
POLES OF ZETA AND ETA FUNCTIONS FOR PERTURBATIONSOF THE ATIYAH-PATODI-SINGER PROBLEMGerd GrubbCopenhagen Univ. Math. Dept., Universitetsparken 5,DK-2100 Copenhagen, Denmark. E-mail grubb@math.ku.dkDedicated to Professor Norio Shimakura on the occasion of his sixtieth birthday.Abstract. The zeta and eta functions of a di�erential operator of Dirac-type on a compactn-dimensional manifold, provided with a well-posed pseudodi�erential boundary condition,have been shown in [G99] to be meromorphic on C with simple or double poles on the realaxis. Extending results from [G99] we show how perturbations of the boundary condition oforder �J a�ect the poles; in particular they preserve a possible regularity of zeta at 0 and apossible simple pole of eta at 0 when J � n. This applies to perturbations of spectral boundaryconditions, also when the structure is non-product and the problem is non-selfadjoint.Let D be a �rst-order di�erential operator (e.g. a Dirac-type operator) from C1(X;E1)to C1(X;E2) (E1 and E2 Hermitian N -dimensional vector bundles over a compact n-dimensional C1 manifold X with boundary @X = X 0), and let DB be the L2-realizationde�ned by a well-posed zero-order pseudodi�erential boundary condition B(ujX0) = 0. For�1 = DB�DB and �2 = DBDB�, the following expansions were shown in [G99]:Tr(�i � �)�m � X�n�k<0 ~ai;k(��)� k2�m +Xk�0�~ai;k log(��) + ~a0i;k�(��)� k2�m;(1) Tr e�t�i � X�n�k<0 ai;kt k2 +Xk�0��ai;k log t+ a0i;k�t k2 ;(2) �(s) Tr��si � X�n�k<0 ai;ks+ k2 + �0(�i)s +Xk�0� ai;k(s+ k2 )2 + a0i;ks+ k2 �;(3)In (1), m > n2 and �!1 on rays in C n R+ ; in (2), t! 0+. (3) means that �(s) Tr��si ,de�ned in a standard way for Re s > n2 , extends meromorphically to C with the polestructure indicated in the right hand side. Here �0 is the dimension of the nullspace (onwhich ��si is taken to be zero). Tr��si is also known as the zeta function �(�i; s) =Peigenv: �>0 ��s. The three expansions (1){(3) are essentially equivalent, cf. [GS96], thek'th coeÆcients being interrelated by universal constants.A fundamental example is the Atiyah-Patodi-Singer problem [APS75], where D is aDirac operator with product structure near X 0 and B is taken as the orthogonal projec-tion �� onto the nonnegative eigenspace for an associated selfadjoint operator A on X 0(the spectral boundary condition). For the general case without assumptions on product1



2 GERD GRUBBstructure near X 0, an expansion up to k < 1 was shown in [G92] with ai;0 = 0, and a fullexpansion was shown in the joint work with Seeley [GS95].It is important in applications to know whether the coeÆcient ai;0 vanishes. Since �(s)has a pole at 0, ai;0 = 0 means that �(�i; s) is regular at 0. Then the derivative �� 0(�i; 0)is well-de�ned; it equals the \logarithm of the determinant" of �i. (For the connectionwith determinants, note that �� 0(�i; s) = Peigenv: �>0 ��s log�; if �i is replaced by apositive matrix T , this equals log detT for s = 0.)In an interesting recent paper [W99], Wojciechowski studies the regularity at 0 of thezeta and eta functions of DB in the case where D is a selfadjoint Dirac-type operatorwith product structure near X 0, B is a pseudodi�erential projection di�ering from theCalder�on projector C+ by an operator of order �1, and DB is selfadjoint (with proofdetails for n odd). He does mention our paper [G99] in preprint form, but only with a vaguestatement that \at the moment, the problem of explicit computation of the coeÆcients inthe expansion is open". This is not so for the particular coeÆcient ai;0, since our Theorem9.4 (showing that order �1 perturbations of the boundary condition do not change thevalues ai;k), implies that ai;0 = 0 in the case considered in [W99], as stated in our Corollary9.5. This covers the result on �D2P (s) in [W99, Th. 0.2] (also for n even).The purpose of the present note is to account for the consequences of [G99] and toextend the analysis to perturbations of arbitrary �nite negative order, showing which ofthe coeÆcients in (1){(3) are left una�ected. We establish similar results for eta functions,and include some improved details on the use of the polyhomogeneous calculus of [GS95].The realization DB of D and its adjoint (DB)� (acting as D� with a certain boundarycondition B(�)ujX0 = 0) are imbedded in the larger elliptic system(5) DB = � 0 �DB�DB 0 � ; with R� = (DB + �)�1 = � �(�1+�2)�1 DB�(�2+�2)�1�DB(�1+�2)�1 �(�2+�2)�1 � ;for � 2 C n iR; the resolvents Ri;� = (�i + �2)�1 can be retrieved from this.For two choices B1 and B2 of B, let B0 = B2 � B1. Denoting Bj = (Bj B(�)j ) ; forj = 1; 2, and B0 = B2 �B1, we have that the inverses (Rj;� Kj;� ) of �D+�Bj0 � for � 2 C n iRsatisfy(6) (R2;� K2;� ) = (R1;� K1;� )�D+�B10 � (R2;� K2;� ) = (R1;� K1;� )� I 0�B00R2;� I�B00K2;� � ;here 0u = ujX0 . It is shown in [G99, Cor. 8.3] (to which we refer for notation) that theoperators have the structure Rj;� = eQ�;+ � K+� S0j;�Bj0 eQ�;+ and Kj;� = K+� S0j;�Bj0,where the S0j;� denote particular right inverses of BjC+� ; they are weakly polyhomogeneouswith symbols in S0;0, whereas the other �-dependent factors are strongly polyhomogeneous.Then(7) R2;� �R1;� = �K1;�B00R2;� = �K+� S01;�B00( eQ�;+ �K+� S02;�B20 eQ�;+):Denoting �1;j = DBj �DBj and �2;j = DBjDBj �, with resolvents Ri;j;�, we have in viewof (5),(8) R1;2;� � R1;1;� = ��1 ( 1 0 ) (R2;� �R1;�)� 10� ;DB2R1;2;� �DB1R1;1;� = � ( 0 1 ) (R2;� �R1;�)� 10� ;



POLES OF ZETA AND ETA 3with similar formulas for i = 2. The second expression has a similar structure as in (7), andthe �rst one has it with an extra factor ��1. We can likewise �nd the explicit structuresof(9) Rm1;2;� � Rm1;1;� = (R1;2;� � R1;1;�)(Rm�11;2;� + Rm�21;2;�R1;1;� + � � �+Rm�11;1;�);DB2Rm1;2;� �DB1Rm1;1;� = DB2Rm1;2;�(R1;2;� �R1;1;�)(Rm�21;2;� + � � �+Rm�21;1;�)+ (DB2R1;2;� �DB1R1;1;�)Rm�11;2;�;for higher powers m.Theorem 1. Let B0 = B1 � B2 be of order �J for some 1 � J � 1, and let m �maxfn� J; 1g. Then, with ' denoting a morphism from E2 to E1, there are expansionsTr(Rmi;2;� � Rmi;1;�) � Xn�J<k<0 ~ci;k��2m�k +Xk�0(~ci;k log�+ ~c0i;k)��2m�k;(10)Tr('DB2Rm1;2;� � 'DB1Rm1;1;�) � Xn�J<k<0 ~dk�1�2m�k +Xk�0( ~dk log�+ ~d0k)�1�2m�k;(11)
for �!1 in C n iR; the ~ci;k and ~dk vanish when k � J � n.Proof. First consider (10). We can let i = 1. The operator R1;2;� � R1;1;� is of theform ��1K�S�T�, where K� and T� are a strongly polyhomogeneous Poisson resp. traceoperator of order 0 resp. �1, and S� is a weakly polyhomogeneous  do on X 0 with symbolin S�J;0, in the calculus introduced in [GS95]. If J � n � 1, the operator is trace-classand has the same trace as the  do on X 0 obtained by circular perturbation, ��1S�T�K�.Since T�K� is a strongly polyhomogeneous  do on X 0 of order �1, hence has symbol inS�1;0 \ S0;�1, the composed expression is a weakly polyhomogeneous  do on X 0 withsymbol in S�1�J;�1 \ S�J;�2.If J < n� 1, we need to consider a power as in (9) with m � n� J , to get a trace classoperator. The operators R1;j;� are of the form Q�;+ �K�S 0�T� with K� and T� as above,Q� a strongly polyhomogeneous  do of degree �2 and S 0� having symbol in S0;�1. Thenby circular perturbation,(12) TrX(Rm1;2;� � Rm1;1;�) = TrX(��1K�S�T�(Rm�11;2;� + � � �+ Rm�11;1;�))= TrX0(S�); S� = ��1S�T�(Rm�11;2;� + � � �+ Rm�11;1;�)K�:The various composition rules explained in [GS95] show that S� is a composite of weaklypolyhomogeneous and strongly polyhomogeneous  do's on X 0; its symbol lies inS�m�J;�m \ S�J;�2m, since each factor R1;j;� results in multiplying the symbol spaceby S�1;�1 \ S0;�2.Now [GS95, Th. 2.1] can be applied to the resulting  do on the manifoldX 0 of dimensionn� 1. Since the total order is �2m� J and the d-index is �2m, the formula [GS95, (2.1)]gives an expansion (10). For the log-coeÆcients we use the additional information from[GS95, Th. 2.1] stating that the contribution to the coeÆcient ~c1;k of ��2m�k log� whenk � 0 comes entirely from the homogeneous symbol of S� of degree (1�n)�2m�k. Since



4 GERD GRUBBthe highest degree of homogeneity occurring in the symbol is �2m� J , these ~c1;k's vanishfor k + n� 1 < J , i.e., for k � n� J . This shows the statements on (10).For (11), we have that 'DB2R1;2;� � 'DB1R1;1;� is of the form K�S�T�, where K�,S� and T� are as above. A circular perturbation gives a weakly polyhomogeneous  doon X 0, now with symbol in S�1�J;0 \ S�J;�1. For J � n � 1 we can pass directly to anapplication of [GS95, Th. 2.1] as above. For J < n � 1 we take a high enough m and�nd, very similarly to the above considerations, that circular perturbation gives a  do onX 0 with symbol in S�m�J;1�m \ S�J;1�2m. Then an application of [GS95, Th. 2.1] gives(11). �The cases J = 1 and J = 1 were treated in [G99, Th. 9.4 �.]. (The considerationsabove on composite expressions are very similar to those in [G99, Th. 9.1]. The deductiongiven here in terms of resolvent powers is slightly more direct than that indicated in [G99]via �-derivatives; the present considerations can also be used for the passage from (9.1) to(9.9){(9.11) in [G99].)Theorem 1 is carried over to a result on heat traces and zeta and eta functions byapplication of the transition rules [GS96, Cor. 2.10 and Prop. 5.1]:Corollary 2. Under the hypotheses of Theorem 1, one has:Tr(e�t�i;2 � e�t�i;1) � Xn�J<k<0 ci;kt k2 +Xk�0��ci;k log t+ c0i;k�t k2 ;(13)
Tr('DB2e�t�1;2 � 'DB1e�t�1;1) � Xn�J<k<0 dkt k�12 +Xk�0��dk log t+ d0k�t k�12 ;(14) �(s) Tr((�i;2)�s � (�i;1)�s) �� Xn�J<k<0 ci;ks+ k2 + �0(�i;2)� �0(�i;1)s +Xk�0� ci;k(s+ k2 )2 + c0i;ks+ k2 �;(15) �(s) Tr('DB2(�1;2)�s � 'DB1(�1;1)�s) �� Xn�J<k<0 dks+ k�12 +Xk�0� dk(s+ k�12 )2 + d0ks+ k�12 �;(16)

where the ci;k and dk vanish for k � J � n.Now consider operators of Dirac-type (notation of [G99]); on a collar neighborhood Uof X 0 they are of the form:(17) D = �( @@xn +A+ xnP1 + P0);where xn is a normal coordinate, A is a selfadjoint elliptic �rst-order di�erential operator inL2(X 0; E1jX0), the Pj are di�erential operators of order � j, and � is a unitary morphismfrom E1jX0 to E2jX0 . (U is identi�ed with X 0� [0; c] and the Ei are liftings of EijX0 here.)The product case is the case where, moreover, the Pj are 0 on U .



POLES OF ZETA AND ETA 5The coeÆcients in (1){(3) were determined from the zeta and eta expansions of D andA in [GS96, Cor. 2.7{2.8] in the product case with B = �� (the orthogonal projectiononto the nonnegative eigenspace for A); then in particular all the ~ai;k and ai;k with k � 0vanish when n is odd; the ~ai;k and ai;k with k even � 0 vanish when n is even. (Theremaining coeÆcients are nonzero in general, cf. Gilkey-Grubb [GG98].) Combining thiswith Corollary 2, one �nds that the same holds for perturbations B2 = ��+S of B1 = ��with S of order �1; this is formulated in [G99, Cor. 9.5]. This result includes the caseB2 = C+ + S0, S0 of order �1, since C+ � �� is of order �1 in the product case by[G99, Prop. 4.1] (C+ is the Calder�on projector for D). With the present accounting of thee�ect of perturbations of order �J , we get the following extended information:Corollary 3. Consider DB in the product case with B = �� + S, S of order �J (thenB�C+ is likewise of order �J). If n is odd, all ~ai;k and ai;k with 0 � k � J �n vanish in(1){(3). If n is even, all the ~ai;k and ai;k with 0 � k � J �n and k even vanish in (1){(3).We formulate some consequences for the zero'th coeÆcient in detail.Corollary 4. In (1){(3), the coeÆcients ~ai;0 and ai;0 vanish in the following cases:(a) D is a Dirac-type operator and B � �� is a  do of order � �n.(b) D is a Dirac-type operator in the product case, and B � C+ is a  do of order� �n.(c) D is a Dirac-type operator, B�C+ is a  do of order � �n, and the structure nearX 0 is so close to the product case that �� � C+ is of order �n.Hence in these cases, the zeta function �(�i; s) is regular at s = 0.Proof. The result in case (a) follows from Corollary 2 together with the fact that ai;0vanishes for Dirac-type operators with the boundary condition ��ujX0 = 0 ([G92]). Theresult in case (b) follows from Corollary 3, and the result in case (c) is an immediateconsequence of the preceding ones. �The reason that we do not claim that (a) holds with �� replaced by C+ is that C+ willin general di�er from �� by an operator that is merely of order �1.Let us also consider the eta function. We have from [G99, (9.9){(9.11)]:Tr['DB(�1 � �)�m] � X�n<k<0~bk(��)� k�12 �m +Xk�0�~bk log(��) + ~b0k�(��)� k�12 �m;(18) Tr['DBe�t�1 ] � X�n<k<0 bkt k2 +Xk�0��bk log t+ b0k�t k�12 ;(19) �(s) Tr['DB��s1 ] � X�n<k<0 bks+ k�12 +Xk�0� bk(s+ k�12 )2 + b0ks+ k�12 �;(20)with similar formulas where DB and DB� are interchanged. When E1 = E2, the etafunction is de�ned by �(DB ; s0) = Tr(DB�� s0+121 ), so in (20), s0 corresponds to s = s0+12 ,and the expansion with ' = I takes the form(21) �( s0+12 )�(DB; s0) � X�n<k<0 2bks0 + k +Xk�0� 4bk(s0 + k)2 + 2b0ks0 + k�:



6 GERD GRUBBThe coeÆcients in (18){(21) were determined from the zeta and eta expansions of D andA in [GS96, Cor. 4.5] in the product case with B = ��; in particular, the bk vanish fork � 0 if n is odd, and they vanish for k even > 0 if n is even. For k = 0 and n even, b0is proportional to the residue of TrX0(�AjAj�s�1) at s = 0. It vanishes e.g. if �A = �A�,for in this case TrX0(�AjAj�s�1) � 0 (see also [GS96, Cor. 2.4]).Then Corollary 2 implies:Corollary 5. Consider the product case with E1 = E2 and B = �� + S, S of order �J(so also B�C+ is of order �J). When n is odd, all bk with 0 � k � J � n vanish in (21).When n is even, all the bk with 0 < k � J � n and k even vanish in (21); if �A = �A�,also b0 = 0.Note that in the product case, D is selfadjoint if �� = �� and �A = �A�.Since �(s) is regular at 12 , b0 has to vanish in order for �(DB; s0) to have a simple poleat s0 = 0. In case of a simple pole, our analysis shows that perturbations of the boundarycondition by operators of order � �n still give a simple pole. The pole vanishes undermore restrictive circumstances, cf. Douglas and Wojciechowski [DW91], [GS96, Cor. 4.6],[W99].The results in Corollary 4 extend to b0 in view of the following theorem.Theorem 6. Consider the realization DB of a Dirac-type operator D (cf. (17)) withB = ��. The coeÆcients ~b0 and b0 in (18){(20) are the same as these coeÆcients inthe expansions for D0B , where D0 = ��( @@xn + A) + (1 � �)D, with � = 1 near X 0 andsupported in X 0 � [0; c[ .Proof. Observe that we are here dealing with a perturbation of the interior operator, notof the boundary condition as in Theorem 1. This is advantageous, for we can then use theresult of [G92, Th. 4.4], showing that the resolvent (�1 � �)�1 has the form(22) (�1 � �)�1 = Q�;+ + �G0��+G(1)� ;where Q�;+ is the restriction to X of a parametrix Q� of D�D�� de�ned on a neighboor-hood of X, G0� is the singular Green part of the resolvent in the product situation whereD is replaced by �( @@xn +A) and X is replaced by X 0� [0;1[ , and G(1)� is a singular Greenoperator of order �3, class 0 and regularity 0. Then(23)(m�1)!D(�1��)�m = D@m�1� (�1��)�1 = D@m�1� Q�;++D@m�1� (�G0��)+D@m�1� G(1)� :In the calculation of the trace, the �rst term gives no logarithms, the second term gives theexpansion known for the product case, where the log-terms start with ~b0(��) 12�m log(��),and the third term gives an expansion with pure powers up to and including the termc(��) 12�m (the method of [G92] gives an O((��) 18�m) after this, and the method of [GS95]gives a full expansion with log-terms for higher k). So the �rst log-term for D(�1 � �)�mis the same as that for D0((D0B)�D0B � �)�m. �One could also have shown this by arguments as in the last paragraph of the proof of[GS95, Th. 3.13], but the notation would be quite heavy.



POLES OF ZETA AND ETA 7Corollary 7. Let E1 = E2 and assume that �A = �A� if n is even. In the three cases(a){(c) listed in Corollary 4, the coeÆcient b0 in (21) vanishes, in other words the etafunction �(�i; s0) has at most a simple pole at s0 = 0.Proof. The product case with B = �� has b0 = 0, as accounted for in Corollary 5. Henceso has the non-product case with B = ��, by Theorem 6. The statements for the cases (a)and (b) then follow from Corollary 2 resp. 5, and case (c) is an immediate consequence. �Note that we do not assume selfadjointness of DB as in [W99].References[APS75] M. F. Atiyah, V. K. Patodi and I. M. Singer, Spectral asymmetry and Riemannian geometry, I,Math. Proc. Camb. Phil. Soc. 77 (1975), 43{69.[DW91] R. G. Douglas and K. P. Wojciechowski, Adiabatic limits of the �-invariants, the odd dimensionalAtiyah-Patodi-Singer problem, Comm. Math. Phys. 142 (1991), 139{168.[GG98] P. B. Gilkey and G. Grubb, Logarithmic terms in asymptotic expansions of heat operator traces,Comm. Part. Di�. Eq. 23 (1998), 777-792.[G92] G. Grubb, Heat operator trace expansions and index for general Atiyah-Patodi-Singer problems,Comm. P. D. E. 17 (1992), 2031{2077.[G99] , Trace expansions for pseudodi�erential boundary problems for Dirac-type operators andmore general systems, Arkiv f. Mat. 37 (1999), 45{86.[GS95] G. Grubb and R. Seeley, Weakly parametric pseudodi�erential operators and Atiyah-Patodi-Singer boundary problems, Inventiones Math. 121 (1995), 481{529.[GS96] , Zeta and eta functions for Atiyah-Patodi-Singer operators, J. Geom. An. 6 (1996),31{77.[W99] K. Wojciechowski, The �-determinant and the additivity of the �-invariant on the smooth, self-adjoint Grassmannian, Comm. Math. Phys. 201 (1999), 423{444.


