ − χG0

i,λχ in L2(X
0, E0

i ). Here the G0
i,λ can be replaced by Ge,λ or Go,λ.

All these functions are holomorphic in λ ∈ C \ R+.

Proof. That (1 − χ)Ge,λ, (1 − χ)Go,λ and (1 − χ)G0
i,λ are trace class with trace norm

O(|λ|−N ), any N , follows from the fall-off of (1−χ(xn))e−xnAλ for xn → ∞, as accounted
for in [G2, Lemma 5.1]. (They are even exponentially decreasing in |λ|.) This holds on all
rays with argument θ ∈ ]0, 2π[ , uniformly for θ in compact subintervals. The same holds
for Ge,λ(1−χ), etc., and since Ge,λ−χGe,λχ = (1−χ)Ge,λ +χGe,λ(1−χ), such expressions
are likewise covered.

Now consider G1,λ − χG0
1,λχ. In the following, write χ(xn/ε) = χε(xn). As in [G2] we

shall compare the true inverse of A1,λ with an approximate inverse B′
1,λ containing the

true interior contribution Q1,λ,+ and the cylindrical boundary contribution:

B′
1,λ = (Q1,λ,+ + χG0

1,λχ χK0
1,λ ) .

K0
1,λ is of the form Ψ(A, λ)e−xnAλ , cf. [G2, Sect. 3] for details. Now

A1,λB′
1,λ =

(
P ∗P − λ
B1,λγ

)
(Q1,λ,+ + χG0

1,λχ χK0
1,λ ) = I + Sλ,

with Sλ =

(
S11,λ S12,λ

S21,λ 0

)
, S11,λ = [D2

n + A2, χ]G0
1,λχ,

S21,λ = B1,λγ(Q1,λ,+ −Q0
1,λ,+χ), S12,λ = [D2

n + A2, χ]K0
1,λ;

see in particular [G2, (4.17), (4.21)]. Since [D2
n +A2, χ] vanishes for xn ≤ c

3 , we can write

S11,λ = [D2
n + A2, χ]χ(1 − χ 1

3
)G0

1,λχ, S12,λ = [D2
n + A2, χ]χ(1 − χ 1

3
)K0

1,λ,
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and it follows as above that these terms are trace class (considered as operators
(

S11,λ 0

0 0

)
,

(
0 S12,λ

0 0

)
in L2(X,E1) × L2(X

′, E′
1)) with O(|λ|−N ) estimates. For the term S21,λ, we

appeal instead to the properties of Q1,λ,+ −Q0
1,λ,+χ. This is a pseudodifferential operator

whose symbol is rapidly decreasing in (ξ, λ) for x near X ′, so the composition with trace
operators γj maps L2(X,E1) into Hs(X ′, E′

1), any s, with norm rapidly decreasing in λ for
arg λ in compact intervals of ]0, 2π[ . (This is an easy special case of the norm estimates
shown in [G1, Sect. 2.5] — the case of regularity +∞ — and can also be verified directly.)

This shows that Sλ is trace class with O(|λ|−N ) estimates for all N . For sufficiently
large |λ|, the true inverse B1,λ is then defined via a Neumann series

B1,λ = B′
1,λ(I + S′

λ), where S′
λ =

∑
k≥1(−Sλ)k = −Sλ(I + S′

λ);

here S′
λ is likewise trace class with O(|λ|−N) estimates. It follows that

G1,λ − χG0
1,λχ = R1,λ −Q1,λ,+ − χG0

1,λχ

= (Q1,λ,+ + χG0
1,λχ)(I + S′

11,λ) + χK0
1,λS′

21,λ −Q1,λ,+ − χG0
1,λχ = S′′

λ ,

where S′′
λ is trace class with O(|λ|−N ) estimates. The rules of calculus assure that such

estimates likewise hold for the operators composed with D.
There is a similar proof for G2,λ − χG0

2,λχ.
The functions are holomorphic by virtue of their construction. Moreover, the decrease

in λ is for each of the operators improved by an application of ∂/∂λ. This completes the
proof. �

One can also show that the operators map into Hs, any s, with O(|λ|−N ) estimates.

3.2 Construction of the zeta functions.

We integrate λ−sRi,λ along an appropriate curve C as in Proposition 2.9, running along
the negative axis and around a small circle of radius

(3.11) r0 < min{λ1(∆i), λ1(∆̃i), λ1(A
2)}

where λ1 denotes the smallest nonzero eigenvalue. Then

(3.12)

Z(∆i, s) = i
2π

∫

C
λ−sRi,λ dλ = i

2π

∫

C
λ−sQi,λ,+ dλ+ i

2π

∫

C
λ−sGi,λ dλ

= Z(∆̃i, s)+ +GZ,i,s, where we have set

GZ,i,s = i
2π

∫

C
λ−sGi,λ dλ.

Define the transforms

(3.13) GZ,e,s = i
2π

∫

C
λ−sGe,λ dλ and GZ,o,s = i

2π

∫

C
λ−sGo,λ dλ.
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Note that the operators Ge,λ and Go,λ are holomorphic in C \ [λ1(A
2),∞[ .

To describe the various GZ , we use the function defined for Re(−t) < Re s < 0 by

(3.14)

Ft(s) = i
2π

∫

Cπ,r0

τ−s−1(1 − τ)−t dτ

= i
2π

(e(−s−1)iπ − e(s+1)iπ)

∫ ∞

0

u−s−1(1 + u)−t du

= 1
π sinπ(s+ 1) Γ(−s)Γ(s+t)

Γ(t) = Γ(s+t)
Γ(t)Γ(s+1) ;

Cπ,r0
is taken with r0 ∈ ]0, 1[ , cf. (2.2). Ft(s) coincides with the binomial coefficient

(
s+t−1

t−1

)
,

also equal to (sB(t, s))−1, where B is the beta function. Ft(s) extends meromorphically
to general s and t ∈ C. In particular,

(3.15)
F 1

2
(s) =

Γ(s+ 1
2
)√

π Γ(s+1)
=

(s− 1
2

− 1
2

)
, F1(s) = 1, F0(s) = 0 if s 6= 0,

F− 1
2
(s) =

−Γ(s− 1
2
)

2
√

π Γ(s+1)
=

(s− 3
2

− 3
2

)
, Ft(0) = 1 if Γ(t) 6= ∞.

That F1(s) = 1 follows directly from the first integral in (3.14), and the formula for F0(s)
follows from the fact that i

2π

∫
Cπ,r0

τ−s−1 dτ = 0 for Re s > 0.

The formulas for the singular Green operator terms are greatly simplified when we take
normal traces.

Proposition 3.2. Define GZ,e,s and GZ,o,s by (3.13), cf. also (3.9), (3.7). Then

(3.16)
trnGZ,e,s = 1

4 (F 1
2
(s) − 1)Z(A2, s),

trnGZ,o,s = −1
4
F 1

2
(s)Y (A, 2s).

Proof. Expand the operators on ∂X with respect to the orthogonal eigenprojections
{Πµ}µ∈sp(A) for A. Our GZ,e,s and GZ,o,s are both 0 in the zero eigenspace. Using (3.10)

we find, by replacing λ by µ2τ for each µ,

(3.17)

trnGZ,e,s = trn
i

2π

∫

C
λ−sGe,λ dλ = i

2π

∫

C
λ−s( −A2

4λA2
λ

+ |A|
4Aλλ

) dλ

=
∑

µ

1
4

i
2π

∫

C
λ−s−1(− µ2

µ2−λ + |µ|
(µ2−λ)

1
2

) dλ · Πµ

=
∑

µ

1
4
|µ|−2s i

2π

∫

C
τ−s−1(−(1 − τ)−1 + (1 − τ)−

1
2 ) dτ · Πµ

= 1
4
(−F1(s) + F 1

2
(s))Z(A2, s) = 1

4
(−1 + F 1

2
(s))Z(A2, s);
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(3.18)

trnGZ,o,s = trn
i

2π

∫

C
λ−sGo,λ dλ = i

2π

∫

C
λ−s( −A

4λAλ
+ 1

4λ
A

|A′| ) dλ

=
∑

µ

1
4

i
2π

∫

C
λ−s−1(− µ

(µ2−λ)
1
2

+ µ
|µ|) dλ · Πµ

=
∑

µ

1
4
µ|µ|−2s−1 i

2π

∫

C
τ−s−1(−(1 − τ)−

1
2 + 1) dτ · Πµ

= 1
4(−F 1

2
(s) + F0(s))Y (A, 2s) = −1

4F 1
2
(s)Y (A, 2s). �

Note that the even part produces a function derived from the zeta function of A, and the
odd part produces a function derived from the eta function of A. This is the fundamental
observation for the following, relating the power functions of the boundary value problem
to those of A.

Now we combine this with the interior contribution, taken from the doubled manifold

X̃.

Theorem 3.3. The zeta functions decompose as in (2.18):

(3.19) Γ(s)ζ(∆i, s) = Γ(s)[ζ+(∆̃i, s) + 1
4 (F 1

2
(s) − 1)ζ(A2, s) + (−1)i 1

4F 1
2
(s)η(A, 2s)]

+ 1
s
[Tr+(Π0(∆̃i)) − ν0(∆i) + (−1)i 1

4
ν0(A)] + hi(s).

Moreover, Γ(s)ζ(∆i, s) is O(e(−
π
2
+ε)| Im s|) for | Im s| ≥ 1, −∞ < C1 ≤ Re s ≤ C2 < ∞,

any ε > 0.

Proof. The basic idea is this. By Lemma 3.1, the resolvent (∆i−λ)−1 = (∆̃i−λ)−1
+ +Gi,λ

has the same asymptotic behavior for λ going to infinity as (∆̃i − λ)−1
+ + χG0

i,λχ, and

the last term behaves like G0
i,λ. Here the contribution from ∆̃i is well-known; and the

contributions from Ge,λ and Go,λ in G0
i,λ have been dealt with in Proposition 3.2; they

give the terms involving F 1
2
(s). It turns out that what remains is some adjustments due

to the Laurent expansions of the resolvents at λ = 0 and the trace of G0
i,λ restricted to the

null-space of A; these adjustments yield the coefficient of 1
s

in (3.19).
To check the details, we start with (3.12). In order to take traces, we integrate by parts

to obtain integrands of trace class:

(3.20) Z(∆i, s) = 1
(s−1)···(s−k)

i
2π

∫

C
λk−s∂k

λRi,λ dλ

= 1
(s−1)···(s−k)

i
2π

∫

C
λk−s∂k

λ(∆̃i − λ)−1
+ dλ+ 1

(s−1)···(s−k)
i

2π

∫

C
λk−s∂k

λGi,λ dλ;

here
∂k

λ(∆i − λ)−1 = k!(∆i − λ)−k−1, ∂k
λ(∆̃i − λ)−1

+ = [k!(∆̃i − λ)−k−1]+.

For k > 1
2 dimX − 1 these operators are trace class, and their traces are holomorphic

except at the eigenvalues of ∆i resp. ∆̃i, all in {λ ≥ 0}. They are meromorphic at λ = 0,
with singularity

∂k
λ(−λ)−1Π0(∆i) resp. ∂k

λ(−λ)−1Π0(∆̃i)+.
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So for large Re s we can take traces in (3.20) and find

(3.21) ζ(∆i, s) = 1
(s−1)···(s−k)

i
2π

∫

C
λk−s TrX ∂k

λRi,λ dλ.

We also have

(3.22) TrX0 GZ,e,s = 1
(s−1)···(s−k)

i
2π

∫

C
λk−s TrX0 ∂k

λGe,λ dλ,

and the analogous formula for GZ,o,s.
By Lemma 3.1, TrX ∂k

λGi,λ−TrX χ∂k
λG

0
i,λχ and TrX0 ∂k

λG
0
i,λ−TrX0 χ∂k

λG
0
i,λχ and their

λ-derivatives are O(λ−N ), any N , for λ going to infinity, so in view of (3.9),

TrX ∂k
λRi,λ = TrX ∂k

λ(∆̃i − λ)−1
+ + TrX0(∂k

λ[Ge,λ − (−1)iGo,λ])

+ (−1)i TrX0 ∂k
λ

Π0(A)

2
√
−λ
Gλ + g̃i(λ),

where g̃i(λ) and its λ-derivatives are O(λ−N ) at infinity for any N . (Note that the conju-
gation by the unitary morphism σ in G0

2,λ is eliminated when we take traces.) Here

TrX0 ∂k
λ

Π0(A)

2
√
−λ
Gλ = TrX′ ∂k

λ
1

2
√
−λ

trn Π0(A)Gλ = ∂k
λ

1
−4λ

ν0(A)

is meromorphic at 0 (in contrast to Π0(A)

2
√
−λ
Gλ itself, when ν0(A) 6= 0). For some r1 > 0,

Tr ∂k
λRi,λ and Tr ∂k

λ(∆̃i − λ)−1
+ are meromorphic on C \ [r1,∞[ , with just the singularity

Tr ∂k
λ(−λ)−1Π0(∆i) = ∂k

λ(−λ)−1ν0(∆i) resp.

Tr ∂k
λ(−λ)−1Π0(∆̃i)+ = ∂k

λ(−λ)−1 Tr+ Π0(∆̃i),

at λ = 0; and Ge,λ and Go,λ are holomorphic on C \ [r1,∞[ . It follows that g̃i(λ) is

meromorphic on C \ [r1,∞[ with just a pole c∂k
λ(−λ)−1 at 0, and we can define

≈
g i(λ)

(by integrating from infinity) such that ∂k
λ

≈
g i = g̃i and

≈
g i is O(λ−N ) for |λ| → ∞ with

arg λ ∈ [δ, 2π − δ]. Let

gi(λ) = (−1)i(−4λ)−1ν0(A) +
≈
g i(λ).

This is meromorphic on C \ [r1,∞[ , and

(3.23) TrX ∂k
λRi,λ = TrX ∂k

λ(∆̃i − λ)−1
+ + TrX0(∂k

λ[Ge,λ − (−1)iGo,λ]) + ∂k
λgi(λ).

Then we find altogether that gi(λ) behaves at infinity and at zero as follows:

(3.24)

gi(λ) ∼ (−1)i(−4λ)−1ν0(A) for |λ| → ∞, uniformly for arg λ ∈ [δ, 2π − δ];

gi(λ) ∼ (−λ)−1(ν0(∆i) − Tr+ Π0(∆̃i)) +
∑

j≥0

bj(−λ)j , for λ→ 0,
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with arbitrary δ > 0, so it is as in Proposition 2.9 with δ0 = π. Consider the “zeta trans-
forms” of the three terms in (3.23) (the functions obtained by insertion in the right hand

side of (3.21)). The contribution from the first term is well-known and equals ζ+(∆̃i, s).
The second is covered by Proposition 3.2, cf. (3.22). For the third term we apply Propo-
sition 2.9 to gi(λ), using (3.24):

π
(s−1)···(s−k) sin πs

i
2π

∫

C
λk−s∂k

λgi(λ) dλ = π
sinπs

i
2π

∫

C
λ−sgi(λ) dλ

∼ −ν0(∆i) − Tr+ Π0(∆̃i)

s
−

∑

j≥0

bj
s− j − 1

+
(−1)iν0(A)

4s
,

where ∼ means indication of the singularity structure. Altogether, this gives

ζ(∆i, s) ∼ ζ+(∆̃i, s) + 1
4 (F 1

2
(s) − 1)ζ(A2, s) + (−1)i 1

4F 1
2
(s)η(A, 2s)

+
sinπs

π

(−ν0(∆i) + Tr+ Π0(∆̃i) + (−1)i 1
4ν0(A)

s
−

∑

j≥0

bj
s− j − 1

)
.

We multiply this by Γ(s), and obtain the main statement of Theorem 3.3, since
1
π Γ(s) sinπs = Γ(1 − s)−1 cancels the simple poles in the sum over j ≥ 0 and equals
1 at s = 0.

The exponential decrease on vertical strips follows since it holds for the functions stem-
ming from each of the three terms in the right hand side of (3.23). For the first term we
have Lemma 2.5, for the third term we use Corollary 2.10, and for the middle term we have
from Lemma 2.5 the exponential decrease of ζ(A2, s) and η(A, 2s) and combine this with
the fact that F 1

2
(s) is polynomially bounded for | Im s| ≥ 1, −∞ < C1 ≤ Re s ≤ C2 < ∞,

in view of (2.40). �

Now, consider the more general case ζ(Di,∆i, s), with Di = Dii and D′
i = D′

ii as in
(2.15) ff. Note that D′

i commutes with the normal trace operation trn, so Proposition 3.2
generalizes to give analogues of (3.17), (3.18), with D′′

1 = D′
1, D

′′
2 = σD′

2σ:

trnD
′′
i GZ,e,s = 1

4
(F 1

2
(s) − 1)D′′

i Z(A2, s);

trnD
′′
i GZ,o,s = −1

4F 1
2
(s)D′′

i Y (A, 2s).

Then Theorem 3.3 generalizes to:

Theorem 3.4. The generalized zeta function ζ(Di,∆i, s) decomposes as follows:

(3.25) Γ(s)ζ(Di,∆i, s) =

Γ(s)[ζ+(Di, ∆̃i, s) + 1
4 (F 1

2
(s) − 1)ζ(D′′

i , A
2, s) + (−1)i 1

4F 1
2
(s)η(D′′

i , A, 2s)]

+
1

s
[Tr+(DiΠ0(∆̃i)) − Tr(DiΠ0(∆i)) + (−1)i 1

4 Tr(D′′
i Π0(A))] + hi(s),

with D′′
1 = D′

1, D
′′
2 = σ∗D′

2σ, and hi(s) entire.
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Here Γ(s)ζ(Di,∆i, s) is O(e(−
π
2
+ε)| Im s|) for | Im s| ≥ 1, −∞ < C1 ≤ Re s ≤ C2 < ∞,

any ε > 0.

From the knowledge of the poles of Γ(s)ζ+(Di, ∆̃1, s), Γ(s)ζ(D′′
i , A

2, s) and
Γ(s)η(D′′

i , A, 2s) (cf. Lemma 2.5) we can now find the pole structure of Γ(s)ζ(Di,∆i, s),
taking the new factors F 1

2
(s) into account. The general result is that the poles are con-

tained in {s = n+d−j
2

| j ≥ 0} (d = the order of Di); they are simple for Re s > d
2

and at

most double for Re s ≤ d
2
. The detailed analysis for the case where Di is a morphism is

given in Corollaries 2.7 and 2.8.
We note that Proposition 2.9 can be applied to deduce a full expansion of the resolvent

trace:

Corollary 3.5. The generalized resolvent traces TrDi∂
k
λ(∆i − λ)−1 (defined for k >

1
2 (n+ d), where d is the order of Di) have expansions

(3.26) TrDi∂
k
λ(∆i − λ)−1 ∼

∑

0≤j<n

cj(−λ)
n+d−j

2
−1−k +

∞∑

j=n

(cj logλ+ c′j)(−λ)
n+d−j

2
−1−k.

Proof. The resolvent trace and the zeta function are related by the formula

ζ(Di,∆i, s) = 1
(s−1)···(s−k)

i
2π

∫

C
λk−s TrDi∂

k
λ(∆i − λ)−1 dλ.

Since Γ(s)ζ(Di,∆i, s) is exponentially decreasing on vertical strips in C,

πζ(Di,∆i, s)

sinπ(s− k)
=

(−1)kπζ(Di,∆i, s)

sinπs
= (−1)kΓ(1 − s)Γ(s)ζ(Di,∆i, s)

is a fortiori so, cf. (2.40). The singularity structure of this function is seen from (3.19) mul-
tiplied by Γ(1 − s), and we observe that the poles are at most double, since

Γ(1 − s)F 1
2
(s) =

Γ(1−s)Γ(s+ 1
2
)√

π Γ(s+1)
has simple poles. We know from general considerations

that f(λ) = TrDi∂
k
λ(∆i − λ)−1 is holomorphic on C \ R+ and has a Laurent expansion

at 0 with the singular part c(−λ)−k−1, c = Tr(D′
iΠ0(∆i))k!. We also need an estimate

f(λ) = O(|λ|−α) for λ going to ∞ (with α > 0), in order to apply Proposition 2.9. A
rough estimate can be obtained (for large enough k) by use of the spectral asymptotics
and the elliptic regularity of ∆1. Or one can appeal to the fact that f(λ) has an expansion

(3.27) TrDi∂
k
λ(∆i − λ)−1 =

∑

0≤j<n

cj(−λ)
n+d−j

2
−1−k +O(|λ| d

2
− 3

8
−k), for |λ| → ∞;

shown by analyzing (3.23) (with Di inserted) as in [G1, Sect. 3.3]; it enters here that Ge,λ

and Go,λ are of “regularity 0” ([G2, Cor. 3.2]), so that the traces have expansions

(3.28) TrD′
i∂

k
λ(Ge,λ + (−1)iGo,λ) =

∑

1≤j<n

ci,j(−λ)
n+d−j

2
−1−k +O(|λ| d

2
− 3

8
−k),
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for λ→ ∞. In particular, the trace in (3.27) is O(|λ|−α) with α = min{k − 1
2(n+ d), 1}.

Thus f(λ) satisfies the hypotheses of Proposition 2.9, and the Laurent coefficients bj
at 0, j ≥ 0, give the poles of π

sin πσ
i

2π

∫
C λ

−σf(λ) dλ for Reσ > 1 − α. Now we can apply
the passage from b) to a) in Proposition 2.9, obtaining an expansion (3.26); there are no
logarithmic terms for j < n in view of (3.27) or the general information on Γ(s)ζ(Di,∆i, s)
given above. �

By a further analysis as in Corollaries 2.7 and 2.8 one can say more about the coefficients.
A full expansion of the resolvent is also obtained in [GS], by a more direct method that
allows xn-dependent operators.

Remark 3.6. Although ∆̃i is an extension of P ∗P or PP ∗ to the doubled manifold X̃, the

singularities of Γ(s)ζ+(Di, ∆̃i, s), as given by Lemma 2.5, are completely determined by P

in the original manifoldX . Then since all terms in (3.25) except possibly 1
s Tr+(DiΠ0(∆̃i))

and hi(s) depend only on P in X , this must hold also for the coefficient Tr+(DiΠ0(∆̃i))

(and hence for all terms). Note also that the proof of (3.25) shows that it is valid with ∆̃i

replaced by any other selfadjoint elliptic extension ∆̃′
i ≥ 0 of P ∗P resp. PP ∗ to a boundary-

less compact manifold extending X . We can use this to give a formula for Tr+(DiΠ0(∆̃i))
without reference to extensions: Extend the bundles E1 and E2, and the operators P ∗P
and PP ∗, to X̃ by simply reflecting in the boundary X ′, using that in the cylinder,

P ∗P = −∂2
n + A2 and PP ∗ = −∂2

n + σA2σ∗. Denote these extended operators by ∆̃′
i.

They commute with reflection, so the nullspace of each is the direct sum of “even” and
“odd” eigensections. The even part of the nullspace gives the null space of ∆i,N , the
Neumann realization of P ∗P (resp. PP ∗), while the odd part gives the nullspace of the
Dirichlet realization ∆i,D. Thus

(3.29) Tr+(DiΠ0(∆̃i)) = Tr+(DiΠ0(∆̃
′
i)) = Tr(DiΠ0(∆i,N )) + Tr(DiΠ0(∆i,D)).

3.3 Other boundary conditions.

The operator P≥ with boundary condition Π≥γ0u = 0 can easily be replaced by PB

with boundary condition Bγ0u = 0, where B is any orthogonal projection in L2(E
′
1) with

Range(Π>) ⊂ Range(B) ⊂ Range(Π≥).

This changes the boundary conditions only in V0, the nullspace of A. The adjoint (PB)∗

is the realization of P ∗ with boundary condition σB⊥σ∗γ0u = 0, B⊥ = I −B.
In V0 ⊗ L2(R+), the singular Green operators for P 0∗

≥ P 0
≥ and P 0

≥P
0∗
≥ are, from (3.9),

G0
1,λ = −1

2
√
−λ
Gλ and G0

2,λ = 1
2
√
−λ
σGλσ

∗ in V0 ⊗ L2(R+),

with Gλu(xn) =

∫ ∞

0

e−(xn+yn)
√
−λu(yn) dyn there.

The corresponding operators for P 0∗
B P 0

B and P 0
BP

0∗
B are:

G0
B,1,λ = −1

2
√
−λ
Gλ(B −B⊥) and G0

B,2,λ = 1
2
√
−λ
σGλ(B −B⊥)σ∗ in V0 ⊗ L2(R+).
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The singular part of trn ∂
k
λG

0
B,i,λ at λ = 0 is (−1)i 1

4∂
k
λ(−λ)−1 Tr((B −B⊥)Π0(A)).

Going through the proof of Theorem 3.4 with these modifications in the null-space, one
finds:

Corollary 3.7. For the generalized zeta functions ζ(D1, PB
∗PB , s) and ζ(D2, PBPB

∗, s)
there are decompositions of Γ(s)ζ(D1, PB

∗PB , s) and Γ(s)ζ(D2, PBPB
∗, s) as in (3.25),

except that Tr(D′′
i Π0(A)) must be replaced by Tr(D′′

i (B−B⊥)Π0(A)). Then in Corollary
2.3, η(A) = η(A, 0) + ν0(A) is replaced by

(3.30) ηB(A) := η(A, 0) + Tr((B −B⊥)Π0(A)).

Here (3.30) is a regularized signature of A wherein the nullspace V0 has been split into
positive and negative parts by the involution B −B⊥.

By use of the exact formulas in (3.17)–(3.18), one can also calculate the singularity
structure for boundary conditions as in [GS], where Π≥ is modified on other eigenspaces.

Remark 3.8. Consider the case where E1 = E2 and P is selfadjoint, so in particular
σ = −σ∗, σA = −Aσ. Assume that V0(A) admits a decomposition into an orthogonal

direct sum V0 = V0,+ ⊕ V0,− such that σ : V0,+
∼→ V0,−, as in the case of [DW, Th. A.1].

For any such decomposition one gets a selfadjoint realization PB by taking B = Π>+Π0,+,
where Π0,± denotes the orthogonal projection onto V0,±. For in this case, σΠ> = Π<σ
and σΠ0,+ = Π0,−σ, so

σB⊥σ∗ = σ(I − Π> − Π0,+)(−σ) = −σ(Π< + Π0,−)σ = Π> + Π0,+ = B.

Here

(3.31) Tr((B −B⊥)Π0(A)) = Tr(Π0,+ − Π0,−) = dimV0,+ − dimV0,− = 0,

and hence ηB(A) = η(A, 0). (See Corollary 2.4 2◦.)

4. The eta functions

4.1 Construction of the eta functions.

The eta functions associated with P≥ are

(4.1) η(D1, P≥, s) = Tr(D1P∆
− s+1

2

1 ) and η(D2, P≥
∗, s) = Tr(D2P

∗∆
− s+1

2

2 ),

where ∆1 = P≥
∗P≥, ∆2 = P≥P≥

∗, and Di = Di,3−i is a differential operator as in (2.15).
This is not covered by Theorem 3.4 since P involves the normal derivative ∂n.

As in Section 3, our analysis depends on the resolvents (∆i −λ)−1 and Proposition 2.9.
There is some simplification here because P (∆1−λ)−1 and P ∗(∆2−λ)−1 are holomorphic
at λ = 0; P resp. P ∗ annihilates the nullspace of ∆1 resp. ∆2. But there is a contribution
from the nullspace of A that needs special treatment; it takes the form Π0(A)/4

√
−λ,

which is not meromorphic at 0. So we analyze the contributions from the interior, and
from the s.g.o. outside the nullspace of A, by means of Proposition 2.9; the remaining part
is easy to handle.
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The heart of the calculation is for the s.g.o. outside V0(A) ⊗ L2(R+). Denote the
projection for that part by

Π⊥
0 (A) = I − Π0(A).

Since P 0 = σ(∂n +A) and P 0∗ = (−∂n +A)σ∗, we get from (3.7)–(3.10)

(4.2)
trnD

′
1P

0G0
1,λ = D′

1σ(A− Aλ) 1
4λ

(
−A2

A2
λ

+ |A|−A
Aλ

+ A
|A′|

)
+ 1

4
√
−λ
D′

1σΠ0(A),

trnD
′
2P

0∗G0
2,λ = D′

2σ(A+ Aλ) 1
4λ

(
−A2

A2
λ

+ |A|+A
Aλ

− A
|A′|

)
σ∗ + 1

4
√
−λ
D′

2Π0(A)σ∗.

To evaluate the zeta-transform of these, we need more formulas as in Proposition 3.2:

(4.3) Π⊥
0 (A) i

2π

∫

C
λ−s−1Aj

λ dλ = Z(A2, s− j
2
)F− j

2

(s),

where Ft(s) is defined in (3.14), and F0(s) = 0. Noting that

A2Z(A2, s) = Z(A2, s− 1), AZ(A2, s) = Y (A, 2s− 1), A
|A′|Z(A2, s) = Y (A, 2s),

while F1(s) = 1 and

(4.4) F 1
2
(s) − F− 1

2
(s) = π− 1

2

(s− 1
2
)Γ(s− 1

2
) + 1

2
Γ(s− 1

2
)

sΓ(s)
=

Γ(s− 1
2
)√

π Γ(s)
= F 1

2
(s− 1)

(see (3.15)), we find:

Lemma 4.1. The operators G0
i,λΠ⊥

0 (A) satisfy:

(4.5)

trn P
0 i

2π

∫

C
λ−sG0

1,λΠ⊥
0 (A) dλ = 1

4 [F 1
2
(s− 1) − 1]σY (A, 2s− 1)

trn P
0∗ i

2π

∫

C
λ−sG0

2,λσΠ⊥
0 (A)σ∗ dλ = 1

4 [F 1
2
(s− 1) − 1]Y (A, 2s− 1)σ∗.

The integrals are well-defined since G0
i,λΠ⊥

0 (A) is holomorphic near 0. Note that the

zeta terms have dropped out, and Π⊥
0 (A) is not needed on the right hand side, since

Y (A, 2s− 1) annihilates the nullspace of A. From (4.5) we conclude:

(4.6)

TrD′
1P

0 i
2π

∫

C
λ−sG0

1,λΠ⊥
0 (A) dλ = 1

4
[F 1

2
(s− 1) − 1]η(D′

1σ,A, 2s− 1)

TrD′
2P

0∗ i
2π

∫

C
λ−sG0

2,λσΠ⊥
0 (A)σ∗ dλ = 1

4 [F 1
2
(s− 1) − 1]η(σ∗D′

2, A, 2s− 1).

So when we take into account the contributions from the nullspace of A, we will get:
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Theorem 4.2. The generalized eta functions decompose as follows:

Γ(s)η(D1, P≥, 2s− 1) = Γ(s) Tr(D1P∆−s
1 )

= Γ(s)
[
Tr+(D1P ∆̃−s

1 ) + 1
4(F 1

2
(s− 1) − 1)η(D′

1σ,A, 2s− 1)
]

(4.7)

+ 1
4
√

π
Tr(D′

1σΠ0(A))(s− 1
2)−1 + h1(s),

Γ(s)η(D2, P≥
∗, 2s− 1) = Γ(s) Tr(D2P

∗∆−s
2 )

= Γ(s)
[
Tr+(D2P

∗∆̃−s
2 ) + 1

4
(F 1

2
(s− 1) − 1)η(σ∗D′

2, A, 2s− 1)
]

(4.8)

+ 1
4
√

π
Tr(σ∗D′

2Π0(A))(s− 1
2)−1 + h2(s),

where hi(s) is entire.
The functions Γ(s)η(D1, P≥, 2s− 1) and Γ(s)η(D2, P≥

∗, 2s− 1) are O(e(−
π
2
+ε)| Im s|) for

| Im s| ≥ 1, −∞ < C1 ≤ Re s ≤ C2 <∞, any ε > 0.

Proof. It suffices to discuss the case of D1P∆−s
1 . As in the proof of Theorem 3.3, we write

(4.9) TrX D1P∆−s
1 = 1

(s−1)···(s−k)
i

2π

∫

C
λk−s TrX ∂k

λD1PR1,λ dλ,

where k and s are taken so large that the operators are trace class. We also have
(4.10)

i
2π

∫

C
λ−s TrX0 D′

1P
0G0

1,λΠ⊥
0 (A) dλ = 1

(s−1)···(s−k)
i

2π

∫

C
λk−s TrX0 ∂k

λD
′
1P

0G0
1,λΠ⊥

0 (A) dλ.

Now, by (3.5), (4.2) and Lemma 3.1,

TrX ∂k
λD1PR1,λ = TrX ∂k

λD1P (∆̃1 − λ)−1
+ +

TrX0 ∂k
λD

′
1P

0G0
1,λΠ⊥

0 (A) + TrX′ ∂k
λ

1
4D

′
1σΠ0(A)(−λ)−

1
2 + g̃1(λ),

where g̃1(λ) is O(λ−N ) for λ going to infinity with arg λ ∈ [δ, 2π− δ], any N . Let
≈
g 1 be a

k’th primitive of g̃1, such that
≈
g 1 is O(λ−N ) for λ going to infinity, any N , and set

g1(λ) = c(−λ)−
1
2 +

≈
g 1(λ), c = 1

4 TrX′(D′
1σΠ0(A)).

Then

(4.11) TrX ∂k
λD1PR1,λ = TrX ∂k

λD1P (∆̃1 − λ)−1
+ + TrX0 ∂k

λD
′
1P

0G0
1,λΠ⊥

0 (A) + ∂k
λg1(λ).

Since TrX ∂k
λD1PR1,λ, TrX ∂k

λD1P (∆̃1−λ)−1
+ and TrX0 ∂k

λD
′
1P

0G0
1,λΠ⊥

0 (A) are regular at

0, ∂k
λg1 is holomorphic on a set C \ [r1,∞[ with r1 > 0; then so is g1 (but not g̃1). It

satisfies:

(4.12)

g1(λ) ∼ c(−λ)−
1
2 for |λ| → ∞, uniformly for arg λ ∈ [δ, 2π − δ];

g1(λ) ∼
∑

j≥0

bj(−λ)j , for λ→ 0.
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When the terms in the right hand side of (4.11) are inserted in (4.9), the first term gives

Tr+(D1P ∆̃−s
1 ), the second is dealt with in Lemma 4.1 ff. and (4.10), and the third gives,

by Proposition 2.9 and (4.12),

1
(s−1)···(s−k)

i
2π

∫

C
λk−s∂k

λg1(λ) dλ = i
2π

∫

C
λ−sg1(λ) dλ

∼ sinπs

π

(
−

∑

j≥0

bj
s− j − 1

+
c

s− 1
2

)
.

Altogether, we find

TrX(D1P∆−s
1 ) ∼ Tr+(D1P ∆̃−s

1 ) + 1
4
[F 1

2
(s− 1) − 1]η(D′

1σ,A, 2s− 1))

+
sinπs

π

(
−

∑

j≥0

bj
s− j − 1

+
TrX′(D′

1σΠ0(A))

4(s− 1
2
)

)
.

Multiplication of this by Γ(s) gives Theorem 4.2, since 1
π Γ(s) sinπs = Γ(1 − s)−1 cancels

the simple poles in the sum over j ≥ 0 and equals (π)−
1
2 at s = 1

2 . The exponential
decrease is accounted for as in the proof of Theorem 3.3. �

Remark 4.3. Since any differential operator D on X , that is constant in xn on X ′ × [0, c],
can be written as a polynomial in ∂xn

with tangential xn-independent differential operator
coefficients there, and ∂xn

just gives a factor −Aλ when applied to G0
i,λ, the above methods

also allow the analysis of Tr(D∆−s
i ) for such general D. The general structure is

(4.13) Tr(D∆−s
i ) ∼

∑

0≤l<n

cl(D,∆i)

s+ l−n−d
2

+
∑

l≥n

[ cl(D,∆i)

(s+ l−n−d
2 )2

+
c′l(D,∆i)

s+ l−n−d
2

]
,

where d is the order of D; the coefficients can be described more precisely by methods as
in Corollaries 2.7–2.8 and 4.4.

4.2 Description of the singularities.

One finds (as after Theorem 3.4) that the poles of (4.7)–(4.8) are contained in the set

{s = n+d+1−j
2

| j ≥ 0}, and are simple for j < n and at most double in general.
We shall now list explicitly the singularities of the eta functions of P≥ in the case where

Di is just a morphism ϕ. We set

(4.14) δm = [residue of 1
4
F 1

2
(s− 1)Γ(s) = 1

4
√

π
Γ(s− 1

2
) at s = 1

2
−m] =

(−1)m

4
√
πm!

.

Let ϕ be a C∞ morphism from E2 to E1 that equals ϕ0 := ϕ|X′ on X ′ × [0, c].
From Lemma 2.5 we have

(4.15)

Γ(s) Tr+(ϕP ∆̃−s
1 ) ∼

∞∑

k=0

c2k+1,+(ϕP, ∆̃1)

s+ k − n
2

,

Γ(s)η(ϕ0σ,A, 2s− 1) = Γ(s)ζ(ϕ0σA,A2, s) ∼
∞∑

k=0

c2k+1(ϕ
0σA,A2)

s+ k − n−1
2

.

As in the proof of Corollaries 2.7 and 2.8 we use this for the expansions in Theorem 4.2,
cf. also (2.24) and (2.25), to find:
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Corollary 4.4.

1◦ When n is even, the singularities of Γ(s)η(D1, P≥, 2s − 1) = Γ(s) Tr(ϕP∆−s
1 )

consist of the following sums:

From Γ(s) Tr+(ϕP ∆̃−s
1 ),

∑

k≥0

c2k+1,+(ϕP, ∆̃1)

s+ k − n
2

.

From 1
4
(F 1

2
(s− 1) − 1)Γ(s)η(ϕ0σ,A, 2s− 1) = 1

4
(F 1

2
(s− 1) − 1)Γ(s)ζ(ϕ0σA,A2, s),

∑

0≤k< n
2
−1

γn−3−2kc2k+1(ϕ
0σA,A2)

s+ k − n−1
2

+
∑

k≥n
2
−1

[βk+1−n
2
c2k+1(ϕ

0σA,A2)

(s+ k − n−1
2 )2

+
βk+1−n

2
c′2k+1(ϕ

0σA,A2) + (β′
k+1−n

2

− 1
4 )c2k+1(ϕ

0σA,A2)

s+ k − n−1
2

]
;

here the singularity at s = 1
2

(i.e. for k = n
2
− 1) is

1
4π
cn−1(ϕ

0σA,A2)

(s− 1
2 )2

+
1
4π
c′n−1(ϕ

0σA,A2) + (β′
0 − 1

4
)cn−1(ϕ

0σA,A2)

s− 1
2

.

From the remaining term,
Tr(ϕ0σΠ0(A))

4
√
π (s− 1

2 )
.

2◦ When n is odd, the singularities of Γ(s)η(D1, P≥, 2s−1) = Γ(s) Tr(ϕP∆−s
1 ) consist

of the following sums:

From Γ(s) Tr+(ϕP ∆̃−s
1 ),

∑

k≥0

c2k+1,+(ϕP, ∆̃1)

s+ k − n
2

.

From 1
4 (F 1

2
(s− 1) − 1)Γ(s)η(ϕ0σ,A, 2s− 1),

∑

k≥0

γn−3−2kc2k+1(ϕ
0σA,A2)

s+ k − n−1
2

+
∑

m≥0

δmη(ϕ
0σ,A,−2m)

s+m− 1
2

;

here the singularity at s = 1
2 equals

η(ϕ0σ,A, 0)

4
√
π (s− 1

2
)
.

From the remaining term,
Tr(ϕ0σΠ0(A))

4
√
π (s− 1

2
)
.
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3◦ There are similar formulas for Γ(s)η(D2, P≥
∗, 2s−1) = Γ(s) Tr(ϕP ∗∆−s

2 ), with P ∆̃1

replaced by P ∗∆̃2 and ϕ0σ replaced by σ∗ϕ0.

In 1◦, the poles of F 1
2
(s−1) at half-integer s give rise to double poles, since they coincide

with poles of Γ(s)η(ϕ0σ,A, 2s − 1). In 2◦, the poles of F 1
2
(s − 1) at half-integer s give

rise to simple poles, picking up the values η(ϕ0σ,A,−2m) of η(ϕ0σ,A, 2s− 1) between its
poles.

The corollary is formulated for the eta functions as functions of 2s− 1; for convenience,
we also show how the formulas look when 2s− 1 is replaced by 2s:

Corollary 4.5.

When n is even,

(4.16) Γ(s+ 1
2)η(ϕ, P≥, 2s) ∼

∑

k≥0

c2k+1,+(ϕP, ∆̃1)

s+ k − n−1
2

+
∑

0≤k< n
2
−1

γn−3−2kc2k+1(ϕ
0σA,A2)

s+ k + 1 − n
2

+
∑

k≥n
2
−1

[βk+1−n
2
c2k+1(ϕ

0σA,A2)

(s+ k + 1 − n
2 )2

+
βk+1−n

2
c′2k+1(ϕ

0σA,A2) + (β′
k+1−n

2

− 1
4 )c2k+1(ϕ

0σA,A2)

s+ k + 1 − n
2

]

+
1

4
√
π s

Tr(ϕ0σΠ0(A)).

When n is odd,

(4.17) Γ(s+ 1
2)η(ϕ, P≥, 2s) ∼

∑

k≥0

c2k+1,+(ϕP, ∆̃1)

s+ k − n−1
2

+
∑

k≥0

γn−3−2kc2k+1(ϕ
0σA,A2)

s+ k + 1 − n
2

+
∑

m≥0

δmη(ϕ
0σA,−2m)

s+m
+

1

4
√
π s

Tr(ϕ0σΠ0(A)).

As in Corollary 3.5, one can deduce a full expansion of the corresponding resolvent
expressions by use of Proposition 2.9; we leave this to the interested reader.

One can also modify the boundary condition as in Section 3.3, and then one finds in a
similar way:

Corollary 4.6. For the generalized eta function η(D1, PB, s) = Tr(D1PB(PB
∗PB)−

s+1

2 )
one has a decomposition of Γ(s)η(D1, PB, 2s − 1) as in (4.7), except that Tr(D′

1σΠ0(A))
must be replaced by Tr(D′

1σ(B −B⊥)Π0(A)).
When P is as in Corollary 2.4 2◦, then the residue of η(PB , 2s) at s = 0 satisfies

(4.18) Res η(PB, 0) =
1

4π
Tr(σ(B −B⊥)Π0(A)).

Remark 4.7. In the situation considered in Remark 3.8, where PB is selfadjoint,

(4.19) Tr(σ(B −B⊥)Π0(A)) = Tr(σ(Π0,+ − Π0,−)) = 0

(since σΠ0,± have zero diagonal blocks when written as block matrices with respect to the
decomposition V0,+ ⊕ V0,−). Thus η(PB , 2s) is regular at s = 0, as noted in [DW, App. 1].
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4.3 The variation of eta at 0.

Assume that a boundary condition Bγ0u = 0 has been chosen, as in Remarks 3.8 and

4.6, such that PB is selfadjoint. Then σ = −σ∗, σA = −Aσ, and ∆1 = ∆2 =: ∆, ∆̃1 =

∆̃2 =: ∆̃. Assume that P varies smoothly with a parameter w. Denote the derivatives
with respect to w by Ṗ , σ̇ and Ȧ. Suppose that Π>(A) and Π<(A) do not vary, while

Π0(∆̃) and Π0(∆) vary smoothly, and η(σ̇, A, s) is regular at s = 0. (This last condition
is automatically satisfied if n = dimX is odd, or if σ̇ = 0.) Then for s sufficiently large,

(4.20) η̇(PB, s) = −sTr(ṖP−s−1
B ),

as one finds by differentiating i
2π

∫
C λ

− s+1

2 PB(P 2
B − λ)−1 dλ with respect to w, integrating

by parts, and taking traces. For

(4.21) Ẏ (PB, s) =

i
2π

∫

C
λ−

s+1

2 [ṖB(P 2
B − λ)−1 − PB(P 2

B − λ)−1(ṖBPB + PBṖB)(P 2
B − λ)−1] dλ.

Now i
2π

∫
C λ

−sPB(P 2
B − λ)−1ṖBPB(P 2

B − λ)−1 dλ is trace class for s sufficiently large, and

its trace is the same as for i
2π

∫
C λ

−sṖBP
2
B(P 2

B − λ)−2 dλ;

Tr i
2π

∫

C
λ−sPB(P 2

B − λ)−1ṖBPB(P 2
B − λ)−1 dλ

= 1
(s−1)...(s−k)

i
2π

∫

C
λk−s Tr[PB

∑
Ck

j ∂
j
λ(P 2

B − λ)−1ṖBP
2
B∂

k−j
λ (P 2

B − λ)−2] dλ

= 1
(s−1)...(s−k)

i
2π

∫

C
λk−s Tr[ṖBP

2
B∂

k
λ(P 2

B − λ)−2] dλ

= Tr i
2π

∫

C
λ−sṖBP

2
B(P 2

B − λ)−2 dλ.

A similar argument applies to the term in (4.21) with PBṖB. Moreover, since B is constant,

ṖB can be replaced by Ṗ . Putting all this in (4.21), and replacing P 2
B by (P 2

B − λ) + λ,
yields (4.20).

Now in our case Ṗ = σ̇σ∗P +σȦ near X ′. Take a cut-off function ψ ≡ 0 near X ′, ψ ≡ 1
away from X ′. Then

Ṗ = [ψṖ + (1 − ψ)σȦ] + (1 − ψ)σ̇σ∗P.

The term in brackets can serve as D1 in Theorem 3.4, and (1−ψ)σ̇σ∗ can beD2 in Theorem
4.2. We use the versions amended as in Remark 4.7, and compute (4.20) at s = 0. The
interior contributions from Theorems 3.4 and 4.2 combine to give

(4.22) −2 Res ζ+(Ṗ , ∆̃, 1
2
) − 1√

π
Tr+(ṖΠ0(∆̃)) + 1√

π
Tr(ṖΠ0(∆)).

(Notice that P annihilates Π0(∆) and Π0(∆̃).) The boundary contributions from Theorem
3.4 are

(4.23) ( 1
2 − 1

π ) Res ζ(σȦ, A2, 1
2 ) + 1

2π Res η(σȦ, A, 1) + 1
4
√

π
Tr(σȦ(B −B⊥)Π0(A)).
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(Note from (3.15) that F 1
2
( 1
2 ) = 2

π .) The boundary contribution from Theorem 4.2 comes

from Tr(σ̇σ∗P∆− s+1

2 ), which involves the pole of F 1
2
( s−1

2
) at s = 0, with residue 2

π
. Since

we assume η(σ̇, A, s) is regular at s = 0, this contribution is

(4.24) −1
2π η(σ̇, A, 0)− 1

2π Tr(σ̇(B −B⊥)Π0(A)).

Altogether, we find:

Theorem 4.8. In the considered selfadjoint case, the variation of η(PB, 0) is the sum of
(4.22), (4.23) and (4.24).

When n is odd, then Res ζ(σȦ, A2, 1
2
) = 0 = Res η(σȦ, A, 1), by Lemma 2.5. When n

is even, then Res ζ+(Ṗ , ∆̃, 1
2 ) = 0.

5. Heat kernel expansions

5.1 The relation between exponential functions and and power functions.

We shall now study the exponential functions e−t∆i , the heat operators associated with
P≥. When Q is lower bounded selfadjoint, the exponential function is described by

(5.1) e−tQ = i
2π

∫

C′

e−tλ(Q− λ)−1 dλ, t > 0;

where C′ is a curve encircling the full spectrum in the positive direction and such that
e−tλ falls off for |λ| → ∞ on the curve (e.g. one can let C′ begin with a ray with argument
∈ ]0, π

2 [ and end with a ray with argument ∈ ] − π
2 , 0[ ).

The exponential function and the power function of an operator Q ≥ 0 with compact
resolvent are related to one another by the formulas (where Π⊥

0 (Q) = I − Π0(Q)):

(5.2)

Z(Q, s) =
1

Γ(s)

∫ ∞

0

ts−1e−tQΠ⊥
0 (Q) dt, Re s > 0,

e−tQΠ⊥
0 (Q) = 1

2πi

∫

Re s=c

t−sZ(Q, s)Γ(s) ds, c > 0,

that follow from the scalar formulas valid in each eigenspace. (The transition between the
formulas is analyzed in Proposition 5.1 below.)

Taking Q = S∗S for suitable operators S, we have accordingly (cf. (2.5), note that
Π0(S

∗S) = Π0(S)):

(5.3)

Z(S∗S, s) =
1

Γ(s)

∫ ∞

0

ts−1e−tS∗SΠ⊥
0 (S) dt,

e−tS∗SΠ⊥
0 (S) = 1

2πi

∫

Re s=c

t−sZ(S∗S, s)Γ(s) ds,

Y (S, 2s) = SZ(S∗S, s+ 1
2) =

1

Γ(s+ 1
2
)

∫ ∞

0

ts−
1
2Se−tS∗S dt,

Se−tS∗S = 1
2πi

∫

Re s=c

t−sY (S, 2s− 1)Γ(s) ds.
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In the last two formulas, Π⊥
0 (S) is left out, since S vanishes on V0(S).

We often use these formulas composed with a differential operator D. When the ex-
pressions are trace class (usually for Re s resp. c sufficiently large) one can take the trace
on both sides in (5.3) (composed with D), obtaining the formulas relating zeta and eta
functions to exponential function traces:

(5.4)

ζ(D,S∗S, s) =
1

Γ(s)

∫ ∞

0

ts−1 TrDe−tS∗SΠ⊥
0 (S) dt,

TrDe−tS∗SΠ⊥
0 (S) = 1

2πi

∫

Re s=c

t−sζ(D,S∗S, s)Γ(s) ds,

η(D,S, 2s) = ζ(DS, S∗S, s+ 1
2
) =

1

Γ(s+ 1
2
)

∫ ∞

0

ts−
1
2 TrDSe−tS∗Sdt,

TrDSe−tS∗S = 1
2πi

∫

Re s=c

t−sη(D,S, 2s− 1)Γ(s) ds.

(There are similar transition formulas for the symbols and kernels of the operators.)
These formulas will allow a translation between properties of the power function traces

and of the exponential function traces, as used in [DG] for the passage from the power
functions to the exponential functions, and e.g. in [BG] for the passage from the exponential
functions to the power functions.

For convenience, we describe these transformations in a general result.

Proposition 5.1. 1◦ Let e(t) be a function holomorphic in a sector Vθ0
(for some θ0 ∈

]0, π
2 [ ),

(5.5) Vθ0
= {t = reiθ | r > 0, |θ| < θ0},

such that e(t) decreases exponentially for |t| → ∞ and is O(|t|a) for t → 0 in Vδ, any
δ < θ0, for some a ∈ R. Let f be the Mellin transform of e,

(5.6) f(s) = (Me)(s) :=

∫ ∞

0

ts−1e(t) dt,

for Re s > −a. Then f(s) is holomorphic for Re s > −a and f(c + iξ) is O(e−δ|ξ|) for
|ξ| → ∞, when c > −a (uniformly for c in compact intervals of ] − a,∞[ ); and e(t) is
recovered from f(s) by the formula

(5.7) e(t) = 1
2πi

∫

Re s=c

t−sf(s) ds.

2◦ Moreover, the following properties a) and b) are equivalent:
a) e(t) has an asymptotic expansion for t→ 0,

(5.8) e(t) ∼
∞∑

j=0

mj∑

l=0

aj,lt
βj (log t)l, βj ↗ +∞, mj ∈ {0, 1, 2, . . .},
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uniformly for t ∈ Vδ, for each δ < θ0.
b) f(s) is meromorphic on C with the singularity structure

(5.9) f(s) ∼
∞∑

j=0

mj∑

l=0

(−1)ll!aj,l

(s+ βj)l+1
,

and for each real C1, C2 and each δ < θ0,

(5.10) |f(s)| ≤ C(C1, C2, δ)e
−δ| Im s|, | Im s| ≥ 1, C1 ≤ Re s ≤ C2.

3◦ Let r(λ) take values in a Banach space, and be holomorphic in Sδ0
= {|π−argλ| < δ0}

for some δ0 ∈ ]π
2
, π] and meromorphic at λ = 0 (holomorphic for 0 < |λ| < %). Assume

that as λ → ∞ in Sδ (for δ < δ0), ∂
m
λ r(λ) is O(|λ|−1−ε) for some ε > 0 (so that r(λ) is

O(|λ|m−1)). Let θ0 and θ be such that ]θ−θ0, θ+θ0[⊂ ]π− δ0, π
2
[ , let C = Cθ,r0

as in (2.2)
with r0 ∈ ]0, %[ , and let

(5.11) e(t) = i
2π

∫

C
e−tλr(λ) dλ, f(s) = Γ(s) i

2π

∫

C
λ−sr(λ) dλ,

for t ∈ Vθ0
resp. Re s > m− ε. Then e(t) is exponentially decreasing for t→ ∞ in sectors

Vδ with δ < θ0, and is O(|t|−m) for t→ 0, and f(s) and e(t) correspond to one another by
(5.6), (5.7).

Proof. 1◦. Note first that replacing e(t) by tbe(t) replaces f(s) by f(s + b), so we can
assume that a > 0 and then consider c ≥ 0. The function f(s) is holomorphic for Re s ≥ 0
since the integrand ts−1e(t) is so and has an integrable majorant there.

By a change of variables t = ex, we see that f1(ξ) = f(iξ) is the conjugate Fourier
transform of e1(x) = e(ex) ∈ L2(R):

f1(ξ) = f(iξ) =

∫ ∞

0

tiξe(t)
dt

t
=

∫ ∞

−∞
eixξe(ex) dx =

∫ ∞

−∞
eixξe1(x) dx,

so by Fourier’s inversion formula,

(5.12) e(t) = e1(x) = 1
2π

∫ ∞

−∞
e−ixξf1(ξ) dξ = 1

2πi

∫

Re s=0

t−sf(s) ds.

Similarly, f(c+ iξ) is the conjugate Fourier transform of e(ex)exc for c > 0.
The hypothesis on exponential decrease of e(t) in the sectors Vδ allows us to shift the

path of integration in (5.6) from t ∈ R+ to t ∈ eiδR+ for |δ| < θ0 (corresponding to a shift
to x ∈ R + iδ); this gives:

f(c+ iξ) =

∫ ∞

0

(reiδ)c+iξe(reiδ)
dr

r
= e−δξ

∫ ∞

0

riξe(reiδ)(reiδ)c dr

r
= e−δξg(δ, ξ, c),

where g is bounded as a function of ξ ∈ R, locally uniformly in c ≥ 0. Taking δ > 0 for
ξ > 0 and δ < 0 for ξ < 0, we see that f(c + iξ) decreases exponentially (like e−δ|ξ|) for
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|ξ| → ∞, in any vertical strip {s = c+ iξ | C1 ≤ c ≤ C2, ξ ∈ R} with 0 ≤ C1 ≤ C2. Then
we can also shift the integration path in (5.12) from Re s = 0 to Re s = c, c ≥ 0. This
shows 1◦.

2◦. Assume now in addition (5.8). Let us first write f(s) as

f(s) =

∫ 1

0

ts−1e(t)dt+

∫ ∞

1

ts−1e(t)dt.

The second integral defines an entire function of s. The expansion (5.8) means that

(5.13) e(t) =
N−1∑

j=0

mj∑

l=0

aj,lt
βj (log t)l + %N (t), %N (t) = O(|t|βN−ε) for t→ 0 in Vδ,

for ε > 0 and any positive integer N ; we insert this in the first integral. Observe the
formulas, valid for Re s > −β,

(5.14)

∫ 1

0

ts−1+β(log t)l dt =
(−1)ll!

(s+ β)l
,

∫ ∞

0

ts−1+β(log t)l e−t dt = ∂l
sΓ(s+ β),

where the cases l > 0 follow from the cases l = 0 by application of ∂l
s. The remainder

%N (t) in (5.13) gives a function holomorphic for Re s > −βN + ε, and for the powers of t
we use (5.14); this shows (5.9).

To show the exponential decrease of f(s) on general vertical strips, one can shift the
contour in (5.6) and proceed much as in the proof of Proposition 2.9. Another method,
that we record here since it may be useful for further estimates, is to insert the expansion
et =

∑
ν≥0

1
ν! t

ν , that gives

ettβj (log t)l =
M−1∑

ν=0

1
ν!
tβj+ν(log t)l +O(tβj+M−ε),

for any ε > 0 and positive integer M . Then we can write

e(t) = e(t)ete−t =
( ∑

βj+ν<M

∑

l≤mj

aj,l
1
ν! t

βj+ν(log t)l
)
e−t + %̃M(t),

with %̃M (t) = O(|t|M−ε) for t→ 0 in Vδ,

where %̃M (t) is exponentially decreasing for |t| → ∞ in Vδ since the other terms are so,
and hence

(5.15) f(s) =

∫ ∞

0

ts−1
( ∑

βj+ν<M

∑

l≤mj

aj,l
1
ν! t

βj+ν(log t)l
)
e−tdt+

∫ ∞

0

ts−1%̃M (t) dt.

The last integral defines a function that is holomorphic for Re s > −M+ε and exponentially
decreasing (like e−δ| Im s|) on strips −M+ε < C1 ≤ Re s ≤ C2, by 1◦. For the contributions
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from the first integral we use the second formula in (5.14) together with the fact that the

gamma function Γ(s) and its derivatives are O(e(−
π
2
+ε′)| Im s|), any ε′ > 0, for | Im s| ≥ 1,

−∞ < C1 ≤ Re s ≤ C2 < ∞, cf. e.g. [B, pp. 181–182]. This gives (5.10), completing the
proof of a) =⇒ b).

Conversely, assume b). Then e(t) is given by (5.7), and we obtain the expansion (5.8)
by shifting the contour of integration past the poles of f(s). The remainder after all terms
up to and including the singularity s = −βN is given by an integral like (5.7) but with
c < −βN ; it is O(|t|βN−ε).

3◦. That e(t) defined here is exponentially decreasing for |t| → ∞ in Vδ, δ < θ0, follows
since |e−λt| ≤ e−γ|t| with γ > 0 on the integration curve. The estimate for t → 0 follows
since ∫

C
e−λtr(λ) dλ = (−t)−m

∫

C

(
∂m

λ e
−λt

)
r(λ) dλ = t−m

∫

C
e−λt∂m

λ r(λ) dλ

for t ∈ Vδ, where e−λt∂m
λ r(λ) has a fixed integrable majorant for t→ 0. The formula (5.6)

for f is shown by a complex change of variables, where we replace t by u/λ for each λ; when
arg λ ∈ ]0, π

2 [ , the ray R+ is transformed to a ray Λλ with argument − arg λ ∈ ] − π
2 , 0[ ,

and vice versa. The integral of us−1e−u on such a ray is again equal to Γ(s), as noted
above. Thus (recall that r(λ) is O(|λ|m−1))

∫ ∞

0

ts−1 i
2π

∫

C
e−tλr(λ) dλdt = i

2π

∫

C

∫

Λλ

us−1λ−se−ur(λ) dudλ

= Γ(s) i
2π

∫

C
λ−sr(λ) dλ. �

Definition 5.2. For e(t) and f(s) as in Proposition 5.1 1◦, the operator mapping f to e
will be denoted M−1.

5.2 Exponential trace estimates.

Now we can show:

Theorem 5.3. Let Dij and D′
ij be as in (2.15) ff., of order d, and let as usual D′′

11 = D′
11,

D′′
22 = σ∗D′

22σ. The exponential function traces have the following structure (cf. Definition
5.2):

Tr(Diie
−t∆i) = Tr+(Diie

−te∆i)

+ M−1
s→t

[
1
4(F 1

2
(s) − 1)ζ(D′′

i , A
2, s) + (−1)i 1

4F 1
2
(s)η(D′′

i , A
2, s)

]
(5.16)

+ (−1)i 1
4 Tr(D′′

i Π0(A)) + εii(t), i = 1, 2,

Tr(D12Pe
−t∆1) = Tr+(D12Pe

−te∆1) + M−1
s→t

[
1
4
(F 1

2
(s− 1) − 1)η(D′

12σ,A, 2s− 1)
]

+ 1
4
√

π
Tr(D′

12σΠ0(A))t−
1
2 + ε12(t),(5.17)

Tr(D21P
∗e−t∆2) = Tr+(D21P

∗e−te∆2) + M−1
s→t

[
1
4
(F 1

2
(s− 1) − 1)η(σ∗D′

21, A, 2s− 1)
]

+ 1
4
√

π
Tr(σ∗D′

21Π0(A))t−
1
2 + ε21(t);(5.18)
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here the εij(t) are O(tM ) for t→ 0, any M , and all terms are holomorphic in Vπ
2
.

The Tr+ terms have expansions
∑

j≥0 cj,+t
j−n−d

2 (with cj,+ = 0 for j + d odd), and

the M−1 terms have expansions
∑

j≥1(cj log t+ c′j)t
j−n−d

2 . For (5.16), the cj are zero for

j < n; and for (5.17), (5.18), the cj are 0 for j < n− 1.

Proof. Consider (5.16) with i = 1 and write D11 as D. We want to translate the informa-
tion in Theorem 3.4 to a statement on the corresponding exponential function.

To do this, we first observe that with C = Cθ,r0
, θ ∈ ]0, π

2
[ and r0 satisfying (3.11), the

functions valued in L(L2(X,E1))

(5.19)

e−t∆1Π⊥
0 (∆1) = i

2π

∫

C
e−λt(∆1 − λ)−1Π⊥

0 (∆1) dλ and

Γ(s)Z(∆1, s) = Γ(s) i
2π

∫

C
λ−s(∆1 − λ)−1Π⊥

0 (∆1) dλ,

correspond to one another as in Proposition 5.1 3◦; for (∆1 − λ)−1Π⊥
0 (∆1) is holomorphic

at λ = 0 and O(|λ|−1) with λ-derivative O(|λ|−2) for λ→ ∞ in Sδ, any δ < π. So they are
defined from one another by formulas (5.6), (5.7). Consider the traces of these operators
composed with D (for Re s sufficiently large); they can also be written as integrals of traces
of resolvent derivatives (of order k > n+d

2 − 1), by integration by parts:

(5.20)

e1(t) = TrDe−t∆1Π⊥
0 (∆1) = t−k i

2π

∫

C
e−λt TrD∂k

λ(∆1 − λ)−1Π⊥
0 (∆1) dλ,

f1(s) = Tr Γ(s)DZ(∆1, s) = Γ(s)
(s−k)...(s−1)

i
2π

∫

C
λk−s TrD∂k

λ(∆1 − λ)−1Π⊥
0 (∆1) dλ.

Since TrD∂k
λ(∆1−λ)−1Π⊥

0 (∆1) is holomorphic at 0, and O(|λ|−2) for λ going to infinity in

Sδ when k ≥ 1 + n+d
2 in view of (3.27), Proposition 5.1 3◦ shows that e1(t) is holomorphic

and exponentially decreasing in a sector Vθ0
and O(|t|−k) for t→ 0 there. Proposition 2.9

shows that f1(s) is exponentially decreasing for | Im s| → ∞, Re s > k. Then we can take
traces in the formulas (5.6) and (5.7) relating the functions in (5.19), and we find that e1
and f1 are related in the same way, with e1 satifying the hypotheses of Proposition 5.1 1◦,
in short,

e1 = M−1f1.

One shows in a similar way that

e2(t) = Tr+De
−te∆1Π⊥

0 (∆̃1) = i
2π t

−k

∫

C
e−λt Tr+D∂

k
λ(∆̃1 − λ)−1Π⊥

0 (∆̃1) dλ and

f2(s) = Tr+ Γ(s)DZ(∆̃1, s) = Γ(s)
(s−k)...(s−1)

i
2π

∫

C
λk−s Tr+D∂

k
λ(∆̃1 − λ)−1Π⊥

0 (∆̃1) dλ

satisfy
e2 = M−1f2.
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Next, consider

(5.21)
f3(s) = Γ(s)

[
1
4
(F 1

2
(s) − 1)ζ(D′, A2, s) − 1

4
F 1

2
(s)η(D′, A, 2s)

]

= TrX0(Γ(s)GZ,e,s + Γ(s)GZ,o,s),

cf. Proposition 3.2. Setting

F3(s) = D′Γ(s) trn(GZ,e,s +GZ,o,s) = D′Γ(s) i
2π

∫

C
λ−s trn(Ge,λ +Go,λ) dλ,

E3(t) = D′ i
2π

∫

C
e−λt trn(Ge,λ +Go,λ) dλ,

we see that these (operator valued) functions are related to one another as in Proposition
5.1 3◦ (in view of (3.10), trnGe,λ and trnGo,λ are holomorphic at λ = 0 and O(|λ|−1) in
L2(X

′, E′
1) operator norm for λ→ ∞, with first derivatives O(|λ|−2)), so they correspond

to one another by (5.6), (5.7). Here TrX′ F3(s) = f3(s).
Again we can rewrite the integrals by integration by parts, to get integrals with deriva-

tives ∂k
λD

′ trn(Ge,λ +Go,λ) that are of trace class on X ′ for sufficiently large k, with traces
having suitable behavior at 0 and at ∞ (cf. (3.28)), so that we can take traces in the
formulas (5.6), (5.7) relating F3 and E3. Then f3(s) corresponds to the function

(5.22) e3(t) = TrX′ E3(t) = TrX0
i

2π

∫

C
e−λtD′(Ge,λ +Go,λ) dλ

by
e3 = M−1f3.

We can now write (3.25) as

(5.23)
f1(s) = f2(s) + f3(s) + f4(s),

f4(s) = 1
s
[Tr+(DΠ0(∆̃1)) − Tr(DΠ0(∆1)) − 1

4
Tr(D′Π0(A))] + h1(s),

where f4 = Me4 for a function e4 satisfying the hypotheses of Proposition 5.1 1◦ (namely,
e4 = e1 − e2 − e3). Here f4 has one simple pole at 0, cf. (5.23), so an application of
Proposition 5.1 gives

(5.24) e4(t) = Tr+(DΠ0(∆̃1)) − Tr(DΠ0(∆1)) − 1
4 Tr(D′Π0(A)) +O(tM ),

for t→ 0, any M.

Since

(5.25) e1(t) = TrDe−t∆1 − TrDΠ0(∆1), e2(t) = Tr+De
−te∆1 − Tr+DΠ0(∆̃1),

an application of M−1 to the first line in (5.23) and insertion of the detailed formulas for
e1, . . . , e4 gives (5.16) for i = 1.
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The proof for i = 2 is analogous, and there are similar proofs of the formulas (5.17) and
(5.18) based on Theorem 4.2.

The information on the asymptotic expansions of the Tr+ terms is well-known (it can
be deduced from Lemma 2.5 by Proposition 5.1), and the information on the M−1 terms
follows, by Proposition 5.1, from the expansions with simple poles in Lemma 2.5 combined
with the effect of the multiplication by F 1

2
(s) resp. F 1

2
(s− 1). �

For Dij equal to a morphism ϕ, the precise singularity structure of the functions in
(3.25) is described in Corollary 2.7 for n even and in Corollary 2.8 for n odd; and that of
(4.7) and (4.8) is described in Corollary 4.4. We then find immediately, by application of
Proposition 5.1 (recalling that the constant term must be subtracted from the exponential
trace as in (5.25)):

Corollary 5.4. The exponential trace Tr(ϕe−t∆i) has the following behavior for t→ 0.
For n even:

(5.26) Tr(ϕe−t∆i) ∼
∑

k≥0

c2k,+(ϕ, ∆̃i) t
k−n

2 +
∑

0≤k< n
2

γn−1−2kc2k(ϕ0, A2) tk−
n−1

2

+
∑

k≥n
2

[
−βk−n

2
c2k(ϕ0, A2) log t+ βk−n

2
c′2k(ϕ0, A2) + (β′

k−n
2
− 1

4
)c2k(ϕ0, A2)

]
tk−

n−1

2

+ (−1)i 1
4

∑

0≤k 6= n
2
−1

c2k+1(ϕ
0A,A2)√

π (n
2
− k − 1)

tk+1−n
2

+ (−1)i
[
−cn−1(ϕ

0A,A2)

4
√
π

log t+
c′n−1(ϕ

0A,A2)

4
√
π

+ 1
4

Tr(ϕ0Π0(A))
]
.

For n odd:

(5.27) Tr(ϕe−t∆i) ∼
∑

k≥0

c2k,+(ϕ, ∆̃i) t
k−n

2

+
∑

k≥0

γn−1−2kc2k(ϕ0, A2) tk−
n−1

2 +
∑

m≥0

εmζ(ϕ
0, A2,−m− 1

2 ) tm+ 1
2

+ (−1)i
[
1
4

∑

k≥0

c2k+1(ϕ
0A,A2)√

π (n
2
− k − 1)

tk+1−n
2 + 1

4η(ϕ
0, A, 0) + 1

4 Tr(ϕ0Π0(A))
]
.

[G2] shows an expansion with the n + 1 first terms (up to and including the constant

term) plus O(t
3
8 ) in the case ϕ = 1, also for manifolds X that are not cylindrical near ∂X .

Corollary 5.5. The associated exponential trace Tr(ϕPe−t∆1) has the following behavior
for t→ 0.

For n even:

(5.28) Tr(ϕPe−t∆1) ∼
∑

k≥0

c2k+1,+(ϕP, ∆̃1) t
k−n

2

+
∑

0≤k< n
2
−1

γn−3−2kc2k+1(ϕ
0σA,A2) tk−

n−1

2 +
∑

k≥n
2
−1

[
−βk+1−n

2
c2k+1(ϕ

0σA,A2) tk−
n−1

2 log t

+(βk+1−n
2
c′2k+1(ϕ

0σA,A2) + (β′
k+1−n

2
− 1

4 )c2k+1(ϕ
0σA,A2)) tk−

n−1

2

]
+ 1

4
√

π
Tr(ϕ0σΠ0(A)) t−

1
2 .
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For n odd:

(5.29) Tr(ϕPe−t∆1) ∼
∑

k≥0

c2k+1,+(ϕP, ∆̃1) t
k−n

2 +
∑

k≥0

γn−3−2kc2k+1(ϕ
0σA,A2) tk−

n−1

2

+
∑

m≥0

δmη(ϕ
0σA,−2m) tm− 1

2 + 1
4
√

π
Tr(ϕ0σΠ0(A)) t−

1
2 .

There are similar formulas for Tr(ϕP ∗e−t∆2), with ϕ0σ replaced by σ∗ϕ0.

The proof shows the advantage of working with the power functions, where the contri-
butions from the boundary condition appear as simple multiplicative formulas involving
the zeta and eta functions of A; this allows an exact analysis of the pole coefficients which
can then be translated over to the coefficients in the heat expansions (by Proposition 5.1).
It seems harder to get the formulas directly in the heat operator framework.

Also in these results we can replace P≥ by PB as discussed in Section 3.3 and Corollary
4.6 ff.; this gives modifications of the constant term in (5.26)–(5.27) resp. the coefficient of

t−
1
2 in (5.28)–(5.29), and there are special conclusions when PB is selfadjoint.
Full expansions are shown for the non-cylindrical case in [GS], by quite different meth-

ods.
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