TRACE EXPANSIONS FOR PSEUDODIFFERENTIAL
BOUNDARY PROBLEMS FOR DIRAC-TYPE OPERATORS
AND MORE GENERAL SYSTEMS

GERD GRUBB

1. Introduction.
One of the purposes of this paper is to prove asymptotic expansions of heat traces

Tr(pe '21) ~ Z a; xt"? + Z(ai’k logt + agvk)tk/z, for t — 0,
(1.1) —n<k<0 k=0
Ay =Dg"Dp, Ay=DpDp",

for general realizations Dpg of first-order differential operators D (e.g. Dirac-type opera-
tors) on a manifold X with pseudodifferential boundary conditions: B(u|x/) = 0 at the
boundary 0X = X’. In (1.1), ¢ denotes a compactly supported morphism. The coefficients
without primes are locally determined, the primed coefficients global.

Such realizations were considered first by Atiyah, Patodi and Singer in [APST75] who
showed an interesting index formula in the so-called product case, when X is compact. We
say that D is of Dirac-type when D = (0., + A1) on a collar neighborhood of X', with a
unitary morphism o and a first-order differential operator A; such that Ay = A+x, P+ P
with A selfadjoint on X’ and constant in x,, and the P; of order j; the product case is
where Py = Py = 0. B was in [APS75] taken equal to the orthogonal projection II> onto
the eigenspace for A associated with eigenvalues > 0.

For Dirac-type operators on compact manifolds, finite expansions (1.1) (up to k& = 0,
with ¢ =1 and a; o = 0) were shown in [G92], implying the index formula

(1.2) index Dp = ay g — ab, when ¢ =1 and X is compact.

Full expansions were established in Grubb and Seeley [GS95], with precisions for the prod-
uct case in [GS96]. Here B = II> + B, with special finite rank perturbations By.

Booss-Bavnbek and Wojciechowski studied, for the compact product case, the index of
Dp in [BW93] and other works with B = C* + S, where C'" is the Calderén projector
for D (having the same principal part as II>) and S is a pseudodifferential operator (1do)
of order —1. One of our motivations for the present work was to establish (1.1) for such
problems too. A different type of boundary condition was introduced by Briining and Lesch
in [BLI7] (in a study of the gluing problem for the eta invariant), where they showed heat
trace expansions in the product case but with B principally different from IT> (Example
4.2 below). For this type, we obtain (1.1) without the product assumption.

Actually, we find that there are many more boundary conditions, different from the
above, for which (1.1) can be obtained. In fact, D need not even be of Dirac-type, but can
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be any first-order elliptic differential operator. B need not be closely linked to the Calderén
projector but can be any ¥ do that is well-posed for D in the sense defined by Seeley in [S69,
Ch. VI]. We obtain (1.1) and (1.2) in all these cases (including those previously known)
for compact X, and generalize (1.1) to suitable noncompact situations.

The freedom to choose more general B seems to be useful e.g. for variational studies. It
is also interesting to allow general D that are not tied, by the requirement of (principal)
selfadjointness of the tangential part, to a specific choice of Hermitian structures.

In our method to establish (1.1), we imbed Dp and Dp*, which are in themselves
only injectively elliptic, into a truly elliptic system Dg, which we treat by use of the
Calderdn projector for D+ p and by an elaboration of the calculus of weakly polyhomoge-
neous tdo’s introduced in [GS95]. This treatment works also for general elliptic systems
P of order d > 1 with appropriate pseudo-normal »)do boundary conditions Spu = 0
(ou = {(DJ u)|x'}o<j<a). We show a general result on resolvent and heat operator trace
expansions for such realizations:

oo

Trodf (Ps —A) 1~ Y &= Z & log(—A) + &) (=A)da M1,
—n<k<O0 k=0

&I’“

(1.3)

Trape_tps ~ Z (‘k7‘§ + Z cp logt + cj)td, for t — 0;
—n<k<0 k=0

in the first formula, A — oo on a ray in C, and the second formula follows, when
(Ps — A\)~! exists and the expansion holds for A — oo in an obtuse keyhole region W =
{A A <7ror|argA — 7| < 5 + ¢}, from the formula

(1.4) Trpe 75 = ﬁ / <—7f)7me*tA Tr pdy' (Ps — )\)71 d\.
Jow

Such expansions were shown in cases where S is a differential operator by Seeley [S69a]
and Greiner [Gre71]; then there are no logarithmic terms and all the coefficients are locally
determined. The crucial step in the analysis is to find the symbol structure of the resolvent.
We do this not only for compact manifolds but also in noncompact situations with global
estimates; here we use the calculi established in [GK93] (with Kokholm), [G95], [G96].

The plan of the paper is as follows: The hypotheses on general systems {P, So} are
explained in Section 2. Well-posed first-order problems are introduced in Section 3, with
examples in Section 4 and the imbedding into elliptic systems in Section 5. In Section 6
we show a technical result on spectral invariance of the weakly polyhomogeneous calculus
from [GS95] (drawing on [G95]), and in Section 7 we establish the necessary results on
Calderon projectors. In Section 8 we determine the structure of the resolvent, and in
Section 9 we derive the trace estimates by use of [GS95].

2. The general set-up.

On an n-dimensional C'*° manifold X with boundary 0X = X’ we consider an elliptic
differential operator of order d, P: C>*(X, Ey) — C*(X, E3), between sections of Hermit-
ian C'*° vector bundles F; and Es of dimension N. X is provided with a smooth volume
element v(z)dx defining a Hilbert space structure on the sections.
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In order to include noncompact manifolds such as R”, Ei and exterior domains R" \ Y/,
K:LL \'Y (Y smooth compact), we take X to be admissible as defined in [GK93], [G96];

this means that X is the union of a compact piece and finitely many conical pieces of
the form {x = txg | g € M C S""', ¢ > r}. X is covered by a finite system of
local coordinate patches diffeomorphic to either bounded or conical open subsets of R”.
The use of such manifolds is worked out in detail in [GK93], [G95], [G96], so we can
be brief here. The crucial assumption is that the admissible coordinate changes k are
such that |k(x) — k(y)|/|z — y| is bounded above and below by positive constants, and all
derivatives of k and x~! are bounded. Admissible vector bundles are likewise defined. The
differential operators and 1)do’s considered in this context are defined by reference to the
admissible local coordinate systems; their symbols are assumed to have global estimates
in the space variable x, as in Hormander [H85, Sect. 18.1]. The concepts are extended to
pseudodifferential boundary operators in [GK93|, [G95], [G96]. An advantage is that the
calculus has rather precise composition rules, where all remainders lie inside the calculus.
For brevity, we shall call such operators admissible (in [G96] they are called uniformly
estimated or globally estimated), and we always assume in the following when working
with admissible manifolds that the operators are of this type. — A reader who is mainly
interested in the case of compact manifolds can just disregard this generality.

The Sobolev space of order s of sections of E; is denoted by H*(X, E;) or just H*(E};);
it is defined by use of admissible local coordinates.

We denote E;|x: by E]. We assume that a normal coordinate x,, has been chosen in a
neighborhood U of the boundary X’ such that the points are represented as x = (2/, )
there with 2’ € X', x,, € [0,c(a’)], the E; are isomorphic to the pull-backs of the E!
there, and there is a normal derivative 9, . X' is provided with the volume element
v(z',0)dx" induced by wv(2’, x,)dx'dx, on U. For a compact manifold, we take U as a
collar neighborhood X. = X’x [0, ¢[; more generally this is used for the compact part and
extended conically in the conical parts (cf. [G96, Sect. A.5]).

Let 0 = {70, ..., Ya—1} with yju = (=10, ) ul,, —o (i denotes the imaginary unit /—1).
For s > d — %./ o maps H*(E;) into H*(E/1) = HOS.7'<d H'**j*%(Eg) (Bl = EBOSj<d E)).
The sections u of By and w of Ey in H® (s > d — 1) satisfy Green’s formula

(PU,IU)X - (U, P*w>X = (AQUJ Qw)X’a

2.1
(2.1) A = (Ajk)jk=0,.a-1 with Aj, of order d — 1 — j — k.

Here the Aj;, are differential operators; those with k> d — 1 — j are 0 (A is upper skew-
triangular) and those with & = d — 1 — j are isomorphisms, so A has an inverse of a similar
type, just lower skew-triangular.

When S is an operator on H¢(E%), the boundary condition

(2.2) Sou=0
determines the realization Pg of P, defined as the operator acting like P and with domain
(2.3) D(Ps) = {u € HY(X, Ey) | Sou = 0}.

We shall study boundary conditions that are pseudo-normal in the following sense:
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Assumption 2.1. (PSEUDO-NORMALITY) S is a matrix of admissible classical 1do’s Sj,
going from E} to admissible bundles F; over X' such that

S = (Sjk)j’k:o’m’dfl, with S]k of order ] — ]C, S7k =0 for 7 < ]C,

2.4
(2:4) S;; surjective and uniformly surjectively elliptic.

For convenience of notation, we here include bundles F}; of dimension 0. We denote
®O<j<d F; = F. It will often be tacitly understood in the following that symbols and
operators are taken admissible when the manifolds and bundles are so.

The new generality in comparison with the normal boundary conditions considered in
[G96] (for compact manifolds, the information is found also in [G86], this will not be
repeated), is that the S;; are now allowed to be 1)do’s; this is needed in our application to
first-order operators. The normal boundary conditions have just surjective morphisms as
the S;;, hence regularity v > 0, whereas the present boundary conditions have regularity
v = 0, in the sense of the regularity concept from [G96]. (There is a discussion in [G96,
Remark 1.5.8]. In other ways the conditions in the book are more general.)

Our basic hypothesis for the resolvent analysis is the following:

Assumption 2.2. (RESOLVENT GROWTH CONDITION) Let Ey = Ey = E. There is an
open sector I' = {\ € C\ {0} | arg A € .J} (for an open interval J C [0, 2x]) such that the
following holds:

1° P is elliptic, and for the principal symbol p° of P, p®(x, &) — X is invertible for all
(z,&,\) with A € TU {0}, [£]? + |A|?/¢ > 1, the inverse being O((|¢|¢ + [A])~") on closed
subsectors I"', uniformly in x.

2° F has dimension Nd/2, the system {P, So} is elliptic, and for any closed subsector
[ there is an r > 0 such that the resolvent Ry = (Ps — \) ! exists as a bounded operator
in Ly and is O(A™') for A € I');

(2.5) I ={xel' ||\ >r].
The first property means uniform parameter-ellipticity of P — A, as defined in [G96,
Sect. 3.1].

The second property contains a global requirement of invertibility. If So is normal, such
invertibility for large A is assured by a condition on principal symbols, namely uniform
parameter-ellipticity of {P — X, So} as defined in [G96, Sect. 3.1]. This means that the
associated model problem on Ry for each (2/,&',\) with |¢/|? + |A]?/? = 1 is uniquely
solvable with uniform bounds in 2’ for the solution operator, for A in closed subsectors
of I'. Then the results of [G96, Sect. 3.3] imply invertibility with the O(A~') estimate
for large A\. When S is merely pseudo-normal, property 2° depends not just on principal
symbols but on the full structure; it is verified e.g. if Pg is selfadjoint.

Ry, will now be supplied with a Poisson operator K, to define an inverse of the full
system {P — A, Sp}. In the following lemma, K, denotes an auxiliary Poisson operator
such that oK, = I, constructed e.g. as in [G96, Lemma 1.6.4] with (&) replaced by
((€,|A])). (We use the notation () = (|z1]2 + -+ |2,|2 + 1) for 2 = (21....,2,).)
In its dependence on pu = \A\l/d, K, is strongly polyhomogeneous on all rays, cf. Section
6, [GS95, App.]. If holomorphy in ) is desired, one can instead take the Poisson operator
K,: ¢ — u solving the following Dirichlet problem, where A?? is a positive differential
operator with principal symbol (¢)2? and |arg A — w| < 7/2:

(A" (e7“N2)u=00on X, ou=¢pon X"
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Lemma 2.3. Let Assumptions 2.1 and 2.2 hold. For the A such that Ry is defined, there
exists a unique Poisson operator K such that

—1
P—-A .

(26) ( SQ > = (R)\ IXA).

In a neighborhood of each ray in I', K\ equals

(2.7) Ky =1[I—Rx(P—\)]K,.5

here S" = (S;k)j,kzo,...,d 1 is a right inverse of S, constructed such that for all j, k, S’k is a
classical v»do of order j — k, S7k =0 for j < k, and S’- is injective and injectively elliptic;
and K, \ is an auxiliary right inverse of ¢ as descnbed above.

Proof. Let us first explain the construction of S’. We can write S = Sdiag + Ssub, Where
Sdiag = (0j8Sjk)jk=0,....a—1 and Sg,p, is subtriangular (has zero entries in and above the
diagonal). Here Sgiag is surjective and surjectively elliptic of order 0 from E'l to F,
hence SgiagSdiag™ 1s bijective and elliptic of order 0 in F' and therefore has an (elliptic)
inverse [SqiagSdiag”]”'. Then Sgiag has the right inverse Stiag = Sdlag*[Sdlangmg*}_];
again a classical ¥»do of order 0. Finally, since SSdlag = I+ SqupS” where Sgup S/,
subdiagonal and hence nilpotent, S has the right inverse

S' = S;liag(f + SSlleéiag>_] = S;liag ZO§l<d( SSUbSdmg) 3

it is of the asserted form. (Admissibility follows fom [G95, Th. 1.12].)
The operator K, required in (2.6) is the solution operator for the problem

diag’ dlag

(2.8) (P—XNu=0o0onX, Sou=¢ponX.

First note that since R, is injective, the problem has at most one solution u for any ¢.
Define Ky by (2.7); then check that u = K¢ solves (2.8) by observing:

(P—=XMN[I —Rx(P—X)]=0since (P— ARy =1,
and, using that SoR, = 0,
SQI\’)\ = SQI(Q)\S/ =1I1. O

For each fixed A, the inverse ( Ry K, ) belongs to the pseudodifferential boundary
operator calculus ([BMT71], [G96]), but to start with, we in general only have a rough
information on the behavior of R) with respect to A that comes from its definition as
a resolvent. Before showing this in an elementary lemma, let us recall the definition of
parameter-dependent Sobolev spaces (used e.g. in [G96], [GS95]):

For s € R, the space H%#(R") is the Sobolev space provided with the norm

(2.9) [ll s = [[C(E, 1))* @] 1o (rm)-

The notion is extended to sections of a Hermitian bundle F' over X by use of a finite
family of admissible local coordinate systems (the space is then denoted H**(X, F) or
H*#(F)). Note that H*°(F) ~ Lo(F), and that for s > 0, the norm is equivalent with

(el + (1)l 7,) 2.
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Lemma 2.4. Let Ry and K, be as in Lemma 2.3. For any s > 0, R) and K, define
continous mappings (where p = |\, Hs+tE1(F) = [To<j<a H'*“Ld*-'*%’“(Fj))

(2.10) Ry: HYM(E) — HHH(E), Ky HHOH(F) — B0 (E)

3
uniformly for A in subsectors I'! (as in Assumption 2.2).

Proof. From the elliptic regularity for the A-independent system {P, So} and from the
resolvent growth condition follows that for k > 1, v € D(Ps) N H*(Ey),

(2.11) [oll re < crw(Psollpa-na + [[ollga-na),  [AL[|[BAfllz, < c2llfllz,,
uniformly for A € I'.. We use this first with v = Ry f and k£ = 0 to see that on the ray
A= :udeie'/ H > Tl/d?

(212)  ||Rxfllpran < cs([|Bxfllma + (N [BAS] L)
< ca([[(Ps — MR flln, + MBI 2, + [[RAflI0,) < eslfllr;

in other words, R is continuous from Lo(E) to H%*(E), uniformly for p > r/,

Next, combining (2.11) with (2.12) we find for k& = 1:

IBxfllprza < es([|RAFIlmr2a + (AV*[|RAf| )
< c4(I(Ps = N Rafllga + AN RAf [ a + [|Rxfll e + (N2 RA S 1,)
< 5[ lre + Ml 22) < collf e

This can be continued to give H*+D%4 estimates of Ry f in terms of H*%# estimates of
f for k= 2,3,..., and we conclude that the first statement in (2.10) holds for s = dk,
k=0,1,2,.... The remaining values of s > 0 are included by interpolation.

For the second statement we have: When C' is a parameter-independent y)do on X’
of order [ > 0, it is bounded from H** to H*~F for all s € R, uniformly in pu; cf.
Section 2.5 in [G96] (using that C is of regularity v = | > 0). It follows that S’ maps
HHH(E'Y) = [To<j<a Hs~i—2#(E') into H**(F) with uniform bounds in p, for s € R.
[G96] also shows that ¢ maps H**(E) into H**(E'") for s > d — 1 and that K, is
continuous in the opposite direction, with uniform bounds in u. Applying these facts to
the factors in (2.7) and using what we just found for R), we obtain the statement for K
in (2.10). O

Remark 2.5. There do exist boundary conditions other than those satisfying the assump-
tion of pseudo-normality, for which the resolvent is O(A™") on rays in C. One example
is the condition A’_]Dmlylu + A'you = 0 for A on R} studied in [G96, Ex. 1.7.17] (here

A = (I — A,)2); the coefficient of ~; is not surjective.

For another type of example containing negative-order tdo’s on X’ and defining a
realization Pg that is skew-selfadjoint and hence has many rays where the resolvent is
O(A7'), see Remark 5.2 later. We expect that such cases may still be handled by variants
of the present methods, but will give extra log terms at some of the negative powers of ¢
in (1.3).

A third example is Dg* Dpg considered below; here the surjectiveness is missing in the
boundary condition Bygu = 0, (I — B*)o*7(0y, + A1)u = 0; but the questions for this
operator are dealt with in a different way, as will be shown.
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3. First order well-posed boundary problems.

For first-order operators (and odd-order operators more generally) it may not be possible
to fulfill Assumptions 2.1 and 2.2 that lead to good resolvents  already the condition in
Assumption 2.2, that Nd be even, needs not hold. However, for compact manifolds it is
known that there exist ¢»do boundary conditions (not pseudo-normal)

(3.1) Bryou =0,

such that the realization Pg is a Fredholm operator with a similar adjoint Pg*. In this
case there is an interest in studying the positive selfadjoint operator Pg*Pg, which does
have a resolvent. We now consider such problems in detail.

Let D be a first-order elliptic operator on X; D: C*®(FE;) — C*°(F3), where FE; and
F5 are N-dimensional Hermitian vector bundles over X. D can be represented on U as

(3.2) D = o(3Z + Ay),

where o is an isomorphism from E4|y to Es|y and Ay is a first order differential operator
that acts in the 2’ variable at x, = 0. Ay|, —o has the principal symbol af(a2’,¢’). For
these operators,

(3.3) A=—con X"and g =179 in (2.1).

Definition 3.1. 1° We say that D is “of Dirac-type” when o is a unitary morphism,
and

(34) A] :A-|-.’17nP]+P0 on U7

where A is an elliptic first-order differential operator in C*°(E") which is selfadjoint with
respect to the Hermitian metric in E', and the P; are differential operators of order < j.

2° The product case is the case where D is of Dirac-type and, moreover, v(x)dr =
v(2',0)dx'dx,, on U, o is constant in x,, and Py = Py = 0.

As explained in [G92, p. 2036], unitarity of o in (3.2) can be obtained by a simple
homotopy near X', whereas the assumption on A; in 1° is an essential restriction in
comparison with arbitrary first-order elliptic systems; it means that the principal symbol
al(2’,¢") of Ay at x, = 0 is Hermitian symmetric. P; and P, can be taken arbitrary near
X', but for larger x,,, P; is subject to the requirement that D be elliptic.

To begin with, let X be compact. When 1° holds, a{(2’, ') equals the principal symbol
a’(a’,€') of A. Since A is selfadjoint and elliptic of order 1, it has a discrete spectrum
consisting of eigenvalues of finite multiplicity going to +00. Along with A one considers the
orthogonal projections II>, Il . II<, Il and II, onto the closed spaces V>, Vs, V<, Vo and
V\ spanned by the eigenvectors belonging to eigenvalues of A that are > 0,> 0,< 0,< 0
resp. = A. These operators are classical ©/do’s of order 0; II, is of order —oo.

Atiyah, Patodi and Singer considered in [APS75] the product case. It is also studied
e.g., in [GS96], [BWI3], [BLIT|, whereas the case where only 1° holds is studied in [G92],
[GS95] and other works. Cases where not even 1° holds, have to our knowledge not been

studied for the purpose of heat trace expansions for boundary problems before.
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We shall study boundary problems satisfying the condition of well-posedness introduced
by Seeley in [S69]. This uses the Calderén projector C'T associated with D (as defined
in [S69]). The reader is kindly asked to consult Section 7 for notation and a general
explanation of Calderén projectors. Since d = 1, C'T is a classical ¥do of order 0 in E]
that projects Hs 3 (X', EY) onto the space N3 of boundary values of null-solutions, for all
s e R

(3.5) N3 =7 C H (X', E}), Z}={z€ H*(X,E;)|Dz=0o0n X};

C~ = [ — C*. The analogous construction for the model operator d°(z’,0,¢, D, ) =
o(2') (7= + af(2’,¢')) on Ry C R (defined from the principal symbol at each boundary

point) leads to the principal symbols ¢® (2, ¢') of C*; they are the projections in CV onto
the spaces N (a’,¢’) of boundary values of the bounded solutions of d°(2’,0,¢’, D, )z(xy,)
= 0 on Ry, respectively. One finds e.g. by changing a{(2’, ¢’) to Jordan normal form that
the spaces Ni(2',¢') are the generalized eigenspaces for a{(a’,¢’) associated with the

eigenvalues having real part 2 0, respectively. Moreover, one has the formulas:
(3.6) )= & [ GrT e ) ar
Ly

integrating over curves £y in Cx = {7 € C | Im7 = 0} encircling the 7-roots of
det(itI + al(2',£")) (the poles of (d°)~1) there, respectively.

Remark 3.2. When D is of Dirac-type, so that al(2',¢’) equals a®(2',¢"), Ny(2', &)
and N_(2/,¢') are orthogonal complements and are spanned by the eigenvectors belonging
to the positive, resp. negative eigenvalues of a’(2’,¢’). The projections c¢*(z',¢’) onto
Ny (X', ¢') along N¢(a', &) are then orthogonal, and they are the principal symbols of 11>
resp. [I.. Thus

(3.7) C*t — I is a classical 1do of order —1 when D is of Dirac-type.

Definition 3.3. (WELL-POSEDNESS) Let X be compact and let D be an elliptic first-
order differential operator from C*(E;) to C*°(FEy). A classical ¥»do B in E{ of order 0
is well-posed for D when:

(i) The mapping defined by B in H*(E") has closed range for each s € R.
(ii) For each (x',¢') with |¢'| = 1, the principal symbol b°(a2/, &) maps Ny (2',¢') in-
jectively onto the range of b°(x',¢') in CN .

A generalization to admissible manifolds will be included at the end of Section 5.

In comparison with the general choices of S: H*(E]) — H*(F') (for d = 1) discussed
in Section 7 from (7.7) on, F' = EY here, so M = N. Condition (ii) assures that the
system {D, By} is injectively elliptic; see the explanation around (7.15) (7.16). But (ii)
is stronger than injective ellipticity, since the range of b°(2’,¢’) for general injectively
elliptic problems can have a larger dimension than b°(z’, &) N, (2, ¢’) has. (One can say
that (ii) means injective ellipticity with smallest possible range dimension for 5°.)

Observe that when B satisfies Definition 3.3, {D, By} cannot be surjectively elliptic
if n > 3, since N is then even and strictly larger than dim Ny (2/,¢’) = N/2. (If n = 2,
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this lack of surjective ellipticity holds when dim N, (2',¢’) < N.) Therefore, the system
{D, By} is not elliptic in the standard terminology, and, for example, its range does not
have a smooth complement. The word “well-posed” does not conflict with this and was
well chosen by Seeley. (Some authors use the dangerous notation “globally elliptic” for
these boundary problems — sometimes even abbreviated to “elliptic”.)

When Definition 3.3 holds, one can replace (3.1) by an equivalent condition

(3.8) Bivou = 0,

where By is a projection in the H5-spaces, in addition to being well-posed for D; cf. [S69].
The range of By in H*(E}) is closed for each s, since it is the nullspace of the complementing
projection I — By which is likewise a @)do of order 0. Thus it is no restriction to assume
that B in (3.1) is a projection; we shall often do that.

Seeley shows in [S69] that for each boundary condition (3.1) with B well-posed for D, the
realization Dp defined as in (2.3) (with domain D(Dg) = {u € H'(X, Ey) | Byou = 0})
is a Fredholm operator from D(Dpg) to Ly(FE2). Moreover, when B is a projection, the
adjoint Dg* (when Dpg is considered as an unbounded operator from Lo(E4) to Lo(Es))
is the realization of D* with domain

(3.9) D(Dp*) ={ue H'(X,Es) | (I~ B*)o*you =0} = D((D*)(1-B)o);

here (I — B*)o* is well-posed for D*. The nullspaces Z(Dp) and Z(Dp™) are finite
dimensional spaces of C™ sections, defining index D = dim Z(Dg) — dim Z(Dg").

It is useful to know that when B has been replaced by a projection By, then furthermore,
B can be replaced by a projection By that is orthogonal in Lo(EY). This may possibly be
inferred from [S69] which leaves out details on the proof of the relevant Lemma VI.3, but
it certainly follows by a formula from Birman and Solomyak [BS82] recalled in [BW93]:

Lemma 3.4. When R is a projection in a Hilbert space H, then RR* + (I — R*)(I — R)
is invertible and

(3.10) Row = RR*[RR* + (I — R*)(I = R)]"!

is an orthogonal projection in H with R(H) = R (H).

Here if H = Ly(F), where F is an admissible vector bundle over a manifold X', and
R is an admissible classical 1)do of order 0 in F', then the same holds for R, and the
principal symbol is determined by a formula similar to (3.10) on the principal symbol level.

Proof. The formulas are verified in detail in [BW93, Lemma 12.8]. For the last statement,
the invertibility of | | implies, by the spectral invariance shown in [G95] (and in the proof
of Theorem 6.5 below), that it is uniformly elliptic and its inverse is likewise admissible,
classical and uniformly elliptic of order 0. Then since the principal symbol of R is a
projection, the formulas likewise hold on the principal symbol level. [

Remark 3.5. Since the range of R in H*(F') equals the nullspace of I — R there, it follows
from the fact that I — R and I — R, have the same nullspace in Lo(F') that they also
have the same nullspace in H*(F'), s > 0. Hence

(3.11) R(H*(F)) = Ron(H*(F)),
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for s > 0. This property extends to negative s by consideration of the adjoint R*, which
is likewise a projection and a classical 1¥»do of order 0, when one uses that the nullspace of
I —Rin H™*(F) (s > 0) is the annihilator of the range of R =1 — R* in H*(F).

The lemma and remark imply that when R is a classical ¢do in E] which acts as a
projection in H¥(E}), then R, defined by (3.10) is a projection which is orthogonal in
Lo(FE7) and has the same range as R in H*(E}) for all s. When we apply this construction
to R = I — By, (3.8) can be replaced by the condition Byyou = 0 with the orthogonal
projection By = I — Rg¢. It is not hard to check that By again satisfies Definition 3.3.

Only the orthogonal projection defining a boundary condition is uniquely determined
from it; without the orthogonality there can be many choices of projection that give the
same condition.

4. Examples of well-posed problems.

We here give examples with increasing generality, still taking X compact.

Clearly, the choice B = C'" is well-posed, and so is B = II> when D is of Dirac-type,
in view of Remark 3.2. The first situation that was considered for index questions, in
[APS75], was the choice B = II> in the product case. This choice is convenient because it
permits construction of the heat operators (in a good approximation) by easy functional
calculus for the selfadjoint operator A.

Grubb and Seeley consider in [GS96] the product case with B — IIs ranging in the
nullspace of A, and in [GS95] Dirac-type operators with B — II> ranging in the eigenspace
for eigenvalues of A of modulus < a (some a > 0), showing full heat trace expansions.

Booss-Bavnbek and Wojciechowski [BW93] consider, for the product case, index ques-
tions for the full set of projections B of the form

(4.1) B=Ct+5, Soforder — 1;

likewise well-posed. This includes the preceding cases, and moreover allows infinite rank
perturbations of II.

Before leaving the case (4.1) we observe that (3.7) can be sharpened in the product
case; this is of interest for the trace estimates (cf. Corollary 9.5 below).

Proposition 4.1. In the product case, when X is compact,

(4.2) C* — 1l is a ¢do of order —cc.

Proof. We shall compare D, extended as o(d,, + A) on X'x | — ¢, 0], with the operator
oDP, where
D=9, +A, A =A+Tl,

on X° = X'xRy and on X = X'xR, provided with the volume element v(z’, 0) da’dx,,.
DY acts in EY and in EY, the pull-backs of E} to X9 and X0; in Green’s formula (cf. (2.1)
and (3.3)), A = —I. D" has an inverse Q° on X0, easily described by its action on functions
of x,, taking values in the eigenspaces V) of A’ (here Vj = {0}, V{ = Vi & Vg, V| = V)
for A # 0,1): When f(x,,) has values in V{, Q° acts on f as the ydo in x,, with symbol
(i€, + A\) ! more generally when f has an expansion f(r) = > aespec ar 9 (Tn)u(2') in

terms of eigenfunctions uy € VY, then Q°f = 37, Fo L [(i&, + A) 7' ga(&n)]ua(a’). For
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D, the Calderén projector is constructed exactly as in the differential operator case; it
equals v 7T Q% as in (7.5). It acts on a uy € V{ like the Calderén projector for 9., + A,

SO
Uy if A Z 0,

0if A <0.

(One may also consult (3.6).) This implies that v 7T Q3 = II>.

On X.= X'x ] —ec,c[, oD® and D differ only by the term olly. Let Q be a parametrix
of D on X = X UX,; then CF = 4+ TQ7¢0 + T3, where T; is of order —oo, cf. (7.6). Let
x and y1 € C3°(] —¢,¢[), equal to 1 on a neighborhood of 0 and satisfying yx; = x, then

QO — {

(4.3)  CT =1y =117 Q350 + T — 7 77 Q"%5 = 1517 x(Q — (D) ")xAgo + Ts.

If Iy = 0 (i.e., dimker A = 0), x(Q — (¢D°) 1) is a ¢do on X, with symbol 0, hence of
order —oc, so CT —1IIs is a ¢»do on X’ of order —oo by the boundary operator calculus;
this ends the proof. If Iy # 0, we need a further effort since Iy on X, is not a do:

In view of (7.1), we have on X.:

X(Q — (D) "y = xQx10D°Q% 'xix — xx1(QD — T)x1Q% 'x
(4.4) =xQx10D" — Dx1]Q% ™ 'x + xTox1 Q"0 " 'x
= xQ[x10Iy — (02, x1)0]Q% '\ + xTx1Q % 'x.
Define the anisotropic spaces H*(X'xR) and H®H (X x| — ¢, ¢[). via local coordinates

and a partition of unity on X’, from the spaces H () (R*~! xR) with norm [[(£)*(¢")ta(¢)]|.
The operators have the continuity properties:

) )

XQx1: HOD(Ey|g ) — HEPYO(By | ), Q°r HWD(EY) — HEHLD(EYD)
XToxi: HOD(By| g ) — H (B |5 ), To: HED(EY) — H&M(EY)
v HOD(X,) — HEH (X)) Joo H 3 HH(X') — HOBO(X,)

Y

3
b

for all s, s1,t,t; € R. Such properties are easy to show and are e.g. dealt with in [G86,G96,
Sect. 2.5] (used with fixed ;). Then the operator in (4.4) is continuous from H(_lvt)(E1|§c)
to H(lvt‘)(El\)?F) for all t,#; € R, and when we compose it to the left with v/ r+ and to
the right with 3%, we get an operator that is continuous from H*(E}) to H' (E!) for all
t,t; € R. Then this is a 1do of order —oc on X’. Thus finally, CT — 1T in (4.3) is a v¥do
of order —oo on X'. [J -

Defining Cf, by formula (3.10), we find as a corollary that C.f, — 15 is likewise a 1do
of order —oc. For selfadjoint Dirac operators on spin manifolds, this was shown in the case

dimker A = 0 by Scott in [Sc95, Prop. 2.2] by a rather different argument.

Example 4.2. A well-posed B need not be of the type (4.1). One example was introduced
by Briining and Lesch [BL.97], in the product case and under the additional hypotheses that
D is formally selfadjoint and 0 A = —~ Ao, o2= -1, 7A=-Ar, 12=1, 710= 0T,
where 7 is an auxiliary morphism or ¢»do of order 0. The prototype is, for cos # 0,

(4.5) By = cos? 011 +sin® Tl — cosfsin O (115 + 1) + B,



12 GERD GRUBDB

with a suitable projection B’ in V. Here By is principally different from II> when cos? § #
1. Dp, is selfadjoint.

For the analysis it is useful to observe that the hypotheses imply a spectral symmetry of
A; in fact 7 (as well as o) defines isometries of the eigenspaces Vj+ for positive eigenvalues

)\;L (ordered increasingly) onto the eigenspaces V;~ for negative eigenvalues A, = —)\;' and

vice versa (in particular, n(A, s) = Tr(A|A|7*~') = 0). Then the nullspace of By in V;~ is
a “shifted version” of V_:

(4.6) span{e.;k + tan96;tk 1J>0,k=1,...,v;};

here the €k 1 <k <wvj, are an orthonormal basis of Vj_7 and e;fk =Te€;

For B = By, [BL97] shows a precise version of (1.1), related to that of [GS96] (see also
Grubb [G97, Remark 7.14]). The present study allows generalizations to the non-product
case and perturbations of order —1. The same holds for the more abstractly formulated
well-posed conditions in [BLI7].

Example 4.3. Without assuming spectral symmetry, we can give general examples of
well-posed B for Dirac-type operators by taking
(4.7) B =1Is + II5 STl .,

where S is a classical ¢do of order 0 in E{. B is a projection, since II.II> = 0; so (i) in
Definition 3.3 is satisfied. For the principal symbols, the injectiveness (7.16) is obvious for
bO(a', &) = ct(a, &) + et (2!, &)s (2", &) e (2!, €'). Moreover,
b()<$/7 fl)N_{_(J?/, f/) C b()<$/7 fl)CN C N+($/, 5/)

so since the former has the same dimension as N, (2,¢’), there must be equality. Then
also (ii) of Definition 3.3 is satisfied.

To compare this with earlier cases, we replace B by the orthogonal projection By =
I — (I — B)eyt defining the same boundary condition: Write S and B in blocks according to

- Si1 S rs .

the decomposition Ly(E}) = V>@& Ve S = (s*; SZ)’ B = (0 82>. Then with R = - B,
we find from (3.10) that

R _ (S]QSTQ(I“I’S]QSTQ)I S]Q(I“I’STQS]Q)l)
ort —STa(I + S12575) ™" (I + S15512) " '

I

(4.8)

00
principal symbol, which is the generic case (when 0 < dim Ny (2, ¢’) < N, in particular

when n > 3). One can also allow lower order perturbations.

Let us remark that if there is a spectral symmetry: A7 = —7 A for some zero-order
¢do 7 with 72 = I, then the choice B = Il + 711, for some 3 € R, is of the above type
with S = g7, since 7ll. = 7II1I. = IS 7II.. The condition defined by this B is similar
to that defined by (4.5); in fact the nullspace of B in V|, equals (4.6) with tanf = —g.

Still other examples can be found by replacing (II>,II.) in (4.7) by (C*,C7) or by
(Che. Ce) or (Coyy . Coyy) (With CE =1 CF

ot oot); these choices have a meaning for an
arbitrary D. Since the ¢* are orthogonal projections when P is of Dirac-type,

(4.9) C*t —Ct, and Ct — C. 7 are of order — 1 when P is of Dirac-type,

o

Here By = I— R, is principally different from II> = ( ! 0) as soon as 512 has nonvanishing

so the resulting problems are just perturbations of order —1 of the previous types. However,

cT is not orthogonal in general (examples with non-symmetric af are easy to give).
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Example 4.4. Denote the prmmpal symbols and range spaces of C’ .+ and ct-

ort
C(—i—rt(xlvé./)a C(j}‘?('x,Jf) =1- 0rt< 5) N+( 5) N_:(:C/,f) - (CN S N+< 78)- AS
noted above, the following operators are well-posed for D:
(4.10) B=Cl +Ch.SCh.

ort ort

(We can add Sy of order —1, as long as B remains a projection.) This is, in a microlocal
sense, the most general possible example. When B defines the condition Bygu = 0,
so does C'B for any invertible classical elliptic ¢»do C' of order 0; in this sense, B and
C'B can be regarded as equivalent. Now if B satisfies Definition 3.3, we can for (2’,&')
in a neighborhood of each (x(, &) (|¢'| = 1) find a smooth family of bijective matrices
c(2', €') such that c(a’, )b0(a’, ¢') is of the form ¢t (', &)+t (2!, €)s(a’, &) et (2, &),
as follows: Note that CV has the two decompositions (depending smoothly on (z/,¢))

(4.11) CY = Ny(a' €)ANT (2!, €) = RO, €)+Z(100(a, €)):

the latter denote the range and nullspace of b° (we now omit the indication (z/,¢’)).
Here 0° defines a homeomorphism ¢; of Ny onto R(b"). Let ¢ = ¢;' and let ¢3 be a
homeomorphism of Z(b°) onto N (it can be chosen to depend smoothly on (2/,¢') in a
neighborhood of (x4, £})); then ¢4 = e20° + c3(I — b°) is a bijection in CV. Now its inverse
c5 = ¢; ' does the job: Tt is a bijection in CV that maps R(b°) to N, as an inverse of b°
from N, to R(b°). So c5b” ranges in Ny and is the identity on N, and hence

(412) (‘5[)0 = portp5b ( Cort T port ) - c_i—rt + Cc_i—rtc5bocc_j};;
it is of the desired form and is equivalent with . — Similar considerations hold with
(CH.,CHo) and (ct,, ct7) replaced by (C+,C~) and (¢F,¢7).

5. Imbedding of well-posed problems into elliptic systems.
We shall now show how the resolvents of the operators

(5.1) (A7 — A7 (A = A7, where Ay = Dp*Dp, Ay = DgDg*,

can be treated within the framework of Section 2. In fact, there is a nice trick of replacing
the study of the injectively elliptic first-order system {D, Bvy} by a truly elliptic first-
order system {D, By} satisfying the resolvent growth condition, in such a way that the
second-order resolvents (5.1) are found from the resolvent construction for Dp:

Let B be a well-posed projection for D and let us denote

(0 -D (0 -Dg'
52 o= () ). mem (2 D).

The operator D in (5.2) is formally skew-selfadjoint on X. The operator Dg is skew-
selfadjoint as an unbounded operator in Lo(FE), E = E; & Ey. It then has a resolvent
R, = (Dp+p) ! for p € C\iR A calculation shows that

_ -1 pRy Dp*Rs
R, = (Dg+p) _<DBR]M iR, , where

Riy=(A1+p*)Y, Roy=(Ao+p) Y

(5.3)
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this shows how the resolvents (5.1) can be recovered from R,. Also DR, and DB*R27M
are determined. When p € I'g = {z € C | |argz| < 7/2}, then A\ = —p? runs through
C\ R, so it suffices for (5.1) to let u € T'.

Now Dp is the realization of D in Lo(F) of the boundary condition

(5.4) Byou =0, u= (ul > :

U9
where B is the row matrix (cf. (3.9))

(5.5) B=(B (I-B*o"),
going from Lo(E1)x Lo(EL) to Lo(EY). Since the ranges of B and I — B* are orthogonal
complements in Ly(FE}), B is surjective; note that the dimension N of F| is half of the
dimension 2N of E' = E| & E). Moreover, B has as a right inverse the ¢)do C of order 0,

(5.6) C= <<U*){B(*] B B>> [BB* + (I — B*)(I — B)]!

(cf. Lemma 3.4); in particular, B is surjectively elliptic. Now {D + 1, Byo} has the inverse
(R1 Ky) with £y = [ —Ry(D+ 1)]K,,1C as in (2.7). Since the inverse is continuous
from Ly(E)x H=(E}) to HY(E), {D + 1, B} and hence also {D, By} is elliptic. Thus
all the conditions in Assumptions 2.1 and 2.2 are satisfied by {D, Bp}, with N replaced by
2N,d:1, Q:’}/O,F:F():Ei'

Then the consequences we draw later for the general systems in Section 2 apply in
particular to Dg.

Example 5.1. By Theorem 7.5 below, the Calderén projector for D* equals c't =
(0*)~Y(I — C*")o*, when D has an invertible extension. (More generally, this holds
modulo smoothing operators.) Then in view of (3.9), the adjoint of D+ is the realization
of D* determined by the boundary condition C”+7gu = (. Here B is the surjective operator
B=(Ct (I-C*")o*)=(C*t o*C'").(We observe moreover that if o* = o=, one
finds by (3.10) that C'F, = o(I — CF,)o*, generalizing [BW87, Cor. 3.3].)

ort — ort

Remark 5.2. The trick of considering the “doubled-up” system (5.2) will be restricted to
first-order operators in this paper. Well-posed boundary conditions can also be defined for
higher order systems, cf. [S69]. But here when one takes the example of B = C', one gets
an operator on the boundary with entries of negative order that are generally nontrivial,
and these exist also in the doubled-up version and violate the requirement concerning order
> 0 in Assumption 2.1. Manipulations with order-reducing operators do not seem to help;
they cannot at the same time remove a singularity in £’ and be strongly polyhomogeneous
in (¢, ). (See also Remark 2.5 and the calculations after (8.2).)

The analysis of (5.4)—(5.6) moreover tells us how to include admissible manifolds in
the study of first-order systems. Here we need a uniformity in 2’ in the well-posedness
condition. We restrict the attention to projections B.



1 hACHE BAFANDIONDS

Definition 5.3. (UNIFORM WELL-POSEDNESS) Let D be an admissible, uniformly elliptic
first-order differential operator from Ey to E (admissible vector bundles over an admissible
manifold X ). Let B be an admissible classical ¢)do of order 0 in Ey with B* = B. We
say that B is uniformly well-posed for D, when B satisfies Definition 3.3 (ii) and in
addition, B defined by (5.5) is uniformly surjectively elliptic and {D, By} (cf. (5.2)) is
uniformly elliptic.

When Definition 5.3 is satisfied, the realization Dg is seen by Green’s formula to be
skew-symmetric. It is skew-selfadjoint since (Dg)* acts like D* and w € D((Dg)*) implies
u € Ly(E) with D*u € Ly(E) and Bygu = 0 as an element of H~2(E!), hence by use of a
parametrix of {D, Byg} it is seen that u € H'(F) and thus u € D(Dg).

It follows that Assumptions 2.1 and 2.2 are satisfied, with I' = T'y; so (5.3) exists and
gives the resolvents of the A; as in the compact case.

Examples are constructed as in Section 4, most easily when D has an invertible extension
to a boundaryless manifold so that Theorem 7.1 defines an exact projection C'*; then
B =CtY+C*SC~ and B = Cf, + C1,SCI. are examples. (Otherwise there is a
question of modifying B to be a projection.)

6. Spectral invariance of weakly polyhomogeneous )do’s.

For use in the fine analysis of the resolvents, we now recall the definition of weakly
polyhomogeneous ¢do classes from Grubb and Seeley [(GS95], presently allowing non-
compact admissible manifolds and globally estimated operators as in [G95], [G96].

The symbol space S™(R” x R") consists of the functions p(x,£) € C*°(RY xR") such

that
(6.1) 050¢p = O((&)™ 1) for all a € N, B € NV

N = { integers > 0}. The basic rules of calculus for this space are well-known from
Hormander [H85, Sect. 18.1]. (When we are only interested in symbols with estimates valid
over compact subsets of R", we can use the results of the global calculus by introducing
suitable cut-off functions.) A symbol p € S™(R” xR") is called classical (or classical
polyhomogeneous) of degree m if it has an expansion p ~ > . yp;, where the p; are
homogeneous in { of degree m — j for |{| > 1, andp—3_;_;p; € Sm—J(RYxR") for .J € N.

[GS95] introduced a class of symbols p depending on a parameter p varying in a sector

I' ¢ C\ {0}, in a special way. Here it is the behavior for |u| — oo that is important; it is

often described in terms of the behavior of p(z, ¢, %) for = — 0, £ = p € I'. For brevity

i N z
of notation, we write dp(x, ¢, %) (or just dZp) for the j’th z-derivative of the composite

function z — p(x, ¢, %)

Definition 6.1. Let n and v be positive integers, and let m and d € R. Let I' be a sector
in C\ {0}. The space S™°(R"xR",T") consists of the functions p(x, &, u) € C°(RYxR" xI")

that are holomorphic in pu € T for |(&, )| > € (some ¢ > 0) and satisty, for all j € N,

(6.2) lp(-,-, L) isin S"H(RYxR") for L €T,

with estimates valid uniformly for |z| <1, % € closed subsectors of I'.

Moreover, we set S™ = y45™0 (so p € ™9 means that z9p € S™V).
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Sometimes the symbols are only defined for || > a constant depending on the subsector
of T'; this requires obvious modifications. We can inject S™(R” xR") C S™9(R” x R", C).
Asymptotic expansions and polyhomogeneous subclasses are introduced as follows.
Definition 6.2. 1° Let p € S™~%4(R” xR",T") and let p; be a sequence of symbols in
Sm—i—dd(RY x R",T') such that p — Zj<-7 pj € ST T AARY xR",T') for any J € N; then
we say that p ~ Zjeij in §m—dd,

2° If, moreover, the p; are weakly homogeneous of degree m — j, i.e.,

(6.3) i t& ) = 1" pia, & p) for [€) > 1, ¢ > 1, (&, p) € R xT,

we say that p is weakly polyhomogeneous.
3° If, furthermore, the p; are strongly homogeneous of degree m — j, i.e.,

(6.4)  pj(w,t&tp) =" Ip;(w,& p) for [€]7 + [u]* > 1, t > 1, (6, ) € R" xT,
and 65638&(19 =2 i<api) = O((&, p))™ = 1el=kY for all indices a, 3,.J, then we say that
p is strongly polyhomogeneous.

(For simplicity, we leave out the possibility of noninteger steps between the degrees of
the p;, included in [GS95].) It is shown in [GS95] that the conditions in 3° imply those
in 1° and 2°. Thus the strongly polyhomogeneous symbol can be thought of as the case
where p enters as an extra cotangent variable, on a par with the others, in a classical
symbol. For example, for m € Z,

S0 4 §0m for m > 0
6.5 24 2+1m/2€{ ~
4, 4
is strongly polyhomogeneous, whereas (% + |p[?) 7t is weakly polyhomogeneous and

belongs to §~29N §%~2 (Cf. [GS95, Lemma 1.13 and Th. 1.17].)
We shall use a special name (as in [G97]) for symbols of the latter kind:

Definition 6.3. Let r be an integer > 0. A symbol s(x, &, i) (and the operator it defines)
is called special parameter-dependent of order —r, when
(6.6) s(z, &, pu) € SR xR, T)N S "(R” xR",T') with

: m —r—m,0 (v n 0,—r—m (v n
d's(w, &, p) €S (R xR",T)Nn S (R” xR",T)
for any m, all 9)'s(x, &, i) being weakly polyhomogeneous.

By [GS95, Th. 1.16], a strongly polyhomogeneous symbol of order —r has this property.

The rules of calculus for the symbol spaces and the associated operators are described
in detail in [GS95]. Let us here just recall a few elements: A symbol p(x, ¢, 1) with @ and
¢ € R" defines a family of ¢)do’s on R" depending on p € I,

(6.7) Puf(2) = OP()f(a) = (27) " [ e €pla & ) (€) de.
There holds the composition rule:

P, € OP(S™7), P, € OP(S™") = P,P € OP(§m+m"d+d),
with symbol (p o p') (2, &, 1) ~ 3 senn ardgp(a. & p)(=10,)p' (w. €, p).

Theorem 1.23 in [GS95], formulated there for symbols with local estimates in 2, extends
without difficulty to symbols with global estimates in x, and to one-sided ellipticity:

(6.8)
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Theorem 6.4.

1° Let p(x, &, p) € SPO(RY xR*,T) @ L(CN,CN) be such that p = py + p_1 with
p_1 € S7'0 and with py' € C* bounded uniformly in (x,&, 1) € R? xR* xI'}, for any
closed subsector T" of T' and Ty, = {u € T' | |u| > 1}. Then there exists a parametrix
symbol q(x, &, i) € SY°(RY xR, T") such that poq ~ I in S%9; here

q~q0° ) pen r°k, where

(6.9) . ok
go=po ,r=I1—-pogqy, r°" =roro---or (k factors).

2° Let p(x, &, pu) € SOO(RY xR, T') @ L(CN,CM) be such that p = py + p; withp | €
S=1.0 and with pg having a right inverse qo € C*° that is bounded uniformly in (x,&, 1) €
R"xR"xI'|, for any closed truncated subsector I} of I'. Then there exists a right parametrix
symbol q(x, &, 1) € SOO(RY xR*,T') @ L(CM,CN) such that poq ~ I in S*°; here

(6.10) q~p o(pop ),

where (p o p*)°~! is a parametrix symbol for p o p* according to 1°.

3° When the assumptions in 2° hold with “right” replaced by “left,” there exists a left
parametrix symbol g ~ (p* o p)° ! op* € %0 such that gop ~ I in S°0.

In 1° 3°, if p is weakly resp. strongly polyhomogeneous, so is q.

Proof. For 1°, the proof of [GS95, Th. 1.23] extends readily; it is in fact simplified because
the compositions can be carried out directly, without cut-off functions, in the global cal-
culus. 2° and 3° follow from 1°, when we note that p* o p in case 2°, resp. p o p* in case
3°, satisfies the hypotheses of 1°. The last statement is seen from the formulas. [

We shall not introduce a general ellipticity definition but just say that the operators with
symbol satisfying the hypotheses of Theorem 6.4 1°, 2° resp. 3° are uniformly parameter-
elliptic, uniformly surjectively parameter-elliptic, resp. uniformly injectively parameter-
elliptic, in the sense of Theorem 6.4.

For our application to the resolvent analysis we need to show spectral invariance of our
calculus (briefly expressed this means that when a ¢)do has an inverse in some operator
sense, then the inverse belongs to the calculus, and both operators are elliptic). We even
need a one-sided version. In the earlier work [G95], results were shown both for parame-
ter-independent 1do’s and for parameter-dependent ¢/do’s of a slightly different type than
here. The following proof uses the parameter-independent results.

Theorem 6.5. Let E| and Ey be admissible vector bundles of dimension N over an
admissible boundaryless manifold )A(:, and let P, (depending on p in a sector I' of C) be a
weakly polyhomogeneous 1 do with symbol in S°Y in admissible coordinate systems.

1° Assume that for somel € Z, P,,: H"*(E,) — H"“*(Ey) (which is bounded uniformly
for pu in closed truncated subsectors I',) has an inverse P/jl that is likewise H"*-bounded
uniformly for pi in subsectors I'".. Then P Uis a weakly polyhomogeneous 1»do with symbol
in S%°. Moreover, P, and Pﬂ* U are uniformly parameter-elliptic in the sense of Theorem
6.4. If P, is strongly polyhomogeneous, so is Pu_]‘ If P, is special parameter-dependent
of order O (cf. Definition 6.3), so is P

2° Assume that for some | € Z, P,: H"*(E) — H"“M(F) has a right inverse R,, that is
likewise bounded uniformly for y in truncated closed subsectors I']. Then P, has a right
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inverse R; that is a weakly polyhomogeneous do with symbol in S%°. If P, is strongly
polyhomogeneous, so is R,u If P, is special parameter-dependent of order 0, so is R;l
3° A similar statement holds with “right” replaced by “left.”

Proof. 1°. Consider a T'.. First let [ = 0, so that H'** is simply L,. Consider a fixed pu.
Here we can draw on [G95, Th. 1.14], which shows that Pu_] is a classical elliptic ¥»do with

globally estimated symbol. The details in [G95] are given for a Green operator; for a ¢do
on X, the proof is a simpler variant: Using that

with 0 < ¢ < C, one can define B, = I — C~'P;P, > 0 with norm [|B,|| < (C —¢)/C =
6 < 1. Tts principal symbol b°(x, &, 1) then has [b°(x, &, p)| < 6. (In fact, when y(x) € C§°,
the essential spectrum of yB,x equals the union over x and |{| > 1 of the spectra of
x(2)?0°(x, €. n).) Now I — B, is elliptic and has the inverse ), BE (converging in
norm); it belongs to the globally estimated calculus by [G95, Th. 1.12] (using also the
localization worked out in Th. 1.7 there). Finally,

(6.12) P l=(I-B,)'Cc7'P;

m

belongs to the calculus by the composition rules, the principal symbol (p°)~! satisfying
POz, & )7 < e

This shows that P, ! is in the calculus with symbols in S°(R" xR" )@ L(CN) in admissible
coordinates, for each p € T".. We now study the u-dependence. Here we use that the
constants ¢ and C can be taken independent of y € I'), and the S°-estimates for P, hold
uniformly in g. Then the whole analysis of the inverse works uniformly in p € I, so
we can conclude that the S°-estimates for P/jl are likewise uniform in pg € I'/. Thus
the requirement for j = 0 in (6.2) is satisfied. For derivatives §/ we use successively the
formulas

(6.13) 0iP; ' = P71y ()0 P 0LP >0,

1<j

that follow from @7(P,P; ') = 0 by the Leibniz formula; they lead to the conclusion that
82PN_] has symbol in S/ uniformly in g € T/, and thus finally Pu_] has symbol in §90.
Inspection of the construction shows that strong polyhomogeneity of P, carries over to
P/jl. The preservation of special parameter-dependence follows by a version of (6.13) with
0. replaced by 9,.

If [ # 0, we reduce to the preceding case as follows: For any admissible vector bundle
F over X there exists a family of isomorphisms A, from H*H(F) to H7"™H(F) (m €
Z) with principal symbol essentially ((&, u))™1 (A(l)’,u =1 A = (ATP’Z"N)*I)./ such that
the operator norm of A} for any s is uniformly bounded in p, for arg s in an interval
101,02]. (These order-reducing operators are a standard tool in [G86], [G96], [GI5]; to
get holomorphicness in p for |argu — w| < é, say, one can for m > 0 take an operator
as in [G96, Corollary 3.2.12] with ((£, u)) replaced by (|¢€[2™ 4+ (e=*“u)?™ + 1)z that is
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well-defined when ¢ < 7/2m; for —m one takes the inverse.) Now we replace P, and Pu_l
on suitable subsectors by

(6.14) = A, PG ”

-1 [
AElM H AL

FQa/'L

Here P, and Pl_,;l are uniformly bounded with respect to L, norms. Assume e.g. that
[ > 0. In view of (6.5) and (6.8), P,Ag' , has symbol in §='0 1 §%~!; subsequently
Py, = A%Q,MPHAEj,M has symbol in

(6.15) (850 + 590 0 (870N 8% c (890N St + (SN §%0) ¢ §0.

It is seen in a similar way that the m’th p-derivative of P; , has symbol in §—™0n 5%,
This Py, qatiqﬁeq the hypotheses with [ = 0, so the already proved part of the theorem
shows that P, is as asserted. We get back to P, L by considerations as in (6.15). This
completes the proof of 1°.

. One can reduce to the case [ = 0 in the same way as in the preceding proof. The
identity PR, = I implies R} P; = I. Since R, is uniformly Lo-bounded for p € [V, its
adjoint RZ has norm < C; for some fixed C'; > 0. Insertion of u = P;j?) for an arbitrary
v € Lo(F) gives

[l ey = IR, PI0NE, 1y < CEIPLVIL, (1) = CY(PuPiv, v) 1y (r).-

This shows that the selfadjoint operator P, P; in Ly(F) has lower bound > Cr?, so it

has an inverse (P, P*)~" with Ls-operator norm < C7? for p € T". Now 1° applies to

P, P, since it has symbol in S%? by the composition rules (cf. (6.8)). Then (P,P;)~

is a weakly polyhomogeneous ¥do with symbol in S%°, and since PMP/:‘(PMP/:‘)*1 =1,

R, = Pr(P,P;)~"is a right inverse of P,; it is likewise a 1»do with symbol in S%°. Also

strong polyhomogeneity and special parameter-dependence is preserved. This shows 2°.
Finally, 3° follows by obvious modifications of the proof of 2°. O

Note that 2° does not say anything about the structure of R, itself. However, we shall
use it in Section 8 in a situation where we can also infer that the given right inverse is a
weakly polyhomogeneous vdo.

7. Calderdn projectors and their construction for resolvents.

We recall, and extend to admissible manifolds, the definition and application of the
Calderén projector CF for an elliptic differential operator P: C*°(X, Ey) — C°(X, E)
of order d, as introduced by Calderén [C63], Seeley [S66], [S69], see also Hormander [H66],
Boutet de Monvel [BM66], Grubb [G77]. Tt is used in the discussion of well-posed boundary
conditions for first-order operators in Sections 3-5, and a parameter-dependent version
enters as a tool in the resolvent analysis in Section 8.

The manifold X is taken to be compact or, more generally, admissible as defined in
[GK93], [G96], see the introduction to Section 2; P is assumed to be admissible and
uniformly elliptic. We can assume that X is smoothly imbedded in an n-dimensional
admissible boundaryless manifold X such that X’ is an (n — 1)-dimensional hypersurface

in X and FE, and FEs are restrictions to X of N-dimensional bundles E1 and E2 over X one
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such choice is to double up the neighborhood U (cf. Section 2) along X', augmenting X by
the reflected piece U_. In UUU_ we write x = (a/, z,,), where |z, | < ¢(a'), e¢(2’) > ¢ > 0.
In the compact case one can add another piece to X U U_ to get a compact X.

If P extends to a uniformly elliptic operator (also denoted P) from C°(E1) to C°(E,),
we let () denote an admissible parametrix of P on )Z'; then

(7.1) PQ=I+T,, QP=I+T, onX,

where 77 and 7, are admissible ¥/do’s on X of order —oc. The use of Calderén projectors
is simplest if X and P can be chosen so that P is invertible on X then () stands for the
inverse (necessarily admissible by the spectral invariance proved in [G95]), and 7; and 7
are zero. B B

Let us denote X° = X, X\ X = X_, Fj|x, = E; +. The mapping 0 = {y0,...,7a-1}
can be regarded as a mapping either from functions on X_|_ or from functions on X_, or
from functions on X to functions on X'; to distinguish between the three versions, we
denote them p%, o~ resp. ¢ (so o = o™). When F=Fy&- & Fy_q are vector bundles
over X' we denote

(7.2)  H(F) = [locjea B 72 (F)). HUF) = [oajeq HHH2 (Fy) = (H2(F))"

Writing EBo<j<d E] = E'd7 we have that ¢ and p map the respective H® spaces into

H*(E") for s > d — 3. The mapping 0: H*(E;) — H*(E!") has the adjoint p*

HS(EM) — H(E;) for s > d — 2; it ranges in distributions supported in X'. We

use the notation A4 for the truncation of a ¢»do A on X to Xy

(7.3) Ay = rTAe®, when Ais a do on X;

here r* means restriction to X4 and e* means extension by zero on Xo.

Define the spaces
Zi ={z€ H (X4, E11)| P2=0o0n X1}, Ni = 7] cH(EY),

7.4 ~ - ~ -
(74) Zo={z2€ C®(X,E)NHYX,E) | P>=0, suppz C X};

here 7 is identified with a subspace of the Z7 and has finite dimension when X is compact.
Although the trace operator g is defined on H*(E1 ) for s > d — 5 only, the definition of
the spaces N3 of Cauchy data for null solutions can be extended to all s € R, by results

in Lions and Magenes [LM68] or by the arguments in [S66], [S69].

Theorem 7.1. Consider admissible manifolds, bundles and operators, and assume that
P has the inverse Q on X. Then the spaces Ni are complementing subspaces of H*(E%);
H*(E{") = Ni+N?. When we define (cf. (2.1))

(7.5) K* =3rtQo* A, C*T = o"K* = 3o5rTQu* A

the Poisson operators K*: H*(E}%) — H*(F; 1) have range equal to Z% and provide right
inverses of o on Z%, respectively; and the 1do’s C* (the Calderén projectors for P) are
the projections of H*(E\?) onto N along N. =, respectively. In particular,

Ct+c =1, (CH?*=0t, (C)?=C", CctC =0o.
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Proof. The proof is a generalization of the deduction in [S66], [S69] for the invertible case
with X compact. In fact, the proof given in [G96, Ex. 1.3.5] carries over verbatim to the
present admissible manifolds, when the operators are admissible and one allows the range
bundle for P to be different from the initial bundle E. To save space, we refrain from
repeating the details here. [

When P merely satisfies (7.1), one can still define operators K* by formulas as in (7.5)
supplied with smoothing terms, setting

(7.6) Ct=0"Kt = —0o"rTQo* A+ T

and C~ = I — C* (with a ¢ydo 73 of order —oc); then they have the listed mappping
properties only modulo smoothing operators. Such a construction is worked out in [G77] for
general multi-order operators P (on compact manifolds), with applications. For compact
manifolds, Seeley gives in [S69] an optimal construction, where K+ maps H*® injectively
onto a subspace of Z% with complement Z,, and where C* = ¢t K* is a projection of H*
onto N¥; we use this in Sections 3 and 4. The book of Booss-Bavnbek and Wojciechowski
[BW93] goes through the proof of Theorem 7.1 for first-order operators as in Definition
3.1 2°.
The Calderén projectors are used to treat boundary value problems for P:

(7.7) Pu=fon X, Sou=¢ponX’,

where S is a system of ¢do’s Sj, of order j — k (j,k = 0,...,d — 1) going from Ej to
bundles F; of dimension > 0 over X'; M = ZO<7‘<d dim Fj. In the following, we consider

{P, So} as a mapping from H*(Ey) to H*~%(Ey)xH*(F), for some s > d — 1, and discuss
right /left inverses that are continuous in the opposite direction; here S is considered as a

mapping from H*(E1?) to H*(F) and the C* act in H*(E|?).

Theorem 7.2. Assume that P is invertible on X.

1° If SC* has a right inverse Sy, then (;Dg has the right inverse

(7.8) (Rs Ks)=(Qs—K*t5150Q, K*S5y).
Conversely, if (;) has a right inverse ( Rs Kg ), then SCT has the right inverse
(7.9) S1 = 0Ks.

2° If <OS,> has a left inverse (S7 Sa), then ( F

S ) has the left inverse (7.8).
So

Conversely, if (;) has a left inverse (Rs Kg ), then ((;q,

v

) has the left inverse

(7.10) (S1 S2)=(0oKs I—-pKgS).

Proof. We first observe some auxiliary formulas:

(7.11) PQ.=1 Q.P=I1-Kto, KTC =0.
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The first formula holds since PQ) = I on X and P is local. Next, we note that Green’s
formula (2.1) can be written in distributional form:

(7.12) etrt P = Petrti4 g (Agu) for i€ HVYEy), u=rTia, s> —1.

The second formula follows from this by composition with r+@, using (7.5) and QP = I;

it holds on Ht4(Ey), s > —%. Now the third formula follows from a calculation using

also that oK™ = C+, PKT = 0:
KtC~ =Kt - KtCt =KT" - KtoKkt =Kt - (I -Q.P)K" =0.

For the first statement, let S; be a right inverse of SC*. Then, by the above rules,

P(Q+ — [X’+S1SQQ+) =1, SQ(Q+ — [X’+S]SQQ+) = SQQ+ — SC+S] SQQ+ =0,
PKY—FS] =0, SQ[X’+S] = SC+S] =1.

Conversely, when (Rg Kg ) is a right inverse of <§g), then PKg =0, SoKs =1,s0 Kg
maps into Z%, whereby C~9Kg = 0 and consequently SCtoKg = SoKg—SC~oKg = 1I.
Thus oKg is a right inverse of SCT. This proves 1°.

For 2°, we check the composition of (7.8) to the left with (5@) as follows, using (7.11)

and the fact that C—Ct = 0:

(Qs — K*$150Qy K*+81)(4,) = (I~ K*$150)Q, P+ K*550
(7.13) =(I—K*$1So)(I—Kto)+ K*$1So=1—K*(I—-5,5C")
— - Kt —(I-8C )CHo=I-KTC g=1.

Conversely, define (57 Sy ) by (7.10) and check its left composition with <(§, ):

(7.14)  (oKs I— oKsS) (CS, ) — 0KsS +C — 0KsSC™ = oKsSCH + 1 — O+,

When w = KTC%y for some o € C®(E{?), then Pw = 0, gow = CtCtp = Cty and
Sow = SC*typ, sosince (Rg Kg) is a left inverse of (SPQ>,

w=KgSow=KgSCT¢.

It follows that 9oKsSCTp = ow = CTp for ¢ € C°(E}%). Then the expression in (7.14)
equals /. This ends the proof of 2°. [

The statements have generalizations where the word “inverse” is replaced by “parame-
trix”, also when @ is merely a parametrix of P (here one can keep track of the smoothing
terms as in [G77]). Moreover, the statements hold on the principal symbol level, i.e., for
the model operator {p°(z’,0,¢", D, ), s%(a’, )0} defined on Ry C R from the principal
symbols at a boundary point; its Calderén projectors ¢* (2, ¢’) are the principal symbols of
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C*. Tt is a standard terminology to call the systems with surjectiveness, resp. injectiveness,
of the model operator (for all 2’, all |{'| = 1) surjectively elliptic, resp. injectively elliptic.
It follows that

S

(fg) is injectively elliptic <= (5

) is injectively elliptic;
(7.15) b
(SQ> is surjectively elliptic <= SCT is surjectively elliptic.

The range spaces N (a/, &) for ¢*(2',¢') in CV9 have dimensions m4 (2', ') (with sum
Nd). By (7.15), the injectively resp. surjectively elliptic problems can also be characterized
by injectiveness resp. surjectiveness of s°(a’,&") from No(a', &) to CN? for all ', |¢'| = 1.
In particular, this requires M > my(a',¢’) resp. M < m+(m ¢'). Thus for two-sided
elliptic problems, M must equal m4 (2',¢") (which must be constant in (2',{’) then). It is
well-known that when n > 3, my(2',£') = m_(2',£’) = Nd/2 (the properly elliptic case).

Note that injective ellipticity holds if and only if

(7.16) veCV L =0, (@, =0 = v=0;
i.e., the nullspaces of s” and ¢~ are linearly independent.

Example 7.3. The systems <Z> and <Cﬁg> are injectively elliptic; they both have the
left inverse (Qy KT ) (parametrix when @ is merely a parametrix of P). In fact, by
(7.11),
Q.P+K*to=1, Q.P+EK+Cto=1.

This left inverse is also found from (7.8), when we use that (c[*> and (gt) both have
the left inverse (CT C7 ). The case S = C't is studied in Section 4 when d = 1.

(7.11) also shows that @) is a right inverse of P without boundary condition; i.e., in the
case F' = 0. This is also confirmed by the formulas in the theorem.

Although an elliptic operator P cannot always be extended to a boundaryless manifold
X D X such that the extension is invertible, we do have such a fact for the P — A satifying
Assumption 2.2 1°; this is essential for the resolvent analysis in Section 8.

Theorem 7.4. Let P be such that Assumption 2.2 1° is satisfied. Let X be an admissible
boundaryless n-dimensional manifold in which X is smoothly imbedded, the bundle E
being extended to an admissible bundle E there; take X compact when X is compact.

Each ray re!e in T' has a neighborhood T" = { X = rel? | |0 — 03] < e,7 >0} in T so
that for A € T, there is an extension Py of P — X to E (acting like P — X on X ), which
is a uniformly param@t@r—elhpﬂ(' strongly polyhomogeneous ¢do of degree d with reqpe(’t
top eI’ = (=I")% and has a parametrix Qy for A € I which is an inverse for |\| > r’
(some r" > 0). Then when we define

(7.17) K¥ = 7rFQ 0" A, CFf = o*KF

the assertions in Theorem 7.1 hold with Z3 , = {z € H*(X,E) | (P — A)z = 0 on X},
Zi_={z€HX_,Ex )| Pxz=0o0nX_}, N3 =07,
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Here C’f\c is a matrix of ¥ do’s (C’iE ) k=0,....d—1 With C ;i strongly polyhomogeneous

-----

of order j — k w.r.t. p € I, and K is a row of Poisson op@rator@ (Ix)\ )j=0,....d—1 With

-----

Ix)\ j strongly polyhomogeneous of order —j (all belonging to the global calculus).

Proof. We here use ideas from [S69], in particular from the appendix there. Denote I'o) =
{rei? | r >0, |0 < a}. Consider a ray re'® in I'; multipying P — A by a complex constant
we can obtain that fy = 7 and that I'(sy C —I" for some 6 > 0. Then for ¢ < ¢6/2:

— A€ F(5)7 —T € F(a) — ‘f|2d + X e F(QE) and — A\ — T(|f‘2d + )\2)% € F(gg)
— p(x,€) — A — 7(|€]** + A\?)? is invertible.

We can then, for A € I" = =T,y and [£[*? 4 [A|> > 1, define a homotopy of p° — AI to the
symbol p(€,A) = (|€]27 4+ A2)2: Set

(7.18) P2, &0 0) = p(6. N5, /C Np(EN) 1 (x, &) = M) — 71,

where C is a curve in (—=T'(.)U{|7| < 1})\R_ encircling the eigenvalues of p(¢£, \) ™! (p°(x, &) —
MT) (note that A? is well-defined on C). Here p°(z,&, X, 6) equals p(&, \)I for # = 0 and
equals p°(x, €) — A for # = 1, and it is homogeneous of degree d in (&, |A|'/?), holomorphic
in A, C*, and invertible for all § € [0, 1], all |¢[*? 4 [A]> > 1 with A € —T'().

We can assume that X contains the neighboorhood U U U_ of X’ (see the start of
this section), where we can identify E with the pull-back of E’. In view of the uniform
parameter-ellipticity, there is a neighborhood V of X with X U(X'x[—¢,0]) CV C XUU_
so that P extends to V as an admissible differential operator satisfying Assumption 2.2
1°. Moreover, we can deform the symbol p®(x, ) — X smoothly through u.p.-elliptic ¥ do

1

symbols homogeneous in (&, [A[1/9) to p(&, A)I by use of (7.18) when x,, goes from —2c
2

to —zc, and then extend it as p({, A)] on the rest of X. This gives a principal symbol
pY(x, &, N) defined on all of X, defining a u.p.-elliptic ¢/do Py of order d; it is strongly

polyhomogeneous for u € I’. Now take
(7.19) Py = ¢(P — X)g + 1Py \1b,

where ¢ and ¢ are admissible (bounded with bounded derivatives) C* functions on X
with ¢? +1? = 1, such that ¢ is 1 on X U (X'x[~2$¢,0]) and ¢ is 1 on the complement of
X U (X'x [—%, 0]). This P, is a u.p.-elliptic and strongly polyhomogeneous ¢'do of order
d that acts like P — X\ on distributions supported in a neighborhood of X. ﬁAnL has the
same Green’s formula as P, (2.1).

PA has a parametrix Q)\ for A € I‘( ), w.p.-elliptic and strongly polyhomogeneous of
order —d, by the usual formulas. Since PAQ’)\ = I + S, where &, is strongly polyhomoge-
neous of order —1, hence has an Ly operator norm going to 0 for [A| — oo in —T'(.y, I+ Sy
can be inverted within the calculus (by a Neumann qerleq) for sufficiently large A; here Q 3\

can be modified to the true inverse QA = Q)\(I—I—SA) . This is strongly polyhomogeneous
with global spatial estimates, by Theorem 6.5.
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We now simply define Ixiﬁ and C’f\c by (7.17); then the verification that they have the
mentioned mapping properties goes exactly as in Theorem 7.1. The resulting operators
are strongly polyhomogeneous by [GS95, Lemma A.1, Th. 1.16] and have global spatial
estimates since @,\ and A do so. [

For use later in Corollary 8.3 let us also note that Q@AnL (as a function of u = (—A)/4 ¢

['") is a strongly polyhomogeneous trace operator of class 0, c¢f. [GS95, Lemma A.1 (ii)].
Let us finally observe the following result on adjoints:

Theorem 7.5. Under the assumptions of Theorem 7.1, denote by C't the Calderén
projector for P* (defined according to Theorem 7.1 with Q) replaced by Q*). Then

(7.20) Ot = (AT - oA

Proof. P* has a Green’s formula similar to (2.1) with A replaced by —A*, so the Calderén
projector €' and associated Poisson operator K’ for P* are: K't = rTQ*p*A*,
C't = ortQ*o* A*. Let K, be a Poisson operator lifting sections ¢ € H(E}?) to sections
u = K,p € HYFE1) such that gu = ¢, cf. e.g. [G96, Lemma 1.6.4] or the text before
Lemma 2.3 above. Then (7.11) gives by application of o:

(7.21) Ktou=u—Q4+Pu, CTo= oK ou=ou—0QiPu=¢—0QiPK,p.
For the term pQ4 Pu we note that when ¢ € HO(E),

(QQ-{-Pqu/))X' = (5Q€+PU7”¢)X'
= (" Pu, Q" 0" V) 5 = (Pu, 1t Q5" )x = (Pu, K7 (A*) 1) x
= (Pu, K" (A") ") x — (u, PPK'T(A*) ") x = (o, A*C" T (A5 1) x0.

It is used here that Qet Pu € Hd(El) so that ¢ and pr™* give the same result, and that
P*K'" = (. Taking this together with (7.21), we find:

(C+997 ¢)X’ = (99710) o (99/ A*C,—i—(A*)_]w)X'v for all 997wa

this implies (7.20). O

For systems without the invertibility assumption there are similar formulas with smooth-
ing terms. For first order systems, the orthogonalized Calderén projector for P* was in-
vestigated earlier by Booss and Wojciechowski in [BW8T7] (see also Example 5.1 above),
playing an essential role in their analysis of the index.

8. Analysis of the resolvent.

Consider Pg as defined in Section 2; in particular it can be equal to Dy as introduced
in Section 5. We shall find a constructive expression of its resolvent in a form that allows
showing asymptotic expansions of traces.

The strategy in [GS95] for characterizing the resolvent (A; + u?)~! associated with
a Dirac-type problem with a boundary condition (IIs> + Bp)you = 0 was essentially to
express the general resolvent as a suitable perturbation of the product case resolvent, by a

1
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term that is of lower order at the boundary. When P is not of Dirac-type, we do not have
a simpler reference problem (like the product case) to depart from, so a new strategy is
needed. Here we establish the analysis directly by use of a Calderén projector for P — A.

Consider a system (PS;A> satisfying Assumptions 2.1 and 2.2. By Lemma 2.3, it is

surjective from HY(E) to Ly(E)xH(F) for each large A € T'. For suitably small subsectors
I" of T (covering I') we can define the Calderén projector C¥ by Theorem 7.4.

Lemma 8.1. Let A € I'. (with I" as in Theorem 7.4 and r so large that Q) = ]3;1
and Assumption 2.2 is satisfied). Then S C’;’ has the following right inverse, where K is
defined by Lemma 2.3,

it is a 1»do mapping H**(F) into H**(E'") with norm uniformly bounded in p = ||/,

for any s > d.

Proof. By the converse part of Theorem 7.2 1°, (8.1) is a right inverse of SC’;’. The
mapping property follows from the second statement in (2.10) by composition with p. O

We would like to use Theorem 6.5 to show that 5% is weakly polyhomogeneous in terms
of = (—A)"/. One difficulty in this is that S} is just a right inverse of SCYF, not a two-
sided inverse (and such right inverses are not uniquely determined). Another difficulty is
that S and C’;L are multi-order systems.

To eliminate the effects of the multi-order, we conjugate the operators (in each subsector
F;) with @F,A = ((SjkAdF;‘L_k_])j’k:o“”’dfl and @Eld’)\ = ((SljkAdET’ju_k_])jvk:()’m’dfl; the
entries are defined as in the proof of Theorem 6.5. The following operators are of order 0:
(8.2) Sy = CRICICIN N O g CX O -
Since C;’ and the ©, are strongly polyhomogeneous, so is 5; Then by the remark after
Definition 6.3, éj\' is special parameter-dependent of order 0. For §>\ it follows from the
lower triangular form of S that Sy is again lower triangular. The entries in and below the
diagonal are of the form AdF;L_j S,-kA%“,LVL*d with j > k and thus, since S;;, € Si—k c §i=k0,
they are seen to have symbols in S%0 with p-derivatives of order m in $="0 N §%=™ for
any m, by calculations as around (6.15). (For £ < j < d — 1 one needs the observation
that §7—Fk=in gitl=dd=1-j = §0.0 by interpolation since j —k >0, j+1 —d < 0.) Thus
§A is special parameter-dependent of order 0. We also define

(83) :SV;\ — ®E’d,>\‘s;\®l_ﬂl)\'

Theorem 8.2. Let P and S satisfy Assumptions 2.1 and 2.2. For X in truncated subsectors

I of ' (as in Lemma 8.1), the operator SCY has a right inverse S\ = G)E'ld,x

S is special parameter-dependent of order 0 (in terms of = (=X)'/%).
The right inverse S} defined in Lemma 8.1 equals C{ SY, and S’ defined by (8.3) is
special parameter-dependent of order 0.

Sg\/@F,)\ where

Proof. The operator §>\5;L is continuous from H'*(E'd) to H"*(F) for any t. It has
the right inverse S}, which is continuous from H“¥(F) to H%*(E'?), uniformly in yu, for
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t > %./ in view of (8.1), (2.10) and the mapping properties of the AlFJ_’u. In particular, the
continuity holds with ¢ = 1. We can then apply Theorem 6.5 2° with [ = 1, which shows
the existence of a right inverse SY that is special parameter-dependent of order 0.

The right inverse we have constructed in this way need not be the same as g;\ defined

. . P-AY . 5. . .
after Lemma 8.1 in (8.3). However, since ( S0 ) is bijective, we infer from the converse

parts of 1° and 2° in Theorem 7.2 that (C’) is injective and SC’j\' is surjective, hence S
A

defines a bijection of N§ , onto H*(F), and so does SC’;. Then SC’;’ has only one right
inverse ranging in Ny . Now S} in (8.1) does map into Ny , since (P — A\)Ky = 0, so it
is the right inverse of SC’;’ ranging in N{ .. When S{" is an arbitrary right inverse, then
I = SCYSY = SCYCTSY, so CFSY is a right inverse ranging in Ny 4; hence it must
equal S|. In particular, for the right inverse S{ found above,

(8.4) St =CYsy.

It then follows from the rules of calculus that also §§\ = Opa 5105, = 5;\' §§\’ is a special
parameter-dependent ydo of order 0. [

Since QVA is the inverse of ]BA, we can now apply the direct part of Theorem 7.2 1° to
P

describe the inverse of ( S

). This gives as an immediate corollary:

Corollary 8.3. For \ in truncated subsectors I, of I' (as in Lemma 8.1), the resolvent
Ry = (Ps — X\)~" and the Poisson solution operator K in (2.6) satisfy

(8.5) Ry =Qx, — Gy with Gy = KF5,50Qx 1, K= K854,

where S’ is as in Theorem 8.2.

In terms of p = (—=\)'/4, K;’ resp. Q@)\’_F are a strongly polyhomogeneous Poisson resp.
trace operator, and @E,d,AS;G);}A and @E,d’,\S’AS@;})\ are special parameter-dependent
do’s of order (0. In particular, we can write

(86) G)\ = /CASA'T)\ with IC)\ = Ky;\_@g}d»\? S>\ = ®E’d,>\S;\S®E}d7)\7 ']')\ = @Eld’kgékﬁ_?

where K is a strongly polyhomogeneous Poisson operator of order 1 — d, Sy is a special
parameter-dependent 1)do on X' of order 0, and T, is a strongly polyhomogeneous trace
operator of order —1 and class 0.

Here S} and S}S are covered by the analysis in Theorem 8.2, whereas K and QQAA—
were described in Theorem 7.41f.

9. Trace formulas.
We can finally obtain trace formulas, by the methods of [GS95].

Theorem 9.1. Let Pg be the realization (2.3) defined from a differential operator P of
order d in a bundle E over a manifold X together with a boundary condition (2.2) (all
admissible), such that Assumptions 2.1 and 2.2 are satisfied. When (m+1)d > n = dim X,
the resolvent Ry = (Ps — \)™! satisfies for any compactly supported morphism ¢ in E:

n—j

(9.1)  Tr(pdy(Ps — A) 1) ~ ag(—A) T 14 30 (a; + by) (—A) T !
+ R (erlog(—=A) + cf) (=)~ E T,
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for )\ — o0 In (’Ioeed subsectors of F The coefficients aj;, b; and ¢, are integrals,
fx x) dz, fx' (2') dx’ and fx' cp(a")da', of densities a; locally determined by the
symbo]s ofP resp. b. and Ck Iocally determined by the symbols of P and S at X'; here
X1 is a smooth compact neighborhood of supp¢ in X such that X| = Xy N X' is a
neighborhood of supp ¢ N X' in X'. The ¢ are in general globally determined.

Proof. pd¥' Ry, is trace class, since it maps Ly(E) into H™+D9(E|x ) and the injection
Hm+DA(B|y ) < Ly(E|x,) is trace class. The kernel is continuous and the trace is the
integral of the fiber trace of the kernel on the diagonal, so one only has to integrate over
X1. Consider a truncated subsector I as in Lemma 8.1. From Corollary 8.3 follows that

8;\”R)\ :8;\’1(1)9—)\)71 :m!(Pq—)\) m—l — (Q)\+—G)\)m+1
(9.2) = m!(Qx 1) + 0 pol,(Qr 4+, G)
= ml(Qy )4 + Ga+ X1 ol (@ 4. G,

where the expressions pol, are “polynomials” in the two (non-commuting) terms in Ry, in
the sense that they are linear combinations of compositions with m — k factors @) 4+ and
k factors Gy. The term G is the singular Green operator (cf. e.g. [G96, (1.2.35)])

(9.3) Gy =m!((Qx )™ = (@Y 4).

In the dependence on g = (—\)/? we have in view of the rules of calculus of [GS95], [G96]
that QVTH is a strongly polyhomogeneous v¢»do of order —(m + 1)d on )Z', GA is a strongly
polyhomogeneous singular Green operator of order —(m + 1)d on X, and the sum over
k is a sum of compositions containing strongly polyhomogeneous operators (of all types)
together with the special parameter-dependent ¢do Sy, cf. (8.6).

Consider the trace

Trx pdV'Ry = Trx @m!(éx)fﬁ“ + Try o[Gy + S0 pol, (@ 4. G-

By the construction of P, in Theorem 7.4, the restriction (QV;'“L )4 of Qm+] is the restric-

tion of a strongly polyhomogeneous parametrix of (P — X\)™*! defined on a neighborhood
(@Y™

n—

+ contributes a well-known expansion > 1~ a;(—\) 77

i_m—1

of X, so Trx ¢m!

The singular Green operator G is strongly polyhomogeneous of order —(m + 1)d and
hence of regularity +oc in the sense of [G96], so it contributes an expansion
S bOJ( )T =1 by the proof of [G96, Th. 3.3.10ff.], also recalled in [G92, App.].

In view of (8.6), the terms in the polynomials pol;, contain Sy as one or several factors.
Here we use the invariance of the trace under cyclic permutation of the operators, to reduce
to the study of an operator on X’. Since QVN_,_ composes with strongly polyhomogeneous
Poisson and trace operators to give Poisson resp. trace operators that are again strongly
polyhomogeneous, each term in pol, has the structure

(9.4) Oy = @K NS\TI AR xSATon ... Ky ASAT s

with Gy of total order —(m +1)d and the K; y and 7; ) strongly polyhomogeneous Poisson
and trace operators of order < 0 and class 0. Let 1) denote a morphism over X’ that is the
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identity over a neighborhood of supp ¢ N X’ and is supported in X7i; then ¢y (I — ) is
strongly polyhomogeneous of order —oo, so its norm in Sobolev spaces is O({A\)~™), any
M, and TI‘X (p/CL)\<I — w)SA,]’lv)\ICQV)\S)\,]’QV)\ - ./CJ’)\S)\T]’)\ is O(<)\>_M), any M. For the
remaining part,

Trx oK1z US\TIAKozSxTo s - .. KyaS\Ty ) = Trx: Sy, with

(9:5) Sy = VS\TIAKonS\Ton .. - KypnS\TyaeKq y;

here the factors 7; \K;11,» and 7 @K » are strongly polyhomogeneous ¥do’s on X' of
orders < 0. It follows that the ¢)do S} is a special parameter-dependent ¢)do of order
—(m 4 1)d. We can now apply [GS95, Th. 2.1] to this by integration over X/, using a
reduction to local trivializations and a partition of unity. Since X’ has dimension n — 1
and the symbol has degrees —(m + 1)d — k, k > 0, and p-exponent —(m + 1)d, we get an
expansion in a series of locally determined terms Bk(—A)%_m_], k > 1, together with a
series of terms (¢ log(—\) + 62)(—)\)§_m_1, k > 0, with ¢ locally determined.

Collecting all the contributions, we find (9.1). O

We have as an immediate consequence:

T 37
2772
on W (cf. Section 1), then the heat operator e~'"s has an expansion for t — 0, when ¢
has compact support:

Corollary 9.2. When J in Assumption 2.2 contains | | in the interior, and R) exists

(9:6) Tr(pe ") ~ agt ™4 + 30,5 (a5 + byt T + > k>o(Crlogt + Gt

here the coefficients are proportional to those in (9.1) by universal factors.

Proof. The expansion (9.6) is shown by inserting in (1.4) sums of terms from (9.1) down
to a certain order plus a remainder O((\)~), and letting N — oc. Here one uses simple
calculations such as:

(9.7) .faw e (A log(—A) dX = *% .faW e (=) dA
- _%tisil ft@W e~ 2(—0)*do = const. t*"'logt. O

Theorem 9.1 holds in particular for (Dg + pu) !, giving expansions of the form

— n—1 n—j—m-— —k—m—
(9:8)  Tr(@dy (D + 1)) ~ g cjnp” 77+ 3 s (erlog p+ ¢ ) F ot

for © — oo in closed subsectors of I'y. We apply this to (5.1) by use of (5.3) as in [GS95,
Sect. 3.4], taking ¢ = (Yk1)k,1=1,2 With just one block different from zero in order to get the
traces of the individual blocks in (5.3), and setting A = —u?. This gives trace expansions
of the m’th derivatives of p(A; — A)"1 (i =1,2), vDr(A; — A) ! and vDp*(Ay — N) 1,
with consequences for heat trace expansions:

Theorem 9.3. Let Dg be the realization of a first-order uniformly elliptic differential
operator D from FE; to FE; with a uniformly well-posed boundary condition Byou = 0
(manifolds, bundles and operators being admissible). Then when ¢ and 1) are compactly
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supported morphisms (in E; resp. from E; to E;, i,j = 1,2), there are resolvent trace
expansions in closed truncated subsectors of C \ Ry, for m > n:

n—j

Tr(pdT (A — A)™Y) ~ S fig (- A) T

(9.9) + 30 (5 Log(— ) + @) (~\) F =™,
Tr(U DT (A1 = N7~ T by ()

+ 2 ks b1k 10g(—A) + 8] 1) (—A)

with a similar formula for Tr(¢ D0y (Ay — X)~') with coefficients by j, and bl . If D is
bijective (so A; > 0), or X is compact, there are heat trace expansions for t — 0+:

— k41
5 fmfl_

Tr(pe '24) ~ 2777;01 ai,j—nt% + Zkzo(”’i,k logt + “;,k)tgv =12
j—n k—1

(9.10) ! -
Tr(YDpe™ 1) ~ 307 by j ot 5 "+ >z (brrlogt + 0 )t

with a similar formula for Tr(¢yDp*e~'2?) with coefficients by i, and b}, ,. The coefficients
in (9.10) are proportional to those in (9.9) by universal factors. The unprimed coefficients
are locally determined; the primed coefficients depend on the operators in a global way.

The terms 57;,,,7,(—)\)é m=1 and 1)7;7,77,757LTJrl have been left out, since their coefficients are
formed by integration in ¢ of functions that are odd in £, which gives zero. When the
A; >0, (1.4) is used to get (9.10). When X is compact, the resolvent has a pole at 0 when
ker D # 0, and we use [GS96, Cor. 2.10, Th. 5.3] as in [GS95]. Then one also gets zeta

expansions, with the same a; 1, a .. b;  and b} ,:

n—1 /
- Wi, j— Tr Iy (Dp) — ik @ k
D(s) Ta(pA, ") ~ 3 00 ¥ by ),
(9.11) AP = : 2\ tp e s
P(6) Te (DA ~ 3" iz S b B
L) WL J-n-1 k—1 k—1 )’
=1 s + 77 k>0 (S + T)Q s+ 5

with a similar formula for Tr(¢Dp"A,®) with coefficients by and by ;. (The left-hand
side is meromorphic on C and the right-hand side gives the full pole structure.)

The results apply of course to all the cases presented in the examples in Section 4.

For comparison with earlier results it is of interest to see how the expansions vary under
perturbations of B. Let us consider two choices By and By of B, setting B’ = By — Bj.
Denote B; = (B: (I-Bj)o* ), for i = 1,2; B’ = By — By. Let (Ri,. Ki,u) be the inverse of

D :
(;:y’:) for p € C\iR. Then

(Rou Ko ) = (Rip Kiy) (g;;’:) (Rop Ko ) = (Rau Kin) <—B'7£R2,H I—B’SOICQ,J ,
which implies that

(912) R27u — Rl,/i = 7K17NB/70R27N7 ICQ’M — IC]’M = 7K17NB/70K27N'
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Theorem 9.4. In the above notation, when B’ is a 1 do of order —1,

m n—1 n—m—1—j —m—1—k
Tr 0" (Roy — Rapu) ~ le:2 Cj—nlt I Zkzo(ck log pu+ ¢ ) o

9.13
( ) Tr 996/2"‘(7227“ —Riu) ~ D k>0 cﬁcu*m*kk, if B is of order — oo.

Proof. We find by circular perturbation (as in Theorem 9.1) of the expression in (9.12):

Trx @0, (K1, B70R2.u) = Trx Y e, (7)) 905K 1 B'700] " Ra
= Tl"xl 8;’1(3’70732,“99/@,“) = Tl"xl SIZ

where S, = 8;”(3/70(@u,+ - I"ISQ,MBWOQM&)@K:SQ,u);

the Sg’u denote the right inverses of BiC’lj' constructed for the respective problems in
Lemma 8.1 and Theorem 8.2. It is found from the composition rules that SL has symbol
in §—2=mOng=h=l=m (in §=ee=1=m if B’ ig of order —oc). Then [GS95, Th. 2.1] implies
(9.13), when m > n — 2 (resp. for any m). O

In the case with X compact and a product structure near X', the Calderén projector
differs from II> by an operator of order —oo by Proposition 4.1, so for B = C*, the
expansions (9.9)-(9.11) only differ in the primed coefficients from the expansions known
for B = II>, by (9.13). Here it was shown in [GS96] that all the logarithmic terms vanish
when n = dim X is odd; when n is even, the logarithmic terms with k& even > ( vanish,
and the logarithm at the power zero vanishes if in addition ¢ = I (exact formulas were
also given). So we find:

Corollary 9.5. Consider the product case with X compact, B = C'T. Then the expan-
sions (9.9)—(9.11) differ from those known for B = II> only in the primed coefficients. In
particular: When n is odd, all the logarithmic terms vanish. When n is even, the logarith-
mic terms with k even > (0 vanish in (9.9) (9.10); also the a; o and a; vanish if ¢ = I.
The same holds for smooth perturbations of II> or C't.

Note that it is the global coefficients that may be changed when we replace II> by C* in
the product case, whereas the locally determined coefficients are unchanged. Their values
are in principle determined from the precise formulas in [GS96].

Remark 9.6. Our results show that the boundary conditions considered in [BL97] give
heat operators with trace expansions (9.10) also when the structure is not of product type
near X'; this is a new result. Comparison with perturbations as in Theorem 9.4 ff.

Let us finally observe the resulting index formula:

Corollary 9.7. Let X be compact and let B be well-posed for D. Let ¢ = 1 in (9.10).
Then the index of Dy equals
(9.14) index Dp = da} g — ay .

)

Furthermore, all the other coefficents coincide for i = 1 and 2: ay ) = ayy, for all k >
—n and a' , = ai,, for all k > 0.

Proof. This follows from the well-known fact (cf. e.g. [G96, Sect. 4.3]) that index Dp =
Tre ' — Tre '»2 for t > 0. Since this expression is constant in ¢, the variable terms

n

must vanish. (One can make a successive elimination of the terms (ay _, — as )t 2,
n—1 .
(a1,1—n —az1-n)t~ "2z , etc., by order of magnitude.) O
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