
TRACE EXPANSIONS FOR PSEUDODIFFERENTIALBOUNDARY PROBLEMS FOR DIRAC-TYPE OPERATORSAND MORE GENERAL SYSTEMSGerd Grubb1. Introduction.One of the purposes of this paper is to prove asymptotic expansions of heat traces(1.1) Tr('e�t�i) � X�n�k<0 ai;ktk=2 + 1Xk=0(ai;k log t+ a0i;k)tk=2, for t! 0;�1 = DB�DB ; �2 = DBDB�;for general realizations DB of �rst-order di�erential operators D (e.g. Dirac-type opera-tors) on a manifold X with pseudodi�erential boundary conditions: B(ujX0) = 0 at theboundary @X = X 0. In (1.1), ' denotes a compactly supported morphism. The coe�cientswithout primes are locally determined, the primed coe�cients global.Such realizations were considered �rst by Atiyah, Patodi and Singer in [APS75] whoshowed an interesting index formula in the so-called product case, when X is compact. Wesay that D is of Dirac-type when D = �(@xn +A1) on a collar neighborhood of X 0, with aunitary morphism � and a �rst-order di�erential operator A1 such that A1 = A+xnP1+P0with A selfadjoint on X 0 and constant in xn and the Pj of order j; the product case iswhere P1 = P0 = 0. B was in [APS75] taken equal to the orthogonal projection �� ontothe eigenspace for A associated with eigenvalues � 0.For Dirac-type operators on compact manifolds, �nite expansions (1.1) (up to k = 0,with ' = 1 and ai;0 = 0) were shown in [G92], implying the index formula(1.2) indexDB = a01;0 � a02;0; when ' = 1 and X is compact:Full expansions were established in Grubb and Seeley [GS95], with precisions for the prod-uct case in [GS96]. Here B = �� + B0 with special �nite rank perturbations B0.Booss-Bavnbek and Wojciechowski studied, for the compact product case, the index ofDB in [BW93] and other works with B = C+ + S, where C+ is the Calder�on projectorfor D (having the same principal part as ��) and S is a pseudodi�erential operator ( do)of order �1. One of our motivations for the present work was to establish (1.1) for suchproblems too. A di�erent type of boundary condition was introduced by Br�uning and Leschin [BL97] (in a study of the gluing problem for the eta invariant), where they showed heattrace expansions in the product case but with B principally di�erent from �� (Example4.2 below). For this type, we obtain (1.1) without the product assumption.Actually, we �nd that there are many more boundary conditions, di�erent from theabove, for which (1.1) can be obtained. In fact, D need not even be of Dirac-type, but can1



2 GERD GRUBBbe any �rst-order elliptic di�erential operator. B need not be closely linked to the Calder�onprojector but can be any  do that is well-posed for D in the sense de�ned by Seeley in [S69,Ch. VI]. We obtain (1.1) and (1.2) in all these cases (including those previously known)for compact X, and generalize (1.1) to suitable noncompact situations.The freedom to choose more general B seems to be useful e.g. for variational studies. Itis also interesting to allow general D that are not tied, by the requirement of (principal)selfadjointness of the tangential part, to a speci�c choice of Hermitian structures.In our method to establish (1.1), we imbed DB and DB�, which are in themselvesonly injectively elliptic, into a truly elliptic system DB, which we treat by use of theCalder�on projector for D+� and by an elaboration of the calculus of weakly polyhomoge-neous  do's introduced in [GS95]. This treatment works also for general elliptic systemsP of order d � 1 with appropriate pseudo-normal  do boundary conditions S%u = 0(%u = f(Djxnu)jX0g0�j<d). We show a general result on resolvent and heat operator traceexpansions for such realizations:(1.3) Tr'@m� (PS � �)�1 � X�n�k<0 ~ck(��) kd�m�1 + 1Xk=0(~ck log(��) + ~c0k)(��) kd�m�1;Tr'e�tPS � X�n�k<0 ckt kd + 1Xk=0(ck log t+ c0k)t kd , for t! 0;in the �rst formula, � ! 1 on a ray in C , and the second formula follows, when(PS � �)�1 exists and the expansion holds for � ! 1 in an obtuse keyhole region W =f� j j�j � r or j arg�� �j � �2 + "g, from the formula(1.4) Tr'e�tPS = i2� Z@W (�t)�me�t� Tr'@m� (PS � �)�1 d�:Such expansions were shown in cases where S is a di�erential operator by Seeley [S69a]and Greiner [Gre71]; then there are no logarithmic terms and all the coe�cients are locallydetermined. The crucial step in the analysis is to �nd the symbol structure of the resolvent.We do this not only for compact manifolds but also in noncompact situations with globalestimates; here we use the calculi established in [GK93] (with Kokholm), [G95], [G96].The plan of the paper is as follows: The hypotheses on general systems fP; S%g areexplained in Section 2. Well-posed �rst-order problems are introduced in Section 3, withexamples in Section 4 and the imbedding into elliptic systems in Section 5. In Section 6we show a technical result on spectral invariance of the weakly polyhomogeneous calculusfrom [GS95] (drawing on [G95]), and in Section 7 we establish the necessary results onCalder�on projectors. In Section 8 we determine the structure of the resolvent, and inSection 9 we derive the trace estimates by use of [GS95].2. The general set-up.On an n-dimensional C1 manifold X with boundary @X = X 0 we consider an ellipticdi�erential operator of order d, P : C1(X;E1)! C1(X;E2), between sections of Hermit-ian C1 vector bundles E1 and E2 of dimension N . X is provided with a smooth volumeelement v(x)dx de�ning a Hilbert space structure on the sections.



TRACE EXPANSIONS 3In order to include noncompact manifolds such as Rn , Rn+ and exterior domains Rn nY ,Rn+ n Y (Y smooth compact), we take X to be admissible as de�ned in [GK93], [G96];this means that X is the union of a compact piece and �nitely many conical pieces ofthe form fx = tx0 j x0 2 M � Sn�1; t > rg. X is covered by a �nite system oflocal coordinate patches di�eomorphic to either bounded or conical open subsets of Rn .The use of such manifolds is worked out in detail in [GK93], [G95], [G96], so we canbe brief here. The crucial assumption is that the admissible coordinate changes � aresuch that j�(x)� �(y)j=jx� yj is bounded above and below by positive constants, and allderivatives of � and ��1 are bounded. Admissible vector bundles are likewise de�ned. Thedi�erential operators and  do's considered in this context are de�ned by reference to theadmissible local coordinate systems; their symbols are assumed to have global estimatesin the space variable x, as in H�ormander [H85, Sect. 18.1]. The concepts are extended topseudodi�erential boundary operators in [GK93], [G95], [G96]. An advantage is that thecalculus has rather precise composition rules, where all remainders lie inside the calculus.For brevity, we shall call such operators admissible (in [G96] they are called uniformlyestimated or globally estimated), and we always assume in the following when workingwith admissible manifolds that the operators are of this type. | A reader who is mainlyinterested in the case of compact manifolds can just disregard this generality.The Sobolev space of order s of sections of Ei is denoted by Hs(X;Ei) or just Hs(Ei);it is de�ned by use of admissible local coordinates.We denote EijX0 by E0i. We assume that a normal coordinate xn has been chosen in aneighborhood U of the boundary X 0 such that the points are represented as x = (x0; xn)there with x0 2 X 0, xn 2 [0; c(x0)[ , the Ei are isomorphic to the pull-backs of the E0ithere, and there is a normal derivative @xn . X 0 is provided with the volume elementv(x0; 0)dx0 induced by v(x0; xn)dx0dxn on U . For a compact manifold, we take U as acollar neighborhood Xc = X 0�[0; c[; more generally this is used for the compact part andextended conically in the conical parts (cf. [G96, Sect. A.5]).Let % = f
0; : : : ; 
d�1g with 
ju = (�i@xn)jujxn=0 (i denotes the imaginary unit p�1).For s > d � 12 , % maps Hs(Ei) into Hs(E0di ) = Q0�j<dHs�j� 12 (E0i) (E0di = L0�j<dE0i).The sections u of E1 and w of E2 in Hs (s > d� 12) satisfy Green's formula(2.1) (Pu;w)X � (u; P �w)X = (A%u; %w)X0;A = (Ajk)j;k=0;:::d�1 with Ajk of order d� 1� j � k:Here the Ajk are di�erential operators; those with k > d� 1� j are 0 (A is upper skew-triangular) and those with k = d�1� j are isomorphisms, so A has an inverse of a similartype, just lower skew-triangular.When S is an operator on Hd(E0d1 ), the boundary condition(2.2) S%u = 0determines the realization PS of P , de�ned as the operator acting like P and with domain(2.3) D(PS) = fu 2 Hd(X;E1) j S%u = 0g:We shall study boundary conditions that are pseudo-normal in the following sense:



4 GERD GRUBBAssumption 2.1. (Pseudo-normality) S is a matrix of admissible classical  do's Sjkgoing from E01 to admissible bundles Fj over X 0 such that(2.4) S = (Sjk)j;k=0;:::;d�1; with Sjk of order j � k; Sjk = 0 for j < k;Sjj surjective and uniformly surjectively elliptic.For convenience of notation, we here include bundles Fj of dimension 0. We denoteL0�j<d Fj = F . It will often be tacitly understood in the following that symbols andoperators are taken admissible when the manifolds and bundles are so.The new generality in comparison with the normal boundary conditions considered in[G96] (for compact manifolds, the information is found also in [G86], this will not berepeated), is that the Sjj are now allowed to be  do's; this is needed in our application to�rst-order operators. The normal boundary conditions have just surjective morphisms asthe Sjj , hence regularity � > 0, whereas the present boundary conditions have regularity� = 0, in the sense of the regularity concept from [G96]. (There is a discussion in [G96,Remark 1.5.8]. In other ways the conditions in the book are more general.)Our basic hypothesis for the resolvent analysis is the following:Assumption 2.2. (Resolvent growth condition) Let E1 = E2 = E. There is anopen sector � = f� 2 C n f0g j arg � 2 Jg (for an open interval J � [0; 2�]) such that thefollowing holds:1� P is elliptic, and for the principal symbol p0 of P , p0(x; �)� � is invertible for all(x; �; �) with � 2 � [ f0g, j�j2 + j�j2=d � 1, the inverse being O((j�jd + j�j)�1) on closedsubsectors �0, uniformly in x.2� F has dimension Nd=2, the system fP; S%g is elliptic, and for any closed subsector�0 there is an r � 0 such that the resolvent R� = (PS ��)�1 exists as a bounded operatorin L2 and is O(��1) for � 2 �0r;(2.5) �0r = f� 2 �0 j j�j � rg:The �rst property means uniform parameter-ellipticity of P � �, as de�ned in [G96,Sect. 3.1].The second property contains a global requirement of invertibility. If S% is normal, suchinvertibility for large � is assured by a condition on principal symbols, namely uniformparameter-ellipticity of fP � �; S%g as de�ned in [G96, Sect. 3.1]. This means that theassociated model problem on R+ for each (x0; �0; �) with j�0j2 + j�j2=d = 1 is uniquelysolvable with uniform bounds in x0 for the solution operator, for � in closed subsectorsof �. Then the results of [G96, Sect. 3.3] imply invertibility with the O(��1) estimatefor large �. When S is merely pseudo-normal, property 2� depends not just on principalsymbols but on the full structure; it is veri�ed e.g. if PS is selfadjoint.R� will now be supplied with a Poisson operator K� to de�ne an inverse of the fullsystem fP � �; S%g. In the following lemma, K%;� denotes an auxiliary Poisson operatorsuch that %K%;� = I, constructed e.g. as in [G96, Lemma 1.6.4] with h�i replaced byh(�; j�j1=d)i. (We use the notation hxi = (jx1j2 + � � �+ jx� j2 + 1) 12 for x = (x1; : : : ; x�).)In its dependence on � = j�j1=d, K%;� is strongly polyhomogeneous on all rays, cf. Section6, [GS95, App.]. If holomorphy in � is desired, one can instead take the Poisson operatorK%;� : ' 7! u solving the following Dirichlet problem, where �2d is a positive di�erentialoperator with principal symbol h�i2d and j arg�� !j < �=2:(�2d + (e�i!�)2)u = 0 on X; %u = ' on X 0:



TRACE EXPANSIONS 5Lemma 2.3. Let Assumptions 2.1 and 2.2 hold. For the � such that R� is de�ned, thereexists a unique Poisson operator K� such that(2.6) �P � �S% ��1 = (R� K� ) :In a neighborhood of each ray in �, K� equals(2.7) K� = [I � R�(P � �)]K%;�S0;here S0 = (S0jk)j;k=0;:::;d�1 is a right inverse of S, constructed such that for all j; k, S0jk is aclassical  do of order j � k, S0jk = 0 for j < k, and S0jj is injective and injectively elliptic;and K%;� is an auxiliary right inverse of % as described above.Proof. Let us �rst explain the construction of S0. We can write S = Sdiag + Ssub, whereSdiag = (�jkSjk)j;k=0;:::;d�1 and Ssub is subtriangular (has zero entries in and above thediagonal). Here Sdiag is surjective and surjectively elliptic of order 0 from E0d1 to F ,hence SdiagSdiag� is bijective and elliptic of order 0 in F and therefore has an (elliptic)inverse [SdiagSdiag�]�1. Then Sdiag has the right inverse S0diag = Sdiag�[SdiagSdiag�]�1;again a classical  do of order 0. Finally, since SS0diag = I + SsubS0diag, where SsubS0diag issubdiagonal and hence nilpotent, S has the right inverseS0 = S0diag(I + SsubS0diag)�1 = S0diagP0�l<d(�SsubS0diag)l;it is of the asserted form. (Admissibility follows fom [G95, Th. 1.12].)The operator K� required in (2.6) is the solution operator for the problem(2.8) (P � �)u = 0 on X; S%u = ' on X 0:First note that since R� is injective, the problem has at most one solution u for any '.De�ne K� by (2.7); then check that u = K�' solves (2.8) by observing:(P � �)[I � R�(P � �)] = 0 since (P � �)R� = I;and, using that S%R� = 0, S%K� = S%K%;�S0 = I: �For each �xed �, the inverse (R� K� ) belongs to the pseudodi�erential boundaryoperator calculus ([BM71], [G96]), but to start with, we in general only have a roughinformation on the behavior of R� with respect to � that comes from its de�nition asa resolvent. Before showing this in an elementary lemma, let us recall the de�nition ofparameter-dependent Sobolev spaces (used e.g. in [G96], [GS95]):For s 2 R, the space Hs;�(Rn) is the Sobolev space provided with the norm(2.9) kukHs;� = kh(�; �)isû(�)kL2(Rn):The notion is extended to sections of a Hermitian bundle F over X by use of a �nitefamily of admissible local coordinate systems (the space is then denoted Hs;�(X;F ) orHs;�(F )). Note that Hs;0(F ) ' L2(F ), and that for s � 0, the norm is equivalent with(kuk2Hs + h�i2skuk2L2) 12 .



6 GERD GRUBBLemma 2.4. Let R� and K� be as in Lemma 2.3. For any s � 0, R� and K� de�necontinuous mappings (where � = j�j1=d, Hs+d;�(F ) =Q0�j<dHs+d�j� 12 ;�(Fj))(2.10) R� : Hs;�(E)! Hs+d;�(E); K� : Hs+d;�(F )! Hs+d;�(E);uniformly for � in subsectors �0r (as in Assumption 2.2).Proof. From the elliptic regularity for the �-independent system fP; S%g and from theresolvent growth condition follows that for k � 1, v 2 D(PS) \Hkd(E1),(2.11) kvkHkd � c1;k(kPSvkH(k�1)d + kvkH(k�1)d); j�j kR�fkL2 � c2kfkL2 ;uniformly for � 2 �0r. We use this �rst with v = R�f and k = 0 to see that on the ray� = �dei�, � � r1=d,(2.12) kR�fkHd;� � c3(kR�fkHd + h�ikR�fkL2)� c4(k(PS � �)R�fkL2 + h�ij kR�fkL2 + kR�fkL2) � c5kfkL2;in other words, R� is continuous from L2(E) to Hd;�(E), uniformly for � � r1=d.Next, combining (2.11) with (2.12) we �nd for k = 1:kR�fkH2d;� � c03(kR�fkH2d + h�i2kR�fkL2)� c04(k(PS � �)R�fkHd + j�j kR�fkHd + kR�fkHd + h�i2kR�fkL2)� c05(kfkHd + h�ikfkL2) � c6kfkHd;� :This can be continued to give H(k+1)d;� estimates of R�f in terms of Hkd;� estimates off for k = 2; 3; : : : , and we conclude that the �rst statement in (2.10) holds for s = dk,k = 0; 1; 2; : : : . The remaining values of s � 0 are included by interpolation.For the second statement we have: When C is a parameter-independent  do on X 0of order l � 0, it is bounded from Hs;� to Hs�l;� for all s 2 R, uniformly in �; cf.Section 2.5 in [G96] (using that C is of regularity � = l � 0). It follows that S0 mapsHs;�(E0d) = Q0�j<dHs�j� 12 ;�(E0) into Hs;�(F ) with uniform bounds in �, for s 2 R.[G96] also shows that % maps Hs;�(E) into Hs;�(E0d) for s > d � 12 and that K%;� iscontinuous in the opposite direction, with uniform bounds in �. Applying these facts tothe factors in (2.7) and using what we just found for R�, we obtain the statement for K�in (2.10). �Remark 2.5. There do exist boundary conditions other than those satisfying the assump-tion of pseudo-normality, for which the resolvent is O(��1) on rays in C . One exampleis the condition �0�1Dx1
1u + �0
0u = 0 for � on Rn+ studied in [G96, Ex. 1.7.17] (here�0 = (I ��x0) 12 ); the coe�cient of 
1 is not surjective.For another type of example containing negative-order  do's on X 0 and de�ning arealization PS that is skew-selfadjoint and hence has many rays where the resolvent isO(��1), see Remark 5.2 later. We expect that such cases may still be handled by variantsof the present methods, but will give extra log terms at some of the negative powers of tin (1.3).A third example is DB�DB considered below; here the surjectiveness is missing in theboundary condition B
0u = 0, (I � B�)��
0(@xn + A1)u = 0; but the questions for thisoperator are dealt with in a di�erent way, as will be shown.



TRACE EXPANSIONS 73. First order well-posed boundary problems.For �rst-order operators (and odd-order operators more generally) it may not be possibleto ful�ll Assumptions 2.1 and 2.2 that lead to good resolvents | already the condition inAssumption 2.2, that Nd be even, needs not hold. However, for compact manifolds it isknown that there exist  do boundary conditions (not pseudo-normal)(3.1) B
0u = 0;such that the realization PB is a Fredholm operator with a similar adjoint PB�. In thiscase there is an interest in studying the positive selfadjoint operator PB�PB , which doeshave a resolvent. We now consider such problems in detail.Let D be a �rst-order elliptic operator on X; D : C1(E1) ! C1(E2), where E1 andE2 are N -dimensional Hermitian vector bundles over X. D can be represented on U as(3.2) D = �( @@xn + A1);where � is an isomorphism from E1jU to E2jU and A1 is a �rst order di�erential operatorthat acts in the x0 variable at xn = 0. A1jxn=0 has the principal symbol a01(x0; �0). Forthese operators,(3.3) A = �� on X 0 and % = 
0 in (2.1).De�nition 3.1. 1� We say that D is \of Dirac-type" when � is a unitary morphism,and(3.4) A1 = A+ xnP1 + P0 on U;where A is an elliptic �rst-order di�erential operator in C1(E01) which is selfadjoint withrespect to the Hermitian metric in E01, and the Pj are di�erential operators of order � j.2� The product case is the case where D is of Dirac-type and, moreover, v(x)dx =v(x0; 0)dx0dxn on U , � is constant in xn, and P1 = P0 = 0.As explained in [G92, p. 2036], unitarity of � in (3.2) can be obtained by a simplehomotopy near X 0, whereas the assumption on A1 in 1� is an essential restriction incomparison with arbitrary �rst-order elliptic systems; it means that the principal symbola01(x0; �0) of A1 at xn = 0 is Hermitian symmetric. P1 and P0 can be taken arbitrary nearX 0, but for larger xn, P1 is subject to the requirement that D be elliptic.To begin with, let X be compact. When 1� holds, a01(x0; �0) equals the principal symbola0(x0; �0) of A. Since A is selfadjoint and elliptic of order 1, it has a discrete spectrumconsisting of eigenvalues of �nite multiplicity going to �1. Along with A one considers theorthogonal projections ��;�>;��;�< and �� onto the closed spaces V�; V>; V�; V< andV� spanned by the eigenvectors belonging to eigenvalues of A that are � 0; > 0;� 0; < 0resp. = �. These operators are classical  do's of order 0; �� is of order �1.Atiyah, Patodi and Singer considered in [APS75] the product case. It is also studiede.g., in [GS96], [BW93], [BL97], whereas the case where only 1� holds is studied in [G92],[GS95] and other works. Cases where not even 1� holds, have to our knowledge not beenstudied for the purpose of heat trace expansions for boundary problems before.



8 GERD GRUBBWe shall study boundary problems satisfying the condition of well-posedness introducedby Seeley in [S69]. This uses the Calder�on projector C+ associated with D (as de�nedin [S69]). The reader is kindly asked to consult Section 7 for notation and a generalexplanation of Calder�on projectors. Since d = 1, C+ is a classical  do of order 0 in E01that projects Hs� 12 (X 0; E01) onto the space Ns+ of boundary values of null-solutions, for alls 2 R;(3.5) Ns+ = 
0Zs+ � Hs� 12 (X 0; E01); Zs+ = f z 2 Hs(X;E1) j Dz = 0 on Xg;C� = I � C+. The analogous construction for the model operator d0(x0; 0; �0; Dxn) =�(x0)( ddxn + a01(x0; �0)) on R+ � R (de�ned from the principal symbol at each boundarypoint) leads to the principal symbols c�(x0; �0) of C�; they are the projections in C N ontothe spaces N�(x0; �0) of boundary values of the bounded solutions of d0(x0; 0; �0; Dxn)z(xn)= 0 on R� , respectively. One �nds e.g. by changing a01(x0; �0) to Jordan normal form thatthe spaces N�(x0; �0) are the generalized eigenspaces for a01(x0; �0) associated with theeigenvalues having real part ? 0, respectively. Moreover, one has the formulas:(3.6) c�(x0; �0) = 12� ZL�(i�I + a01(x0; �0))�1 d�;integrating over curves L� in C � = f� 2 C j Im � ? 0g encircling the � -roots ofdet(i�I + a01(x0; �0)) (the poles of (d0)�1) there, respectively.Remark 3.2. When D is of Dirac-type, so that a01(x0; �0) equals a0(x0; �0), N+(x0; �0)and N�(x0; �0) are orthogonal complements and are spanned by the eigenvectors belongingto the positive, resp. negative eigenvalues of a0(x0; �0). The projections c�(x0; �0) ontoN�(X 0; �0) along N�(x0; �0) are then orthogonal, and they are the principal symbols of ��resp. �<. Thus(3.7) C+ � �� is a classical  do of order �1 when D is of Dirac-type.De�nition 3.3. (Well-posedness) Let X be compact and let D be an elliptic �rst-order di�erential operator from C1(E1) to C1(E2). A classical  do B in E01 of order 0is well-posed for D when:(i) The mapping de�ned by B in Hs(E01) has closed range for each s 2 R.(ii) For each (x0; �0) with j�0j = 1, the principal symbol b0(x0; �0) maps N+(x0; �0) in-jectively onto the range of b0(x0; �0) in C N .A generalization to admissible manifolds will be included at the end of Section 5.In comparison with the general choices of S : Hs(E01) ! Hs(F ) (for d = 1) discussedin Section 7 from (7.7) on, F = E01 here, so M = N . Condition (ii) assures that thesystem fD;B
0g is injectively elliptic; see the explanation around (7.15){(7.16). But (ii)is stronger than injective ellipticity, since the range of b0(x0; �0) for general injectivelyelliptic problems can have a larger dimension than b0(x0; �0)N+(x0; �0) has. (One can saythat (ii) means injective ellipticity with smallest possible range dimension for b0.)Observe that when B satis�es De�nition 3.3, fD;B
0g cannot be surjectively ellipticif n � 3, since N is then even and strictly larger than dimN+(x0; �0) = N=2. (If n = 2,



TRACE EXPANSIONS 9this lack of surjective ellipticity holds when dimN+(x0; �0) < N .) Therefore, the systemfD;B
0g is not elliptic in the standard terminology, and, for example, its range does nothave a smooth complement. The word \well-posed" does not con
ict with this and waswell chosen by Seeley. (Some authors use the dangerous notation \globally elliptic" forthese boundary problems | sometimes even abbreviated to \elliptic".)When De�nition 3.3 holds, one can replace (3.1) by an equivalent condition(3.8) B1
0u = 0;where B1 is a projection in the Hs-spaces, in addition to being well-posed for D; cf. [S69].The range of B1 inHs(E01) is closed for each s, since it is the nullspace of the complementingprojection I � B1 which is likewise a  do of order 0. Thus it is no restriction to assumethat B in (3.1) is a projection; we shall often do that.Seeley shows in [S69] that for each boundary condition (3.1) with B well-posed forD, therealization DB de�ned as in (2.3) (with domain D(DB) = fu 2 H1(X;E1) j B
0u = 0g)is a Fredholm operator from D(DB) to L2(E2). Moreover, when B is a projection, theadjoint DB� (when DB is considered as an unbounded operator from L2(E1) to L2(E2))is the realization of D� with domain(3.9) D(DB�) = fu 2 H1(X;E2) j (I � B�)��
0u = 0g = D((D�)(I�B�)��);here (I � B�)�� is well-posed for D�. The nullspaces Z(DB) and Z(DB�) are �nitedimensional spaces of C1 sections, de�ning indexDB = dimZ(DB)� dimZ(DB�).It is useful to know that when B has been replaced by a projection B1, then furthermore,B1 can be replaced by a projection B2 that is orthogonal in L2(E01). This may possibly beinferred from [S69] which leaves out details on the proof of the relevant Lemma VI.3, butit certainly follows by a formula from Birman and Solomyak [BS82] recalled in [BW93]:Lemma 3.4. When R is a projection in a Hilbert space H, then RR� + (I �R�)(I �R)is invertible and(3.10) Rort = RR�[RR� + (I � R�)(I � R)]�1is an orthogonal projection in H with R(H) = Rort(H).Here if H = L2(F ), where F is an admissible vector bundle over a manifold X 0, andR is an admissible classical  do of order 0 in F , then the same holds for Rort, and theprincipal symbol is determined by a formula similar to (3.10) on the principal symbol level.Proof. The formulas are veri�ed in detail in [BW93, Lemma 12.8]. For the last statement,the invertibility of [ ] implies, by the spectral invariance shown in [G95] (and in the proofof Theorem 6.5 below), that it is uniformly elliptic and its inverse is likewise admissible,classical and uniformly elliptic of order 0. Then since the principal symbol of R is aprojection, the formulas likewise hold on the principal symbol level. �Remark 3.5. Since the range of R in Hs(F ) equals the nullspace of I�R there, it followsfrom the fact that I � R and I � Rort have the same nullspace in L2(F ) that they alsohave the same nullspace in Hs(F ), s � 0. Hence(3.11) R(Hs(F )) = Rort(Hs(F ));



10 GERD GRUBBfor s � 0. This property extends to negative s by consideration of the adjoint R�, whichis likewise a projection and a classical  do of order 0, when one uses that the nullspace ofI �R in H�s(F ) (s � 0) is the annihilator of the range of R0 = I �R� in Hs(F ).The lemma and remark imply that when R is a classical  do in E01 which acts as aprojection in Hs(E01), then Rort de�ned by (3.10) is a projection which is orthogonal inL2(E01) and has the same range as R in Hs(E01) for all s. When we apply this constructionto R = I � B1, (3.8) can be replaced by the condition B2
0u = 0 with the orthogonalprojection B2 = I � Rort. It is not hard to check that B2 again satis�es De�nition 3.3.Only the orthogonal projection de�ning a boundary condition is uniquely determinedfrom it; without the orthogonality there can be many choices of projection that give thesame condition.4. Examples of well-posed problems.We here give examples with increasing generality, still taking X compact.Clearly, the choice B = C+ is well-posed, and so is B = �� when D is of Dirac-type,in view of Remark 3.2. The �rst situation that was considered for index questions, in[APS75], was the choice B = �� in the product case. This choice is convenient because itpermits construction of the heat operators (in a good approximation) by easy functionalcalculus for the selfadjoint operator A.Grubb and Seeley consider in [GS96] the product case with B � �� ranging in thenullspace of A, and in [GS95] Dirac-type operators with B��� ranging in the eigenspacefor eigenvalues of A of modulus � a (some a > 0), showing full heat trace expansions.Booss-Bavnbek and Wojciechowski [BW93] consider, for the product case, index ques-tions for the full set of projections B of the form(4.1) B = C+ + S; S of order � 1;likewise well-posed. This includes the preceding cases, and moreover allows in�nite rankperturbations of ��.Before leaving the case (4.1) we observe that (3.7) can be sharpened in the productcase; this is of interest for the trace estimates (cf. Corollary 9.5 below).Proposition 4.1. In the product case, when X is compact,(4.2) C+ � �� is a  do of order �1.Proof. We shall compare D, extended as �(@xn + A) on X 0� ] � c; 0], with the operator�D0, where D0 = @xn +A0; A0 = A+ �0;on X0 = X 0�R+ and on eX0 = X 0�R, provided with the volume element v(x0; 0) dx0dxn.D0 acts in E01 and in eE01 , the pull-backs of E01 to X0 and eX0; in Green's formula (cf. (2.1)and (3.3)),A = �I. D0 has an inverse Q0 on eX0, easily described by its action on functionsof xn taking values in the eigenspaces V 0� of A0 (here V 00 = f0g, V 01 = V1 � V0, V 0� = V�for � 6= 0; 1): When f(xn) has values in V 0�, Q0 acts on f as the  do in xn with symbol(i�n + �)�1; more generally when f has an expansion f(x) = P�2specA0 g�(xn)u�(x0) interms of eigenfunctions u� 2 V 0�, then Q0f = P� F�1�n!xn [(i�n + �)�1ĝ�(�n)]u�(x0). For



TRACE EXPANSIONS 11D0, the Calder�on projector is constructed exactly as in the di�erential operator case; itequals 
+0 r+Q0e
�0 as in (7.5). It acts on a u� 2 V 0� like the Calder�on projector for @xn + �,so 
+0 r+Q0e
�0u� = � u� if � � 0;0 if � < 0:(One may also consult (3.6).) This implies that 
+0 r+Q0e
�0 = ��.On eXc = X 0� ]� c; c[ , �D0 and D di�er only by the term ��0. Let Q be a parametrixof D on eX = X [ eXc; then C+ = 
+0 r+Qe
�0�+ T3, where T3 is of order �1, cf. (7.6). Let� and �1 2 C10 ( ]� c; c[ ), equal to 1 on a neighborhood of 0 and satisfying ��1 = �, then(4.3) C+ � �� = 
+0 r+Qe
�0� + T3 � 
+0 r+Q0e
�0 = 
+0 r+�(Q� (�D0)�1)�e
�0� + T3:If �0 = 0 (i.e., dimkerA = 0), �(Q� (�D0)�1)� is a  do on eXc with symbol 0, hence oforder �1, so C+ � �� is a  do on X 0 of order �1 by the boundary operator calculus;this ends the proof. If �0 6= 0, we need a further e�ort since �0 on eXc is not a  do:In view of (7.1), we have on eXc:(4.4) �(Q� (�D0)�1)� = �Q�1�D0Q0��1�1�� ��1(QD � T2)�1Q0��1�= �Q[�1�D0 �D�1]Q0��1�+ �T2�1Q0��1�= �Q[�1��0 � (@xn�1)�]Q0��1�+ �T2�1Q0��1�:De�ne the anisotropic spaces H(s;t)(X 0�R) and H(s;t)(X 0� ]� c; c[ ), via local coordinatesand a partition of unity on X 0, from the spaces H(s;t)(Rn�1�R) with norm kh�ish�0itû(�)k.The operators have the continuity properties:�Q�1 : H(s;t)(E2j eXc)! H(s+1;t)(E1j eXc); Q0 : H(s;t)( eE01)! H(s+1;t)( eE01);�T2�1 : H(s;t)(E2j eXc)! H(s1;t1)(E1j eXc); �0 : H(s;t)( eE01)! H(s;t1)( eE01);
+0 : H(1;t)(Xc)! H 12+t(X 0); e
�0 : H� 12+t(X 0)! H(�1;t)( eXc);for all s; s1; t; t1 2 R. Such properties are easy to show and are e.g. dealt with in [G86,G96,Sect. 2.5] (used with �xed �). Then the operator in (4.4) is continuous from H(�1;t)(E1j eXc)to H(1;t1)(E1j eXc) for all t; t1 2 R, and when we compose it to the left with 
+0 r+ and tothe right with e
�0 , we get an operator that is continuous from Ht(E01) to Ht1(E01) for allt; t1 2 R. Then this is a  do of order �1 on X 0. Thus �nally, C+ ��� in (4.3) is a  doof order �1 on X 0. �De�ning C+ort by formula (3.10), we �nd as a corollary that C+ort ��� is likewise a  doof order �1. For selfadjoint Dirac operators on spin manifolds, this was shown in the casedimkerA = 0 by Scott in [Sc95, Prop. 2.2] by a rather di�erent argument.Example 4.2. A well-posed B need not be of the type (4.1). One example was introducedby Br�uning and Lesch [BL97], in the product case and under the additional hypotheses thatD is formally selfadjoint and �A = �A�; �2 = �I; �A = �A�; �2 = I; �� = ��� ,where � is an auxiliary morphism or  do of order 0. The prototype is, for cos � 6= 0,(4.5) B� = cos2 ��> + sin2 ��< � cos � sin � �(�> +�<) + B0;



12 GERD GRUBBwith a suitable projection B0 in V0. Here B� is principally di�erent from �� when cos2 � 6=1. DB� is selfadjoint.For the analysis it is useful to observe that the hypotheses imply a spectral symmetry ofA; in fact � (as well as �) de�nes isometries of the eigenspaces V +j for positive eigenvalues�+j (ordered increasingly) onto the eigenspaces V �j for negative eigenvalues ��j = ��+j andvice versa (in particular, �(A; s) = Tr(AjAj�s�1) � 0). Then the nullspace of B� in V ?0 isa \shifted version" of V<:(4.6) spanfe�j;k + tan � e+j;k j j > 0; k = 1; : : : ; �jg;here the e�j;k, 1 � k � �j , are an orthonormal basis of V �j , and e+j;k = �e�j;k.For B = B�, [BL97] shows a precise version of (1.1), related to that of [GS96] (see alsoGrubb [G97, Remark 7.14]). The present study allows generalizations to the non-productcase and perturbations of order �1. The same holds for the more abstractly formulatedwell-posed conditions in [BL97].Example 4.3. Without assuming spectral symmetry, we can give general examples ofwell-posed B for Dirac-type operators by taking(4.7) B = �� +��S�<;where S is a classical  do of order 0 in E01. B is a projection, since �<�� = 0; so (i) inDe�nition 3.3 is satis�ed. For the principal symbols, the injectiveness (7.16) is obvious forb0(x0; �0) = c+(x0; �0) + c+(x0; �0)s0(x0; �0)c�(x0; �0). Moreover,b0(x0; �0)N+(x0; �0) � b0(x0; �0)C N � N+(x0; �0);so since the former has the same dimension as N+(x0; �0), there must be equality. Thenalso (ii) of De�nition 3.3 is satis�ed.To compare this with earlier cases, we replace B by the orthogonal projection B1 =I�(I�B)ort de�ning the same boundary condition: Write S and B in blocks according tothe decomposition L2(E01) = V��V<; S = � S11 S12S21 S22 �, B = � I S120 0 �. Then with R = I�B,we �nd from (3.10) that(4.8) Rort = �S12S�12(I + S12S�12)�1 �S12(I + S�12S12)�1�S�12(I + S12S�12)�1 (I + S�12S12)�1 � :Here B1 = I�Rort is principally di�erent from �� = � I 00 0� as soon as S12 has nonvanishingprincipal symbol, which is the generic case (when 0 < dimN+(x0; �0) < N , in particularwhen n � 3). One can also allow lower order perturbations.| Let us remark that if there is a spectral symmetry: A� = ��A for some zero-order do � with �2 = I, then the choice B = ��+ ���<, for some � 2 R, is of the above typewith S = �� , since ��< = ��<�< = �>��<. The condition de�ned by this B is similarto that de�ned by (4.5); in fact the nullspace of B in V ?0 equals (4.6) with tan � = ��.Still other examples can be found by replacing (��;�<) in (4.7) by (C+; C�) or by(C+ort; C+?ort ) or (C�?ort ; C�ort) (with C�?ort = I � C�ort); these choices have a meaning for anarbitrary D. Since the c� are orthogonal projections when P is of Dirac-type,(4.9) C+ � C+ort and C+ � C�?ort are of order � 1 when P is of Dirac-type,so the resulting problems are just perturbations of order�1 of the previous types. However,c+ is not orthogonal in general (examples with non-symmetric a01 are easy to give).



TRACE EXPANSIONS 13Example 4.4. Denote the principal symbols and range spaces of C+ort and C+?ort byc+ort(x0; �0), c+?ort (x0; �0) = I � c+ort(x0; �0), N+(x0; �0), N?+ (x0; �0) = C N 	 N+(x0; �0). Asnoted above, the following operators are well-posed for D:(4.10) B = C+ort + C+ortSC+?ort :(We can add S1 of order �1, as long as B remains a projection.) This is, in a microlocalsense, the most general possible example. When B de�nes the condition B
0u = 0,so does CB for any invertible classical elliptic  do C of order 0; in this sense, B andCB can be regarded as equivalent. Now if B satis�es De�nition 3.3, we can for (x0; �0)in a neighborhood of each (x00; �00) (j�0j = 1) �nd a smooth family of bijective matricesc(x0; �0) such that c(x0; �0)b0(x0; �0) is of the form c+ort(x0; �0)+ c+ort(x0; �0)s(x0; �0)c+?ort (x0; �0),as follows: Note that C N has the two decompositions (depending smoothly on (x0; �0))(4.11) C N = N+(x0; �0) _+N?+ (x0; �0) = R(b0(x0; �0)) _+Z(b0(x0; �0));the latter denote the range and nullspace of b0 (we now omit the indication (x0; �0)).Here b0 de�nes a homeomorphism c1 of N+ onto R(b0). Let c2 = c�11 and let c3 be ahomeomorphism of Z(b0) onto N?+ (it can be chosen to depend smoothly on (x0; �0) in aneighborhood of (x00; �00)); then c4 = c2b0+ c3(I � b0) is a bijection in C N . Now its inversec5 = c�14 does the job: It is a bijection in C N that maps R(b0) to N+ as an inverse of b0from N+ to R(b0). So c5b0 ranges in N+ and is the identity on N+, and hence(4.12) c5b0 = c+ortc5b0(c+ort + c+?ort ) = c+ort + c+ortc5b0c+?ort ;it is of the desired form and is equivalent with b0. | Similar considerations hold with(C+ort; C+?ort ) and (c+ort; c+?ort ) replaced by (C+; C�) and (c+; c�).5. Imbedding of well-posed problems into elliptic systems.We shall now show how the resolvents of the operators(5.1) (�1 � �)�1; (�2 � �)�1; where �1 = DB�DB ; �2 = DBDB�;can be treated within the framework of Section 2. In fact, there is a nice trick of replacingthe study of the injectively elliptic �rst-order system fD;B
0g by a truly elliptic �rst-order system fD;B
0g satisfying the resolvent growth condition, in such a way that thesecond-order resolvents (5.1) are found from the resolvent construction for DB:Let B be a well-posed projection for D and let us denote(5.2) D = � 0 �D�D 0 � ; DB = � 0 �DB�DB 0 � :The operator D in (5.2) is formally skew-selfadjoint on X. The operator DB is skew-selfadjoint as an unbounded operator in L2(E), E = E1 � E2. It then has a resolventR� = (DB + �)�1 for � 2 C n iR. A calculation shows that(5.3) R� = (DB + �)�1 = � �R1;� DB�R2;��DBR1;� �R2;� � ; whereR1;� = (�1 + �2)�1; R2;� = (�2 + �2)�1;



14 GERD GRUBBthis shows how the resolvents (5.1) can be recovered from R�. Also DBR1;� and DB�R2;�are determined. When � 2 �0 = f z 2 C j j arg zj < �=2 g, then � = ��2 runs throughC n R+, so it su�ces for (5.1) to let � 2 �0.Now DB is the realization of D in L2(E) of the boundary condition(5.4) B
0u = 0; u = �u1u2� ;where B is the row matrix (cf. (3.9))(5.5) B = (B (I � B�)�� ) ;going from L2(E01)�L2(E02) to L2(E01). Since the ranges of B and I � B� are orthogonalcomplements in L2(E01), B is surjective; note that the dimension N of E01 is half of thedimension 2N of E0 = E01 �E02. Moreover, B has as a right inverse the  do C of order 0,(5.6) C = � B�(��)�1(I � B)� [BB� + (I �B�)(I � B)]�1(cf. Lemma 3.4); in particular, B is surjectively elliptic. Now fD+ 1;B
0g has the inverse(R1 K1 ) with K1 = [I � R1(D + 1)]K
0;1C as in (2.7). Since the inverse is continuousfrom L2(E)�H 12 (E01) to H1(E), fD + 1;B
0g and hence also fD;B
0g is elliptic. Thusall the conditions in Assumptions 2.1 and 2.2 are satis�ed by fD;B%g, with N replaced by2N , d = 1, % = 
0, F = F0 = E01!Then the consequences we draw later for the general systems in Section 2 apply inparticular to DB.Example 5.1. By Theorem 7.5 below, the Calder�on projector for D� equals C 0+ =(��)�1(I � C+�)��, when D has an invertible extension. (More generally, this holdsmodulo smoothing operators.) Then in view of (3.9), the adjoint of DC+ is the realizationof D� determined by the boundary condition C 0+
0u = 0. Here B is the surjective operatorB = (C+ (I � C+�)�� ) = (C+ ��C 0+ ) : (We observe moreover that if �� = ��1, one�nds by (3.10) that C 0+ort = �(I � C+ort)��, generalizing [BW87, Cor. 3.3].)Remark 5.2. The trick of considering the \doubled-up" system (5.2) will be restricted to�rst-order operators in this paper. Well-posed boundary conditions can also be de�ned forhigher order systems, cf. [S69]. But here when one takes the example of B = C+, one getsan operator on the boundary with entries of negative order that are generally nontrivial,and these exist also in the doubled-up version and violate the requirement concerning order� 0 in Assumption 2.1. Manipulations with order-reducing operators do not seem to help;they cannot at the same time remove a singularity in �0 and be strongly polyhomogeneousin (�0; �). (See also Remark 2.5 and the calculations after (8.2).)The analysis of (5.4){(5.6) moreover tells us how to include admissible manifolds inthe study of �rst-order systems. Here we need a uniformity in x0 in the well-posednesscondition. We restrict the attention to projections B.



TRACE EXPANSIONS 15De�nition 5.3. (Uniform well-posedness) Let D be an admissible, uniformly elliptic�rst-order di�erential operator from E1 to E2 (admissible vector bundles over an admissiblemanifold X). Let B be an admissible classical  do of order 0 in E01 with B2 = B. Wesay that B is uniformly well-posed for D, when B satis�es De�nition 3.3 (ii) and inaddition, B de�ned by (5.5) is uniformly surjectively elliptic and fD;B
0g (cf. (5.2)) isuniformly elliptic.When De�nition 5.3 is satis�ed, the realization DB is seen by Green's formula to beskew-symmetric. It is skew-selfadjoint since (DB)� acts like D� and u 2 D((DB)�) impliesu 2 L2(E) with D�u 2 L2(E) and B
0u = 0 as an element of H� 12 (E01), hence by use of aparametrix of fD;B
0g it is seen that u 2 H1(E) and thus u 2 D(DB).It follows that Assumptions 2.1 and 2.2 are satis�ed, with � = �0; so (5.3) exists andgives the resolvents of the �i as in the compact case.Examples are constructed as in Section 4, most easily whenD has an invertible extensionto a boundaryless manifold so that Theorem 7.1 de�nes an exact projection C+; thenB = C+ + C+SC� and B = C+ort + C+ortSC+?ort are examples. (Otherwise there is aquestion of modifying B to be a projection.)6. Spectral invariance of weakly polyhomogeneous  do's.For use in the �ne analysis of the resolvents, we now recall the de�nition of weaklypolyhomogeneous  do classes from Grubb and Seeley [GS95], presently allowing non-compact admissible manifolds and globally estimated operators as in [G95], [G96].The symbol space Sm(R� �Rn ) consists of the functions p(x; �) 2 C1(R� �Rn) suchthat(6.1) @�x@�� p = O(h�im�j�j) for all � 2 Nn ; � 2 N� ;N = f integers � 0 g. The basic rules of calculus for this space are well-known fromH�ormander [H85, Sect. 18.1]. (When we are only interested in symbols with estimates validover compact subsets of Rn , we can use the results of the global calculus by introducingsuitable cut-o� functions.) A symbol p 2 Sm(R� �Rn ) is called classical (or classicalpolyhomogeneous) of degree m if it has an expansion p � Pj2N pj , where the pj arehomogeneous in � of degree m�j for j�j � 1, and p�Pj<J pj 2 Sm�J(R��Rn) for J 2 N .[GS95] introduced a class of symbols p depending on a parameter � varying in a sector� � C n f0g, in a special way. Here it is the behavior for j�j ! 1 that is important; it isoften described in terms of the behavior of p(x; �; 1z ) for z ! 0, 1z = � 2 �. For brevityof notation, we write @jzp(x; �; 1z ) (or just @jzp) for the j'th z-derivative of the compositefunction z 7! p(x; �; 1z ).De�nition 6.1. Let n and � be positive integers, and let m and d 2 R. Let � be a sectorin C nf0g. The space Sm;0(R��Rn ;�) consists of the functions p(x; �; �) 2 C1(R��Rn��)that are holomorphic in � 2 �� for j(�; �)j � " (some " > 0) and satisfy, for all j 2 N ,(6.2) @jzp(�; �; 1z ) is in Sm+j(R��Rn) for 1z 2 �;with estimates valid uniformly for jzj � 1; 1z 2 closed subsectors of �:Moreover, we set Sm;d = �dSm;0 (so p 2 Sm;d means that zdp 2 Sm;0).



16 GERD GRUBBSometimes the symbols are only de�ned for j�j � a constant depending on the subsectorof �; this requires obvious modi�cations. We can inject Sm(R��Rn ) � Sm;0(R��Rn ; C ).Asymptotic expansions and polyhomogeneous subclasses are introduced as follows.De�nition 6.2. 1� Let p 2 Sm�d;d(R� �Rn ;�) and let pj be a sequence of symbols inSm�j�d;d(R��Rn ;�) such that p�Pj<J pj 2 Sm�J�d;d(R��Rn ;�) for any J 2 N ; thenwe say that p �Pj2N pj in Sm�d;d.2� If, moreover, the pj are weakly homogeneous of degree m� j, i.e.,(6.3) pj(x; t�; t�) = tm�jpj(x; �; �) for j�j � 1; t � 1; (�; �) 2 Rn��;we say that p is weakly polyhomogeneous.3� If, furthermore, the pj are strongly homogeneous of degree m� j, i.e.,(6.4) pj(x; t�; t�) = tm�jpj(x; �; �) for j�j2 + j�j2 � 1; t � 1; (�; �) 2 Rn��;and @�x@�� @k�(p�Pj<J pj) = O(h(�; �)im�J�j�j�k) for all indices �; �; J , then we say thatp is strongly polyhomogeneous.(For simplicity, we leave out the possibility of noninteger steps between the degrees ofthe pj , included in [GS95].) It is shown in [GS95] that the conditions in 3� imply thosein 1� and 2�. Thus the strongly polyhomogeneous symbol can be thought of as the casewhere � enters as an extra cotangent variable, on a par with the others, in a classicalsymbol. For example, for m 2 Z,(6.5) (j�j2 + j�j2 + 1)m=2 2 � Sm;0 + S0;m for m � 0;Sm;0 \ S0;m for m � 0;is strongly polyhomogeneous, whereas ( �41+�42�21+�22+1 + j�j2)�1 is weakly polyhomogeneous andbelongs to S�2;0 \ S0;�2. (Cf. [GS95, Lemma 1.13 and Th. 1.17].)We shall use a special name (as in [G97]) for symbols of the latter kind:De�nition 6.3. Let r be an integer � 0. A symbol s(x; �; �) (and the operator it de�nes)is called special parameter-dependent of order �r, when(6.6) s(x; �; �) 2 S�r;0(R��Rn ;�) \ S0;�r(R��Rn ;�) with@m� s(x; �; �) 2 S�r�m;0(R��Rn ;�) \ S0;�r�m(R��Rn ;�)for any m, all @m� s(x; �; �) being weakly polyhomogeneous.By [GS95, Th. 1.16], a strongly polyhomogeneous symbol of order �r has this property.The rules of calculus for the symbol spaces and the associated operators are describedin detail in [GS95]. Let us here just recall a few elements: A symbol p(x; �; �) with x and� 2 Rn de�nes a family of  do's on Rn depending on � 2 �,(6.7) P�f(x) = OP(p)f(x) = (2�)�n Z eix��p(x; �; �)f̂(�) d�:There holds the composition rule:(6.8) P� 2 OP(Sm;d); P 0� 2 OP(Sm0;d0) =) P�P 0� 2 OP(Sm+m0;d+d0);with symbol (p � p0)(x; �; �) �P�2Nn 1�!@�� p(x; �; �)(�i@x)�p0(x; �; �):Theorem 1.23 in [GS95], formulated there for symbols with local estimates in x, extendswithout di�culty to symbols with global estimates in x, and to one-sided ellipticity:



TRACE EXPANSIONS 17Theorem 6.4.1� Let p(x; �; �) 2 S0;0(R� �Rn ;�) 
 L(C N ; C N ) be such that p = p0 + p�1 withp�1 2 S�1;0 and with p�10 2 C1 bounded uniformly in (x; �; �) 2 Rn�Rn��01, for anyclosed subsector �0 of � and �01 = f� 2 �0 j j�j � 1g. Then there exists a parametrixsymbol q(x; �; �) 2 S0;0(R��Rn ;�) such that p � q � I in S0;0; here(6.9) q � q0 �Pk2N r�k; whereq0 = p0�1; r = I � p � q0; r�k = r � r � � � � � r (k factors).2� Let p(x; �; �) 2 S0;0(R��Rn ;�)
 L(C N ; CM ) be such that p = p0 + p1 with p�1 2S�1;0 and with p0 having a right inverse q0 2 C1 that is bounded uniformly in (x; �; �) 2Rn�Rn��01, for any closed truncated subsector �01 of �. Then there exists a right parametrixsymbol q(x; �; �) 2 S0;0(R��Rn ;�)
 L(CM ; C N ) such that p � q � I in S0;0; here(6.10) q � p� � (p � p�)��1;where (p � p�)��1 is a parametrix symbol for p � p� according to 1�.3� When the assumptions in 2� hold with \right" replaced by \left," there exists a leftparametrix symbol q � (p� � p)��1 � p� 2 S0;0 such that q � p � I in S0;0.In 1�{3�, if p is weakly resp. strongly polyhomogeneous, so is q.Proof. For 1�, the proof of [GS95, Th. 1.23] extends readily; it is in fact simpli�ed becausethe compositions can be carried out directly, without cut-o� functions, in the global cal-culus. 2� and 3� follow from 1�, when we note that p� � p in case 2�, resp. p � p� in case3�, satis�es the hypotheses of 1�. The last statement is seen from the formulas. �We shall not introduce a general ellipticity de�nition but just say that the operators withsymbol satisfying the hypotheses of Theorem 6.4 1�, 2� resp. 3� are uniformly parameter-elliptic, uniformly surjectively parameter-elliptic, resp. uniformly injectively parameter-elliptic, in the sense of Theorem 6.4.For our application to the resolvent analysis we need to show spectral invariance of ourcalculus (brie
y expressed this means that when a  do has an inverse in some operatorsense, then the inverse belongs to the calculus, and both operators are elliptic). We evenneed a one-sided version. In the earlier work [G95], results were shown both for parame-ter-independent  do's and for parameter-dependent  do's of a slightly di�erent type thanhere. The following proof uses the parameter-independent results.Theorem 6.5. Let E1 and E2 be admissible vector bundles of dimension N over anadmissible boundaryless manifold eX, and let P� (depending on � in a sector � of C ) be aweakly polyhomogeneous  do with symbol in S0;0 in admissible coordinate systems.1� Assume that for some l 2 Z, P� : H l;�(E1)! H l;�(E2) (which is bounded uniformlyfor � in closed truncated subsectors �0r) has an inverse P�1� that is likewise H l;�-boundeduniformly for � in subsectors �0r. Then P�1� is a weakly polyhomogeneous  do with symbolin S0;0. Moreover, P� and P�1� are uniformly parameter-elliptic in the sense of Theorem6.4. If P� is strongly polyhomogeneous, so is P�1� . If P� is special parameter-dependentof order 0 (cf. De�nition 6.3), so is P�1� .2� Assume that for some l 2 Z, P� : H l;�(E)! H l;�(F ) has a right inverse R� that islikewise bounded uniformly for � in truncated closed subsectors �0r. Then P� has a right



18 GERD GRUBBinverse R0� that is a weakly polyhomogeneous  do with symbol in S0;0. If P� is stronglypolyhomogeneous, so is R0�. If P� is special parameter-dependent of order 0, so is R0�.3� A similar statement holds with \right" replaced by \left."Proof. 1�. Consider a �0r. First let l = 0, so that H l;� is simply L2. Consider a �xed �.Here we can draw on [G95, Th. 1.14], which shows that P�1� is a classical elliptic  do withglobally estimated symbol. The details in [G95] are given for a Green operator; for a  doon eX, the proof is a simpler variant: Using that(6.11) ckuk2L2(E1) � kP�uk2L2(E2) � Ckuk2L2(E1);with 0 < c � C, one can de�ne B� = I � C�1P ��P� � 0 with norm kB�k � (C � c)=C =� < 1. Its principal symbol b0(x; �; �) then has jb0(x; �; �)j � �. (In fact, when �(x) 2 C10 ,the essential spectrum of �B�� equals the union over x and j�j � 1 of the spectra of�(x)2b0(x; �; �).) Now I � B� is elliptic and has the inverse Pk2NBk� (converging innorm); it belongs to the globally estimated calculus by [G95, Th. 1.12] (using also thelocalization worked out in Th. 1.7 there). Finally,(6.12) P�1� = (I � B�)�1C�1P ��belongs to the calculus by the composition rules, the principal symbol (p0)�1 satisfyingjp0(x; �; �)�1j � c�1.This shows that P�1� is in the calculus with symbols in S0(Rn�Rn)
L(C N ) in admissiblecoordinates, for each � 2 �0r. We now study the �-dependence. Here we use that theconstants c and C can be taken independent of � 2 �0r and the S0-estimates for P� holduniformly in �. Then the whole analysis of the inverse works uniformly in � 2 �0r, sowe can conclude that the S0-estimates for P�1� are likewise uniform in � 2 �0r. Thusthe requirement for j = 0 in (6.2) is satis�ed. For derivatives @jz we use successively theformulas(6.13) @jzP�1� = �P�1� Xl<j �jl�@j�lz P� @lzP�1� ; j > 0;that follow from @jz(P�P�1� ) = 0 by the Leibniz formula; they lead to the conclusion that@jzP�1� has symbol in Sj uniformly in � 2 �0r, and thus �nally P�1� has symbol in S0;0.Inspection of the construction shows that strong polyhomogeneity of P� carries over toP�1� . The preservation of special parameter-dependence follows by a version of (6.13) with@z replaced by @�.If l 6= 0, we reduce to the preceding case as follows: For any admissible vector bundleF over eX there exists a family of isomorphisms �mF;� from Hs;�(F ) to Hs�m;�(F ) (m 2Z) with principal symbol essentially h(�; �)imI (�0F;� = I, ��mF;� = (�mF;�)�1), such thatthe operator norm of �mF;� for any s is uniformly bounded in �, for arg� in an interval]�1; �2[ . (These order-reducing operators are a standard tool in [G86], [G96], [G95]; toget holomorphicness in � for j arg� � !j < �, say, one can for m > 0 take an operatoras in [G96, Corollary 3.2.12] with h(�; �)i replaced by (j�j2m + (e�i!�)2m + 1) 12 that is



TRACE EXPANSIONS 19well-de�ned when � � �=2m; for �m one takes the inverse.) Now we replace P� and P�1�on suitable subsectors by(6.14) P1;� = �lE2;�P���lE1;�; P�11;� = �lE1;�P�1� ��lE2;�:Here P1;� and P�11;� are uniformly bounded with respect to L2 norms. Assume e.g. thatl > 0. In view of (6.5) and (6.8), P���lE1;� has symbol in S�l;0 \ S0;�l; subsequentlyP1;� = �lE2;�P���lE1;� has symbol in(6.15) (Sl;0 + S0;l) � (S�l;0 \ S0;�l) � (S0;0 \ Sl;�l) + (S�l;l \ S0;0) � S0;0:It is seen in a similar way that the m'th �-derivative of P1;� has symbol in S�m;0 \S0;�m.This P1;� satis�es the hypotheses with l = 0, so the already proved part of the theoremshows that P�11;� is as asserted. We get back to P�1� by considerations as in (6.15). Thiscompletes the proof of 1�.2�. One can reduce to the case l = 0 in the same way as in the preceding proof. Theidentity P�R� = I implies R��P �� = I. Since R� is uniformly L2-bounded for � 2 �0r, itsadjoint R�� has norm � C1 for some �xed C1 > 0. Insertion of u = P ��v for an arbitraryv 2 L2(F ) giveskvk2L2(F ) = kR��P ��vk2L2(F ) � C21kP ��vk2L2(E) = C21 (P�P ��v; v)L2(F ):This shows that the selfadjoint operator P�P �� in L2(F ) has lower bound � C�21 , so ithas an inverse (P�P �� )�1 with L2-operator norm � C�21 for � 2 �0r. Now 1� applies toP�P �� , since it has symbol in S0;0 by the composition rules (cf. (6.8)). Then (P�P �� )�1is a weakly polyhomogeneous  do with symbol in S0;0, and since P�P �� (P�P �� )�1 = I,R0� = P �� (P�P �� )�1 is a right inverse of P�; it is likewise a  do with symbol in S0;0. Alsostrong polyhomogeneity and special parameter-dependence is preserved. This shows 2�.Finally, 3� follows by obvious modi�cations of the proof of 2�. �Note that 2� does not say anything about the structure of R� itself. However, we shalluse it in Section 8 in a situation where we can also infer that the given right inverse is aweakly polyhomogeneous  do.7. Calder�on projectors and their construction for resolvents.We recall, and extend to admissible manifolds, the de�nition and application of theCalder�on projector C+ for an elliptic di�erential operator P : C1(X;E1) ! C1(X;E2)of order d, as introduced by Calder�on [C63], Seeley [S66], [S69], see also H�ormander [H66],Boutet de Monvel [BM66], Grubb [G77]. It is used in the discussion of well-posed boundaryconditions for �rst-order operators in Sections 3{5, and a parameter-dependent versionenters as a tool in the resolvent analysis in Section 8.The manifold X is taken to be compact or, more generally, admissible as de�ned in[GK93], [G96], see the introduction to Section 2; P is assumed to be admissible anduniformly elliptic. We can assume that X is smoothly imbedded in an n-dimensionaladmissible boundaryless manifold eX such that X 0 is an (n� 1)-dimensional hypersurfacein eX and E1 and E2 are restrictions to X of N -dimensional bundles eE1 and eE2 over eX; one



20 GERD GRUBBsuch choice is to double up the neighborhood U (cf. Section 2) along X 0, augmenting X bythe re
ected piece U�. In U [U� we write x = (x0; xn), where jxnj < c(x0), c(x0) � c > 0.In the compact case one can add another piece to X [ U� to get a compact eX.If P extends to a uniformly elliptic operator (also denoted P ) from C1( eE1) to C1( eE2),we let Q denote an admissible parametrix of P on eX; then(7.1) PQ = I + T1; QP = I + T2 on eX;where T1 and T2 are admissible  do's on eX of order �1. The use of Calder�on projectorsis simplest if eX and P can be chosen so that P is invertible on eX; then Q stands for theinverse (necessarily admissible by the spectral invariance proved in [G95]), and T1 and T2are zero.Let us denote X� = X+, eX nX = X�, eEijX� = Ei;�. The mapping % = f
0; : : : ; 
d�1gcan be regarded as a mapping either from functions on X+, or from functions on X�, orfrom functions on eX, to functions on X 0; to distinguish between the three versions, wedenote them %+, %� resp. e% (so % = %+). When F = F0 � � � � � Fd�1 are vector bundlesover X 0 we denote(7.2) Hs(F ) =Q0�j<dHs�j� 12 (Fj); eHs(F ) = Q0�j<dHs+j+ 12 (Fj) = (H�s(F ))0:Writing L0�j<dE0i = E0di , we have that %� and e% map the respective Hs spaces intoHs(E0di ) for s > d � 12 . The mapping e% : Hs( eEi) ! Hs(E0di ) has the adjoint e�� :eH�s(E0di ) ! H�s( eEi) for s > d � 12 ; it ranges in distributions supported in X 0. Weuse the notation A� for the truncation of a  do A on eX to X�:(7.3) A� = r�Ae�; when A is a  do on eX;here r� means restriction to X� and e� means extension by zero on X�.De�ne the spaces(7.4) Zs� = f z 2 Hs(X�; E1;�) j Pz = 0 on X�g; Ns� = %�Zs� � Hs(E0d1 );Z0 = f z 2 C1( eX; eE1) \Hd( eX; eE1) j Pz = 0; supp z � Xg;here Z0 is identi�ed with a subspace of the Zs+ and has �nite dimension when X is compact.Although the trace operator % is de�ned on Hs(E1;�) for s > d� 12 only, the de�nition ofthe spaces Ns� of Cauchy data for null solutions can be extended to all s 2 R, by resultsin Lions and Magenes [LM68] or by the arguments in [S66], [S69].Theorem 7.1. Consider admissible manifolds, bundles and operators, and assume thatP has the inverse Q on eX. Then the spaces Ns� are complementing subspaces of Hs(E0d1 );Hs(E0d1 ) = Ns+ _+Ns�. When we de�ne (cf. (2.1))(7.5) K� = �r�Qe%�A; C� = %�K� = �%�r�Qe%�A;the Poisson operators K� : Hs(E0d1 )! Hs(E1;�) have range equal to Zs� and provide rightinverses of %� on Zs�, respectively; and the  do's C� (the Calder�on projectors for P ) arethe projections of Hs(E0d1 ) onto Ns� along Ns�, respectively. In particular,C+ + C� = I; (C+)2 = C+; (C�)2 = C�; C+C� = 0:



TRACE EXPANSIONS 21Proof. The proof is a generalization of the deduction in [S66], [S69] for the invertible casewith eX compact. In fact, the proof given in [G96, Ex. 1.3.5] carries over verbatim to thepresent admissible manifolds, when the operators are admissible and one allows the rangebundle for P to be di�erent from the initial bundle E. To save space, we refrain fromrepeating the details here. �When P merely satis�es (7.1), one can still de�ne operators K� by formulas as in (7.5)supplied with smoothing terms, setting(7.6) C+ = %+K+ = �%+r+Qe%�A+ T3and C� = I � C+ (with a  do T3 of order �1); then they have the listed mapppingproperties only modulo smoothing operators. Such a construction is worked out in [G77] forgeneral multi-order operators P (on compact manifolds), with applications. For compactmanifolds, Seeley gives in [S69] an optimal construction, where K+ maps Hs injectivelyonto a subspace of Zs+ with complement Z0, and where C+ = %+K+ is a projection of Hsonto Ns+; we use this in Sections 3 and 4. The book of Booss-Bavnbek and Wojciechowski[BW93] goes through the proof of Theorem 7.1 for �rst-order operators as in De�nition3.1 2�.The Calder�on projectors are used to treat boundary value problems for P :(7.7) Pu = f on X; S%u = ' on X 0;where S is a system of  do's Sjk of order j � k (j; k = 0; : : : ; d � 1) going from E01 tobundles Fj of dimension � 0 over X 0; M =P0�j<d dimFj . In the following, we considerfP; S%g as a mapping from Hs(E1) to Hs�d(E2)�Hs(F ), for some s > d� 12 , and discussright/left inverses that are continuous in the opposite direction; here S is considered as amapping from Hs(E0d1 ) to Hs(F ) and the C� act in Hs(E0d1 ).Theorem 7.2. Assume that P is invertible on eX.1� If SC+ has a right inverse S1, then � PS%� has the right inverse(7.8) (RS KS ) = (Q+ �K+S1S%Q+ K+S1 ) :Conversely, if � PS%� has a right inverse (RS KS ), then SC+ has the right inverse(7.9) S1 = %KS:2� If � SC� � has a left inverse (S1 S2 ), then � PS%� has the left inverse (7.8).Conversely, if � PS%� has a left inverse (RS KS ), then � SC� � has the left inverse(7.10) (S1 S2 ) = ( %KS I � %KSS ) :Proof. We �rst observe some auxiliary formulas:(7.11) PQ+ = I; Q+P = I �K+%; K+C� = 0:



22 GERD GRUBBThe �rst formula holds since PQ = I on eX and P is local. Next, we note that Green'sformula (2.1) can be written in distributional form:(7.12) e+r+P ~u = Pe+r+~u+ e%�(A%u) for ~u 2 Hs+d( eE1); u = r+~u; s > � 12 :The second formula follows from this by composition with r+Q, using (7.5) and QP = I;it holds on Hs+d(E1), s > � 12 . Now the third formula follows from a calculation usingalso that %K+ = C+, PK+ = 0:K+C� = K+ �K+C+ = K+ �K+%K+ = K+ � (I �Q+P )K+ = 0:For the �rst statement, let S1 be a right inverse of SC+. Then, by the above rules,P (Q+ �K+S1S%Q+) = I; S%(Q+ �K+S1S%Q+) = S%Q+ � SC+S1S%Q+ = 0;PK+S1 = 0; S%K+S1 = SC+S1 = I:Conversely, when (RS KS ) is a right inverse of � PS%�, then PKS = 0, S%KS = I, so KSmaps into Zs+, whereby C�%KS = 0 and consequently SC+%KS = S%KS �SC�%KS = I.Thus %KS is a right inverse of SC+. This proves 1�.For 2�, we check the composition of (7.8) to the left with � PS%� as follows, using (7.11)and the fact that C�C+ = 0:(7.13) (Q+ �K+S1S%Q+ K+S1 )� PS%� = (I �K+S1S%)Q+P +K+S1S%= (I �K+S1S%)(I �K+%) +K+S1S% = I �K+(I � S1SC+)%= I �K+(I � (I � S2C�)C+)% = I �K+C�% = I:Conversely, de�ne (S1 S2 ) by (7.10) and check its left composition with � SC� �:(7.14) ( %KS I � %KSS )� SC� � = %KSS + C� � %KSSC� = %KSSC+ + I � C+:When w = K+C+' for some ' 2 C1(E0d1 ), then Pw = 0, %w = C+C+' = C+' andS%w = SC+', so since (RS KS ) is a left inverse of � PS%�,w = KSS%w = KSSC+':It follows that %KSSC+' = %w = C+' for ' 2 C1(E0d1 ). Then the expression in (7.14)equals I. This ends the proof of 2�. �The statements have generalizations where the word \inverse" is replaced by \parame-trix", also when Q is merely a parametrix of P (here one can keep track of the smoothingterms as in [G77]). Moreover, the statements hold on the principal symbol level, i.e., forthe model operator fp0(x0; 0; �0; Dxn); s0(x0; �0)%g de�ned on R+ � R from the principalsymbols at a boundary point; its Calder�on projectors c�(x0; �0) are the principal symbols of



TRACE EXPANSIONS 23C�. It is a standard terminology to call the systems with surjectiveness, resp. injectiveness,of the model operator (for all x0, all j�0j = 1) surjectively elliptic, resp. injectively elliptic.It follows that(7.15) � PS%� is injectively elliptic () � SC� � is injectively elliptic;� PS%� is surjectively elliptic () SC+ is surjectively elliptic:The range spaces N�(x0; �0) for c�(x0; �0) in C Nd have dimensions m�(x0; �0) (with sumNd). By (7.15), the injectively resp. surjectively elliptic problems can also be characterizedby injectiveness resp. surjectiveness of s0(x0; �0) from N+(x0; �0) to C Nd for all x0, j�0j = 1.In particular, this requires M � m+(x0; �0) resp. M � m+(x0; �0). Thus for two-sidedelliptic problems, M must equal m+(x0; �0) (which must be constant in (x0; �0) then). It iswell-known that when n � 3, m+(x0; �0) = m�(x0; �0) = Nd=2 (the properly elliptic case).Note that injective ellipticity holds if and only if(7.16) v 2 C Nd ; s0(x0; �0)v = 0; c�(x0; �0)v = 0 =) v = 0;i.e., the nullspaces of s0 and c� are linearly independent.Example 7.3. The systems � P% � and � PC+%� are injectively elliptic; they both have theleft inverse (Q+ K+ ) (parametrix when Q is merely a parametrix of P ). In fact, by(7.11), Q+P +K+% = I; Q+P +K+C+% = I:This left inverse is also found from (7.8), when we use that � IC� � and � C+C� � both havethe left inverse (C+ C� ). The case S = C+ is studied in Section 4 when d = 1.(7.11) also shows that Q+ is a right inverse of P without boundary condition; i.e., in thecase F = 0. This is also con�rmed by the formulas in the theorem.Although an elliptic operator P cannot always be extended to a boundaryless manifoldeX � X such that the extension is invertible, we do have such a fact for the P �� satifyingAssumption 2.2 1�; this is essential for the resolvent analysis in Section 8.Theorem 7.4. Let P be such that Assumption 2.2 1� is satis�ed. Let eX be an admissibleboundaryless n-dimensional manifold in which X is smoothly imbedded, the bundle Ebeing extended to an admissible bundle eE there; take eX compact when X is compact.Each ray rei�0 in � has a neighborhood �0 = f� = rei� j j� � �0j � "; r > 0 g in � sothat for � 2 �0, there is an extension eP� of P � � to eE (acting like P � � on X), whichis a uniformly parameter-elliptic strongly polyhomogeneous  do of degree d with respectto � 2 e�0 = (��0)1=d and has a parametrix eQ� for � 2 �0 which is an inverse for j�j � r0(some r0 � 0). Then when we de�ne(7.17) K�� = �r� eQ�e%�A; C�� = %�K�� ;the assertions in Theorem 7.1 hold with Zs�;+ = f z 2 Hs(X;E) j (P � �)z = 0 on Xg,Zs�;� = f z 2 Hs(X�; eEjX�) j eP�z = 0 on X�g, Ns�;� = %�Zs�;�.



24 GERD GRUBBHere C�� is a matrix of  do's (C��;jk)j;k=0;:::;d�1 with C��;jk strongly polyhomogeneousof order j � k w.r.t. � 2 e�0, and K�� is a row of Poisson operators (K��;j)j=0;:::;d�1 withK��;j strongly polyhomogeneous of order �j (all belonging to the global calculus).Proof. We here use ideas from [S69], in particular from the appendix there. Denote �(�) =f rei� j r > 0; j�j � � g. Consider a ray rei�0 in �; multipying P �� by a complex constantwe can obtain that �0 = � and that �(�) � �� for some � > 0. Then for " � �=2:� � 2 �("); �� 2 �(") =) j�j2d + �2 2 �(2") and � �� �(j�j2d + �2) 12 2 �(2")=) p(x; �)� �� �(j�j2d + �2) 12 is invertible:We can then, for � 2 �0 = ��(") and j�j2d + j�j2 � 1, de�ne a homotopy of p0 � �I to thesymbol p(�; �) = (j�j2d + �2) 12 I: Set(7.18) ep0(x; �; �; �) = p(�; �) i2� ZC ��[p(�; �)�1(p0(x; �)� �I)� �I]�1 d�;where C is a curve in (��(")[fj� j � 1g)nR� encircling the eigenvalues of p(�; �)�1(p0(x; �)��dI) (note that �� is well-de�ned on C). Here ep0(x; �; �; �) equals p(�; �)I for � = 0 andequals p0(x; �)��I for � = 1, and it is homogeneous of degree d in (�; j�j1=d), holomorphicin �, C1, and invertible for all � 2 [0; 1], all j�j2d + j�j2 � 1 with � 2 ��(").We can assume that eX contains the neighboorhood U [ U� of X 0 (see the start ofthis section), where we can identify eE with the pull-back of E0. In view of the uniformparameter-ellipticity, there is a neighborhood V of X with X[(X 0�[�c; 0]) � V � X[U�so that P extends to V as an admissible di�erential operator satisfying Assumption 2.21�. Moreover, we can deform the symbol p0(x; �)� � smoothly through u.p.-elliptic  dosymbols homogeneous in (�; j�j1=d) to p(�; �)I by use of (7.18) when xn goes from � 13cto � 23c, and then extend it as p(�; �)I on the rest of eX. This gives a principal symbolp01(x; �; �) de�ned on all of eX, de�ning a u.p.-elliptic  do eP1;� of order d; it is stronglypolyhomogeneous for � 2 e�0. Now take(7.19) eP� = '(P � �I)'+  eP1;� ;where ' and  are admissible (bounded with bounded derivatives) C1 functions on eXwith '2+ 2 = 1, such that ' is 1 on X [ (X 0�[� 19c; 0]) and  is 1 on the complement ofX [ (X 0�[� 29 ; 0]). This eP� is a u.p.-elliptic and strongly polyhomogeneous  do of orderd that acts like P � � on distributions supported in a neighborhood of X. eP�;+ has thesame Green's formula as P , (2.1).eP� has a parametrix eQ0� for � 2 ��("), u.p.-elliptic and strongly polyhomogeneous oforder �d, by the usual formulas. Since eP� eQ0� = I + S� where S� is strongly polyhomoge-neous of order �1, hence has an L2 operator norm going to 0 for j�j ! 1 in ��("), I+S�can be inverted within the calculus (by a Neumann series) for su�ciently large �; here eQ0�can be modi�ed to the true inverse eQ� = eQ0�(I+S�)�1. This is strongly polyhomogeneouswith global spatial estimates, by Theorem 6.5.



TRACE EXPANSIONS 25We now simply de�ne K�� and C�� by (7.17); then the veri�cation that they have thementioned mapping properties goes exactly as in Theorem 7.1. The resulting operatorsare strongly polyhomogeneous by [GS95, Lemma A.1, Th. 1.16] and have global spatialestimates since eQ� and A do so. �For use later in Corollary 8.3 let us also note that % eQ�;+ (as a function of � = (��)1=d 2e�0) is a strongly polyhomogeneous trace operator of class 0, cf. [GS95, Lemma A.1 (ii)].Let us �nally observe the following result on adjoints:Theorem 7.5. Under the assumptions of Theorem 7.1, denote by C 0+ the Calder�onprojector for P � (de�ned according to Theorem 7.1 with Q replaced by Q�). Then(7.20) C 0+ = (A�)�1(I � C+�)A�:Proof. P � has a Green's formula similar to (2.1) with A replaced by �A�, so the Calder�onprojector C 0+ and associated Poisson operator K 0+ for P � are: K 0+ = r+Q�e%�A�,C 0+ = %r+Q�e%�A�. Let K% be a Poisson operator lifting sections ' 2 Hd(E0d1 ) to sectionsu = K%' 2 Hd(E1) such that %u = ', cf. e.g. [G96, Lemma 1.6.4] or the text beforeLemma 2.3 above. Then (7.11) gives by application of %:(7.21) K+%u = u�Q+Pu; C+' = %K+%u = %u� %Q+Pu = '� %Q+PK%':For the term %Q+Pu we note that when  2 eH0(E0d1 ),(%Q+Pu;  )X0 = (e%Qe+Pu;  )X0= (e+Pu;Q�e%� ) eX = (Pu; r+Q�e%� )X = (Pu;K 0+(A�)�1 )X= (Pu;K 0+(A�)�1 )X � (u; P �K 0+(A�)�1 )X = (';A�C 0+(A�)�1 )X0 :It is used here that Qe+Pu 2 Hd( eE1) so that e% and %r+ give the same result, and thatP �K 0+ = 0. Taking this together with (7.21), we �nd:(C+';  )X0 = (';  )� (';A�C 0+(A�)�1 )X0 ; for all ';  ;this implies (7.20). �For systems without the invertibility assumption there are similar formulas with smooth-ing terms. For �rst order systems, the orthogonalized Calder�on projector for P � was in-vestigated earlier by Booss and Wojciechowski in [BW87] (see also Example 5.1 above),playing an essential role in their analysis of the index.8. Analysis of the resolvent.Consider PS as de�ned in Section 2; in particular it can be equal to DB as introducedin Section 5. We shall �nd a constructive expression of its resolvent in a form that allowsshowing asymptotic expansions of traces.The strategy in [GS95] for characterizing the resolvent (�1 + �2)�1 associated witha Dirac-type problem with a boundary condition (�� + B0)
0u = 0 was essentially toexpress the general resolvent as a suitable perturbation of the product case resolvent, by a



26 GERD GRUBBterm that is of lower order at the boundary. When P is not of Dirac-type, we do not havea simpler reference problem (like the product case) to depart from, so a new strategy isneeded. Here we establish the analysis directly by use of a Calder�on projector for P � �.Consider a system � P��S% � satisfying Assumptions 2.1 and 2.2. By Lemma 2.3, it issurjective from Hd(E) to L2(E)�Hd(F ) for each large � 2 �. For suitably small subsectors�0 of � (covering �) we can de�ne the Calder�on projector C+� by Theorem 7.4.Lemma 8.1. Let � 2 �0r (with �0 as in Theorem 7.4 and r so large that eQ� = eP�1�and Assumption 2.2 is satis�ed). Then SC+� has the following right inverse, where K� isde�ned by Lemma 2.3,(8.1) S0� = %K�;it is a  do mapping Hs;�(F ) into Hs;�(E0d) with norm uniformly bounded in � = j�j1=d,for any s � d.Proof. By the converse part of Theorem 7.2 1�, (8.1) is a right inverse of SC+� . Themapping property follows from the second statement in (2.10) by composition with %. �We would like to use Theorem 6.5 to show that S0� is weakly polyhomogeneous in termsof � = (��)1=d. One di�culty in this is that S0� is just a right inverse of SC+� , not a two-sided inverse (and such right inverses are not uniquely determined). Another di�culty isthat S and C+� are multi-order systems.To eliminate the e�ects of the multi-order, we conjugate the operators (in each subsector�0r) with �F;� = (�jk�d�j�k�1Fj ;� )j;k=0;:::;d�1 and �E0d;� = (�jk�d�j�k�1E0;� )j;k=0;:::;d�1; theentries are de�ned as in the proof of Theorem 6.5. The following operators are of order 0:(8.2) eS� = �F;�S��1E0d;�; eC+� = �E0d;�C+� ��1E0d;�:Since C+� and the �� are strongly polyhomogeneous, so is eC+� . Then by the remark afterDe�nition 6.3, eC+� is special parameter-dependent of order 0. For eS� it follows from thelower triangular form of S that eS� is again lower triangular. The entries in and below thediagonal are of the form �d�1�jFj ;� Sjk�k+1�dE0;� with j � k and thus, since Sjk 2 Sj�k � Sj�k;0,they are seen to have symbols in S0;0 with �-derivatives of order m in S�m;0 \ S0;�m forany m, by calculations as around (6.15). (For k < j < d � 1 one needs the observationthat Sj�k;k�j \Sj+1�d;d�1�j � S0;0 by interpolation since j�k > 0, j+1�d < 0.) ThuseS� is special parameter-dependent of order 0. We also de�ne(8.3) eS0� = �E0d;�S0���1F;�:Theorem 8.2. Let P and S satisfy Assumptions 2.1 and 2.2. For � in truncated subsectors�0r of � (as in Lemma 8.1), the operator SC+� has a right inverse S00� = ��1E0d;� eS00��F;� whereeS00� is special parameter-dependent of order 0 (in terms of � = (��)1=d).The right inverse S0� de�ned in Lemma 8.1 equals C+� S00� , and eS0� de�ned by (8.3) isspecial parameter-dependent of order 0.Proof. The operator eS� eC+� is continuous from Ht;�(E0d) to Ht;�(F ) for any t. It hasthe right inverse eS0�, which is continuous from Ht;�(F ) to Ht;�(E0d), uniformly in �, for



TRACE EXPANSIONS 27t � 12 , in view of (8.1), (2.10) and the mapping properties of the �lFj ;�. In particular, thecontinuity holds with t = 1. We can then apply Theorem 6.5 2� with l = 1, which showsthe existence of a right inverse eS00� that is special parameter-dependent of order 0.The right inverse we have constructed in this way need not be the same as eS0� de�nedafter Lemma 8.1 in (8.3). However, since � P��S% � is bijective, we infer from the converseparts of 1� and 2� in Theorem 7.2 that � SC�� � is injective and SC+� is surjective, hence Sde�nes a bijection of Ns�;+ onto Hs(F ), and so does SC+� . Then SC+� has only one rightinverse ranging in Ns�;+. Now S0� in (8.1) does map into Ns�;+ since (P � �)K� = 0, so itis the right inverse of SC+� ranging in Ns�;+. When S000� is an arbitrary right inverse, thenI = SC+� S000� = SC+� C+� S000� , so C+� S000� is a right inverse ranging in N�;+; hence it mustequal S0�. In particular, for the right inverse S00� found above,(8.4) S0� = C+� S00� :It then follows from the rules of calculus that also eS0� = �E0d;�S0���1F;� = eC+� eS00� is a specialparameter-dependent  do of order 0. �Since eQ� is the inverse of eP�, we can now apply the direct part of Theorem 7.2 1� todescribe the inverse of � P��S% �. This gives as an immediate corollary:Corollary 8.3. For � in truncated subsectors �0r of � (as in Lemma 8.1), the resolventR� = (PS � �)�1 and the Poisson solution operator K� in (2.6) satisfy(8.5) R� = eQ�;+ �G� with G� = K+� S0�S% eQ�;+; K� = K+� S0�;where S0� is as in Theorem 8.2.In terms of � = (��)1=d, K+� resp. % eQ�;+ are a strongly polyhomogeneous Poisson resp.trace operator, and �E0d;�S0���1F;� and �E0d;�S0�S��1F;� are special parameter-dependent do's of order 0. In particular, we can write(8.6) G� = K�S�T� with K� = K+� ��1E0d;�; S� = �E0d;�S0�S��1E0d;�; T� = �E0d;�% eQ�;+;where K� is a strongly polyhomogeneous Poisson operator of order 1 � d, S� is a specialparameter-dependent  do on X 0 of order 0, and T� is a strongly polyhomogeneous traceoperator of order �1 and class 0.Here S0� and S0�S are covered by the analysis in Theorem 8.2, whereas K+� and % eQ�;+were described in Theorem 7.4�.9. Trace formulas.We can �nally obtain trace formulas, by the methods of [GS95].Theorem 9.1. Let PS be the realization (2.3) de�ned from a di�erential operator P oforder d in a bundle E over a manifold X together with a boundary condition (2.2) (alladmissible), such that Assumptions 2.1 and 2.2 are satis�ed. When (m+1)d > n = dimX,the resolvent R� = (PS � �)�1 satis�es for any compactly supported morphism ' in E:(9.1) Tr('@m� (PS � �)�1) � a0(��)nd�m�1 +P1j=1(aj + bj)(��)n�jd �m�1+P1k=0(ck log(��) + c0k)(��)� kd�m�1;



28 GERD GRUBBfor � ! 1 in closed subsectors of �. The coe�cients aj , bj and ck are integrals,RX1 aj(x) dx, RX01 bj(x0) dx0 and RX01 ck(x0)dx0, of densities aj locally determined by thesymbols of P , resp. bj and ck locally determined by the symbols of P and S at X 0; hereX1 is a smooth compact neighborhood of supp' in X such that X 01 = X1 \ X 0 is aneighborhood of supp' \X 0 in X 0. The c0k are in general globally determined.Proof. '@m� R� is trace class, since it maps L2(E) into H(m+1)d(EjX1) and the injectionH(m+1)d(EjX1) ,! L2(EjX1) is trace class. The kernel is continuous and the trace is theintegral of the �ber trace of the kernel on the diagonal, so one only has to integrate overX1. Consider a truncated subsector �0r as in Lemma 8.1. From Corollary 8.3 follows that(9.2) @m� R� = @m� (PS � �)�1 = m!(PS � �)�m�1 = m!( eQ�;+ �G�)m+1= m!( eQ�;+)m+1 +Pm+1k=1 polk( eQ�;+; G�)= m!( eQm+1� )+ + eG� +Pm+1k=1 polk( eQ�;+; G�);where the expressions polk are \polynomials" in the two (non-commuting) terms in R�, inthe sense that they are linear combinations of compositions with m � k factors eQ�;+ andk factors G�. The term eG� is the singular Green operator (cf. e.g. [G96, (1.2.35)])(9.3) eG� = m!(( eQ�;+)m+1 � ( eQm+1� )+):In the dependence on � = (��)1=d, we have in view of the rules of calculus of [GS95], [G96]that eQm+1� is a strongly polyhomogeneous  do of order �(m+1)d on eX, eG� is a stronglypolyhomogeneous singular Green operator of order �(m + 1)d on X, and the sum overk is a sum of compositions containing strongly polyhomogeneous operators (of all types)together with the special parameter-dependent  do S�, cf. (8.6).Consider the traceTrX '@m� R� = TrX 'm!( eQ�)m+1+ + TrX '[ eG� +Pm+1k=1 polk( eQ�;+; G�)]:By the construction of eP� in Theorem 7.4, the restriction ( eQm+1� )+ of eQm+1� is the restric-tion of a strongly polyhomogeneous parametrix of (P � �)m+1 de�ned on a neighborhoodof X, so TrX 'm!( eQm+1� )+ contributes a well-known expansion P10 aj(��)n�jd �m�1.The singular Green operator ' eG� is strongly polyhomogeneous of order �(m+1)d andhence of regularity +1 in the sense of [G96], so it contributes an expansionP11 b0;j(��)n�jd �m�1, by the proof of [G96, Th. 3.3.10�.], also recalled in [G92, App.].In view of (8.6), the terms in the polynomials polk contain S� as one or several factors.Here we use the invariance of the trace under cyclic permutation of the operators, to reduceto the study of an operator on X 0. Since eQ�;+ composes with strongly polyhomogeneousPoisson and trace operators to give Poisson resp. trace operators that are again stronglypolyhomogeneous, each term in polk has the structure(9.4) G� = 'K1;�S�T1;�K2;�S�T2;� : : :KJ;�S�TJ;�;with G� of total order �(m+1)d and the Kj;� and Tj;� strongly polyhomogeneous Poissonand trace operators of order � 0 and class 0. Let  denote a morphism over X 0 that is the



TRACE EXPANSIONS 29identity over a neighborhood of supp' \X 0 and is supported in X 01; then 'K1;�(I �  ) isstrongly polyhomogeneous of order �1, so its norm in Sobolev spaces is O(h�i�M ), anyM , and TrX 'K1;�(I �  )S�T1;�K2;�S�T2;� : : :KJ;�S�TJ;� is O(h�i�M), any M . For theremaining part,(9.5) TrX 'K1;� S�T1;�K2;�S�T2;� : : :KJ;�S�TJ;� = TrX0 S 0�; withS 0� =  S�T1;�K2;�S�T2;� : : :KJ;�S�TJ;�'K1;�;here the factors Tj;�Kj+1;� and TJ;�'K1;� are strongly polyhomogeneous  do's on X 0 oforders � 0. It follows that the  do S 0� is a special parameter-dependent  do of order�(m + 1)d. We can now apply [GS95, Th. 2.1] to this by integration over X 01, using areduction to local trivializations and a partition of unity. Since X 0 has dimension n � 1and the symbol has degrees �(m+ 1)d� k, k � 0, and �-exponent �(m+ 1)d, we get anexpansion in a series of locally determined terms ~bk(��)n�kd �m�1, k � 1, together with aseries of terms (~ck log(��) + ~c0k)(��) kd�m�1, k � 0, with ~ck locally determined.Collecting all the contributions, we �nd (9.1). �We have as an immediate consequence:Corollary 9.2. When J in Assumption 2.2 contains [�2 ; 3�2 ] in the interior, and R� existson W (cf. Section 1), then the heat operator e�tPS has an expansion for t ! 0, when 'has compact support:(9.6) Tr('e�tPS ) � �a0t�nd +Pj�1(�aj +�bj)t j�nd +Pk�0(�ck log t+ �c0k)t kd ;here the coe�cients are proportional to those in (9.1) by universal factors.Proof. The expansion (9.6) is shown by inserting in (1.4) sums of terms from (9.1) downto a certain order plus a remainder O(h�i�N ), and letting N !1. Here one uses simplecalculations such as:(9.7) R@W e�t�(��)s log(��) d� = � dds R@W e�t�(��)s d�= � dds t�s�1 Rt@W e�%(�%)s d% = const. t�s�1 log t: �Theorem 9.1 holds in particular for (DB + �)�1, giving expansions of the form(9.8) Tr('@m� (DB + �)�1) �Pn�1j=0 cj�n�n�j�m�1 +Pk�0(ck log�+ c0k)��k�m�1;for �!1 in closed subsectors of �0. We apply this to (5.1) by use of (5.3) as in [GS95,Sect. 3.4], taking ' = ('kl)k;l=1;2 with just one block di�erent from zero in order to get thetraces of the individual blocks in (5.3), and setting � = ��2. This gives trace expansionsof the m'th derivatives of '(�i � �)�1 (i = 1; 2),  DB(�1 � �)�1 and  DB�(�2 � �)�1,with consequences for heat trace expansions:Theorem 9.3. Let DB be the realization of a �rst-order uniformly elliptic di�erentialoperator D from E1 to E2 with a uniformly well-posed boundary condition B
0u = 0(manifolds, bundles and operators being admissible). Then when ' and  are compactly



30 GERD GRUBBsupported morphisms (in Ei resp. from Ej to Ei, i; j = 1; 2), there are resolvent traceexpansions in closed truncated subsectors of C n R+, for m � n:Tr('@m� (�i � �)�1) �Pn�1j=0 ~ai;j�n(��)n�j2 �m�1+Pk�0�~ai;k log(��) + ~a0i;k�(��)�k2 �m�1;(9.9) Tr( DB@m� (�1 � �)�1) �Pn�1j=1 ~b1;j�n(��)n�j+12 �m�1+Pk�0�~b1;k log(��) + ~b01;k�(��)�k+12 �m�1;with a similar formula for Tr( DB�@m� (�2� �)�1) with coe�cients ~b2;k and ~b02;k. If DB isbijective (so �i > 0), or X is compact, there are heat trace expansions for t! 0+:(9.10) Tr('e�t�i) �Pn�1j=0 ai;j�nt j�n2 +Pk�0�ai;k log t+ a0i;k�t k2 ; i = 1; 2;Tr( DBe�t�1) �Pn�1j=1 b1;j�nt j�n�12 +Pk�0�b1;k log t+ b01;k�t k�12 ;with a similar formula for Tr( DB�e�t�2) with coe�cients b2;k and b02;k. The coe�cientsin (9.10) are proportional to those in (9.9) by universal factors. The unprimed coe�cientsare locally determined; the primed coe�cients depend on the operators in a global way.The terms ~bi;�n(��) 12�m�1 and bi;�ntn+12 have been left out, since their coe�cients areformed by integration in � of functions that are odd in �, which gives zero. When the�i > 0, (1.4) is used to get (9.10). When X is compact, the resolvent has a pole at 0 whenkerDB 6= 0, and we use [GS96, Cor. 2.10, Th. 5.3] as in [GS95]. Then one also gets zetaexpansions, with the same ai;k; a0i;k; bi;k and b0i;k:(9.11) �(s) Tr('��si ) � n�1Xj=0 ai;j�ns+ j�n2 � Tr'�0(DB)s +Xk�0� �ai;k(s+ k2 )2 + a0i;ks+ k2 �;�(s) Tr( DB��s1 ) � n�1Xj=1 b1;j�ns+ j�n�12 +Xk�0� �b1;k(s+ k�12 )2 + b01;ks+ k�12 �;with a similar formula for Tr( DB���s2 ) with coe�cients b2;k and b02;k. (The left-handside is meromorphic on C and the right-hand side gives the full pole structure.)The results apply of course to all the cases presented in the examples in Section 4.For comparison with earlier results it is of interest to see how the expansions vary underperturbations of B. Let us consider two choices B1 and B2 of B, setting B0 = B2 � B1.Denote Bi = (Bi (I�B�i )�� ) ; for i = 1; 2; B0 = B2 � B1. Let (Ri;� Ki;� ) be the inverse of�D+�Bi
0 � for � 2 C n iR. Then(R2;� K2;� ) = (R1;� K1;� )�D+�B1
0 � (R2;� K2;� ) = (R1;� K1;� )� I 0�B0
0R2;� I�B0
0K2;� � ;which implies that(9.12) R2;� �R1;� = �K1;�B0
0R2;�; K2;� �K1;� = �K1;�B0
0K2;�:



TRACE EXPANSIONS 31Theorem 9.4. In the above notation, when B0 is a  do of order �1,(9.13) Tr'@m� (R2;� �R1;�) �Pn�1j=2 cj�n�n�m�1�j +Pk�0(ck log�+ c0k)��m�1�k;Tr'@m� (R2;� �R1;�) �Pk�0 c0k��m�1�k; if B0 is of order �1:Proof. We �nd by circular perturbation (as in Theorem 9.1) of the expression in (9.12):TrX '@m� (K1;�B0
0R2;�) = TrXPk�m �mk �'@k�K1;�B0
0@m�k� R2;�= TrX0 @m� (B0
0R2;�'K1;�) = TrX0 S0�;where S0� = @m� (B0
0( eQ�;+ �K+� S02;�B2
0 eQ�;+)'K+� S01;�);the S0i;� denote the right inverses of BiC+� constructed for the respective problems inLemma 8.1 and Theorem 8.2. It is found from the composition rules that S0� has symbolin S�2�m;0\S�1;�1�m (in S�1;�1�m if B0 is of order �1). Then [GS95, Th. 2.1] implies(9.13), when m � n� 2 (resp. for any m). �In the case with X compact and a product structure near X 0, the Calder�on projectordi�ers from �� by an operator of order �1 by Proposition 4.1, so for B = C+, theexpansions (9.9){(9.11) only di�er in the primed coe�cients from the expansions knownfor B = ��, by (9.13). Here it was shown in [GS96] that all the logarithmic terms vanishwhen n = dimX is odd; when n is even, the logarithmic terms with k even > 0 vanish,and the logarithm at the power zero vanishes if in addition ' = I (exact formulas werealso given). So we �nd:Corollary 9.5. Consider the product case with X compact, B = C+. Then the expan-sions (9.9){(9.11) di�er from those known for B = �� only in the primed coe�cients. Inparticular: When n is odd, all the logarithmic terms vanish. When n is even, the logarith-mic terms with k even > 0 vanish in (9.9){(9.10); also the ~ai;0 and ai;0 vanish if ' = I.The same holds for smooth perturbations of �� or C+.Note that it is the global coe�cients that may be changed when we replace �� by C+ inthe product case, whereas the locally determined coe�cients are unchanged. Their valuesare in principle determined from the precise formulas in [GS96].Remark 9.6. Our results show that the boundary conditions considered in [BL97] giveheat operators with trace expansions (9.10) also when the structure is not of product typenear X 0; this is a new result. Comparison with perturbations as in Theorem 9.4 �.Let us �nally observe the resulting index formula:Corollary 9.7. Let X be compact and let B be well-posed for D. Let ' = 1 in (9.10).Then the index of DB equals(9.14) indexDB = a01;0 � a02;0:Furthermore, all the other coe�cents coincide for i = 1 and 2: a1;k = a2;k for all k ��n and a01;k = a02;k for all k > 0.Proof. This follows from the well-known fact (cf. e.g. [G96, Sect. 4.3]) that indexDB =Tr e�t�1 � Tr e�t�2 for t > 0. Since this expression is constant in t, the variable termsmust vanish. (One can make a successive elimination of the terms (a1;�n � a2;�n)t�n2 ,(a1;1�n � a2;1�n)t�n�12 , etc., by order of magnitude.) �
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