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ABsTRACT. The zeta and eta functions of a differential operator of Dirac-type on a compact
n-dimensional manifold, provided with a well-posed pseudodifferential boundary condition,
have been shown in [G99] to be meromorphic on C with simple or double poles on the real
axis. Extending results from [G99] we show how perturbations of the boundary condition of
order —J affect the poles; in particular they preserve a possible regularity of zeta at 0 and a
possible simple pole of eta at 0 when J > n. This applies to perturbations of spectral boundary
conditions, also when the structure is non-product and the problem is non-selfadjoint.

Let D be a first-order differential operator (e.g. a Dirac-type operator) from C> (X, E4)
to C°(X, Ey) (F1 and Ey Hermitian N-dimensional vector bundles over a compact n-
dimensional C'*° manifold X with boundary X = X’), and let Dp be the Ly-realization
defined by a well-posed zero-order pseudodifferential boundary condition B(u|x:) = 0. For
Ay =Dg*Dp and Ay = DgDpg™, the following expansions were shown in [G99]:

e

(1) T - )™~ > @k AT Y (@klog(-A) + ) (AT,

—n<k<0 k>0
N k k
(2) Tre '8 ~ E a; kt? + E (—aixlogt + aj)t2,
—n<k<0 k>0

_ aix | V() @ik az
(3) D) TrAT ~ Y /4 +Z( o+ k)
z —n<k<0® T3 5 k>0 (s+3)? s+3

In (1), m > % and A — oo on rays in C\ Ry ; in (2), t — 0+. (3) means that I'(s) Tr A%,
defined in a standard way for Res > %, extends meromorphically to C with the pole
structure indicated in the right hand side. Here vq is the dimension of the nullspace (on
which A, ® is taken to be zero). TrA,*® is also known as the zeta function ((A;,s) =
> eigenv. A>0 A - The three expansions (1)-(3) are essentially equivalent, cf. [GS96], the
k’th coefficients being interrelated by universal constants.

A fundamental example is the Atiyah-Patodi-Singer problem [APS75], where D is a
Dirac operator with product structure near X’ and B is taken as the orthogonal projec-
tion II> onto the nonnegative eigenspace for an associated selfadjoint operator A on X'

(the spectral boundary condition). For the general case without assumptions on product
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structure near X', an expansion up to & < 1 was shown in [G92] with a; ¢ = 0, and a full
expansion was shown in the joint work with Seeley [GS95].

It is important in applications to know whether the coefficient a; o vanishes. Since I'(s)
has a pole at 0, a; o = 0 means that ((4,, s) is regular at 0. Then the derivative —('(A;,0)
is well-defined; it equals the “logarlthm of the determinant” of A;. (For the connection
with determinants, note that —('(A;, s) = Zeigenv.)\>0 A% log A; if A; is replaced by a
positive matrix 7', this equals logdet T" for s = 0.)

In an interesting recent paper [W99], Wojciechowski studies the regularity at 0 of the
zeta and eta functions of Dp in the case where D is a selfadjoint Dirac-type operator
with product structure near X', B is a pseudodifferential projection differing from the
Calderdn projector C* by an operator of order —oc, and Dp is selfadjoint (with proof
details for n odd). He does mention our paper [G99] in preprint form, but only with a vague
statement that “at the moment, the problem of explicit computation of the coefficients in
the expansion is open”. This is not so for the particular coefficient a; ¢, since our Theorem
9.4 (showing that order —oc perturbations of the boundary condition do not change the
values a; 1), implies that a; o = 0 in the case considered in [W99], as stated in our Corollary
9.5. This covers the result on (p2 (s) in [W99, Th. 0.2] (also for n even).

The purpose of the present note is to account for the consequences of [G99] and to
extend the analysis to perturbations of arbitrary finite negative order, showing which of
the coefficients in (1)—(3) are left unaffected. We establish similar results for eta functions,
and include some improved details on the use of the polyhomogeneous calculus of [GS95].

The realization Dp of D and its adjoint (Dp)* (acting as D* with a certain boundary
condition B®)u|x: = 0) are imbedded in the larger elliptic system

_( 0 -Dg” : _ -1 _ pn(A1+p?)"t Dp*(Ax4p®)"!
(5) DB - (DR 0 ) ) with Ru‘ - (DB + u) - (*DB(A1-HL2)71 5(A2+M2)71 ) ’

for u € C\iR; the resolvents R; , = (A; + p?)~! can be retrieved from this.

For two choices By and Bs of B, let B’ = By — By. Denoting B; = (B; B"), for
j=1,2,and B' = By — By, we have that the inverses (Rj.. Kj.. ) of < 0) for p € C\ iR
satisfy

D+ I 0
(6) (Rz’“ ’Cz’“) = (Rl’” ’Cl’“) <81’Yl:) (Rz,u ’Cz,u) - (Rl’u ’Cl’u) (—BI’YOR2,H I—B"Yo’C2,u) ;

here you = u|x/. It is shown in [G99, Cor. 8.3] (to which we refer for notation) that the
operators have the structure R;, = Q.+ — K;'S; BjvQ,+ and K;, = KFS} Bjvo,
where the S’ denote particular right inverses of B; C’ ; they are weakly polyhomogeneous

with qymbol% in S%°, whereas the other y-dependent fa("torq are strongly polyhomogeneous.
Then

(7) Ropy —Ripu = 7K17MB’70R27M = *K+Si B”YO(QVM& - K:SQ,MB2,‘YO@“a+)'

Denotlng Al g = DB’ DB and A27 == DB’ DB
of (5),

., with resolvents R; ; ,, we have in view

Ripy—Rinu=n"(10)(Ray—Rup) (é) v

® 1
Dp,Ri2y— Dp,Ri1u=—(01)(Rayu — Rip) <0) )
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with similar formulas for i = 2. The second expression has a similar structure as in (7), and
the first one has it with an extra factor p=!. We can likewise find the explicit structures
of

m m o m—1 m—2 m—1
1,2, V1,1, — (R1,2,u - Rl,l,u)(Rl,z,u + R1,2,,4R1,1,/4 +-t Rl,l,u)v
m m o m m—2 m—2
(9) DBz ‘1,2, DBlRl,l,u - DBzR1,2,u(R1,2,u - Rl,l,u)(RLz,u +-t Rl,l,u)
m—1
+ (D, R12 — D, Ri1,4)RY'y s

for higher powers m.

Theorem 1. Let B’ = By — By be of order —J for some 1 < J < oo, and let m >
max{n — J,1}. Then, with ¢ denoting a morphism from Fy to E;, there are expansions

(1) Te(RP, — R )~ S apn %+ S (Gonlogp+ &) u 2k,
n—J<k<0 k>0
(11)

Tr(¢Dp, Ry ,, — DB, Ry ) ~ Z dp'=2m =k 4 Z(Jk log p + dj)p* =2k,
n—J<k<0 k>0

for 1 — oo in C\ iR; the ¢; ;, and de vanish when k < J — n.

Proof. First consider (10). We can let i+ = 1. The operator Ri>, — Ri1, is of the
form p~'K,S,T,, where K, and 7, are a strongly polyhomogeneous Poisson resp. trace
operator of order 0 resp. —1, and S, is a weakly polyhomogeneous 1)do on X’ with symbol
in S~/ in the calculus introduced in [GS95]. If J > n — 1, the operator is trace-class
and has the same trace as the ¢do on X’ obtained by circular perturbation, p='S,7,K,.
Since 7,/C,, is a strongly polyhomogeneous ¢¥do on X' of order —1, hence has symbol in
S—10n 8§01 the composed expression is a weakly polyhomogeneous ¢do on X' with
symbol in S~1=/—1 0 §=/=2

If J < n—1, we need to consider a power as in (9) with m > n — .J, to get a trace class
operator. The operators Ry j , are of the form @, , — K,S, T, with K, and 7, as above,
Q, a strongly polyhomogeneous 1do of degree —2 and S, having symbol in S%~1 Then
by circular perturbation,

Trx (R, — B ) = Tex (0 KuSu Tu(RYs, + - + BT ,))

(12) ~1 m—1 m—1
=Trx(Su), Sp=p SuTu(BY5 , + -+ By Ky
The various composition rules explained in [GS95] show that S, is a composite of weakly
polyhomogeneous and strongly polyhomogeneous wdo’s on X'; its symbol lies in
S—m=Ji=m n §g=J,=2m gince each factor R, j, results in multiplying the symbol space
by S=h=1n§0%=2,

Now [GS95, Th. 2.1] can be applied to the resulting 1»do on the manifold X’ of dimension
n — 1. Since the total order is —2m — .J and the d-index is —2m, the formula [GS95, (2.1)]
gives an expansion (10). For the log-coefficients we use the additional information from
[GS95, Th. 2.1] stating that the contribution to the coefficient ¢ 5 of p=2™*log u when
k > 0 comes entirely from the homogeneous symbol of S, of degree (1—n)—2m—k. Since
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the highest degree of homogeneity occurring in the symbol is —2m — J, these ¢; ;s vanish
for k +n—1<J,ie., for k <n —J. This shows the statements on (10).

For (11), we have that ¢Dp,R1 2, — ¢Dp, R1,1, is of the form K,S,7,, where IC,,
S, and 7, are as above. A circular perturbation gives a weakly polyhomogeneous do
on X', now with symbol in S~1=79n §=/~1 For J > n — 1 we can pass directly to an
application of [GS95, Th. 2.1] as above. For J < n — 1 we take a high enough m and
find, very similarly to the above considerations, that circular perturbation gives a 1do on
X' with symbol in §—m=/1=m N §=J1=2m  Then an application of [GS95, Th. 2.1] gives
(11). O

The cases J = 1 and J = oo were treated in [G99, Th. 9.4 ff.]. (The considerations
above on composite expressions are very similar to those in [G99, Th. 9.1]. The deduction
given here in terms of resolvent powers is slightly more direct than that indicated in [G99]
via p-derivatives; the present considerations can also be used for the passage from (9.1) to
(9.9)—-(9.11) in [G99].)

Theorem 1 is carried over to a result on heat traces and zeta and eta functions by
application of the transition rules [GS96, Cor. 2.10 and Prop. 5.1]:

Corollary 2. Under the hypotheses of Theorem 1, one has:

(13)
Tr(e t8i2 — ¢=t8in) o Z Ci,ktg + Z(—Ci,k logt + C;,k)tgi
n—J<k<0 k>0
(14)
Tr((ngze_tA]’2 — @DBle_tA“) ~ Z dktk%] + Z(—dk logt + d;c)tk%,
n—J<k<0 k>0
I'(s) Tr((Ai2) " — (Ai1) %) ~
(15)
C; vo(A\; ) — vo(A\; C; c,
~ Z z,kk + 0( 1,2) 0( 1,1) + Z( z,ljC - + z,kk)’
n—J<k<o ® T 2 5 k>0 (s+3)° s+75
['(s) Tr(¢Dp, (A12)"° — ¢Dp, (A11)7%) ~
(16)

di, dx d;,
C T ()
k—1 k—1 k-1 )’
AT R e A Ch
where the c¢; ;, and dj, vanish for k < J —n.

Now consider operators of Dirac-type (notation of [G99]); on a collar neighborhood U
of X’ they are of the form:
(17) D=o(3&+ A+ z,P + Ry),

where x,, is a normal coordinate, A is a selfadjoint elliptic first-order differential operator in
Ly(X', Eq|x1), the P; are differential operators of order < j, and o is a unitary morphism
from E1|x: to Es|x. (U is identified with X’ x [0, ¢] and the E; are liftings of E;|x: here.)
The product case is the case where, moreover, the P; are 0 on U.
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The coefficients in (1)—(3) were determined from the zeta and eta expansions of D and
A in [GS96, Cor. 2.7 2.8] in the product case with B = II> (the orthogonal projection
onto the nonnegative eigenspace for A); then in particular all the a; 5 and a; 5 with k > 0
vanish when n is odd; the a;; and a; with k£ even > 0 vanish when n is even. (The
remaining coefficients are nonzero in general, cf. Gilkey-Grubb [GG98].) Combining this
with Corollary 2, one finds that the same holds for perturbations By = II> +.5 of By = 11>
with S of order —oo; this is formulated in [G99, Cor. 9.5]. This result includes the case
By = C*T + 5", 8" of order —oo, since Ct — Il is of order —occ in the product case by
[G99, Prop. 4.1] (CT is the Calderén projector for D). With the present accounting of the
effect of perturbations of order —.J, we get the following extended information:

Corollary 3. Consider Dg in the product case with B = 11> + S, S of order —.J (then
B — C* is likewise of order —J). If n is odd, all a; y and a; ) with 0 < k < .J —n vanish in
(1)=(3). If n is even, all the a; , and a; j, with 0 < k < J —n and k even vanish in (1)—(3).

We formulate some consequences for the zero’th coefficient in detail.

Corollary 4. In (1)-(3), the coefficients a; o and a; o vanish in the following cases:

(a) D is a Dirac-type operator and B — 11> is a 1pdo of order < —n.

(b) D is a Dirac-type operator in the product case, and B — C* is a ¢do of order
< —n.

(¢) D is a Dirac-type operator, B—C™ is a{do of order < —n, and the structure near
X' is so close to the product case that 1> — CT is of order —n.

Hence in these cases, the zeta function ((A;, s) is regular at s = 0.
Proof. The result in case (a) follows from Corollary 2 together with the fact that a;
vanishes for Dirac-type operators with the boundary condition > u|x: = 0 ([G92]). The

result in case (b) follows from Corollary 3, and the result in case (c¢) is an immediate
consequence of the preceding ones. [

The reason that we do not claim that (a) holds with IT> replaced by C'* is that Ct will
in general differ from II> by an operator that is merely of order —1.

Let us also consider the eta function. We have from [G99, (9.9)-(9.11)]:

(18)
b b 7 = E—1
TrleDp(Ar =N~ 3 be(-N)T T T Y (e log(=A) +H) ()T
(19) Tr[pDpe "21] ~ Z bt + Z(_bk logt + b;g)tkzia
—n<k<0 k>0
(20) [(s) Tr[pDpAT?] ~ Z bik + Z( b n bl )
: 1 _ _ Y
—n<k<0 s+ % k>0 (S + %)2 s+ %

with similar formulas where Dg and D™ are interchanged. When FE; = FEj, the eta
_s'+1 /
function is defined by n(Dp,s') = Tr(DgA; * ), so in (20), s’ corresponds to s = £,

and the expansion with ¢ = I takes the form

, Qbk 4bk 2b/
21 I(&n(Dp,s') ~ ).
(21) (557 )n(Ds. 5) 7§i05+k+ggay+m2+y+k)
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The coefficients in (18)—(21) were determined from the zeta and eta expansions of D and
A in [GS96, Cor. 4.5] in the product case with B = II; in particular, the b; vanish for
k > 0 if n is odd, and they vanish for £k even > 0 if n is even. For k = 0 and n even, by
is proportional to the residue of Trx/(cA|A| 1) at s = 0. It vanishes e.g. if A = — Ao,
for in this case Try:/(cAJA|~*"1) = 0 (see also [GS96, Cor. 2.4]).

Then Corollary 2 implies:

Corollary 5. Consider the product case with 'y = F5 and B = 11> + S, S of order —.J
(so also B — C7 is of order —.J). When n is odd, all by with 0 < k < .J —n vanish in (21).
When n is even, all the by, with 0 < k < J — n and k even vanish in (21); if A = — Ao,
also by = 0.

Note that in the product case, D is selfadjoint if 0* = —0 and 0 A = — Ao.

Since T'(s) is regular at %, bp has to vanish in order for n(Dp, s’) to have a simple pole
at s’ = 0. In case of a simple pole, our analysis shows that perturbations of the boundary
condition by operators of order < —n still give a simple pole. The pole vanishes under
more restrictive circumstances, cf. Douglas and Wojciechowski [DW91], [GS96, Cor. 4.6,
[W99].

The results in Corollary 4 extend to by in view of the following theorem.

Theorem 6. Consider the realization Dp of a Dirac-type operator D (cf. (17)) with
B = M. The coefficients by and by in (18) (20) are the same as these coefficients in
the expansions for D%, where D° = XU(% + A)+ (1 — x)D, with x = 1 near X' and
supported in X' x [0, c].

Proof. Observe that we are here dealing with a perturbation of the interior operator, not
of the boundary condition as in Theorem 1. This is advantageous, for we can then use the
result of [G92, Th. 4.4], showing that the resolvent (A; — A)~! has the form

(22) (A~ A" =Qay + xEx + G,

where D+ is the restriction to X of a parametrix » of D*D — X defined on a neighboor-
hood of X, GY is the singular Green part of the resolvent in the product situation where

D is replaced by o(52-+ A) and X is replaced by X’ x [0, o[, and Gg\l) is a singular Green
operator of order —3, class 0 and reqularity 0. Then
(23)

(m—1)ID(A; —A)™™ = DO (A~ A)~" = DO Qx4 + DT (xGOx) + DI GV,

In the calculation of the trace, the first term gives no logarithms, the second term gives the
expansion known for the product case, where the log-terms start with bo(—\)2 ™ log(—\),
and the third term gives an expansion with pure powers up to and including the term
¢(—=A)2 ™ (the method of [G92] gives an O((—A)& ~™) after this, and the method of [GS95]
gives a full expansion with log-terms for higher k). So the first log-term for D(A; — A)~™
is the same as that for DY((D%)*D% — X)=™. O

One could also have shown this by arguments as in the last paragraph of the proof of
[GS95, Th. 3.13], but the notation would be quite heavy.
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Corollary 7. Let Fy = E5 and assume that cA = — Ao if n is even. In the three cases
(a) (c) listed in Corollary 4, the coefficient by in (21) vanishes, in other words the eta
function n(A;, s') has at most a simple pole at s’ = 0.

Proof. The product case with B = II> has by = 0, as accounted for in Corollary 5. Hence
so has the non-product case with B = II, by Theorem 6. The statements for the cases (a)
and (b) then follow from Corollary 2 resp. 5, and case (c) is an immediate consequence. [

Note that we do not assume selfadjointness of Dg as in [W99].
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