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ABsSTRACT. In a joint work with R. Seeley, a calculus of weakly parametric pseudodifferential
operators on closed manifolds was introduced and used to obtain complete asymptotic ex-
pansions of traces of resolvents and heat operators associated with the Atiyah-Patodi-Singer
problem. The present paper establishes a generalization to pseudodifferential boundary op-
erators, defining weakly polyhomogeneous singular Green operators, Poisson operators and
trace operators associated with a manifold with boundary, as well as a suitable transmission
condition for pseudodifferential operators. Full composition formulas are established for the
calculus, which contains the resolvents of APS-type problems. The operators in the calcu-
lus have complete asymptotic trace expansions in the parameter (when of trace class), with
polynomial and logarithmic terms.

INTRODUCTION

Parameter-dependent pseudodifferential operators are of interest in many contexts, in
particular in the study of resolvents of given boundary value problems, and their applica-
tion to the construction of complex powers of operators, and solutions of time-dependent,
problems. The study of the trace of such operator families leads to the determination of
geometric invariants  a famous example is the index of an elliptic operator A obtained
as the difference between two “heat traces” Tre *4"4 — Tre*44" | Related examples are
zeta function expansions and eta function expansions of differential and pseudodifferential
operators (1do’s).

Parameter-dependent calculi are simplest when the parameter p enters in the same
way as the cotangent variables £, with joint polyhomogeneity in (&, u) for [(&,p)] > 1,
as considered e.g. in Shubin [S78]; we call such symbols strongly polyhomogeneous. But
some problems necessitate weaker homogeneity requirements, valid for |{| > 1 only and
supplied with suitable estimates for small ¢ (large ). A very general setup for ¢do’s as
well as for pseudodifferential boundary operators (1)dbo’s) was worked out in the book
[G86,96]; however, it is somewhat crude in the analysis of traces (giving expansions in
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Analysis — beginning with a Ph.D.-project in the sixties to interpret his abstractly defined “lateral
boundary conditions”, for which pseudodifferential operators turned out to be a key ingredient. I am
grateful for all that I learned under his guidance. (Appeared in J. Funct. Anal. 184 (2001), 19 76.)
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finitely many terms). A finer and more restricted analysis for ¢)do’s on closed manifolds,
giving complete asymptotic expansions of traces, was established in a joint work with
Seeley [GS95], with applications to the Atiyah-Patodi-Singer problem. The purpose of the
present paper is to construct a similar calculus of ¥dbo’s on manifolds with boundary,
leading to full asymptotic expansions in the parameter.

One of the main results is that operator families A(u) = P(u)+ + G(u) of trace class

belonging to this calculus have trace expansions:

oo

(1) TrAG) ~ Y™ 0+ S (el log ot ot

§=0 1=0

for p going to oo in sectors of C where the operator family is defined. A large effort is
spent on developing full composition rules for the elements of the calculus, which will allow
the treatment of quite general operators.

The present work began with a sketch made during the collaboration with Seeley that
led to [GS95]. In the treatment of Dirac operators, we first thought it necessary to handle
general p-dependent idbo’s, but then found a simple way to “reduce to the boundary”
(transforming the trace problems to problems for py-dependent ¥do’s on the boundary) so
that the general study was no longer necessary. The present author has continued the work
over a long period. The resulting study presented here is concerned with a class of symbols
that includes all the strongly polyhomogeneous ones, as well as p-independent ydo’s in
the boundary. However, the present calculus is not made to include compositions with the
general p-independent Poisson, trace and singular Green operators of the original Boutet
de Monvel calculus [BM71] (except for particularly convenient cases; see Remark 6.11).
This is due to the fact that the normal variable plays together with the other variables in
very different ways in the py-dependent and the p-independent cases.

In this connection it should be mentioned that the special question of asymptotic trace
expansions for operators AR(u) that are compositions of a u-independent ¢)dbo A and a
resolvent R(u) of an elliptic differential operator problem, is addressed in a joint work with
Schrohe [GSc99] by different methods, making a very accurate use of the structure of the
symbols of differential operator resolvents as rational functions with well-behaved poles.

The present calculus allows obtaining trace expansions for general compositions of
parameter-dependent operators, with general interior symbols. The special cases treated
earlier in [GS95], [G99] depended on having the singular Green operators expressed as
finite combinations >, ; K;(p)S;(u)T;(p) with strongly polyhomogeneous Poisson and
trace operators K; and T; and weakly polyhomogeneous ¢do’s S;; this is not needed here.

For cases where the manifold has conical singularities or corners instead of a boundary,
expansions like (1) have been obtained for elliptic resolvents by Gil [Gi98], Loya [L98].

Plan of the paper: In Section 1, we recall some known facts on ¥dbo’s without a
parameter. In Section 2, the symbol-kernels and symbols of a basic type of parameter-
dependent boundary operators (Poisson, trace and singular Green operators of class 0) are
introduced. Section 3 accounts for how the polyhomogeneous symbols enter in the calculus.
Then we give a fairly selfcontained explanation of the composition rules for these operators
in Section 4, based on a formulation using the x,-variable (the “real formulation”). The
reader who is mainly interested in trace expansions of such operators can go directly to
Section 7 from here. However, for a complete calculus including an interior ®do and
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operators of positive class, we need to use the “complex formulation” (the Wiener-Hopf
calculus in terms of the conormal variable &, in the Fourier transformed setting); this is
the subject of the next sections, where the presentation leans heavily on that of [G86,96]
to save repetition. (Henceforth we refer only to [G96]; a reader with [G86] at hand can find
most of the information there too.) Section 5 introduces the symbols of positive class and
their mechanisms, and Section 6 defines interior ydo’s with the appropriate transmission
condition, and sets up the full composition rules. In Section 7 we draw the conclusions on
trace formulas, establishing expansions of the form (1).

1. BACKGROUND AND PRELIMINARIES

In order to explain the new calculus, we begin by recalling some elements of the es-
tablished theories. In the calculus introduced by Boutet de Monvel [BMT71], one considers
operator systems (sometimes called Green operators) on RZ ={zeR" |z, > 0}:

P, +G K Ce RN C= (RN
(1.1) A = : X — X .
T S Coc(Rn—l)M Coo(Rn—l)M’

Here P is a 1)do on R” satisfying the transmission condition at the boundary R*~! of Ri

3

and P, is its truncation to RZ_
(1.2) P =rtPet,

where T means restriction to R and e™ means extension by 0 on R” \R"} ; G is a singular
Green operator (s.g.0.); T is a trace operator; K is a Poisson operator (in some texts called
a potential operator); S is a 1do on R* 1. More generally, the operators can be defined
(by the help of local coordinates) to act on a manifold X with boundary X’.

In the calculus of such systems it is important to show that the composition of two
Green operators A and A’ as in (1.1) gives a Green operator:

P,+G K\ (P.+G K P! +G" K"
(1.3) A" = AA = =
T S T/ S/ T/l SN

where (with G” = L(P, P") + G"")

(1.4) (i

(i

) P" = PP'"is ado with the transmission condition,
) L(P,P')=(PP'); — PP, is ans.g.o.,
) G" =P.G'+GP. +GG + KT is an s.g.o.,

(iv) T"=TP, +TG + ST’ is a trace operator,
)
)

(iii

(v) K'=P,K'+GK'+ KS' is a Poisson operator,
(vi) S"=TK'+S8S" isatdoonT.
In fact this involves a number of composition rules among the various operators. The point

of the present work is to define a calculus of parameter-dependent operators respecting
these rules and moreover allowing full asymptotic trace formulas.
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Let us recall the structure of the original operator types G, T and K. They are defined
by Fourier integral formulas from functions of the form

(1.5) fw, 20,8, fw,mn,yn, &), flw,€.6),  fw, €& &)

(The hypotheses imposed on these functions in order to define operators are explained
further below.) In the applications, w represents a tangential variable 2’ € R* ! (or ¢/
v (',Y"), Tn,yn € Ry are normal variables, and &,,n, € R are (conormal) variables
corresponding to x, resp. y, in the Fourier transformed setting. In the following, we
include a parameter p to save repetition of the formulas later.

As in [GK93], [G96], we use the notation: < means “< a constant, independent of
the space variable, times”; similarly > means “> a constant times”; and = means
that both < and > hold. The constants vary from case to case. As usual we denote
(1+]& 2 +. .. |€a]2)2 = (€), and denote by [¢] a smooth positive function of £ that coincides
with [¢] for [¢| > 1. We denote {0,1,2,...} = N.

Recall that a pseudodifferential operator P = OP(p(z, &, ) is defined for each fixed p
from a symbol p(z, &, p) by:

n

Pu(m)-ompw,a,u))u—/ (o € mal€) g = [ (a6, pyuly) dyd

JR2n
where 4(&) = (Fu)(€) = [pn e tu(x) dz, and d€ = (27) "d&; here the last expression
allows symbols p dependlng also on y. For boundary problems, R” is considered as R*~! xR
with coordinates (2, 2,) (or (¥',yn), (€'.&,), etc.); the ¢do definition applied in R* 1 is
denoted OP’.

We first recall the “real formulation” of the boundary operators defined relative to Rj_.
A function f(x’, Y, x,, &' 1) defines (for each fixed p) a Poisson operator K = OPK(,}F),
or a trace operator of class 0, T = OPT(,}E), by:

(Ko)(@) = OPK(o = [ e 0 'y € oty '
JR2n—2

(1.6) N
(Tu)(z") = OPT(f)u = /

oo
o eltmm)e / F@ Y yn, & p)uly) dyndy'de’,
JR2n— J0

forv € C°(R™™ 1) resp. u € o) (Ri) = rTC§(R™). T is the adjoint of a Poisson operator,

namely OPK(?(y’, 'z, &' ). A trace operator of class r > 0 is an operator of the form

(1.7) Tr =2 0<jcr Sivi + T,

where T is as in (1.6), the +; are the standard trace operators y;u = (DJ u)|;,—o and the
S; are 1do’s on R"~1; here T is well-defined on Ly functions in contrast to the v;. (The

general trace operators are also covered if we include compositions TD';”? 7 €N, since
(1.8) Sivj = S;v;((D') —iDp) 7 ((D') — iDy)7 T = TI((D') — iDy,)"

where T; = S;v;((D') — iDn):Lj_1 is a trace operator of class 0 by [GK93, (1.34) and
Lemma 3.4].)
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A function f(m’, Y, Ty, Yn, &', 1) defines for each p a singular Green operator of class 0

(19) (Gu)(x) = OPG(fyu = /

ei
R2n—2

e / F@ Y 2n,yn, & uly) dyndy'de’,
0

for u € C’(O(f) (Ri) More generally, a singular Green operator of class r > 0 is an operator
of the form

(1.10) G, = Zogj<r Kjvj + G,

where the K; are Poisson operators and G is as above.

The function f in (1.6) resp. (1.9) is called the symbol-kernel of K or T’ resp. G. When k
defines a Poisson operator, the function k(w, &', &, p) obtained by Fourier transformation
Fa,—e, of e*ﬂ%(w,mn,&’,u) is called the associated Poisson symbol. When t defines a
trace operator of class 0, the associated trace symbol t(w, ¢, &,, 1) is obtained from ett
by co-Fourier transformation ‘Twn—%n- Here Fy, ¢, u = f e inn w(xy) day, ?%_)57‘ U =
[ ett@nsny(z,) dz,. When g(a',y', xr, yn, &', p) defines a singular Green operator of class
0, the associated singular Green symbolis g(z',y', &' &y Ny i) = Fup -, F el el g.

Yn=2Nn "Tp “Yn

We shall use the abbreviations Sy and S, for the spaces S(Ry) and S(R?H_) (where

92 _ _
R++ :R+XR+)Z

A.11) S, = S(R,), the restriction of S(R) to R,
1.11 _ - —
Sy = S(RL_), the restriction of S(R?) to Ry xR

the symbol-kernels are in these spaces as functions of x,,, resp. (2, yn).
Next, we recall the “complex formulation”, where the symbols are used. Here one uses
the conventions (where C[¢,] stands for the space of polynomials in &,):

F(etSy) =HT =HT, F(e*8y)=HT,, F(eTS1)+CE] =H,
(1.12) HYEH™ =H, FapoenFynonaa, e Soqp = HTQH |,
FetrtF L =pt, Fetr?¥F " =h-,, I h*t=h";
the operators h*, h_, and h™ are projections in H with range H*, H_, resp. . (Further
details are found e.g. in [G96, Sect. 2.2].) The ¥dbo’s are defined from the symbols by

suitably interpreted formulas:
(1.13)

(Kv)(x) = OPK(k)v = / @ YD) E F b (1! ! € p)o(y') dy'de,
. Ranl

(Tu)(a') = OPT(t)u = / i =€ —imy(o! o/ € pyuly) dyde,
JR2n

(Gu)(z) = OPG(g)u

/ TSR S g (4!, € 1, p)u(y) dydEdn,
JR2n

The integrations in &, are here often understood as “plus-integrals”: f+ ©(&n) &y, is the
usual integral when ¢ € L1 (R), and it equals f£+ (&) d&, when ¢ extends to a meromor-
phic function on C; = {z € C | Imz > 0}; then £, is taken as a contour in C; around
the poles in C, .
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The standard requirements for symbol-kernels and symbols of trace and Poisson oper-
ators without a parameter (cf. [BMT71], [G96, Ch. 1]) are as follows: A trace or Poisson
symbol-kernel f(w,x,,() of degree m is a function in C°°(R¥ x Ry x R*~!) that is in S
with respect to x,, and satisfies
(1.14) sup |2,0L 9508 f(w, xy, ¢)| < (Q)mFI-IH el
z,>0 '

for all indices « € N*~1, 3 € N”, [,I’ € N. An equivalent statement is that

(1.15) 24,08 OB F(w, T, Q)| Ly, < ()mHE—IH el
for all indices a e N~ B e N, [,I' e N. N

The associated Poisson symbol f(w,(, &) = Fa, e, et f satisfies (equivalently)
(1.16) 1h* 0, €4 0502 f(w. . &)l Laqry < ()2 1o,

>SN W

for all indices « € N*~!, B € N, [,I' € N. These symbols extend to C> functions of
¢, € C_ that are holomorphic on C_ = {z € C | Imz < 0}. It is useful to observe that
the estimates (1.16) hold also on lines Im¢,, = —c¢ with ¢ > 0, uniformly in ¢ (in view of
the Paley-Wiener theorem).

Similarly, the associated trace symbol f.(w,(, &) = Fau, e, et f satisfies (equivalently)

(117) ||h:laén Zagagfr’(wv Cvfn)”Lg(R) S <C>m+%_l+l1_‘a‘;

for all indices « € N*~1, 3 € N”, [,I’ € N. The symbols f. extend smoothly to holomorphic
functions on C;, and the estimates (1.17) hold on lines Im¢,, = ¢ with ¢ > 0, uniformly
in c.

The estimates in (1.14) (1.15) are in particular satisfied at each w by C*° functions

f(w, T, () that are in &4 with respect to x,, and have the following quasi-homogeneity:
(1.18) flw, 22 al) = am“f(w,xn,o, fora>1,|¢|>1, all 7, € R,.

To see this, note that for [(| > 1,

[f(w, 2, O = [ f(w, [Cln, C/ICN] < 1K™ sup [ f(w, gy m)

un >0,|n|=1

and that m%@i’n 8582’]5 satisfies (1.18) with m + 1 replaced by m+1 -1+ 1" — |a].
Since

fmn—hfne_{—f(,w: m#: (IIC_) - (],f(’ll), (]’C7 (lén),

the corresponding Poisson symbol f(w,(,&,) is homogeneous in ((,&,) of degree m for
IC| > 1:

(119) f(w:a47 afn) = amf(wvcvfn) for a > 17 ‘C| > 1.

The corresponding trace symbol f. is likewise homogeneous of degree m.
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Since the homogeneity degree of these symbols is unambiguously defined (in contrast
to the quasi-homogeneity property (1.18) where one could also let a shift from z,, to bz,
be decisive), our definition of degree will always refer to that of the symbol. The reason we
say that the functions satisfying (1.14)—(1.17) are of degree m is that they obey the same
estimates as functions associated with homogeneous symbols of degree m. Accordingly, we
shall denote by

(1.20) S™(RYxR"™1,8,), S™(RYxR" ', H'), resp. S™(RY xR, H_,),

the space of functions f(11),mn,£’), flw, & &), resp. fe(w, & &,) satisfying (1.15), (1.16)
resp. (1.17). Short indications of the spaces in (1.20) are S™(S), S™(H™), resp. S™(H_,).

A function f(w, z,,¢) (and the associated function f = F,, ¢, et f) is said to be a clas-
sical polyhomogeneous Poisson symbol-kernel (resp. symbol) of degree m, when there is a
sequence of symbols f; homogeneous of degree m—j, and corresponding quasi-homogeneous
symbol-kernels fNj, such that ry = f — Zj<J fj resp. 7y = = Zj<_] f; satisfies the esti-
mates (1.16) resp. (1.14) (1.15) with m replaced by m — J, for any .J. There are similar
conventions for trace symbol-kernels and symbols.

Example 1.1. A simple and important example of a Poisson symbol-kernel is f(mn, () =
e~®n[¢] which is quasi-homogeneous as in (1.18) with m = —1, and hence satisfies (1.14)

(1.15) and lies in S~ (R” xR* !, S4). (Recall that OPK (e #»¢€") is the solution operator
for the Dirichlet problem (1 — A)u(x) = 0 on R}, u(z’,0) = ¢(2’).) The corresponding
symbol F, ¢ ete @l = ([¢]+i&,)~! is homogeneous of degree —1 in (¢, &,) for [¢] > 1.

Besides the degree, there is also a convention of assigning orders to the operators and
their symbols. Here, when a symbol-kernel f(w, T, () is of degree m, the Poisson operator
it defines is said to be of order m + 1, whereas the trace operator it defines is said to be of
order m. This convention that stems from [BM71] and is also used in [G96], is chosen so
that the composition T'K of a trace operator of order m; and a Poisson operator of order
my is a tdo in R*~! of order m; + my. In the present paper we shall mainly speak of the
degree, since there is a large amount of other indices to keep track of.

A singular Green symbol-kernel f(w, Tny Yn, C) of degree m and class 0 is a function in
C> (R XR?H— xR" 1) that is in Sy (cf. (1.11)) with respect to (x,,y,) and satisfies:

Q) s 0 D807 5 ) (R
Tn,Yn 2

for all indices « € N*=!, 3 € N”, [,I', k, k' € N. Equivalently,

(1.22) ||$Lainyf;35n3332’f(w,:vn,yn, C)HLz(R?H_) & (¢ymHt I ket ko]
for all indices o € N*=' 3 € N, I,I',k, k' € N. (Note that we here have a Hilbert-
Schmidt norm of the integral operator on Ry with this kernel.) There is a third, equivalent
formulation in terms of the associated symbol f(w,(,&n,Mn) = Fa, e, Fyn—mn ejn e;'nf; it
should satisfy:

(123) ||h2—n h’:l,nn 8£n fla'r’;'nnﬁ agagf(wv Cv fn: ’r]n)HLQ(RQ) S <C>m+1il+l —htk 7|a|:
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for all indices @« € N*=', 3 € N, I,I'.k, k' € N. These symbols extend smoothly to
functions of (£,,71,) € C_xC, that are holomorphic on C_ xC, , such that the estimates
hold for Im¢&,, = —cy, Immn,, = ¢z, uniformly in ¢y, ¢y > 0.

We use the symbol-kernels (the (z,,y,)-formulation) in the immediate treatment of
boundary operators, since they are easy to explain in a selfcontained way. But when we
get to compositions with (interior) ¢do’s in Section 5 below, we need the symbols and the
Fourier transformed spaces. From then on we make heavy use of the constructions in the
book [G96].

The estimates in (1.21) (1.22) are in particular satisfied, at each w, by C°° functions
f(w,a:n,yn,g‘) that are in Sy, with respect to (x,,y,) and have the following quasi-
homogeneity:

(1.24)  f(w, In In () = 2 (W, 2y Yn, C), for a > 1, [¢] > 1, all (2n,yn) € Rj_+.

Here the corresponding symbol f(w, (,&,, nn) is homogeneous in ((, &y, n,) of degree m for
<> 1

(1.25) f(w, a€, abn, ann) = a™ f (w, ¢, &y ), for a > 1,[¢] > 1.

As in the case of Poisson and trace symbol-kernels, the degree of f or f refers to the
homogeneity degree of the symbol f (and, for polyhomogeneous symbols, of its principal
part).

Again we shall use the degree as indexation for the symbol- and symbol-kernel families,
both for the symbols that are homogeneous and for those that just have estimates (1.21)—
(1.23) like those of homogeneous functions. Thus, we shall denote by
(1.26) S™(R xR* 1 8, ), resp. S™(RV xR" 1 HTOH,),
the space of functions f(w,xn,yn,f’), resp. f(w, &', &, n,) satisfying (1.22) resp. (1.23).
For a short notation we write S™ (S, ) resp. S™(HT®H_,). An s.g.o. of degree m is said
to be of order m + 1 (this fits well with composition rules).

Finally, recall the basic composition rule for tdo’s: When P = OP(p(zx,§,s)) and
Q = OP(q(z,&,t)) (with parameters s and t), then PQ has symbol p o ¢, where

(1.27) & s oqle &) ~ S CDaep(a, ¢, 5)0%q(x, €, 1).

aeNn

We write o’ instead of o when the rule is applied with respect to variables z/,¢ € R* 1
only. In compositions with boundary operators, o’ is applied in the tangential variables
and there are special rules (denoted o,,) for the normal variable. Details are given e.g. in
[G96] and will be taken up in the following when relevant.

2. PARAMETER-DEPENDENT SYMBOL-KERNELS

We shall now introduce symbol classes depending on a parameter p. Here we denote

(& p) = (& ) and [(§, p)] = [§, 4]
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Let T’ denote a sector in the complex plane (I' C C\ {0}). As the sector I' we usually
take either Ry or a sector of the form { u € C| pu # 0, |argp| < 6y}, for some 6y > 0; then
r-t=r.

For our definition of symbols of boundary operators it is convenient to generalize the
usual do symbol spaces, valued in C, to symbols taking values in Ly(Ry), Lo (Ry),
Ly(R? ;) and other Banach spaces B. Then we define S™(R” xR" !, B) to be the space
of C* functions p(w,¢’) from (w,€’) € R xR 1 to B satisfying

(2.1) ||3w8£;p(w,f')||3 < (e"hm™ ol for all o, S.

The symbol spaces S™¢ introduced in [GS95] will now be generalized in this manner,
including moreover a growth factor and a power of [¢’, ul:

Definition 2.1. Let m and § € R, d and s € 7Z. Let B be a Banach space, e.g., B = C,
Ly(Ry) or Ly(R2,), p € [1,00]. The space S§**°(R” x R*~', T, B) consists of the C*
functions f from (w, &, p) € R xR xT to f(w,f’,,u) € B that satisfy, for all o €
N1 BeN,j€EN, withu= 1,

(2.2) (&) °|05080, f(w,&,1)llp < ()™M, for } €T,

with uniform estimates for |z| < 1, 5 in closed subsectors of T

? Z

Moreover, we set
(2.3) SPH(RY xR, T, B) = pl¢’, u]* SO (R” xR*~1, T, B).

Here we write f as f(w, Tp, &', 1) resp. f(w, Tn, Yn, &', ) when B is a space of functions
of &, resp. (Tn,Yn) (e.8., B= Ly, (Ry) or Ly 4, 4. (R3,)).

For s = 0, § = 0 this is a generalization of the symbol space S™ defined in [GS95]
to Banach space valued functions. The functions are called holomorphic in p if they

are holomorphic in p € T for [(¢', n)] > & (some & > 0); this property is preserved in
compositions. We write 0| instead of 0, as in [GS95], since it is really the radial derivatives

estimates to be %amﬁed by functlom in Sy d *(RY xR* 1, T, B) are, with z = i,
@4) () 0008, (U, 20 Flw, €, H)p £ (€)mlalt, for L e,

, L in closed subsectors of T

The powers of [¢/, 1] are included to accommodate strongly polyhomogeneous symbols

in a convenient way; cf. (2.28) and Theorem 3.2 below. ¢ will usually be 0 when B equals
C, L(R2 ) or an L space, resp. a half-integer +1 when B = Ly(Ry). (The half-integer
powers of (z£’) do not fit well into the calculus otherwise.) When § = 0 it is omitted from
the notation, and when both s and d are 0, we often use the simpler notation

uniformly for [z| <1

(2.5) SIEO(RY xR, T, B) = S™4(R” xR* 1, T, B).
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As usual, such function spaces are provided with the Fréchet topologies defined by the
associated systems of seminorms, e.g.,

sup ()Tl e o og o (1€ 0 f(w, €, ) s

wERY, E'ER?—1 2T |2[<1

Note that [¢/, 1] = |(¢', 1)] for |2] < 1, and that

(2.6) € D=1 ) = [ul 1€/, )] = |pl (§'/u) = 2]~ (2¢"), when p= 3.
We henceforth use the short notation « for [/, u] (as in [G96]), so from now on,
(2.7) k=g, 2] =€, p, with = 1.

It is convenient to have several choices of ¢ available; fortunately the various spaces
have simple relations to each other:

Lemma 2.2. One has foralla e N°71, j €N, 0 € R,
(2.8) 0805(26")7| < (&)IT1el(zg)7
Hence, for all m,d, s,d:

m,d,s _ agm,d—1,s+1
(2.9) Sy, B) = Sy, B).

Proof. Observe that

= CE70L ) ly=pzer = D, €7 forn(121€),

|v|=3 lvI=3

where f, (') € S~ = §9=J. Then

0800, (267 = Y 0g(E for(121€) = D D ep0u €05 frn(121€)

[v|=3 |v|=7 B

=3 > I as(l21€),

[v]=3 B<a,B<y

where f, o (1) € So—i-la=Bl Hence

0807 ()71 < Y ST e Pl |l Bl gryemimlahl

|7|:7 BLa,B<y

<) (EPTIRgleBl(zehy o < (gl (zel) o

BLa,|BI<j

where we have used that |z|*¥(z¢/)7F = [¢/, L]7F < (¢ "k for k > 0, |2 < 1.
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To show the inclusion from left to right in (2.9), let g(w, &', u) € S;n’d’s(F, B). We can
assume that d = s = 0, since the general case is reduced to this by multiplication of g by
2%k~%. That g(w, &', u) € S§*° means that

(05080, 9(w, €', 1)lp < (2€)7(g")ym+i~lel

for all indices. Since |z[~1[¢/, 1]=1 = (2¢/)~1, g(w, &', p) € Sj» "' means that

z

050807, (=€) g(w. €. D)llm £ ()31 g)mHi1

for all indices, so this is what we have to show. We can disregard w in the following. Using
(2.8) with 0 = —1, we have:

0800, ((26)719(€',2) = Xpca ke conldaof (26) 1057700 g (¢, 1))
Then we find, using the estimates of (z¢’)~':

||ag'3|]z\(<zfl>71Q(£,/ %))HB < Zﬁﬁa,kgj \Cg7k6ﬁ|ag, <Z£’>—1|||a§a,—ﬂa‘]z—|kq(£/l %)HB
é Z <£l>k*|ﬁ\<Zé~/>71<z£l>6<é~/>m+jfkf\afﬂ| S <Zé~/>571<£l>m+]~,|a|;

k<j,B<a

as was to be shown. The other inclusion uses (2.8) with ¢ = 1 in a similar way. O

Example 2.3. To motivate the scaling in x,, in the following definition of parameter-
dependent, boundary symbols, consider the basic example f(zn, &', 1) = o~ on |(€1)] (with
Fourier transform F,, ¢ et f = (|(€', p)| +i&n)~1); it is the symbol-kernel of the Poisson
operator solving the Dirichlet problem (—A + p?)u(z) = 0 on R, u(2’,0) = ¢(z'), for
p > 0. Setting p = 1, we find for f(mn,ﬁ’, 1y = etnz  (2€) by use of the fact that

z

(2.10) SUP, soZee” 7" = cpo R, o = kFeF,

that for each j, sup, g 187 f (2, &', 1)|is O(277) for each ¢’. This does not comply with the
uniform estimates in z < 1 required in (2.2) (with § = 0, B = L (Ry)). But if we replace
&, by zu,, we find using (2.8) that the resulting function fi(un, &', 2) = f(zun, &, =
e~ un () hag SUpP,, > 97eun{=€)| < (¢/)7, j € N, which fits well with (2.2). (It is easy to
check a few steps by hand calculation; a systematic proof covering this case is given below
in Theorem 3.2, see Example 3.4.)

A reader wanting to bypass the complex formulation in Sections 5-6 can disregard the
information on symbols below in Definition 2.4 3°-4°, (2.17), (2.19), etc.

Definition 2.4. Let m € R, d and s € Z.
1° The space S™%5(R¥ xR* 1. T',S,) (briefly denoted S™%*(I";S,)) consists of the
functions f(w,z,, &', u) in O (R¥ xRy xR*~1 xT) satisfying, for all l,1' € N,
(VAL Fw, |2un, €, L) € S™ BT RY xR LT, Log 0, (Ry))

N Uy

(equivalently, u! o f(w, zlun, &', 1) € Sm’dH_l”S“_Hl’(F, Loou, (Ry))).

N Uy o )z

(2.11)



12z GERD GRUDBDBb

2° The space S™%(R* xR"~1 T, S, ;) (briefly denoted S™%*(T", S, )) consists of the
functions f(w, Tp, yn, &', ) in C°(RY XR?H— x R"=1 xT') satisfying, for all 1,1’ k, k" € N,

(2.12)  (2& V' EHRR QL OE Wk OF Fw, | 2|up, | 2oy, €, 1)

nZuy 'n“uy, vz

€ SR X R T, Log u on (R2)).

3° The spaces obtained from S™%*(R¥ xR* !, T",S,) by Fourier transformation, resp.
co-Fourier transformation,

(213) f~ = f(w:é.,:é.n: /1') - frn—>£n6+f~7 resp. fN = f(:(w:é.,vgnv ,U/) - ?mn—%ne_}—f:

are denoted S™%3(R" x R*~1, T, H*) resp. S™®5(R" x R* 1, T,1~,) (brief notation
S™d:s (T HY) resp. S™E5(T,H_,) ).

4° The space obtained from S™%*(R* xR"~',T', S, ) by Fourier and co-Fourier trans-
formation,

(214) f = f(w: 5’: é.n: Tn, /1') = fmnaﬁnfyn—)nn e—mi—negj_n fv

is denoted 8™ %*(R” xR"~', ', H*&®H~,) (brief notation S™%*(I', HT*QH™,)).

Definition 2.5.

1° The functions in S™%*(T", S, ) are the Poisson symbol-kernels and trace symbol-
kernels of class 0 of degree m + d + s, in the parametrized calculus. The functions in
S™d:s (T H+) are the Poisson symbols, and the functions in S™%*(I',H_,) are the
trace symbols of class 0, of degree m + d + s, in the parametrized calculus.

2° The functions in S™%*(T', Sy, ) resp. S™%5(I', HT®H_,) are the singular Green
symbol-kernels, resp. singular Green symbols, of class 0, and degree m + d + s, in
the parametrized calculus.

There is some explanation for the +1 resp. +2 in the s-index in (2.11) resp. (2.12) in
the following proposition, which shows how the indices in the S™%%-estimates are modi-
fied when the Poisson, trace and singular Green symbol-kernels are replaced by symbols
(Fourier transforms). The indices have the most natural values when we use L., norms
for the symbols, included in Section 5. As we shall see in Section 3, the degree indication
m + d + s is consistent with the homogeneity degree of the principal part of polyhomoge-
neous symbols in the calculus.

Proposition 2.6. .
1° A C* function f(w,zn, &, u) belongs to ™% (RY xR* 1, T',S,) if and only if, for
all 1,I' € N,

(2.15) ("YUl 0L f(w, |2lun, €', 1) € S’%”’d“’s(R” xR LT, Ly, (Ry)).

Here (2.15) can be replaced by

(2.16) () updy, f(w,|2lun, €', 1) € ST R XRYLT, Lo, (Ry)).
2
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Moreover, the properties (2.15) are equivalent with the following properties of the
Fourier transform or co-Fourier transform (2.13):

(2.17) <zg’>l—l'h_lagn¢5f(w,5’, 111¢,, 1) € Smds(]R”x]R” LT, Ly, (R)).

2° A C'*° function f(w, Ty Un, &', 1) belongs to S™%3(RY xR*~1 T, S, ) if and only if,
for all I,1',k, k' € N,

(2.18) (&) HRE YL O Wk R Flw, 2|t |2|vn, €, 1)

n Uy Uy, Upy » )z

€ SIS RY xR T, Ly 4, o, (R})).

The properties (2.18) are equivalent with the following properties of the Fourier and
co-Fourier transform (2.14):

(2.19) (28)' T T b he 0,0, GO, 0 f (w0, € 121G [ 2 ens 2)
c S'm,,df].,s—i—l(RU XRn,flvl-\,LlCn’gn (R2))

Proof. For functions in &y one has the well-known inequalities

Il sy < 2010t a2 [P (im)  acia
* 14 'u
(2.20) Il2, ., = / L () dt

< clelle(un)llL e, T uneun)lli w,)):

for all £ > 0. In detail, the statement in (2.11) means that for all j, «, g,
@21) 8080, (4 (a) T L F(w, 2, € D) iy (€)Ml

and the statement in (2.15) means that for all j, a, 3,
(2.22)

(26") 72 050807 (2" k= (&) TV b 0l F(w, |2lum, € D)z, vy < (€)1,

valid uniformly for [z| < 1, 1 in closed subsectors of I'. To pass from (2.22) to (2.21), w
use the first inequality in (2.20). The basic step is the inequality in the case d = s = j = 0,
o and g =0:
I (o) O f(w € Dl e = ||Z<Z£’>’ L IR e
S 2||Z<Z£ >lil a n 'u,7 f||L2 'u,n R+)|| <Z£ > 1871% (unajln )||L2 Up (R+)
< () (€)™ (2N Ml 10l Flln, + (1228 a0l f ) < (€)™

the general estimates follow the same pattern.
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To pass from (2.21) to (2.22), we use the second inequality in (2.20) with ¢ = (2£’)71!,
to get the basic estimate:

_ _I ! ~
(') |202') '~ O, Fluw, 2lun, € D2, e

_ gy 1 P
(223) = ||K 1<Z£/>l : +2u£167l/,nf(,w= |Z|“’n7 5/7 %)Hsz,u" (R4+)
< NV a0 FI2 e e )L FIR < (g,

and the other estimates follow the same pattern. This shows the equivalence of the set of
conditions (2.11) with the set of conditions (2.15), and the equivalence with (2.16) follows
immediately from (2.9).

For the Fourier transform, we note that the statement in (2.17) means that for all j, «, 3,
(2.24)

() HlIh 1050807, (5" () GG (0,€ 131G D) s, ) £ (€)1

(uniformly for |z| < 1, 1 in closed subsectors of I'). Now the Fourier transform of

eﬂtflﬁgn F(|2|un) is \%\h_l(aln(f,'f(|%|g“n)), having the factor |1|. This explains the shift
from d + 1 to d in the power of z, and with this taken into account, the passage between
(2.15) and (2.17) follows immediately from the Parseval-Plancherel theorem. The same
holds for the passage to (2.18), and we have shown 1°.

For 2°, we use the results of 1° with respect to both variables u,, and v,,. This shows
that S™%2(T, Lo (R2,)) in (2.12) can be replaced by Sy **(T', Ly, .. (R%,)). By
Lemma 2.2, this equals S™%L5+ (T Ly, , (R2.)), so (2.12) is equivalent with (2.18).
Equation (2.19) follows by the Parseval-Plancherel theorem, when we observe that the

Fourier transformations remove a factor 2|2, [

The function e “»1€"#] considered in Example 2.3 belongs to SO0"H R, , Sy ); of. Ex-
ample 3.4 below.

Remark 2.7. We cannot easily fit py-independent symbols into this calculus, since the
coordinate change z,, = |z|u,, fits badly with their properties and does not give the desired
z-boundedness of derived expressions. For example, e @61 = ¢~ unz[¢'] (z € Ry) satisfies:
SUpp |0~ 2l€']] = ¢; 277 (cf. (2.10)), which get more out of control for z — 0, the larger
j is taken. (This does not exclude that compositions with this symbol can lead to operators
in the calculus; see Remark 6.11.)

We denote
) ™% (R xR"~', T, K) = S~4*(R" xR"~' T, K),
(2.25) mex
U s™*® xR* ', T,K) = 8 (R xR" ' T,K),
meR

for K =8, HY, H_,, Sy, or HT®H_, (a similar convention is used for other scales of
symbol spaces).
As in the case of 1pdo symbols treated in [GS95], there are some straightforward rules

for application of 9¢ or 08, multiplication by z* or [¢/, 1]", to these symbol spaces:

w?
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Lemma 2.8. The following mappings are continuous:

(i) 85}6?,: Smds Sm_|0‘|’d787
(226) (11) Zk: S’m,d,S :) Sm,d—k75’

(i) [¢/, 1] §mds 5 grudisr,

fora € N*~1 B € N, k,r € Z. Similar statements hold with S replaced by S or Ss.
We also have the product rule:

Lemma 2.9. Let q(w, &', u) € Sm”dl’s’(R” xR 1. T',C). When f is in one of the spaces
defined in Definition 2.1 or 2.4, the product qf is in the space obtained by replacing m, d, s
by m+m',d+d, s+ 5.

Proof. Follows easily by the Leibniz rule. [
We have in view of [GS95, Lemma 1.13] that for integer m (cf. also (2.5))

3

(227) <£I7N>Tn,7 ‘(glu)"m and [5,,,11/]7" c SO,O,m,(RU XRnil./R_{_,(C)
SmO(RY x R~ R, , C) + SO™(R” xR"~1, R, ,C) if m > 0,
C
SmO(RY xR~ R, ,C) N O™ (R xR"~1, R, ,C) if m < 0,

(The powers of |(¢', )| have this property since the uniformity in the symbol estimates is
required only for p > 1, where |(¢', p)| equals [¢', p] treated in [GS95].) In compositions
of §™% spaces with powers of [¢’, u] one finds the consequential shifts in the indices; in
particular when composing with a positive power one needs to keep track of a sum of two
different spaces. It is in order to avoid this complicated accounting, that we have included
compositions with powers of [¢', u] in the notation by the third upper index s.

From (2.27) and Lemma 2.9 follows that any of the spaces introduced above satisfies:

Smts:d0 4 gm.d+s.0 if ¢ > ()

m,d,s
(2.28) S C { Sm—l—s,d,o N vad"'s’o if s < 0.

Note that for k integer > 0,

(229) Sm,—}—k,d,s C Sm,,d,s—{—k N Sm,—}—k,dfk,s—}—k'/

since f € §™tkds implies k=F f € ™ %5 N §MRd=k.s 1y Temma 2.9 and (2.27).

Note also that multiplication by one of the functions in (2.27) maps S™"%* into
Smudstm - which by (2.27) is contained in S™itm.ds 4 §mudtmis if g > () and in
Sml—}—m,,d,s N Sm,l,d—{—m,s if m < 0.

These statements as well as (2.28), (2.29) likewise hold with S replaced by S or Ss.

The operators @Zn and TZ; act on the symbol-kernel spaces as follows:

Lemma 2.10.
1° Let f € S™%5(I",S,). Then for j,j' €N,

(2:30) w00, ] € S™ITITSy),
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and the mapping T%@iln is continuous for these spaces.
2° Let f € 8™®5(I',S,,). Then fori i’ j,j' €N,

(2.31) w0k Yol f e §mbemHITI D S, ),

. y ! y ! . .
and the mapping z;,0; y},0; is continuous for these spaces.

Proof. By (2.11),

u 81’ [337 Tn ]E(w Lns évi)]mnzlz\u - lal u] 8] N(w:|z|um£l:%)‘z‘j_jl

n Uy, Up un

. . -/ ! . -1 ! !
c i Sm,d+l—l +i—3's—j+i' =1+l _ k=3 gm.d—l+1",s=1+1",

— 9

here we use that 9% (ulg) = Doy Crnud~"" 9k _l”g, where [” cancels out in the end
result. This shows (2.30) the proof of 2° is similar. [J

Symbols may appear as described in terms of asymptotic series. Here, when f €
S™ds (I, S,) and fm,j € SmIds(1,S,) for j € N, f o~ deN fm,j means that for

any J € N, f — Zj<me,fj € Sm=74s(T,8,). There is the usual fact that for a given
sequence of symbols f,,—; € Sm=3435(T'' S, ), j € N, there ezists (by a Borel-type con-
struction) a symbol f € S™%%(T', S;) such that f ~ > jeN fm—;. Similar statements hold
for the classes S™%*(I", S, ).

Remark 2.11. One of the important properties of the parameter-dependent »do symbols
introduced in [GS95] is a kind of Taylor expansion in z for z — 0 (this is an entirely
different type of asymptotic expansion than the one defined above). It does not generalize
to boundary operators in a simple way, because of the scaling in the normal variable in
our estimates. What we can show is the following:

When g € S™40(R” xR~ T", S, ;) with symbol g € S™4O(R” xR*~', T, HT1QH_,),
then the limits

(2.32) g(d’j)(u;,un,vn,él) lim &+ 87( d+24 g(w, 2y, 2oy, £, %))

2—0,z€R 7

exist for all j and belong to S™(R” xR" 1, Ly(R%,)), and g 2g(w, Zn, yn, &', 1) resp.
g(w, &, &, M,y 1) have the following expansions in decreasing powers of 4 € Ry :
u72a(w7 iun7 uv’n7£ /"L Z /"Ld 7 w u’n7v'n 5,)
0<j<N
m~+N,d—N,0 (v n—1 2
SN B ’ (R 7R :F7L2,un,vn (R++))7

9w, &, Gy ons ) — D 1 I gagy(w, € Cn, on)

0<j<N
c Sm—i—N,d—N,O(RU’ Rn_l ’ 1—17 LZ,Cn,gn (RZ)),

(2.33)

for any N; g(aj) = Fu,—ca ?vn—wnf](d,j)- (Similar expansions hold on the other rays in T'.)
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The result is of limited interest because of the scaling involved (and the proof will be left
out). In fact, when g from (2.33) is inserted in the last line of (1.13), we get an expansion:

Gu = Z pd=a OPG(g(a,j (=", &, %fn %nn))u + remainder,
0<j<N

where a certain pu-dependence is present in the coefficients of 44=7 in the sum.
However, as we shall see later, more useful expansions are obtained after one takes the
normal trace; see the end of Section 4, and Section 7.

3. POLYHOMOGENEOUS SYMBOLS

A symbol-kernel f satisfying Definition 2.4 1° is said to be polyhomogeneous when there
is a sequence f] of symbol-kernels in S™~74:5(T", S, ) that are quasi-homogeneous of degree
m—j+d+s such that f—Zj<J fjisin S™=7d5 (D 8, for any J. Here quasi-homogeneity
of degree m’ means that:

(3.1) fj(w, %‘,aé’,au) = (J,m’“fj(w,mn,ﬁl,u), fora>1,|¢| >1, 2, €Ry, peT;

it corresponds to homogeneity of degree m' of the associated Poisson (or trace) symbol

fi = Fu,>e, e+fj (resp. fjec= Fau,oe €t 1)
(3.2) fi(w,a€’ a&,,ap) = (lmlfj(w:é’yfmﬂ)y fora>1,1¢'|>1,¢ eR, pel.

A symbol-kernel f satisfying Definition 2.4 2° is polyhomogeneous when there is a
sequence of symbol-kernels f; € Sm'*-j’d’s(f‘,5++), 7 € N, that are quasi-homogeneous

of degree m — j + d + s such that f — 3., f; is in Sm=714ds( 8, ) for any J. Here
quasi-homogeneity of degree m’ means that:

(33) fj(U)7 %7 y#’ a’éla (],/_,L) =a™ +2.fj(u}: TnsYn, 6/7 ,LL),

—2
fOI‘ a Z 1: ‘EI‘ Z 17 (xnvyn) € R++: 2 € Fa
this corresponds to homogeneity of degree m' of the symbol f; = fmnﬁgn?yn%nnfj:

(34) fj(U)7 3 (]‘6/: (]‘6717 AT, (],/_,L) = am,fj(11)7£/7£n7nn7 ,LL),
fora>1, ¢ > 1, (én,nn) €ER?, peT.

The exclusion of small |¢’| is important here. In fact, when f satisfies (1.18) (resp.
(1.24)) with ¢ = (¢', u), we say that f is strongly quasi-homogeneous, but when merely
(3.1) (resp. (3.3)) holds, we say that f is weakly quasi-homogeneous.

An important special case of functions satisfying Definition 2.4 1° are those obtained by
taking classical quasi-homogeneous (or poly(quasi)homogeneous) Poisson or trace symbol-
kernels ¢(w, x,,() with ( € R", and setting ¢ = ((1,...,(n-1), # = (u. We call such
symbol-kernels strongly polyhomogeneous. Similarly, special cases of Definition 2.4 2° arise
from classical singular Green symbol-kernels in one more cotangent variable. To verify
this, we need a variant of [GS95, Lemma 1.3], for functions taking values in a Banach

space B (e.g., B = L,(R}) or L,(R%, ), p = oo or 2); we can include a growth factor (r)°.
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Lemma 3.1. Let v(w,n’) € C*®(R” xR"~!, B) satisfy, for some § € R,
(3.5) (')l o oo (w,n)lp < (n') ',
uniformly in w, for all « and (3. Then

(3.6) flw, & p) = v(w, & /u) € Sy (R xR, Ry, B),

ie., f satisfies (2.2) withm =0, =R, .
Proof. The proof follows that of [GS95, Lemma 1.3].
First we have, with ' =¢&'/pu = 2¢', z = % <1,
(3.7) () °|0gv(w, z€") g = ()2 |Ogo(w,n)| 5
&A1 |22 1o = (2 g )1 < (1 )V,
where we used that z < 1 and —|a| < 0. This shows the desired estimates (2.2) for j =0,

B = 0. Derivatives in w are included since 92 is of the same type as v.
For 5 > 0 we observe that

(3-8) Olo(w,z8") = Y Cyt"0)0(w, ) y—se.
|v|=j

Here 0,v(w, ') satisfies

(")~ Nog 0507 v(w, n')s < ()1~ < () ~lel,

so the first part of the proof shows that 877,1)(11),7)’)\7,12251 and its w-derivatives satisfy
estimates as in (3.7):

(2€") 008 (0200, 0 (w, ) [y =g ]| 5 < (€)1,
By multiplication by &7 (|y| = j) and insertion in (3.8) we then find that

<Z£,>_6||833ﬁ3j1)(w,zé’)HB < (gyI~lel,

w=z

as required. [
Theorem 3.2. Let m € 7. _

1° Let q(w,z,,() € C®(R" xRy xR™) be in S, with respect to x,, uniformly in
w, and satisfy (1.18) (i.e., it is quasi-homogeneous of degree m). Set f(w,x,, &' pn) =
G(w, zy, (&', 1)). Then

(3.9) flw,zn, &, p) € 8™ (R xR* 1 Ry, Sy).

2° Let g(w, Ty, yYn, () € C®(RY XR?H_XRH) be in 8, with respect to (x,, yn), uniformly
in w, and satisfy (1.24) (i.e., it is quasi-homogeneous of degree m). Set f(w, Ty, Yn, &', p) =
6(11): TnsYn, (5,7 ﬂ)) . Then

(310) f(w; LnsYn, 6,7 ,u/) € S0,0,m, (RV X Rnil ’ R-{- ) S++)'
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3° Similar statements hold more generally when ¢(w, Z,,C) (resp. G(w, Ty, yn,()) is a
classical polyhomogeneous Poisson or trace (resp. singular Green) symbol-kernel of degree
m; the expansion of q in quasi-homogeneous terms then corresponds to the expansion of
f in quasi-homogeneous terms.

It suffices for these statements to have q defined only for (,, > 0 and quasi-homogeneous

it (20.C) (resp. (n. yn. C)) there, for |(] > 1.
Proof. 1°. 1t was shown after (1.18) that ¢ satisfies

(3.11) 23,05, 0504 (w, 2, )l 1y < (ORI,

nYz, Yw
for all indices.

Consider first the case . = —1. We have from (3.11) in this case that f(w,un,n',1) =
G(w, Uy, (n', 1)) satisfies

(3.12) 10y 02 f(w, upn, 1, Dl ®y) < (ny~lo all o, B,
uniformly in w. By the quasi-homogeneity (cf. (1.18)), we have for |¢'| > 1:
(3.13) f(w,zun,fl, 1) = f(w,un,zf’, 1), for z < 1.

Applying Lemma 3.1 with § = 0 and B = Ly (R;) to f(w,un,zf’,l), we find that
f(w,tn, z8',1) € S%O0R,, Loo(Ry)), so by (3.13), (2.11) holds for [ = I' = 0 with
m=d=0,s=—1.

Now let I and I’ be arbitrary. Consider

f(l’ll)(w 2tn, & Y = ub OV f(w, zuy, €, 1) = ub 0 q(w, uy,, (2£',1)).

n=~"Un ’z n=~"Un

Here (¢)!~ f,@f, q(w, up, ) is again C*° and quasi-homogeneous of degree —1, so it follows

as above that (z&/)i=V fb1) ¢ GOO0RY x R*~1 R, Loo(Ry)). Thus f satisfies all the
requirements for belonging to S%%~1(Ry,Sy). i i

When m is arbitrary, we write f = [&/, p]™ T ([¢', u]~™ ' f). Here [¢/, u]~™ ' f is of the
kind we have just treated, so (3.9) follows by Lemma 2.8 and (2.27). This ends the proof
of 1°.

For (3.10), we depart from (1.21) in the case m = —2. This gives (for g > 1 where

(€] = 1¢D):

(3.14) 10505 f (w, s v, V| Lz y < ()71, all a, g,
uniformly in w. By the quasi-homogeneity (1.24), we have for |¢| > 1, since m = —2:
(3.15) f(w,zun,zvn,ﬁl, 1) = f(w,un,?)n,zé’, 1), for z < 1.

By (3.14), we can apply Lemma 3.1 with 6 = 0 and B = L (R%,), finding that
flw,un, vy, 26, 1) € SYO0(R,, Lo (R%,)). Thus, in view of (3.15),

f(w,zu,n,z1)n,£', by e SOOYR,, Lo (R7L)),
0(2.12) holds for I =l'=k =k =0withm=d =0, s = —2.
Other values of [, 1, k, k' are included as in the proof of 1°. Then the result is established
for m = —2, and it extends to general m as in 1°.
3° follows by combining this with remainder estimates as in the proof of [GS95, Th.
1.16] (on the remainder after N terms, each of the relevant norms is O((¢’, u)~N+¢) for
some C). O

By Fourier transformation, we get from Proposition 2.6:
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Corollary 3.3. Let m € Z.

1° Let q(w, (,&,) € C®°(R” XRZ_ XR) be in Ht with respect to &,, uniformly in w, and
satisfy (1.19) (i.e., it is homogeneous of degree m in ((, &,,) for |(| > 1). Set f(w, &', &, 1) =
q(w, (&', 1),&). Then

(3.16) flw, € &n,p) € STOM (R xR Ry, HT).

There is a similar statement with H™ replaced by H™ ;.

2° Let q(w,(,&n,mn) € C®(RY xﬁi xR?) be in HT*®@H_, with respect to (&n,1n),
uniformly in w, and satisfy (1.25) (i.e., it is homogeneous of degree m in ((, &, n,) for
€1 > 1), Set f(w, €', &nr s 1) = (10, (€ 8), ns 7).

Then f(w, &', &, N, 1) € SO0 (RY xR R, , HTRH_,).

3° Similar statements hold more generally when q(w,(,&,) (resp. q(w,(,&n,nn)) is a
classical polyhomogeneous Poisson or trace (resp. singular Green) symbol of degree m; the
expansion of ¢ in homogeneous terms then corresponds to the expansion of f in homoge-
neous terms.

It suffices for these statements to have q defined only for (,, > 0 and homogeneous in

(C,&n) (resp. (C.&n.mm)) there, for || > 1.

The theorem and its corollary could also be proved by use of any of the other auxiliary
systems of spaces Sy»**(T', B) in (2.15) (2.19).

Example 3.4. The above theorem applies to e @], showing that

3

(3.17) e mnléml ¢ SO0-LR, S) c STIOUR,,S,)NSY MRy, Sy)

since it is strongly quasi-homogeneous of degree —1 (recall Example 1.1 and (2.27)). Note
that also e~ /€Ml ¢ §90.-1(R, S.). Similarly, the corollary applies to ([¢] £ i&,)~",
showing that ([¢/, ] £ i&,) " are in SO0~ 1(Ry,H%,), respectively. On the other hand,

e~ €'l and ([¢] +i€,)~" do not fit into this framework.

Example 3.5. Let a’(2',¢) be an N x N matrix that is the principal symbol (at z,, = 0)
of a uniformly elliptic differential operator of order m > 1, such that det(a®(z’,&) — ) # 0
for A € R_, |(&,A)] #0. Let p°(2, &, p) = (a®(2', &) + p™I)~ Y, and let p°(z', 2y, &', 1) =
fgg%po(:ﬁ’,f,u). Then there is a sector I' around Ry such that a®(z’,&) + p™I is

invertible for p € T', and

(318) T‘+ﬁ0 ('TI: Tn, 617 ,LL) and T‘+ﬁ0 ('TI: —Tn, 617 ,LL)
e SOOTMR IR T, S,) @ L(CY x V).

To see this, consider a ray {g = re?® | r > 0} in ' and let ¢ = (¢', () = (€/,7). The
hypotheses imply that the symbol p®(2’,(,&,) = a®(a’, €', &,) + (™I has the properties of
a standard elliptic symbol of order m with (n + 1)-dimensional cotangent variable (¢, &,,)
(for ¢, > 0); it is polynomial in (¢, &,), and its inverse p°(2’,(,&,) is a rational matrix-
function of (¢, &,). For p°(2/, z,,,() = fgngmnpo(x', ¢,&n) it is a basic and elementary fact
in the calculus of [BM71] that r*p°(2/, z,,, ¢) and rTp°(2’, —x,,, () are quasi-homogeneous
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Poisson symbol-kernels of degree —m. Then we get (3.18) by application of Theorem 3.2
1°. The analyticity in p follows from the analyticity of p°.

For the full parametrix symbol p(z’,&, u) of a(x’,§) + u™I, where a is a differential
operator symbol with principal part a® as above, one finds from Theorem 3.2 3° that
rtp(a’,x,, & p) and rTp(a’, —x,, &, 1) belong to the spaces in (3.18); they are strongly
polyhomogeneous. In fact, the quasi-homogeneity of each term extends smoothly to all
¢ eR L peT u{0} with |¢,ul > 1.

Similar statements hold for 8kp(r Tn, &' 1), with —m replaced by —m — k.

Parametrices of elliptic symbols p that also depend on z,, are included by consideration
of their Taylor expansions in z,, at x,, = 0.

4. COMPOSITION OF BOUNDARY OPERATORS OF CLASS 0

We now begin to study compositions. For the boundary operators with symbol-kernels
as in Section 2 together with 1)do’s on the boundary, this can be carried out quite simply
by integration in the x,-variable (the “real formulation”) and standard tdo-rules for the
x'-variables; we show this in the following. For compositions involving an interior ¢do we
have to use the somewhat heavier “complex formulation” in terms of H* spaces (in the
Fourier transformed variable &,,) and their projections; this is the subject of Section 5.

Proposition 4.1. Let

.E](w: Tns Yns flv ,u/) € Sm,,d,s(Ru xR*! 1 S++)7
(4.1) t(w, zy,, &', 1) and /;:(w,mn,él, p) € 8™ (R xR T, S,),
g(w, &', p) € S™H (R xR, T, 0),

and let §', ¥, k' and ¢' be given similarly with m, d, s, v and w replaced by m/, d', s', V'
and w'. Define

(4.2) m'"=m+m', d'=d+d, ss"=s+5, Vi =v+.
Then

(4.3)

1° gonq =q(w. &, wq (w. & p)es™ " (R xR T,0),

2° gont = q(w, & wit' (W, & p) € ™R KRSy,

3° ko, q = k(w,zn, &, g (W', ¢ p) eS8 4" (R”” xR T,8,),

4° ko, t = k(w T, & )t (W' Y, & ,u)ESm hd” (]R””XR"_I,F,S++),

5° fo, k' = I tw, 2, €, Wk (W', 2, €, @) dz,, € ™4 S H R xR T, C),

6° tong = [ tw,mn, & 0)g (W, Tn, yn, &, 1) day, € Sl s IR R T S,
T Gonk = [7 g(w, v, Y, & WK (W Y, & p) dyy, € ST SR XRYLT, S, ),
8° Gong = [ 9w, xn, 20, &, 1) G (W', 20y Yn, €y 1) dzn,

1"

e &AL TR SR T Sy ).
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Proof. The composition rules in this list are seen from the defining formulas (1.6), (1.9)
together with the fact that o,-composition with ¢ or ¢’ is just multiplication.

The results in 1° 3° then follow from Lemma 2.9 (in fact 1° was shown already in
1%(2|un)| 2 | (|2|vn)]| . and that the indices s + 1 and s’ + 1 in (2.11) add up to s” + 2
in (2.12).

Now consider 5°. We have from Proposition 2.6 that ¢ € S?’dH’S(F,LQ,un) and k €
0.

[GS95]). 4° is a straightforward generalization, using that ||k(|z|u,) (|z|v,)]L. <

S™** YT, Ly,,.). This gives on each ray p = re
2

|0t s’ I t(n) k' (2) dzp| = | I 258 (2 g ) 2% 5 YR (2], ) diy |

<, 2 g, £ ()

since (z¢')~7 and (2¢')2 cancel out. A similar pattern is found for all the derivatives in
w, w', £ and z, when we note that

(4.4) 9], 080, (4T KT [ () k(2 dap)

(w,w')
=97 85187 (fy° 2k S| z|un) 2% 65 k(| 2]y, ) duy, )

(w,w")

and apply the Leibniz formula inside the integral; this shows 5°.

For the remaining statements in (4.3), the proofs are very similar. We may in fact
assume d = d’ = s = s’ = 0, since the general case is reduced to this by replacing the
symbol-kernel by its product with z?[¢’, u] =%, etc. For 6°, we note that #; = to,, §’ satisfies:

(4.5) |zu i (yn)| = 267" [)" E@n)F (20 yn) dan)
= | [ 2t (| 2lun) 261G (|2 1, Yn) duin| < [|22(12[1n) ||, 1126715 (2 000 )| £,
and hence
(4.6) (2672|267 1 (|2|vn) |1,
< (28" ||2i(| 2 un) | Lo, 12625 (2 s 2]00) |2, (€™ (ED™

since t € ST’l’O(F,Lzﬂ,,n), g e S™LYT, Ly, v, ). This shows the basic estimate for 6°;

2
derivatives are treated by use of the Leibniz formula. 7° and 8° are shown similarly; it is
used that the application of z;, 6l or yn8’ only hits one of the factors. [

Remark 4.2. The symbols resp. symbol-kernels of the operators resulting from composi-
tion in all variables follow the usual ¥»do composition rules with respect to the tangential
variables: If w and w’ are replaced by z’ resp. ¥’ € R*~! in Proposition 4.1, the resulting
symbols are described by the same formulas as there, now depending on (z’,y’). This is
reduced to symbols depending on z’ by the usual reduction for 4)do’s, as given in [GS95,
Th. 1.18]. If the given symbols f and f' depend on 7', one changes the right hand factor
to y'-form, performs o,, and reduces to x'-form afterwards, this results in expansions

(4.7) fofim N C%0gfo, 00

aeanl

Here is another useful rule:
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Lemma 4.3. Let k(w,z,, &, p) € S™%*(I',S,) and define

(4'8) .Ej(wvxn: yn,7£,: u) - Z:(wixﬂ, + y’ﬂ}f,i u)'

Then g is a singular Green symbol-kernel in S™%*~1(T", S, ).

Proof. Consider a ra, = re'?: we can assume that 8 = 0; moreover we can reduce to the
) )

case d = s =0, s0 k € S™"% Now by the change of variables w,, = u,, + vy, 2n = Un, — Up,

/ / 2(tp + vp))|? duydv, = / / k(zw,,) %dwndzn

:/0 wn|k(zwn)| dw, < ||k(zwn)||L2,wn |wn (zwn)HLZ,wn
2 H2E) () (2E) T2 ) T (€)™ = 2 R(E) P,

by (2.15). With similar estimates of uf,afl vl 9’ k(un + v,), we find that g €
S™LO(T, Ly(R2, ). In view of (2.18), this shows the basic step in the proof that § €
S™0% 1T, 8, ), and in a similar way the desired estimates are found for all the deriva-

tives in w, & and z. [

(4.9)

Example 4.4. Consider P = OP(p), where p is the parametrix symbol of a(z’, &) + u™
in Example 3.5. The singular Green operator G (P) = r* Pe™.J, where .J is the reflection
J:u(z', x,) — u(z’, —x, ), has the symbol-kernel

(4.10) 9 )@ sy, € ) = P2 20 + yn, € ),

cf. [G84] or [G96]. Tt can be regarded in several ways. For one thing, rtp(z’, z,, &, p) is
a strongly polyhomogeneous Poisson symbol-kernel of degree —m and therefore belongs
to SY0=™(T", S, ) by Theorem 3.2 1°, as noted in Example 3.5. Then Lemma 4.3 shows
that g*(p) € S®% ™ YT',8, ). On the other hand, g*(p) is a strongly polyhomogeneous
singular Green symbol-kernel and is of degree —m — 1, so Theorem 3.2 2° gives that
gt (p) € 8O m=UT S, ), which is consistent with the first information.

To illustrate this with a simple case, let a(z, &) = |£]?, then for p > 1,

1 1 1 1
(4.11) p(x, & 1) = [GEENTEE %(m+¢§n+mi£n)'

Thus

(4.12) P (e, & p) = (26) e G (p) (T, yn, €y ) = (26) et

which is in 8% 73(I", S, ;) by Theorem 3.2 2°. Since e~ %% ¢ §%%~1 (Example 3.4), the
composition rule (4.3) 4° likewise gives g7 (p) € SY% 73 which is also what Lemma 4.3
gives.

The usefulness of the boundary operator calculus is closely connected with the following
rule, showing that the normal trace

oo
(4.13) trng—/ G(w, Ty, 0, & 1) dy,
Jo

of a singular Green symbol-kernel is a @¥do symbol with the right type of parameter-
dependence.
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Theorem 4.5. Let g be a singular Green symbol-kernel
(4.14) G(w, T, yn, &', p) € S™HTHR R T, 84y ).

Then the normal trace of g is a 1do symbol satisfying

(4.15) tr, g(w, &' p) = / G(w, Ty, T, €, ) d, € S™HH(RY xR, T, C).
Jo

Proof. Reduce to the case d = s = 0, z € Ry, so that (2.18) holds with S™19(T', Ly(R2 ).
We use the method of the proof of [G96, Th. 3.3.9]. With & to be chosen further below,
we estimate

o 2
e (w. €)= ([ Szl .0 doy)
0

oo
<ce_1/ €2 + 22)|§(xp, ) |2dx
(4.16) > . ( ) G(Tn, )] n

oo o0
<c / / (€0y, |90, yn)I” + €70y, |Yng(@n, yn) [?) dzndyy,
J0 J0

< 2c(elgll 10y,91l + e Hlyndll 18y, ynd ),

with norms in Ly, . (R3,). (A trace estimate as in [G96, (A.54)] was used to extend
the integration to y,,.) This gives with norms in Lg ,,, ,, (R?H):

1§12 < 22| g (2un, z0n)|| 1271 80, G(20n, 20,) |
+ 7122|200, G (2, 200) || 1|0, U G (22, 203 ||

< et g™ 2 (o) THE )™ + e RN HE Y™ = (),

where we set ¢ = z(z¢'). This is the basic estimate for tr, g € S™%9(T, C). Derivatives
are treated similarly. [J

When G is the singular Green operator with symbol-kernel g(z’, z,,, yn, &', 1), the pseu-
dodifferential operator with symbol (tr,, §)(z’, &', u) will be denoted tr,, G. When m < 1-n,
it has a continuous kernel

K:trn G(x’-/ y/'/ /14) — / ei(m’,y’)-fl (tI‘n a) (.I/, 5/7 ,U,) dE/
(4.17) .

= / G i, € ) ddE

3

When tr,, § € S™%%(T,C) and is holomorphic in x4, the symbol multiplied by z¢ has a
Taylor expansion in z at z = 0, by [GS95, Th. 1.12], i.e. an expansion for y — co:
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Corollary 4.6. Let §(2', zp, yn, &', p) € S™E5~ 1R xR, T, 8, ), holomorphic in
p, and define tr,, g € S™%3(R*"~1 xR*~1, T, C) according to Theorem 4.5.
If s = 0, there is an expansion for g — oo on rays in [':

(4.18) (trp §) (2, — > (e, ) e STENENERSIXRY LT, ©),
0<k<N

for any N; here

(4.19) hi(a', &) = L0 (2% (b1 §) (&, €, 1)) ] om0 € S™TR(RI-T xR,

For s # 0, similar expansions are found after application of (2.28).

We note in particular that there is a full expansion of the kernel of tr,, G for operators
with m = —oo (as in [GS95, Prop. 1.21]):

Corollary 4.7. Let §(z', oy, yn, &', p) € S5~ 1R~ xR*~! T, S, ,), holomorphic in
t, so that tr, g € S48 0(R-1 x RP~1 ", C) by Theorem 4.5 and (2.28). Then the
kernel Ky, ¢(x',y', u) has an asymptotic expansion

(4.20) K, (@', y', 1) z:,ud+g "Kn, (', y"),
k>0

where Ky, € C®(R*?), and K, 6= y L4757 F Ky, Is in C°(R*"~? xT), holomorphic

inp €T for |u| > c and O(u?*t5=N) in closed subsectors of T', for all N.
In particular, if § vanishes for x' outside a compact set, then G is trace class, and the
trace has an expansion for y — oo in closed subsectors of I':

(4.21) TrG ~ chu’HS*k.
k>0

Proof. (4.20) is a straightforward consequence of Corollary 4.6, and (4.21) then follows
since the trace equals -fR"71 Kir, gz’ 2", p)da’. O

We continue the study of asymptotic trace expansions for singular Green operators in
Section 7 below (which can be read directly after this).

In the next sections we extend the calculus to include operators of class > 0 as well as
interior ydo’s.

5. BOUNDARY SYMBOLS OF ALL CLASSES

For the treatment of compositions with ¢)do’s on the interior we need to use the symbol
calculus, working with the z,, — &, Fourier transformed versions of the symbol-kernels.
This is preferable because the 1do’s act multiplicatively and are estimated by sup-norms
in the &,-formulation, whereas they act like convolutions in the z,-formulation with more
complicated estimates. Moreover, we need to include symbols of positive class (and we
include a notation for negative class too).
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A complete parameter-dependent calculus was worked out in the book [G96], with full
explanations of the complex machinery (the use of (1.12)). We here need a somewhat
specialized version. To save space, we shall present it while referring as much as possible
to the explanations in the book. Some results here are based directly on results in the
book, so a reader who wants to see full arguments would have to look up some details there
anyway; therefore we shall not strive to make this particular part of the paper selfcontained.
We refer to [G96, Sect. 2.2] for a detailed explanation of the spaces H, Hq, HT, H™, H,
and the associated projections hq, h™,h™, h;, etc. in H.

The definitions of the symbol spaces for trace operators are extended to include symbols
of general class by defining (somewhat similarly to [G96, Def. 2.3.2]):

Definition 5.1. Let m € R, d, s and r € Z. Let K stand for either of the spaces
Hy—1,H, | or HT.

The space S™%5(R” x R*~! T, K) (often abbreviated to S™%*(T",K)) consists of the
functions f(w, &', &, p) € C°(RY xR™ xTI'), lying in K with respect to &,, such that when
f is written in the form

(5.1) fw & )= D si(w, &, wel + f'(w. & & )

0<j<r—1
with f' = h_1¢, f, then
(5.2) sij(w, & ) € Smds—i(RY x R* 1, T, C),

and f' satisfies, with z = %7
(53) <Z§’>lfl’h718éncg f’(w’ é'/’ |%|Cn, %) c S?’d’s(Ry XRn_1’F7 Lzycn (R)),

for alll,l" € N.
If f moreover has an asymptotic expansion

(5.4) £ Fs

leN

where [ —> 2 fm1 € Sm-M.ds(RVxRr-1 T K) for any M € N, and the symbols f,,
are homogeneous of degree m + d — 1 in (£, u) on the set where [¢'| > 1:

(5.5) Fm—t(w, 6, tp) =t o (w, & ) for €] > 1, £ > 1,

we say that f is (weakly) polyhomogeneous in ™% (T, K).
The spaces S™%5(R¥ xR*~!,T',H._ ) are the spaces of (parameter-dependent) trace
symbols of degree m + d + s and class r.

In view of Proposition 2.6 1°, this generalizes Definitions 2.4 3° and 2.5 1°, which
correspond to the cases H_; and HT. In the decomposition (5.1), the sum over j is empty
when r < 0; this holds when KX € H_1 (e.g., K = H ™, or HT). Note that f’ is in the space
with r replaced by min{r, 0}; it is called “the part of f of class 0” or “the H _i-part.” The
sum over 0 < 7 < r is called “the polynomial part.” A formulation in terms of L., norms
is given in Lemma 5.5. The Lo-formulation is used in Lemma 5.4.

There is also an extended definition of singular Green symbols, parallel to [G96, Def.
2.3.7]:
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Definition 5.2. Letm € R, d, s andr € Z. Let K stand for either of the spaces HY* QM. |
or H71®Hr,1.

The space S™%5(RY x R* 1, T,K) (often abbreviated to S™%*(T",K)) consists of the
functions f(w, &, &ny M, ) € C°(RY xR* T xT), Iying in K with respect to (&, 1), stuch
that when f is written in the form

(5.6) F, & Cnmmo ) = Y kj(w, & &, i, + ' (w, €' €y i, 1)

0<j<r—1

with f' = h_1,, f, then k; € S™%* (R xR" 1, T",H*) for each j, and f' satisfies the
conditions, with z = 1/p,

(5.7) (=€) by g hor g, 08, L0, O S (0. € 12 (Cn, | Eln, )
c S'm,,df].,s—i—l(RU XRn,flvl-\’LlCn’gn (R2)),

for all 1,1, k, k" € N.
If f moreover has an asymptotic expansion

(58) [~ meflv

leN

where [ —3 2, v fm1 € Sm-Mds(RV xR~ T, K) for any M € N, and the symbols f,, ;
are homogeneous of degree m +d+ s — 1 in (§',&,, Ny, ) when ['| > 1:

(59) fm—l(“)7t£/7t€n7tnn7t:u) - tm+d+8_lfm—l(“)7£/7£n777n7:u) for t and |£’| 2 17

then f is said to be (weakly) polyhomogeneous, of degree m + d + s.
The spaces S™%5(R¥ x R* 1 ', HT®@H, _,) are the spaces of (parameter-dependent)
singular Green symbols of degree m + d + s and class r.

For K = HT®H_, this is the space defined in Definitions 2.4 4° and 2.5 2°, cf. Propo-
sition 2.6 2°.

Remark 5.3. In applications of the decompositions in a polynomial part and an H _q-part
it is convenient to observe the following rule, once and for all:

(5.10) h_1[0L €Lh 1 (O €F F(&n))] = hoy[0} €L0F €F F(en)], for f e H, 1,U kK € N.

The most intuitively understandable proof of this is perhaps to use that the inverse Fourier
transform of the space H is the distribution space

(5.11) S(R) = etS(R,) + e~ SR_) + C[d'],

where C[0’] is the space of “ polynomials” > ¢ 6, §*) = Dk § (cf. [G96, Prop. 2.2.2]).

On this space, h_; corresponds to the projection of S(R) onto etS(R,) + e~ S(R_) that
removes the component in C[0’']. This projection can also be identified with epsr s, which
restricts the distribution to M = Ry UR_ and extends the result back to R as a function; it
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!

gives a function in et S(Ry)+e~S(R_). Recall that 82115,5 on H corresponds to it~ zt O}

on S. Now clearly
(5.12) eMrMmiﬂi'neMrMmflaf;f = eMrMmﬁlﬁi’nxfﬂ;f;f for f € S,

and this implies (5.10) by Fourier transformation F, _¢ . Similar rules hold with h_,
replaced by ht or h_,, since they correspond to application of eTr™ resp. e r~ in the
inverse Fourier transformed situation.

We also observe that when the functions depend on further parameters z’,¢&’, u, say,
then

(513) h’—l,‘fn aleaflyﬂf(m/’ 5’: My gn) - azl’ﬁl’“h—l,gnf(m/: 5’: K, é‘n):

since this holds in the inverse Fourier transformed situation:
(514) eMT‘Ma:r,Y’,ﬁlyuf(-’I/'/, 5/7 I, -Tn) = a:ﬂy';flalieMT‘Mf(m/, 5/7 I, .Tn);

there are similar rules for h* and hA~;. Multiplication by functions of 2’, ¢’ and pu likewise
commute with the projections.

In preparation for the general composition rules, we establish some mapping properties
for the boundary symbols.

Lemma 5.4. Let m € R, d, s and r € Z.

1° The mappings h_1, h™, h™, and h™ are continuous from S™%3(R* xR*~' ", H, )
to the space S™%*(R¥ x R*~1 T, K) with, respectively, K = Humingr,01—1, LT, HZ; and
Hmax{r,o}—l'
2° In the expansion (cf. [G96, Sect. 2.2])

(515) f ~ Z Sj(’ll),f,,ﬂ) 1?17

—oco<j<r

the mapping f — s;j(w, &', n) is continuous:

(5.16) S™ S (R xR T, H, 1) — S™* IRV xR 1, T, C)

fory € Z, ) <r.

3° The mapping f + 3én§£;f is continuous from S™%5(RY x R*~1 T, H, 1) to
s (RY xR T My ypq) for 1,1 € N,
Proof. 1°. The statement for h_; follows from Definition 5.1 (when r < 0, h_; acts like

the identity). The statements for h™ and h~; are immediate consequences, since h* and
h_, are (complementing) Lao-orthogonal projections in H_q, with

(5.17) IR A =T hea fll < M- fll (B2 fl =[R2 hoa I < [lh-i £l

The statement for A~ follows since it preserves the polynomial part (the sum over 0 < j <
r) and acts on H_q like h™;.
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2°. For 7 > 0, the statement follows from the definition. For j = —1 — k, k € N, we use
the estimate [G96, (2.2.48)]:

(5.18) s—1-kl® < [Ih—1(€n o, Ih-1 (€57 PlLa e,
= [2l1h-1 (G2 " F (2G| L., Th=a (G 2 H L (12160 L, -

We can let d = s = 0. Then (5.18) gives e.g. for f € ™00 since ¢¥f(|1|¢,) € ST F*.

(5.19) s sk (w, &, p))?
el (€ PG e, o1 (525 51 (111G
S 1 1 m
< 2| TR H(EE) (€)™ T (€)™ = (€)*m
With similar estimates for derivatives, we find that s_;_; € S™%~k=1(R¥ xR"~! T, C),
as was to be shown.
3°. Clearly, 6én ¢L fisin H, y4p 1 with respect to &,. For h,laén ¢ f= h,laénffl h_1f
(cf. (5.10)), the proof of symbol estimates goes as in Lemma 2.10. It remains to consider

the polynomial part ph! of 8£n£,l;f It consists of those terms in 821152 dicr ;€5 (cf. (5.6))
for which 7 — 141" > 0, so it equals

LU / _ } : / j—14+1" 2 : / / i’
p (,waé :£n7 ,LL) - Sj (,waé :N)Cj,l,l’f% - Sj’(,waé ,N)f% 3
I—I'<j<r 0<j' <r—I+1'
: _ (i o
with ¢ = ('7"), s = sjvci g
-1 ! . .
Here we observe, for f € 8™%* that sj 4y € Smdis = H=U)(D C) by 2°, and this is

the space required for terms in the polynomial part. This shows 3°.
The continuity assertions are verified by inspection. [

We use Lemma 5.4 2° in the following proof that the spaces defined in Definition 5.1
can also be described in terms of L., norms:

Lemma 5.5. The space S™%*(R” x R*"~1, T, K) defined in Definition (5.1) may equiva-
lently be defined by a formulation where the conditions (5.3) are replaced by the conditions
(5.20) (2€)' TV hoa0b L F(w, € 12¢n, ) € ™5 (RY xR, T, Loo(R))

(valid for all 1,1 € N), and everything else is unchanged.

Proof. For the terms s; in (5.1) there is nothing to prove, so we can assume that K = H; |,

Hyq or H, 4 with v < 0. Then f = h_1f, O, f = h_10¢, f. We reduce to the case

d = 5 = 0 by replacing f by 2%+~ f. When f satisfies (5.3), then f € ST"*(I", Ly ¢,) and
2

O, f € ST (T, La,) imply

1ha[f (=" € 121G DL = If (=" € 121G, DT
: L0, 10¢, f (2" €12 1Gns D) Lo,
2)THEN™ = (&),

[VACER VAN
S —
Mmoo
~— =
ST
~ .
~ ol
\/‘ >
V=
/\ T —
PN
wl=
T~ —
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showing the basic estimate for the assertion. A similar pattern is found for the derived
functions. For the opposite direction, we note that (,h 1f = |z|&.h 1 f = |z|s_1 +
h_1((nf), where s_; is the term in the expansion (5.15) of f. Then (recall (2.20))

Ih—r f U216 Lo, = 12160 e, < ElFUZICR) L + 27 HICn F(1216n) e
< €)™ + e (lellsal + 1h-1[Guf (1216)]l]2.)

1

< e€Y™ + e (|2]m + (2E)EN™ = (28) ()™,

1 e . . . .
where we set ¢ = (2£')2. This is the basic step, and the derived functions are estimated
in a similar way. [J

For singular Green symbols, there is a result similar to Lemma 5.4:

Lemma 5.6. Let m € R, d, s and r € 7Z.

1° The mappings h_q,,, hgn, h~y,, ~and h,  are continuous from
SmdS(RY xR T,H 1®@H, 1) to the space S™%3(R¥ x R*~1 T, K) with, respectively,
K =M _1@Hminfroy-1, HT@H, 1, H_1®HZ, and H_1®%r;ax{1’,0}fl'

2° In the expansion

(5.21) feo Y k(€ G mél,

—oco<j<r

the mapping f + kj(w,& &y, p) is continuous from S™4*(RY xRV I',H _1®H, 1) to
S5 (RY xR T, H_y) for j €7, j <.

3° The mapping [ h,lign(aén ﬁ@gnn,’j’f) is continuous from S™%5(I',H 1QH, 1)
to Shs KA (D Y QM 1), for I, I, k, k' € N.
Proof. Let us just account for 2°; the other proofs are very much like those of Lemma 5.4.
The statement follows from the definition when 7 > 0. When j < 0, we estimate as follows

for j = —1 — 1,1 € N, by (5.18) applied with respect to the second variable 5, = |1|,,
setting f' = h_1,, f and taking d = s = 0:

/k_l_l(u;,a’,%cn,u)lwcn
JR

(5.22) Sl [ I, ) Wt (22 P, G
122, (6 S o 1,0 (0 P o,

< L2 7 P2 ) (€)™ 2 (2€ ) THEN™ = M),

in view of (2.19). With similar estimates for derivatives, this shows that k; €
S™O=I(T',H 1) as asserted. [J

We can then also replace Ly norms by L., norms on R?:
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Lemma 5.7. The space S™%5(R¥ x R"~! T', K) defined in Definition (5.2) may equiva-
lently be defined by a formulation where the conditions (5.7) are replaced by the conditions

(5.23) (2&Y TR R e ho1 0,08 CLOE ok f(w, & 121G, 2|00, 1)
€ S™HH(RY xR 1, T, Lo (R?))

(valid for all I’ k, k" € N), and everything else is unchanged.
Proof. The proof is very similar to that of Lemma 5.5. [

Remark 5.8. Also in the parameter-dependent case, the symbols valued in H*, H™,
resp. HT®H_, extend smoothly to &, € C_, &, € C4 resp. (&,,7m,) € C_ xC, with
uniformity of estimates (on the lines parallel to R) and holomorphy on the interior.

6. COMPOSITIONS WITH INTERIOR PSEUDODIFFERENTIAL OPERATORS

As 1pdo symbols p(z, &, ) on R™ we shall here primarily take the strongly polyhomoge-
neous ones, where pu follows the rules for cotangent variables, on a par with the cotangent
variables £. For these symbols we take as transmission condition simply the uniform version
of the usual two-sided transmission condition for polyhomogeneous symbols in one more
variable. The resulting condition can then be formulated also for more general ¢)do sym-
bols in such a way that it is preserved under multiplication, and we include such symbols
in the calculus.

First consider strongly polyhomogeneous tdo’s:

Definition 6.1. Let p(z,&,u) € SO0™(R" x R*,T",C) be strongly polyhomogeneous of
degree m € 7Z on R"™. We say that p satisfies the uniform transmission condition at
r, = 0, when p and its derivatives at x,, = 0 are in ‘H as functions of &,, such that, with
the notation ( = (&, ), ' = (¢, ), the decompositions

(6.1) e 0.0)= D su(@ ()T + hoalghp(a',0,0)]

—I'<k<m

hold with polynomials sj of degree m — k in (' (the coefficients bounded with bounded
derivatives in '), and for all indices,

(6.2) h_1[0E €L 0PAgp(a’,0,¢)] < (¢ymH ey,

uniformly for p in closed subsectors of T', |u| > 1.

The space of symbols satifying these conditions is denoted Sgr’)?l’;lt(R" xR™", T, C).

That (6.1) (6.2) together form an appropriate uniform version of the (two-sided) trans-
mission condition for symbols with n+1 cotangent variables is accounted for in [GH90], see
also [G96, Sect. 1.2]. The symbols are called holomorphic in p when they are holomorphic

inpel for [(& p)| > e, some e > 0.



GERD GRUDBDBb

Lemma 6.2.
1° In Definition 6.1, (6.2) may equivalently be replaced by either

(6:3)  [|h-1[0f, €,050¢p (", 0, Ol ¢, 2y < (¢)™ 1 (for all indices),
or
(6.4) Ih_1[0%, €4 0508 p(a",0,O)l|L, o, ) < ()™M 10F 2 (for all indices).

2° It follows that when p(z,&, 1) € Sgr’)?l’;lt(R" xR™,T',C), then h_ip belongs to the
symbol space

(6.5) h_ip(x’,0,&, ) € SPO™(R xRN T, H_,).

Moreover, the projections h™p and h_,p belong to this space with H_1 replaced by H™
resp. H~,. Similar statements hold with p replaced by a’;n 8&1) and m replaced by m — j.

Proof. 1° is proved by a variant of the proof of Lemma 5.5: Clearly, (6.2) implies (6.3).
Conversely, if (6.1) and (6.3) hold, note that

(6.6) Enh [€5p] = h a[&nh 1 (EEp)] +s v 1 =h 1[E Pl +s 04,

cf. (5.10), where the polynomial s_y_q is 0 if m+1'4+1 < 0 and is O((¢’)™+¥'+1) otherwise.

Then by (6.3),
(C) + [&nDhal&npll < ()™,

showing (6.2) for [, o, # = 0. Derivatives in &,, z/, (' are easily included (for the latter, cf.

(5.13)).

(6.2) implies (6.4) simply by integration. For the converse direction we use that

! ; ! ! ; mAl'+1 o mel — 1 m+1'
sup [h—1[&,p]1* < [|h-1 (&)L, 10, Ao [€hp]l L, < ()™ F2(C)™H 77 = ()™ F)?
by (6.4). This show the estimates in (6.3), which together with (6.1) suffice to assure (6.2),
as we have already seen. This shows 1°.
2°. u is considered on rays in I'; we can assume that the ray is Ry. Denote h_1p
by p’ for brevity. Observe that p’ = fg_nl_mnp’ by restriction to R4 defines the functions
P, = r¥p’ that are (quasi-)polyhomogeneous of degree m in (z,, (') with

(a2, ) € SR xR, 8,), p (2, —xn, () € S"(R* ' xR",Sy)
(recall (1.20)). Then Theorem 3.2 applies to show that
(6.7) P 2, & p) and (2, —xp, &, p) € SPOM(RY xR Ry, Sy).

Since H | = HT+H_,, a Fourier transformation carries this over into the information
that p/ = Fy, e, (eTpl, +e7p_) € SEO™(R x R Ry, H_q).

We can similarly apply Theorem 3.2 to Qﬁn 8&]), which satisfies Definition 6.1 with m
replaced by m — 5. [

For 2° above, one could also have appealed directly to a variant of Theorem 3.2 per-
taining to Lo, norms in the Fourier transformed setting.

We get a slightly more general set-up by imitating the above results on h_q-projections
in a definition of the transmission condition for not necessarily strongly polyhomogeneous
symbols:
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Definition 6.3. Let d and m € Z.

A 1pdo symbol q(z, &, p) € SO4™(R® x R, T',C) will be said to satisfy the uniform
transmission condition at z,, = 0 when p = u~%q and its derivatives at z,, = 0 are in
‘H with respect to &,,, such that the decompositions

(68) giz’p(fl"/70,£’,£n,u) = Z Sk(-T,:f’:M)ésHI + h—l[gqqup(m’70:£’:£n:u)]

—1'<k<m

hold with polynomials sy, of degree m —k in (¢, ) (the coefficients bounded with bounded
derivatives in x'), and there are similar decompositions of all derivatives

(6.9) 9L €halogp(a’,0,0)

= Y skapa@ & mET + ha (0], L0008 (0,8 6 )]
—I'<k<m—I—|a|

with polynomials sy o 5, of degree m — k — |o| — 1 in (§', u); moreover the h_q-projections
are assumed to satisfy

(6.10) ho10f €L080gp(a’,0,€, p) € SOOmlel=H (RR=1 S R T H ).

Then (by Lemma 5.4) the h* and h”, projection of 8én 57’1’ op ¢/p belong to these spaces
with H_1 replaced by H* resp. H .

The space of such symbols q will be denoted Sgéd’m(R" xR™, T',C). We say that q is
“special p-dependent”, if 8Zp has all these properties with m replaced by m — j, for any
j €N

For a useful calculus, we must show that the product of two symbols satisfying the
uniform transmission condition likewise satisfies the condition.

Theorem 6.4. When p(x,&, 1) € Sg;d’m(R" xR".T',C) and p'(x,&, 1) € Sﬂgdl’m’(R" X
R™, T, C), then the product pp’' as well as the composition p o p’ satisfy

(6.11) pp andpoyp’ € So’d+dl’m+m’(R" xR", T, C).

ut
Here, if p and p’ are special u-dependent, then so are pp’ and pop'.

Proof. We know from the simple product rules that pp’ € §%d+d - m+m" (P C) so it is the
transmission condition that has to be checked.

Assume first that d = d’ = 0, and denote temporarily p(z’,0, &, p) and p' (2,0, &, u) by
p and p’. Let us use Lo, norms. The most important step is to estimate h_l(éﬁpp’). Here
we have that

ko' = ()’ = (Y s () (Y shE +hoa))

—k<j<m 0<j'<m/
=I+11+11T+1V,
(6.12) I — Z PEAL Z s}éﬁ:, 17— Z ;€0 KDy,
—k<j<m 0<;' <m! —k<j<m

nr= > Sl ha(Ep), IV = hoy(€59) - hop,
0<j' <m!
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where the s; and s}, are polynomials in (', i) of degree m — j resp. m' — j', with symbols
in §%0m=J(R*~ ! xR* ! T, C) resp. 5’0’0”"’*74(]R”*1 xR" 1. T, C). The h_;-terms satisfy
the respective versions of (6.10). Now [ is a polynomial in (&, u) of degree m +m' + k,
where the coefficient 5; of /7% is a sum of products sjs;-, with j + 7' = I. It follows from

the elementary product rule Lemma 2.9 that s; € SO’O’m+mI*l(I‘,(C). II contributes a
polynomial of this kind plus h—l(sz<7'<m s;&IRh_1p'), which satisfies

sl YD s pf)| &
&n —k<j<m

by (610) and an elel e |tary |)r0duct rule. COIltI’ibllteS i]l a Similar way. I inally IV
satisfies [1]
|h—1(fﬁp) -h 1p’| < Km—}—m +k_

When we add the contributions, we get the sum of a polynomial 37, ;... . s/ €L with
s/ € §0.0m+m'~I(D C) and a h_;-term satisfying

sup [k~ ™™ R R (Cp )| £ 15

Cn

the basic estimate required for (6.10). This sets the general pattern that is found in the
treatment of derivatives as well as Taylor coefficients in z,, at x,, = 0, showing altogether
that pp’ is as asserted.

When d and d’ have general values, we apply the study to z%p and 24 p, finding that
zd"'d'pp’ is in the space with second index zero. Finally, the statement on p o p’ follows
from the general composition formula (1.27) on R*. [

As elliptic elements in the calculus we have at least the symbols in Sgp’)?l’gut(R" xR™, T, C)
with invertible, uniformly estimated principal part (as in [G96]); they have parametrices
of the same kind. (Whether this extends to elements of So;""™(R"” x R",T',C) has not yet
been cleared up.)

The heart of the treatment of compositions of boundary operators with interior ¥ do’s

lies in the following versions of [G96, Lemmas 2.6.2-3]:

Lemma 6.5. Let m,m' € R and d,d’,s,s’,m,r € 7.
Let q(z',&' p) € S™ 4" (R—1 xR* 1. T,C) and let p € SO;* ™ ([R" xR",T',C). The
following mappings are continuous from S™%*(R* 1 xR" "1 T, H,_):

1° f — f g€ Sm—l—m’,d—l—d’,s—l—s’(]_'\’%r_l)’

(6.13) b=
2° f = f : p(ﬂ?’, 0: 67 ﬂ) € Sm’d—i—d 75—1—771(I17 H’r—l—’fh—l)-

The mapping property in (6.13) 1° likewise holds with H,._q replaced by H,_; or H™*
in the initial and final symbol space. For the mapping in (6.13) 2° composed with h_q,
h*, h_, resp. h™, there are similar results with H,7_1 replaced by Homin{r+m,01—1 HT,

H—,, resp. H_

max{r+m,0}—1°

Proof. 1° is a simple product rule (using the Leibniz formula), similar to Lemma 2.9.
Now consider 2°. We can assume d = d' = s = ¢/ = 0 and write p(z/, &, u) instead of
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p(z',0,&, u). For f and p we have decompositions, by (5.1)—(5.3) and (6.10)ff.,
f: Z Sj(f’af’yﬂ)f%"‘h—lf:

0<j<r—1

Gp= Y i@ & mETF + hoalghp),

—k<j<m
where s; € S™07I(T,C), s} € S¥O™=I(I,C), h_1f € ST"*°(T,H_1), and h_1&kp €

SO0 m+k (P 3 _1). In the study of f - p, we typically have to consider

(6.15) rp= (Y siel+hoaf) (Y shel R w hoy[elkp]).

0<j<r —k<j'<m

(6.14)

The product of the two polynomials is a polynomial »  , ;.. - s)/EHF with

" e §mOmHT,C). For (h 1f) - E:—k<j<ﬁi89£%+k and ﬁn‘§:0<j<r—13j§%' h_1[€hpl,
we can use Lemma 5.4 3° for the multiplication by ¢&/7* and rule 1° above for the multipli-

cation by the s; or s}, to see that they lie in S™O (T Hptr 1). Finally, (b1 f)-h_1[¢Ep]
lies in H_; and is e%tlmated by use of the L., norms defining the spaces; derivatives are
treated by use of the Leibniz formula.

For the last statement, we use that H, ; C H,_1, HT C H, and that h~ and h* act
on the spaces as described in Lemma 5.4 1° (based on Ly norms). [

The proof is slightly simpler than the one in [G96] since our spaces are fully characterized
by L. norms here.
A similar proof (straightforward when L., norms are used) shows:

Lemma 6.6. Let m,m' € R, d,d',s,s’,m,r € Z.
Let q(z',€',p) € Sm’ad’a-’(R" L xR, T,C) and let p € S4¥™(R" xR, T,C). The
following mappings are continuous from Sm d. SRIXRY T, H @My q):

1° /: — f g€ Sm+ml7d+dl’s+S,(F7H71®HT71)7
(6.16) 2° [ fop(a’,0.€ ) € ST H GO ),
3° f = h—l,‘fn [p(m/: 07 5/7 5717 M) ’ f] € STTL,d-l-d',S-i-ﬁI(P’ H—1®HT—1)'

The mapping property in (6.16) 1° likewise holds with H 1®H, 1 replaced by
’H+®”HT__1 in the initial and final symbol space. For the mappings in (6.16) 2° and 3°
composed with h+ h‘n, there are similar results with ’H,l®7{r+m,1 resp. H_1QH, _1 re-

placed by H* ®7‘[max{r+m 0}—1 1€sSD- H+®%;ax{7’,0}*1'

We now have all the ingredients for a theorem on o,,-compositions (compositions with
respect to the normal variable z,,):

Theorem 6.7. Let m,m’' € R, s,s',d,d',r,7" € Z. Let
1) p(a, zn, & p) € SHE™(R? xR, T, C), withm € Z,
(i) g(a, €, &ty pr) € S™H(RY R T, HEGOH, ),
(6.17) (iil) t(2', &, p) € S™ES R XRYE T, H, L),
(IV) k‘(.’I,‘/, 67 u) c Sm,d,s(Rn—l XRn_l,P, H+),
(V) Q(LL‘,, 5,-/ “) c Sm,d,s(Rnfl ><1Rn717]:\7 (C)/
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and let p', g’, t', k' and ¢’ be given similarly with symbols in the spaces with m, d, s and
r replaced by m/, d’, s’ and r’. Define

/

(6.18) m'"'=m+m', d'=d+d, §"=s+s, r'’"=max{r+m', 0}

Then the o,,-compositions give rise to Green operators whose symbols are determined by
the following formulas if p and p’ are independent of x,,:

(6.19)
1° pyon k' = h [p(a! & w)k (2, &, )] € S™ @M (D, 1 T),
2° gou k' = [T g(a, & mu, WK (2, & 1, w)dny, € ST HY),
3° konq = k(&' (+.€', p) € ™ (I M),
4° tonply = hg [ta' & wp' (@', & p)] € S™ (D ML),
5° tong = [Tt & u)g (@ &, ) Ay € ™D H, ),
6° gont' = q(a/, & wt (', & p) € ™0 H, ),
7 ton k' = [T(e! &k (¢! & ) dEn € ST, ©),
8° qond =q(a' .. (e' ¢ p) € ST, C),
9° piong =hE [p(a', & g (&€ nu, )] € S™EE (D HYSH,, ),
10° gonpl = hy [g(x, & mn, D" (2", € s 1))
e S™ A (D HYQH ),
11° gong = [T g(,& 6, Gus 1) (@', G iy 1) G
e 8™ ASTH YT YHOHT, ),
12° kopt' = k(z',& &, )t (2', € thy ) € S™ 4 (D, HTOH,, ).
When p and p’ depend on x,,, compositions are obtained by applying the above formulas
to the Taylor expansions for p and p' in xz, (such as p(z',x,,&p) ~

> jen %az%f)gnp(a:’, 0,¢, 1)), resulting in asymptotic expansions of symbols as in [G96, Th.
2.7.2], lying in the spaces indicated in the right-hand side of (6.19).

Proof. We recall from the explanation in [G96] (or earlier sources) that the plus-integral
[ (applied to functions in #) vanishes on %~ and for f € H* gives

T, — 0+

+
(6.20) / fl€n)dén = Tim Fo o f=is

where s_; is the first coefficient in the expansion f(&,) ~ 35,4 55&) for [€,] — oo, cf.
e.g. [G96, (2.2.44)]. When f € H o, [T fdé, is just the ordinary integral [, f d&,.

All cases except 1°, 4°, 9° and 10° have already been treated in Section 4 when the
symbols have class 0; here f+ aa’ d&,, corresponds to the R, -integral of the product of the
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symbol-kernels F, ., (1.7-"5 _,z,@ . For these rules it remains to treat contributions from
polynomials in fn "Here 3° and 6° are easily achieved by use of Lemma 5.4 3° and Lemma
6.5 1°. For 7° we have that when ¢t = 20§j<r si(2',&, p)€&l, and k' has the expansion

B o~ Y ociicn Sy (@' € p)€l as in (5.15), then
(6.21)

o k' = / S s WER (g den =i S sy € m)s (€ ),

0<g<r 0<g<r

which lies in §7ds—i . gm'd's'—(=j—1) & gmtmld+d s+s'+1 by Temma 5.4 2°. The con-
tributions from polynomials to 2° and 5° are similarly behaved.

1° and 4° follow from Lemma 6.5. 9° and 10° follow from Lemma 6.6.

This part of the proof is similar to that of [G96, Th. 2.6.1] for z,-independent tdo
symbols. The x,,-dependent symbols are then treated by a generalization of the arguments
in [G96, Sect. 2.7]. The detailed formulas for the asymptotic expansions resulting from the
Taylor expansions are given there; we use that multiplication by powers of x,, corresponds
to application of powers of £D¢ , which, by Lemma 5.4 3° and Lemma 5.6 3°, just lowers
the s-index. [J

One can get slightly more general statements concerning classes by taking the class of
p++g resp. p'y +¢' into account (it can be lower than that of the individual terms), getting
results as in [G96, Rem. 2.8.5]. This is important for the study of best possible mapping
properties of elliptic systems, see details in [G90].

In the rules above, one can of course replace x’ by (x',y") or /.

With this theorem and Theorem 6.4, we have dealt with all occurring compositions
except the leftover term in a composition of two truncated vdo’s:

(6.22) L(P,Q) = (PQ) — P1Q;.
Here we have as in [G96, Th. 2.6.14]:

Theorem 6.8. Let p and p’ and the indices be as in Theorem 6.7.
1° Let p and p’ be independent of x,,, and write

(6.23) =Y S +hoap, Fol, @ & p) = e w, & ).
0<j<m’

Then L(p,p') is a singular Green boundary symbol operator with symbol
(6.24) Lp.p) (@' &mnop) = Y k(e & mml + g7 (0) on g~ (0),

where

ki(a! & p) = =ikt Y plal & wsi(al € meh

jHI<I<m!
g )@ & s 1) = Faysen Fynsnaa, €597 (D),
(6:25) 9™ (D) (& s 1) = oo, Foppsmn 5 (0), with
9@, yn, &) =1 p(@ s w0+ Y, €5 1),
g ()@ 20y yn, &' p) = 17 P’y + yn, € p);
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g7 (p) and g~ (p') depend only on hyp resp. h”,p’. Here

k] c SO,d",m”_j_l(Rn_l XRn_l,F, H+),
(6.26) gt(p) € SO LRI XRE T HTOH ),
g=(p') € S*U M IR XRYTL T, HYOH ),

and finally, with (6.16),

(6.27) Lp,p') € 8% "~ LR 1 xR T, HYOM et 01—1)-

2° When p and p' depend on x,, L(p,p') is obtained by applying the above formula
to the Taylor expansions for p and p’' in x,,; this results in an asymptotic expansion as in
[G96, Th. 2.7.5], lying in ¥ ~H T, HY@H . v oy 1)-

Proof. 1° The formulas (6.24) (6.25) are shown in [G96] (and date back to [G84]). Since
htp e SOt 1Y), by e SU (T M),
by (6.10)ff., we get from Lemma 4.3:
g (p) € SN HIEH ), g7 () € SOTTIND HIGH ),
and then (6.19 11°) shows that
(6.28) 9T (p) on g~ (') € SV TN R xR T, HTOH ).

For k;, we note that by (6.10)ff., hT[¢\"17Ip] = hT[¢L1"ThTp] is in SOdmTI=i=1 (T, HT),
so that the product rule (6.13 3°) gives k; € S0:d".m” —j~1(T' 3{+). Then the sum over j
in (6.24) is in S®4" ™" YT, H*&H,_,_,) when m' > 0 and vanishes when m’ < 0. Taken
together with (6.28), this shows (6.27).

2° When p and p’ depend on z,,, we insert their Taylor series and proceed as in the
proof of [G96, Th. 2.7.5]. O

For composition formulas with respect to all variables we also have to apply o’ (cf.
(1.27)ff.); this works fine in a similar way as in Section 4, Remark 4.2. (One changes the
right factor into y'-form so that the o’-composition is a simple product in (z’,y")-form;
then one reduces to z’-form by the usual formulas  e.g. as in [GS95, Th. 1.18] or [G96,
Th. 2.1.18].) For ¢do’s depending on z,,, there is moreover a Taylor expansion in z,, at
xn = 0 to deal with. The whole procedure goes as in [G96, Th. 2.7.6], which generalizes
to the present case, with resulting symbol classes as in Theorems 6.4, 6.7 and 6.8:

Theorem 6.9. The composition (1.3) of two u-dependent Green operators A and A’ in
the present calculus gives an operator A" belonging to the calculus. More precisely, when
the symbols of the entries in (1.3) are as in Theorem 6.7, the resulting symbols of the
operators in (1.4) are in the spaces listed in Theorems 6.4, 6.7 and 6.8. Formulas and
notation for the compositions are as in [G96, Th. 2.7.6].

There is one more calculation rule that plays a role in the analysis of trace formulas:
The passage from a singular Green operator to its normal trace tr, G. This was defined
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for operators of class 0 in (4.13) in terms of symbol-kernels, and the formula carries over
to a very similar formula in terms of symbols: tr,, g satisfies

+
(6.29) tr, g = / g(w, &€, &, 1) d€y; also denoted tr,, g.

e, . . ~ =2
In fact (omitting w, £’ and p, that just enter as parameters), since g(zn,yn) € S(R, ),

o s . 7 7 . 77 = . . =2
it is the sum of a series of terms k;(xy,)t;(y,) with k;,%; € S(Ry), converging in S(R ),
and there is a corresponding statement for g(&,,n,):

9(Tn,yn) Z kj(xn)t;(yn) converging in S( +), with ki t; € S(Ry),
JEN

9(&n, Mn) Zk (&)t (nn) converging in HTQH ™, with k; € HT,t; € H™,.
JEN

(6.30)

For each term we have, by Fourier transformation,

- ~ o0 _ = +
trn (K (2n)t (yn)) = /0 kj(wn)tj(vn) do, = /R Fk;jFt;d&, = / ki (§n)t(En) déns

then the result for g follows by summation.
The concept is generalized to operators of positive class by defining

+
(631) trn q = / (](U), 6,7 gnv £n7 ,U,) dgn?

for an arbitrary singular Green symbol g(w, &', &, 7, 1t); again the operator OP'(tr,, g) will

be denoted tr,, G. (tr, g was denoted 7 in [G86,92,96] and used with the present notation
in [GS96].)
Now Theorem 4.5 is generalized straightforwardly:

Theorem 6.10. Let g(w, & &y, np, ) € S™E5 Y RY xR* 1 T, HY®H, ,). Then the
normal trace of g is a 1do symbol satisfying

_|_
(6.32) trn g(w, &, 1) = / 9w, €\ &y, 1) déy, € ST (R xR T, ©).

Proof. By definition (cf. (5.6)), g has the form

(6.33) 9w, & Enin ) = > kj(w. & &) + g'(w, € &y 1)

0<j<r—1

where k; € ™57 1=I(RY xR"~, ", H ) for each j and g’ = h_1,, g is of class 0. Symbol-
kernels of class 0 has already been treated in Theorem 4.5, which gives that tr, ¢’ €
Sm:d:5(T C). We can now add that

+
[ by, € = 51y (hy) . €10

as in (6.21); this belongs to §™4s~1-7—(-1-3)(T' C) = §™%*(T',C) by Lemma 5.4 2°. [
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Remark 6.11. As indicated in the introduction and Remark 2.7, it is difficult to include
general p-independent Poisson symbols (or trace or s.g.o. symbols) in the calculus. This
does not mean that there cannot be useful composition results in special cases. In [GSc99] it
is shown how compositions of a py-independent trace operator with a u-dependent Poisson
operator stemming from an elliptic differential operator resolvent, gives a 1do on the
boundary belonging to the weakly polyhomogeneous calculus. For a more general pu-
dependent Poisson symbol, say k(x', &', &,, u) € SUO9(RP=! xR~ T', HT), one can show
using Remark 5.8 that

6.34 k x/7£/7 —q fl L c S0,0,0 Rnfl XRTL*].'/F’(C )
(

This can be used to define compositions f; o, k& with trace symbols f; that are Laguerre
functions f; = ([¢'] + &) ([€'] — i&,)~ Y (for I > 0), by residue calculus, showing that
the resulting symbol is in S®%9(R*~! xR* 1 ", C). However, when a general p-indepen-
dent trace symbol is expanded in Laguerre functions (cf. e.g. [G96, (2.2.10), (2.3.30)]),
extra conditions on the expansion coefficients will be needed to get convergence of the
series resulting from performing the composition termwise. We expect to return to the

subject elsewhere.

7. ASYMPTOTIC TRACE EXPANSIONS

The operators can be defined to act in smooth vector bundles over manifolds with
boundary by use of partitions of unity and local trivializations in the same way as in
[GK93], [G96]; we can take bundles over compact manifolds, or noncompact manifolds of
the type called admissible there (they include exterior domains in R and Ri)

Observe in particular the effect of cut-off functions: Let

(', 2,) € C°(R]) with D*¢ bounded for all
¢ =0 for x, < ('), (=1 for z, > da(z), 0 < §(z) < ().

Then ((z)K, T¢(x), ((x)G and G((z) can be written with arbitrary high powers of =,
as a factor (as in [G96, (2.4.34)ff.]); this replaces the symbol class S™ ¢ by S™ds=2N
Sm—N:ds=Nn gm,d=N,s=N fo1 any large N in view of Lemma 2.10, so in fact the resulting
symbol is in §7°:7°%:7°°_ We have shown:

(7.1)

Lemma 7.1. Let ((z) be as in (7.1), and let T, K and G be operators in our calculus.
Then ((x)K, T{(z), ((x)G and G((x) have symbols in §~° 7,

We now consider operators defined on a smooth compact n-dimensional manifold X
with boundary X’. For singular Green operators in the general symbol classes considered
in [G86,96] one has, by the proof of [G86, Th. 3.3.11] ([G96, Th. 3.3.10]), also taken up in
[G92, Appendix]:

Proposition 7.2. Let G be a pu-dependent polyhomogeneous singular Green operator of
order m and class 0, and of regularity v € %Z in its dependence on the parameter u € T',
as defined in [G86]. Let v’ be the largest integer < v. If m < —n, G is trace class and the
trace has an expansion in u for u — oc on rays in I':

(72) Tr G ~ CO,u/m-i-nfl + Clu'm,—}—an S Cnfl—{—u’p"mliyl + O(um,fv-i-%)_

We shall now show that we have full asymptotic expansions for the singular Green
operators in the present (more restricted) calculus.
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Theorem 7.3. Let G be a pu-dependent weakly polyhomogeneous s.g.o. of class 0 on
X. Assume that the symbol-kernel of G is holomorphic in pu and lies in S™%~1(R*~1 x
R"~1 T, S, ) (in local coordinates), so that the normal trace belongs to S™%°(T",C) in
local coordinates on X'. Assume moreover that the homogeneous terms in the normal
trace lying in S™~5%9 with m — j > —n belong to S§md'0 for some m' < —n, d € Z.
Then G is trace class, and the trace of G has an asymptotic expansion

(7.3) TrG ~ Z c_,-,um+d+"*1*j + Z(c; log pu + c;’)ud*l
j=0 >0

for ;1 — oo in closed subsectors of I'. The coefficients ¢; and ¢| are determined from the
homogeneous terms in the symbol.

Proof. S.g.0.s on compact manifolds with symbols of degree < —n (order < 1-—n) are trace
class (since they are of order —oo on interior patches, and their kernels at the boundary
are continuous in (z',y’) valued in S;,). We have as for the operators studied in [G96]
(cf. e.g. Th. 4.2.11 there) that the contributions to the trace from coordinate patches near
X' are of the form Trx: OP’(tr, g); the trace of a ¢do on X’. Since tr, g is a weakly
polyhomogeneous @do symbol in Sm’d’O(R”*1 xR* 1. T, C), holomorphic in u, we can
apply [GS95, Th. 2.1] to OP’(tr,, g), which gives an expansion as in (7.3) for each localized
component.

For interior patches with positive distance from X', the contributions to the trace are

O(p=Y) for any N, in view of Lemma 7.1 and Corollary 4.7. [

Remark 7.4. The expansion (7.2) can be useful to see whether some log-terms in (7.3)
vanish. As a typical case, consider an s.g.0. G with symbol-kernel § € S%%=4=1(T", S, )
for some d > n (in local coordinates near the boundary) so that tr, g € S®%~4T",C) C
SO0, )N S% 4T, C) (recall (2.28)). Both spaces are important; the former assures
trace class and the latter gives the best d-exponent in the application of Theorem 7.3,
which shows that TrG ~ Z]. cip™ 4T 3 (log p+ ¢ )4 I G s the s.g.o. term

in a resolvent as in [G96, Th. 3.3.2], the regularity number is a half-integer v € [1,d], and
(7.2) is an expansion TrG = Gou™ 14 -+ + &, 1 ,pu " + O(u*¥+). This gives
the additional information on the preceding expansion, that the log-coefficients ¢] vanish
forl <v'.

We now also get trace expansions for systems as in (1.1) (Green operators) with p-
dependent weakly polyhomogeneous entries, acting in in smooth vector bundles E and
F of dimensions N resp. M over X resp. X'. When A is trace class, the trace equals
Trx(Py + G) + Trx: S. For S one has the results for ¢do’s on a closed manifold X'
established in [GS95], so we need not consider it further. For P, + G one has:

Corollary 7.5. Let P, and G be u-dependent weakly polyhomogeneous operators de-
fined in a smooth vector bundle E of dimension N over a smooth compact n-dimensional
manifold X with boundary X', such that in local trivializations, the symbols p and g
satisfy:

3

p(z, &, p) € SR xR, T,C) @ L(CV,CV)

ut

7.4
(74) G2’ wnyyn, & p) € S™ETHR IR T, S 4) @ L£(CV, CN)
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and are holomorphic in p. Assume moreover that the homogeneous j’th terms of p and
tr, § (in S™~9%0 spaces) with m — j > —n belong to S™ 40 resp. §™ +1.4".0 for some
m',m" < —n, d,d" € Z. Then P, + G is trace class, and the trace has an asymptotic
expansion in :

(7.5) Te(Py +G) ~ > cu™ I 3 (e log p+ off ) ™!
Jj>0 1>0

for ;1 — oo in closed subsectors of I'. The coefficients ¢; and ¢| are determined from the
homogeneous symbols, and ¢y depends only on P.

Proof. By [GS95, Th. 2.1], the diagonal kernel Kp(z,z, ) of P (on an open manifold
extending X) is continuous and has a pointwise expansion as in (7.5), so by integrating its
fiber trace over X we find an expansion of Trx P, of the form (7.5). A similar expansion
is obtained when we add the contribution (7.3) from G to this. [

Remark 7.6. For operator families A(p) defined over noncompact manifolds with bound-
ary, admissible with admissible vector bundles as defined in [GK93], [G96], the corollary
extends immediately to the operators x.4(u) obtained by composition with a morphism y
of compact support.

The problems treated in [GS95], [GS96] and [G99] belong to this calculus, in fact to
a more restricted class, since the interior vdo is a differential operator resolvent and the
occurring s.g.o.s are finite sums of products K (u)S(u)T () with K () and T'(p) strongly
polyhomogeneous.

Example 7.7. Consider the resolvent R(u) of the realization Pp of P = —A + P; on Ri
with the boundary condition Tu = 0; Tu = 8, u(x',0) — (1 — Ag)zu(a’,0), and P; a d.o.
of order 1. Here R(u) = (Pr + p?) ! solves the problem (with f € Ly(R%), u € H*(R?))

(7.6) (P+p*)u=fonRY, 9, u(z',0)— OP'((¢))u(z’,0) = 0.

We let p > 1; it could also be taken complex. One finds that R(u) = Q(p)+ + G(un) =
OP(q)4 + OPG(j), where g(z,&, 1) € S22 (R,,C) with principal part [£, ]2

sphg,ut ) ) / and
g(x’vxnvynvflmu’) € 80’0’_3(R+7S++) with prlncipal part [glc’g]g([’éf]’;]{f(?/))e € u](mn—i—y")

By the composition rules in Theorem 6.7 9° and 10° and Theorem 6.8, R(u)* = Q(u)ﬁ +
G®) (1) = OP(¢°%); 4+ OPG(g™), where ¢°F € Ssphg UZtk and g¥) ¢ SO0.=2%k-1(R S ).

Let x € C®) (Ri) and let & > 2. It is well-known that Tr(xQ%) has an expansion

Zj>0 aju™ 2k~ (with a; = 0 for j odd). For G®) | the normal trace of the symbol-kernel is
in $99-2F(R, , C) C S—260.0(R,, C)NS"2F0 (R, , C), so by Theorem 7.3, Tr(xG*) (1)) ~
>0 b 2RI 5 (0 log 4 b)) T2t The theory of [G96] likewise applies, and
here G¥) is of regularity 1, so we see that b) = 0. To this we add the expansion of
Tr Q% (1), obtaining an expansion

(7.7) Trx(Q% ()4 +GM () ~ > e+ g™ log p.

>0 1>1
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There is a corresponding heat trace expansion, obtained from Tr x(Q* (1) + G*) (1)) by
the transition formulas explained in detail e.g. in [GS96]:

(7.8) Tr(xe ) ~ Z EjtFTn + Z 6;té logt.
>0 I>1

One can replace P + p? by (Dy — A2, + p*)/(=A + p?) in (7.6) to get a case where the
interior operator differs from those in [G99].

REFERENCES

[BM71] L. Boutet de Monvel, Boundary problems for pseudo-differential operators, Acta Math. 126
(1971), 11 51.

[Gi98] J. Gil, Heat trace asymptotics for cone differential operators, Potsdam University Thesis 1998.

[G84] G. Grubb, Singular Green operators and their spectral asymptotics, Duke Math. J. 51 (1984),
477-528.

, Functional Calculus of Pseudo-Differential Boundary Problems, Progress in Mathe-

matics, vol. 65, Birkhauser, Boston, 1986, 512 pp.

[G86]

[G90] G. Grubb, Pseudo-differential boundary problems in Ly spaces, Comm. Part. Diff. Eq.
15 (1990), 289 340.

[G92] , Heat operator trace erpansions and index for general Atiyah-Patodi-Singer boundary
problems, Comm. P. D. E. 17 (1992), 2031-2077.

[G96] , Functional Calculus of Pseudodifferential Boundary Problems, 2nd Edition, Progress
in Mathematics, vol. 65, Birkhauser, Boston, 1996, 522 pp.

[G99] , Trace expansions for pseudodifferential boundary problems for Dirac-type operators

and more general systems, Arkiv f. Mat. 37 (1999), 45-86.

[GH90] G. Grubb and L. Hérmander, The transmission property, Math. Scand. 67 (1990), 273-289.

[GK93] G. Grubb and N. J. Kokholm, A global calculus of parameter-dependent pseudodifferential
boundary problems in Ly, Sobolev spaces, Acta Math. 171 (1993).

[GSc99] G. Grubb and E. Schrohe, Trace expansions and the noncommutative residue for manifolds
with boundary, Preprint no. 20, Copenh. Univ. Math. Dept. Preprint Ser. 1999, to appear in J.
Reine Angew. Math. 536 (2001).

[GS95] G. Grubb and R. T. Seeley, Weakly parametric pseudodifferential operators and Atiyah-Patodi-

Singer boundary problems, Invent. Math. 121 (1995), 481 529.

[GS96] , Zeta and eta functions for Atiyah-Patodi-Singer operators, J. Geom. Analysis 6 (1996),
31 77.

[L98] P. Loya, The structure of the resolvent of elliptic pseudodifferential operators, M.I.T. Thesis
1998.

[Sh78] M. A. Shubin, Pseudodifferential Operators and Spectral Theory, Nauka, Moscow, 1978, (Rus-
sian); Springer Verlag, Berlin, Heidelberg, 1987.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF COPENHAGEN, UNIVERSITETSPARKEN 5,
DK-2100 COPENHAGEN, DENMARK.
E-mail address: grubb@math.ku.dk



