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Abstract. This is based on joint work with R. T. Seeley. The introduc-
tion presents the problem of parameter-dependent calculi for ¢/do’s and the
question of trace asymptotics for Atiyah-Patodi-Singer operators. Chap-
ter 2 establishes relations between the three operator functions: resolvent,
heat operator and power operator (zeta function). Chapter 3 explains our
parameter-dependent ¢do calculus with weak polyhomogeneity, showing
how logarithmic terms appear in trace formulas. In Chapter 4, the APS
problem is treated in the case with a product structure near the boundary,
where functional calculus on the cylinder leads to precise formulas for heat
trace expansions and zeta function pole structure. Finally, Chapter 5 treats
the APS problem in the non-product case where the weakly polyhomoge-
neous Ydo calculus is used to get asymptotic trace expansions generalizing
those in the product case.

1. Introduction

1.1. PARAMETER-DEPENDENT CALCULI

A typical case of an interesting parameter-dependent pseudodifferential op-
erator (henceforth abbreviated to ¢do) is the resolvent Ry = (P — \)~! of
a, say, strongly elliptic operator P on a compact manifold. Let the symbol
of P (in a local coordinate system) be

p(xvé) = pm(xvé) —}—pm,](l‘,f) +.o

where each term py, ;(z, ) is homogeneous of degree m — j (for a positive
integer m), then we write —\ as

*/\:eieﬂma n= ‘/\‘]/maeé [0, 27]



(where i is the imaginary unit \/—1), and assign to P — X\ the principal
symbol

pm(r,f,/\) :pm('f},f) + eiGMm

(also denoted B,,(x, &, 0, ;t)), and the full symbol 7+ €™ where the lower
order terms are the same as those for P. The inverse of this principal
symbol,

Qm(mu 57 )‘) = ﬁm(mu 57 )‘)71

will then be the principal symbol of the resolvent.

Here 1 can be considered as one more “cotangent variable” in addition
to &1,&9,...,&,, and P, is homogeneous of degree m in (&, u).

There is a marked difference between the case of a differential operator
and that of a ¢»do. In the first case, p,, is polynomial in (£, ), hence ho-

mogeneous and C in (&, u) € ﬁiﬂ. In the second case, the homogeneous
symbol p,,(x,£) usually has a lack of smoothness at £ = 0 (it has only m
bounded derivatives), so p,, will have this lack of smoothness on the whole
halfline {(0,p) | © > 0}. (Alternatively, if p,, is modified in a bounded
neighborhood of 0 to be C'*°, the ensuing modification of p,, takes place in
an unbounded set.)

This also has an effect on the estimates of g,,. Here one has (with

(x) = (J2> + 1)/2);
D g = O((&, 1)) "™~ 1), for |a] < m,
Dg g = O(((&, 1)) ™)™ 1o1), for |a| > m,

where the first line extends to all « if and only if p,, is polynomial in &.
In the polynomial case one can apply the usual symbolic calculus, just in
one more variable, getting simple and straightforward results, whereas in
the general case the fact that only the first m estimates are standard (the
so-called regularity number is m), gives severe trouble.

For boundary value problems there are similar phenomena. In the dif-
ferential operator case, the resolvent parameter enters as another cotangent
variable, on a par with the others, whereas for a pseudodifferential boundary
operator, a resolvent parameter, when considered as a cotangent variable,
gives symbolic estimates where only finitely many of them are “good”.
Again one assigns a regularity number to the operator, this will now be dif-
ferent for the different types (trace operators, Poisson operators, singular
Green operators).

This phenomenon is one of the main subjects of the book Grubb [12].
It is shown there that in the application to obtain trace formulas for re-
solvents (and heat kernels), one get finitely many well-defined terms in an
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asymptotic expansion, namely as many the regularity number indicates.
For resolvents in the case without boundary, there is a trick to extend the
analysis to get full trace expansions with infinitely many terms, some of
them logarithmic; also this is explained in [12].

More recently, we have developed a somewhat more special calculus in
collaboration with Robert Seeley [14], which allows a systematic construc-
tion of full asymptotic expansions for a class of ¥’do’s containing the resol-
vents: the calculus of weakly polyhomogeneous operators. It is completely
described for the boundaryless case (whereas the additional details needed
for general pseudodifferential boundary problems only exist in a sketched
form).

For differential operators with pseudodifferential boundary conditions,
one can however use the weakly polyhomogeneous ¥do calculus in cases
where the trace formula in question can be reduced to one for an operator
in the boundary of the weakly polyhomogeneous kind.

The calculus was developed for, and applies in particular to, the general
Atiyah-Patodi-Singer problem. We describe this in detail below.

1.2. THE ATIYAH-PATODI-SINGER PROBLEM

On a compact n-dimensional C'*° manifold X with boundary 0X = X',
consider a first-order elliptic differential operator

P:C®(E) — C™(By)

between sections of vector bundles over X. E; and Es have Hermitian met-
rics, and X has a smooth volume element, defining Hilbert spaces structures
on the sections (primarily the spaces of Lj-sections, denoted Lo(E;), and
more generally the Sobolev spaces H*(E;), s € R).

The restrictions of the E; to the boundary X’ are denoted E/. A neigh-
borhood of X’ in X has the form X, = X’ x [0,¢], and there the E; are
isomorphic to the pull-backs of the E. Let x,, denote the coordinate in
[0, c], 2’ the coordinate in X'. Then we assume that P is represented in X,
as

P=0(32+A+z,P + Py, (1.2)

where ¢ is a unitary morphism from Fj to F), independent of z,,, and A is
a fixed elliptic first-order differential operator on C*°(E}), selfadjoint with
respect to the Hermitian metric in E] and the volume element v(2’, 0)da’
on X' induced by the element v(z', x,)dz'dz, on X. The P; are smooth
differential operators (in all variables) of order < j; they can be taken
arbitrary near X', but for larger x,, P; is subject to the requirement that
P be elliptic. All morphisms are assumed C°.



In comparison with completely general elliptic first-order operators, the
assumption means (modulo homotopies) that we have restricted the at-
tention to operators such that when the principal symbol is written near
X" as oy(a', xn) (i€ + a1 (2!, 20, &) (with a bundle isomorphism oy from
Eq to Ey in front), then ay(2’,0,¢") is symmetric; ¢f. Grubb [13], p. 2036.
The case considered by Atiyah, Patodi and Singer in [2] is the case where,
furthermore, P, = Py = 0 in (1.2); this is often called the product case.
Important examples are the Dirac operator and its generalizations.

We denote u|xr = you and observe the Green’s formula:

(Pu,w)x — (u, P*w)x = —(you,c"yow)x. (1.3)

Since P is a first-order system, it may not be possible to formulate
a well-posed boundary value problem in terms of a differential boundary
condition (a Dirichlet condition is too much, no boundary condition is too
little, and the boundary bundle structure will not in general allow putting a
Dirichlet condition on some “half” of the boundary data). But using ¢/do’s,
one can get well-posedness:

Definition 1.1 The APS boundary problem consists of finding u €
H'(Ey) for a given f € Ly(Ey), so that

Pu=fonX, Byu=0onX. (1.4)

Here B is an orthogonal projection in Ly(E}) of the form B = II- + By,
where II> (Il., Ik, ... ) denotes the orthogonal projection onto V> (V,
Vg, ... ), the sum of eigenspaces for A with eigenvalues A > 0 (A < 0,
IA\| <R, ... ),and By commutes with A and ranges in Vg for some R > 0.

The associated realization Pp is defined as the operator from Lo(FE7) to
Ly(FEy) acting like P and with domain

D(Pg) ={u € H(F) | Byou=0}; (1.5)

it is a Fredholm operator called the APS operator, and the APS index
problem consists of determining its index.

This type of boundary condition is often called a spectral boundary con-
dition. The Fredholm property of Pg was shown by Seeley in [23], where it
was moreover shown that the adjoint of Pg is of a related type (in view of

(1.4)):
(PB)* = (P*)BI’ with BI = Bio'*7 B =1-—-B. (16)
One of the ways to study the index of Pp is to consider the “Laplacians”

Al = PB*PB, AQ = PBPB*, (17)



and search for asymptotic expansions for t — 0 (with ¢ > 0):

Tre i =c it "4 g it e +0), i =1,2.
(1.8)

When (1.8) holds, the index is determined by

index Pg = Tre 21 — Tre 22 = co1 — €02- (1.9)

Remark 1.2 The systems (BI;O) and (B},D;O) are injectively elliptic (also

called overdetermined elliptic or left-elliptic). The operators Ay and A, are
realizations of truly elliptic systems (two-sided elliptic) such as

P*P PP* (1 10)
A'Bryo+ B'yP) " TP \A' By + ByoP* ) '

(We here use that B and B’ map into complementing subspaces of Ly(E1),
and we have inserted the invertible ¢»do A’ = A 4 IIy(A) in order to make
the boundary conditions first-order. The operators are principally the same
as in the case where B = II-, discussed in detail in [13].) Another truly
elliptic system incorporating Pg and Pg™ is discussed below in Section 5.1
(and in [14]).

Remark 1.3 If 6* = —0 and Ao = —0c A, then in the product case, P is
formally selfadjoint. Then if furthermore Bo = o(I — B), Pp is selfadjoint.
This holds in many geometrically interesting cases, see e.g. Gilkey [10].

In [2] it was shown in the product case, with B = II>, that

index P = / a(x) — %WA§ na = n(A,0) + dimker A;
X (1.11)

where a(z) is a certain form defined from the symbol of P, and 7(A4,0) is
the value at s = 0 of the eta function

DA, 5) = Te(AJ4] 5 Y), (1.12)
(Here A=~ ! is defined as 0 on the nullspace of A, and meromorphic exten-

sion is used for Re s < n.) Formula (1.11) was extended to the non-product
case in [13] as

index Py = /X a(m)—l—/X, B(") — na, (1.13)



with a boundary form §(2') defined from the symbols of P and B at X'.
The forms defined from the symbols are regarded as local contributions,
whereas the term 74 depends on the full set-up in a global way.

Actually, [2] did not calculate the two expressions Tr e A1 and Tre tA2
separately, but only their difference. They showed for the product case that
this has the same asymptotic expansion as

Tr(e ' x) — Tr(e 122 |x) + Tr(efm? - a*efmga);
(1.14)

here A1 = IS*ISNand Ag = 1515*, where P is a certain extension of P to
bundles Ey and E5 over the double manifold X (cf. [2], p. 55, where the roles
of Fy and F4y are switched on )~(\X); the AY are x,,-independent extensions
of the A; on X, to the cylinder X* = X’ x R. The first difference is well-
known, and the second can be analyzed by use of functional calculus for the
selfadjoint operator A; this sufficed to get the index formula in the product
case.

In [13] the separate expansions (1.8) were proved with £ = 2 in the non-
product case with B = II>, by a combination of the general treatment of
parameter-dependent ¥)do boundary problems [12] with the special results
from [2]. It was shown that the global term 7%17,4 enters in cp; for both

expansions, as f%m‘ for 1 = 1, resp. %17/; for ¢ = 2.

Now the index is just one special geometric invariant connected with
the APS problem. More generally, one can ask about the value of the gen-
eral coefficient ¢;_,; in (1.7), and one can ask whether there is a more
detailed structure of the O(t%) term, giving a full asymptotic expansion
Z?io (:j,n,,;t(-j’”)/2 for the trace Trexp(—tA;).

These questions have been answered in two papers written in cooper-
ation with Seeley, [14] and [15]. It is shown there that there does exist a
full asymptotic expansion, which however includes also logarithmic terms
ct—n)/2 logt for j —n > 0. For the product case, a precise description of
the coefficients in terms of the zeta and eta functions of A is given, when
By ranges in the nullspace of A.

In the following we shall give an account of these results, explaining the
highlights of the methods.

2. The three operator-functions

2.1. DEFINITION OF THE OPERATOR FUNCTIONS

One can associate several interesting operator-functions with an elliptic
operator ). The following have been studied extensively:
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e The resolvent (Q — A\)~! and its asymptotic behaviour for A — oc on
rays in C.

e The heat operator e '? (t € R, ) and its asymptotic behavior for
t— 0+.

e The power operator (Q~% and the pole structure of associated functions
of s € C.

For the questions we address here, there are essentially equivalent for-
mulations in terms of each of the three operator functions, and one can pass
from one formulation to another by suitable transformations. Very briefly
stated, the heat operator and the resolvent are related to one another by
the Laplace transformation, and the heat operator and power operator are
related to one another by the Mellin transformation. One can also define
the heat operator and the power operator from the resolvent by suitable
Cauchy integral formulas (Dunford integrals), and there is another com-
plex integration formula involving a reciprocal sinus function going from
the power function to the resolvent. (In the proofs of Theorems 2.1 and 2.3
below, we also relate the formulas to the Fourier transformation.) In the
following we collect the facts on these operator functions that we need.

Much of this has been known in the literature for a long time (but not
always explained as generally as here). Applications to trace asymptotics
have been made earlier e.g. in Seeley [22], Duistermaat and Guillemin [§],
Grubb [12], Agranovi¢ [1], Branson and Gilkey [5]. The explanation in the
following is essentially copied from [15], and is given here with full details
since it may be of interest also for other purposes.

Suppose that @ is a closed operator in a Hilbert space having a resol-
vent (QQ — \)~! which is holomorphic in some sector |arg(—\)| < «, with
(@ — A7t = O(JA'), and is meromorphic at 0 (in the sense that
(Q —A)~! —(=X)"Iy(Q) is holomorphic at 0, where I1(Q) is the orthog-
onal projection onto the nullspace of Q). Then the power function Z(Q, s)
is defined for Res > 0 by

2(Q.5) = 5= [ A (Q — \) 1, (2.1)
where C is a curve
C97T0:{A:T6i6|oo>TZT0}+{A:TOei0’ 0>0">-0}
+{A= rel(?7=0) |7 <r < o0}, (2.2)
with 7 — a < # < 7 and 79 > 0 chosen so that (Q — A)~! is holomorphic
for 0 < |A| < 7. If @ is invertible then Z(Q,s) = @ ° (further details are

found e.g. in Seeley [22] or Shubin [24]); in any case, Z(Q, s) is zero on the
nullspace of @, since [, A7571d\ = 0. We can also write

Z(Q.5) = 57 Je, o AH(Q = M) (Q) dA, (2.3)
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where I, (Q) = I — I1p(Q).

If Z(Q. s) is trace class for some s, then @) has a zeta function

((Q,5) =Tr Z(Q, 5), (2.4)
and, for appropriate operators D and values s, a “modified zeta function”
¢((D,Q.s) =TrDZ(Q,s). (2.5)

Similarly, under appropriate conditions, we define

Y(Q.5) =QZ(Q*Q, =) = L [L A CHD2Q(Q*Q — ) 'dA
= 27 Jeo s N UTIPQQIQ =N TN (9 )

(since IIH(Q*Q) = Ix(Q) and QIIH(Q) = 0, we can leave out the nullspace
projection), and the eta functions

n(Q,s) =TrY(Q,s), n(D,Q,s)=TrDY(Q,s). (2.7)
When @ is selfadjoint,
Yo TT=URN ). Y sign AT =0(Q,s),
Aesp(Q)\{0} Aesp(Q)\{0} (2.8)

with summation over the eigenvalues, repeated according to multiplicities.
In order to move the trace inside the integral, we may represent the
power function by use of a derivative of the resolvent. Note that

QN =ml(Q - ™ (2.9)

If @ is a ¥do of order r > 0 on a compact manifold M, say, then the mth
derivative of (Q — A)~!is a ¥do of order —(1+m)r and hence is trace class
when (m + 1)r > dim M. By an integration by parts, one can replace (2.1)
by

Z(Q, S) = mﬁ -[C AmiSa;\n(Q - A)il dA, (210)
whereby (2.4) can be written

((Q.8) = Tr Z(Q.5) = oy mmyow Je A" Trdf(Q — A) ',
(2.11)

for sufficiently large m. Similar modifications can be made when there is a
factor D as in (2.5) and when eta functions as in (2.7) are studied; and the
integral can be replaced by an integral over Cg o when IIj (Q) is inserted in



front of dA. There are similar formulas for the symbols and kernels of the
operators.

When Q is lower bounded selfadjoint, the heat operator e ‘@ (also called
the exponential function or the semigroup generated by —@Q) can be defined
by

e @=L e™MQ-N)TdN, >0 (2.12)

where C' is a curve encircling the full spectrum in the positive direction
and such that e~ falls off for |A\| — oo on the curve (e.g. one can let C’
begin with a ray with argument € |0, [ and end with a ray with argument
€] — 5,0[). This is well-known from the literature, see e.g. Hille-Phillips
[16], Friedman [9] or Kato [20].

The exponential function and the power function of an operator () > 0
with resolvent as above are related to one another by the formulas:

Z(Q,s) = OOtS*‘e*tQH*(Q) dt, Res >0,
e’tQHS(Q = 55 Jresmet "Z(Q.8)0(s)ds, >0, (213

that follow e.g. from Theorem 2.3 below, with e(t) = e Q5 (Q), ¢(s) =

I'(5)2(Q; s).
Taking Q = S*S for suitable operators S, we have accordingly (cf. (2.6)):

Z(5*S,s) = 13 Jo< 1 e 9SG (S) dt,
e ", (S) = ok fRes 1°Z(5*S, )0 (s) ds,
Y(S,25) = SZ(S*S,s+ 1) = [ 15 3 Ge 1SS it

r(s+ 3) (2.14)

Se 575 = L [0 t7°Y(S,25 — 1)T'(s) ds.

- 271'1
(Also here we can omit mention of the nullspace projection in the last two
formulas.)

Again, these formulas can be composed with a suitable operator D.
When the expressions are trace class (usually for Res resp. ¢ sufficiently
large) one can take the trace on both sides in (2.14) (composed with D), ob-
taining the formulas relating zeta and eta functions to exponential function
traces:

(D, S*S.s

)= r(ls) Jo 571 Tr De= 5751 (S) dt,
Tr De 57511, (S) =

35) =

S

Jres=ct°C(D, 575, 5)0(s) ds,
[0 tgii ’I\I'Dspits S(]f (215)

27

(D, S.2s) = (DS, S*S, s +

(+
TrDSe ™% = L [0 t7n(D,S,2s — 1)['(s) ds.
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There are similar transition formulas for the symbols and kernels of the
operators.

2.2. RELATIONS BETWEEN THE RESOLVENT AND THE POWER
FUNCTION

Let us first consider the passage between properties of the resolvent and
properties of the power and zeta functions. In order to handle operator
functions defined not only as in (2.1), but also as in (2.10), we include
functions with higher order poles at 0. We denote {0,1,2,...} =N

Theorem 2.1 1° Suppose that f is meromorphic at 0 with Laurent expan-
ston

Z hi(—\)7, A < p, (2.16)
=k

that f is holomorphic in the open sector Ss;, = {A € C | |argh — 7| <
8o } (for some 69 < w), and that f(A) = O(|A\|™*) for some a €]0,1]
as A — oo, uniformly in each sector Ss for 6 < 0g9. Let C be a curve
Crro as in (2.2) (a Laurent loop, since § = w), with 0 < rg < p. Set

foA) = F(A) = Z_ g hj(=A), and
((s) =5 [e A f(A)d\, Res>1-a, (2.17)
with \=5 = r=%e¢™ %% v > 0 and |§| < 7. Then ¢ and fo are interrelated by:

((s) = m;—’” JoTr*fo(=r)dr, 1—a<Res<l, (2.18)
Jol-A) =+ freeo ML gg 1 a <o <1 (2.19)

The function S”C](;i 8 memmqrphic for Res > 1 —«, having simple poles at
s =j+ 1 with residues (—1)77'¢(j +1) = —h;, j € N.
2° Moreover, the following properties a) and b) are equivalent:

a) f has an asymptotic expansion as X goes to infinity

oo My

~> > aj A Y (log ), 0<a; /400 (2.20)
7=01=0
(with mj € N), uniformly for —X in Ss, for each 6 < bq.

b) ¥(s) = % is meromorphic on C with the singularity structure

m¢(s) N = o U ajl!

L Ll e O

sin s
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(in the sense that for large N, the left hand side minus the sums for j < N
in the right hand side is holomorphic for 1 —ay < Res < N +1); and for
each real C1,Cy and each § < by,

[h(s)| < C(CL, Cy,8)e 0™l for |Ims| > 1, C; <Res < Cy.
(2.22)

In particular, the singularities of 1(s) in Res < 1 are determined by
the expansion (2.20) and the singular Laurent terms of f(A) at A =0, and
vice versa.

3° Let f take values in a Banach space, and be holomorphic in Ss,, and
meromorphic at 0 in the sense that there is a function Zj;lik(f)\)jHj with
bounded operators H; such that fo(\) = f(A\) =", (=\)? Hj is holomorphic
for |\ < o, some o > 0. Let || f(N)] be O(JA|®) for A — oc in subsectors
Ss with 6 < 6y. Then with ((s) defined by (2.17), the formulas (2.18)—(2.19)
are valid.

Proof: 1°. For j < —1 and Res > 0, [, M *d\ = 0, since the contour can
be closed at oo in {|arg A| < 7}. So the singular part of f, 37} hj(=\)/,
is “killed” by the integral over C in (2.17). For the remaining part fy, the
circular part of C can be reduced to the origin if Res < 1, reducing (2.17)
to (2.18) (note that fy is O(J]A|™?) too).

The inversion (2.19) requires growth estimates for ((s). Replacing the
integration curve by C(0) := Cr_50, 0 < é < d9, we have that

C(s)l =

2w .

o Jesy A fo(A) d/\‘ = O(e(m=O)I Tms|y
l-a<C;<Res<(Cy<1. (2.23)

T—0)

For, when \ = rel( , we can use the estimate

‘/ Tfsei(ﬂfé)ﬁas)o((l —|—7‘)7a)d7“ < Ce(wfé)\lms\’
0

(2.24)
and there is a similar estimate on the other half of C(§).
Now let
oo
¥(s) :/ r"fo(=r)dr = me(s). (2.25)
0 sin7s

Since (sinws)~! is O(e ™™y for [Tms| > 1, we have by (2.23) that
V(o +ir) = O(e ) for 1 —a < C; < o < Cy < 1. Also, ¥(o + ir)
is the Fourier transform F(7) of the function F(x) = (=97 fo(—e?).
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Since fo(A) = O((A\)" %), F(x) decays exponentially as * — =oo, for

1 [e%e]

1~ a < o < 1. By Fourier inversion, F(z) = 5 [*° €"T(o + ir)dr,
giving (2.19), for A > 0. It extends to | arg A| < §y by analytic continuation.
It is seen from (2.17) that ((s) is holomorphic for Res > 1 — «; and
since ((7 + 1) = 52 [y A7 FA) AN = (=1)7hy for j € N, 4(s) is
meromorphic for Res > 1 — «a, having simple poles with residues —h;.
2°. Now suppose that a) holds; then

N-
Z am i (log A)! Z hiN 4+ O(|A| "N T=) for A — oo,
=5 fnt (2.26)
for ay > k, any € > 0. Note that
L -1
/ r’ % dr = ——— for Res < j +1,
Jo s—j3—1

R L —
r ogr) dr =
) § (s— -1

(the cases I > 0 follow from the case [ = 0 by application of d.); the right
hand sides extend meromorphically to C. Then we get from (2.25), for
arbitrarily large V:

for Res > 3+1

1 N-1

vs) = [ [Z Byt~ O™ dr

o N—1mj
+/ { Za,j,lrfo‘fs(logr Z h; - S+ r20(r *O‘N“)]d
71 =0 1=0 j=—k
N—-1 N—1m;
h,j J ajl]
-y Y S AL
. s—j—1+zz(9+a G n(s)
J== J=01=0

where hy is holomorphic for 1 — ay + < Res < N + 1, and the other
terms are meromorphic on C. This gives the singularities (2.21).
To show the decay, we use the integral in (2.23) and expand on each

piece of C(0):
Cs) = =5 (Jy + 7 )7 folrel =)l dr)
o (4 ST fo (TR0 ). (2,97)
The first integral from 0 to 1 is written as
;i fol(rpi(rfé))fsfﬂ(rp T 6)) i(7=8) qp
o fo SN el *><ﬂ*5>hjrﬂf-9dr+folr*sei“f*ﬁ)(l*-*)()(rN)dr

_eild s)(m—8)
e S e bt 30N (228
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Let |[Ims| > 1. The sum over j extends meromorphically to C, and its
terms are O(e™= I sl) for —o00 < O} < Res < Oy < oo. The last term
exists and is O(e(™=9!"™Msl) when Re s < N + 1. Similar considerations hold
for the other integral from 0 to 1. In the integrals from 1 to co we expand as
in (2.26), obtaining functions that are O(e™= 8]y for Res > 1 — ay +e¢.
We conclude that the estimate in (2.23) extends to 1 —ay < Res < N +1,
|Im s| > 1, for arbitrarily large N. Dividing by sinws we find that ¢(s)
satisfies (2.22). This shows a) = b).

Conversely, assume b). Then fy(—\) is given by (2.19), and we obtain
the expansion (2.20) by shifting the contour of integration past the poles
of ¥(s). The remainder after all terms up to the singularity s =1 — ay is
given by the integral (2.19) but with o < 1 — ay; it is O(JA| ¥ T¢) on S;.

3°. The proof under 1° is generalized straightforwardly to Banach spa-
ces, with the relevant estimates valid for the norms. ]

In this analysis, the poles in (2.21) may very well be considered in a
general sense where we allow some of the coefficients a;; to be 0; this is
practical for the applications where vanishing coefficients often occur, and
we shall use this point of view in the following. (So we can e.g. speak of a
simple pole with residue 0 this is usually not called a pole.)

Corollary 2.2 When f(\) and ((s) are as in Theorem 2.1 1°-2°, then
['(s)C(s) ts meromorphic on C with the singularity structure

Fi] —h f: 3 jyl!
[(s)¢(s) ~ —— + T
]_7]63—]—1 j:0]:0(3+a7—1)+
5 h . aji (2.29)
h; = , Q5] = AL
TOT(=) T Tlay)

Thus the singularity structure (2.29) of T'(s)((s) is determined from
the asymptotic expansion (2.20) of f together with the singular part of the
Laurent expansion (2.16) (the coefficients h; with —k < j < —1), and vice
versa.

When &y > %, one has moreover, for any ' < by — 5

5, any real C1 and
02.'

ID(s)C(s)| < C'(Ch, Cy, 8)e 81l for |Ims| > 1, C; < Res < Cb.
(2.30)

Proof: Since 7w(sinms) ! = T(s)['(1 — s), (2.29) results from (2.21) by
multiplication by I'(1 — s) 7!, whose zeros cancel the poles h;/(s — j — 1),
§>0.1f6 — /2 = § > 0, the estimate |¢(s)| < Ce(™ M3l shown in the
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proof of Theorem 2.1 (and assured by (2.22)) implies (2.30), since I'(s) is
O(e(fgﬂ)“ms‘) for [Ims| > 1, —oo < C; < Res < Uy < oo, any € > 0.
(Cf. e.g. the assertion in Bourbaki [3], p. 182:

L(s)| ~ V2r |[Im S\R‘”*%e*%‘lms‘ for |Im s| — oo, (2.31)
valid for fixed Re s or Re s in compact intervals of R.) g

Note in particular that a case m; = 1 in (2.20) corresponds to a double
pole of '(s)((s) at s =1 — a; (in the strict sense if a;,, # 0).

2.3. RELATIONS BETWEEN THE POWER FUNCTION AND THE
EXPONENTIAL FUNCTION

Now we shall investigate the relation between properties of exponential
functions and of power and zeta functions. The general transition goes as
follows:

Theorem 2.3 1° Let e(t) be a function holomorphic in a sector Vy, (for
some 0y €10, 5[ ),

Vo, = {t=re? | 7>0,]0] < 6}, (2.32)

such that e(t) decreases exponentially for [t| — oo and is O(|t|*) fort — 0
mn Vs, any 6 < 0y, for some a € R. Let ¢ be the Mellin transform of e,

o(s) = (Me)(s) = /OOO Lo (t) dt, (2.33)

for Res > —a. Then ¢(s) is holomorphic for Res > —a and p(c +i&) is
O(e &) for |€] — oo, when ¢ > —a (uniformly for ¢ in compact intervals
of | — a,o[); and e(t) is recovered from p(s) by the formula

e(t) = 27” Jres—et 7p(s) ds. (2.34)

2° Moreover, the following properties a) and b) are equivalent:
a) e(t) has an asymptotic expansion for t — 0,

oo My

)~ > > bt (logt), B / +oo. m; €N, (2.35)

j=01=0

uniformly for t € Vs, for each 6 < 6.
b) ¢(s) is meromorphic on C with the singularity structure

o~y

7=01=0

mj

(=),

S+5 =8 (2.36)
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and for each real Cy,Co and each § < 6y,

lo(s)] < C(Ch,Cy,8)e T3l | Ims| > 1, € < Res < .
(2.37)

3° Let f(M\) take wvalues in a Banach space, and be holomorphic in
Sso = {|m —arg A| < bo} for some 6y €15, 7| and meromorphic at X = 0
(holomorphic for 0 < |A| < o). Assume that as X — oo in Ss (for 6 < &),
some derivative 5 f(N) is O(|N|"'7°) for some ¢ > 0 (so that f(\) is
O(A™=1)). Let 6y and 6 be such that |6 — 6,0 + 6g[Clw — 6o, 5[, let
C =Cyyr, as in (2.2) with ro €10, 0, and let

e(t) = gz Joe PN, pls) = T(s)gx o AP F(A) d),
(2.38)

fort € Vy, resp. Res > m—ec. Then e(t) is exponentially decreasing for t —
oo in sectors Vs with 6§ < 0y, and is O(|t|™"™) for t — 0, and p(s) and e(t)
correspond to one another by (2.33), (2.34). Here, when f(\) = (Q — \) ',
then e(t) = e 9Ty (Q) and p(s) =T(s)Z(Q, s).

Proof: 1°. Note first that replacing e(t) by t’e(t) replaces ¢(s) by ¢(s+b),
so we can assume that a > 0 and then consider ¢ > 0. The function ¢(s)
is holomorphic for Res > 0 since the integrand #*~'e(t) is so and has an
integrable majorant there.

By a change of variables t = e, we see that ¢1(¢) = ¢(if) is the
conjugate Fourier transform of e1(z) = e(e”) € Ly(R):

A© =908 = [ e = [* drseeryan = [ ey an,

0 J—o0 J—o00

so by Fourier’s inversion formula,

e(t) = er(x) = g7 [T € 01(€) dE = 57 [pe oot ¢(s5) ds.
(2.39)

Similarly, p(c+i¢) is the conjugate Fourier transform of e(e®)e® for ¢ > 0.

The hypothesis on exponential decrease of e(t) in the sectors Vy allows
us to shift the path of integration in (2.33) from t € Ry to t € R for
|6] < 6y (corresponding to a shift to = € R + i); this gives:

p(c+if) = /m(reié)mfe(raé)ﬁ

Jo r
“oe [ e o isyg ienedT s
=€ r €(T€ )(Te ) — =€ q(éafa C)a
Jo r
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where ¢ is bounded as a function of & € R, locally uniformly in ¢ > 0.

Taking 6 > 0 for £ > 0 and § < 0 for £ < 0, we see that p(c+ i) decreases

exponentially (like e~?€l) for || — oo, in any vertical strip {s = ¢+ i¢ |

C; < ¢ <0y & e R} with 0 < Cy < (9. Then we can also shift the

integration path in (2.39) from Res = 0 to Res = ¢, ¢ > 0. This shows 1°.
2°. Assume now in addition (2.35). Let us first write (s) as

o(s) = /0] - Le(t)dt + /]Oo #Le(t)dt. (2.40)

The second integral defines an entire function of s. The expansion (2.35)
means that

N—

.i

mj

7lfﬁf logf + on(t),
i=0 1=0

.

on(t) = O(Jt|P~ %) for t — 0in Vs, (2.41)

for £ > 0 and any positive integer N; we insert this in the first integral.
Observe the formulas, valid for Re s > —f,

1 _1\In
148 1og 1) g = D
'/Of (log t)" dt I 02)

/ B ogt) et dt = LT (s + B3),
0

where the cases | > 0 follow from the cases [ = 0 by application of 9. The
remainder gy () in (2.41) gives a function holomorphic for Res > —fy +¢,
and for the powers of ¢t we use (2.42); this shows (2.36).

To show the exponential decrease of ¢(s) on general vertical strips, one
can shift the contour in (2.33) and proceed much as in the proof of Theorem
2.1. Another instructive method is to insert the expansion e! =3 %t”,
that gives N

M—-1
e't?i(logt) = Y Lthitv(logt) + O(thi+M =),
v=0

for any € > (0 and positive integer M. Then we can write

e(t) = e(t)ele ™t = ( Z Z bJ,_tﬁﬂ'V logt)) L on(t),

Bj+rv<M I<m;
with gps(t) = O(|t|M ) for t — 0 in Vj,
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where 0p/(t) is exponentially decreasing for || — oo in Vj since the other
terms are so, and hence

o(s) = / t5— ]( Z Z b”—fﬁf“” logf)) tat

Bj+v<M I<m;
[e.e]
+/ 5 on (1) dt. (2.43)
J0

The last integral defines a function that is holomorphic for Res > —M +¢
and exponentially decreasing (like e’éums‘) on strips —M +¢ < C; <
Re s < (9, by 1°. For the contributions from the first integral we use the
second formula in (2.42) together with the fact that the gamma function
[(s) and its derivatives are O(e(=2+)NMsh) any & > 0, for |Ims| > 1,
—00 < C7 < Res < (9 < oo, cf. e.g. [3], pp. 181 182. This gives (2.37),
completing the proof of a) = b).

Conversely, assume b). Then e(t) is given by (2.34), and we obtain the
expansion (2.35) by shifting the contour of integration past the poles of
¢(s). The remainder after all terms up to and including the singularity s =
—Bn is given by an integral like (2.34) but with ¢ < —By; it is O(|t|?V~¢).

3°. That e(t) defined here is exponentially decreasing for [t| — oo in Vj,
6 < g, follows since |e | < e ! with 4 > 0 on the integration curve.
The estimate for ¢ — 0 follows since

/e*Atf(A)dA = (—t)™™" /(a’” A FA A=t / e MY f(A) dA
Je . JC

for t € Vs, where e 35" f(\) has a fixed integrable majorant for ¢ — 0. The
formula (2.33) for ¢ is shown by a complex change of variables, where we
replace ¢ by u/A for each A\; when arg A €]0, [, the ray R is transformed
to a ray A, with argument —argA €] — 7, 0[, and vice versa. The integral

of u*~'e™" on such a ray is again equal to I'(s), as noted above. Thus (recall
that f(A)is O(|A|™ 1))

'/Uoofs121 /C e F(N) dAdE = _// WA e () dud)

) /C AN AN O

3. Weakly polyhomogeneous symbols
3.1. POLYHOMOGENEOUS SYMBOL CLASSES

We here sketch the properties of the symbol class used to get trace expan-
sions for the general APS problem; details are given in [14].
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Consider symbols p(x,&, p), where x and £ € R™, p € T (a sector of
C\ {0}). We shall say that:

p is strongly homogeneous of degree m, when

pla,te tp) = t"p(x, &, p) for [E° + |u> > 1, > 1,
(& pu) € R" x (TU{0}). (3.1)

p is weakly homogeneous of degree m, when

p(w, &, tpu) = t"p(w, &, p) for [§], ¢ > 1, (§,p) € R" x T (3.2)

Example 3.1 Let a(x, ) be positive and C* on R"™ x R, and homoge-
neous in ¢ of degree r € N for |¢| > 1. Then a(x, &) +p" and (a(x, &) +pu") !
extend to:

strongly homogeneous symbols of degree r, resp. —r, if a is polyno-
mial in ¢ (it is the symbol of a differential operator);

weakly homogeneous symbols of degree r, resp. —r, if a is not polyno-
mial in £ (it is the symbol of a genuine ¢ do).

If for example r = n = 2, a(x,£) = 2 + €2 enters in the first case, and
a(w, &) = (& +&3) /(€2 +€2) (for €] > 1) enters in the second case.

Both cases can be shown to belong to the following symbol classes
(where (a(z,€) + 1)~ € S0 1 §0-T);

Definition 3.2 S™Y(R" R",T) consists of the functions p(z, &, yt) that are
holomorphic in p for |(&, p)| > e, p € T, and satisfy, denoting % = 2,

&p(-,-, 1) is in S™TI(R™, R") for L € T, with

uniform estimates for |z[ < 1,1 € closed subsectors of . (3.3)

Moreover, we set S™(R",R",I") = p?S™%(R",R",T).

Here S™(R™,R™) denotes the standard 1)do symbol space consisting of
the functions p(z,&) € C®(R" x R") such that 9J9gp is O((¢)™ 1) for
all a, 6 € N”. The rules of calculus for such symbols are well-known, see
e.g. Hormander [18], Seeley [23], Shubin [24], Hormander [19] for various set-
ups with local or global estimates in x. We call the symbols in S”(R"” x R")
classical, when they moreover have expansions in series of homogeneous
terms (in ¢, |£] > 1) of degrees m — j, j € N.

When symbols p(x, &) of order m are considered as depending on one
more variable s, they lie in S™0:

S™R™,R") c S™YR",R",T), any I. (3.4)
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The symbols in S"™4(R", R",T) define ¢»do’s P = OP(p) (which depend
on the parameter p) by the usual formula:

0P () = [ Sp.emf()de, feS®RY.  (35)

with d¢ = (27) "d¢. The definition extends to more general functions and
distributions f as in the nonparametrized case. When m < —n, OP(p) is
an integral operator with continuous kernel I, (z,y, u);

Ky(w,y,p) = /ei(hy)fp(x,é?u) dg,
(3.6)

in particular, K,(z,z,pn) = /p(m,{,,u) dg.

The operators have good composition rules, since S™¢ . gm'd
c §mtmdtd and since one can refer to the standard rules for S™ sym-
bol classes, which must here hold uniformly in z as in (3.3). One finds for
example that

P e OP(S™%), P' € OP(S™ ") = PP € OP(g™mm 4t
(3.7)

(under the usual precautions on supports or global estimates), and the
resulting symbol is described by the usual formula

(pop)(w, & p) ~ Z %8?19(.%,g,ﬂ)(,jam)ap/(x’g’#) in gm+m'.d+d

The expansion in (3.8) is an expansion in terms with decreasing m-
exponents m + m’ — j, j — oo (j = |a]). Such expansions enter in the
theory as follows:

When p; € S for a sequence mj N\, —oco (for j — oo, j € N), and
p € S04 we say that p ~ 2 jenDjin Smod if

p— ij e §™74 for any J € N. (3.9)
j<J
For any given sequence p; € Smind with mj; N\, —0oo, there exists a p
such that (3.9) holds.

For the present special symbols there is another type of expansion that
is of great interest:

Theorem 3.3 When p € S™4R",R",T'), then p has an expansion in
terms ud’kp(d,k)(x,f) with pea ) € Smtk(R™, R™), such that for any N,

p(m7£7 M) - Z Mdikp(d,k)(xa 5) € Sm+N’d7N(Rn7 an F)
0<k<N (3.10)
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In the proof one reduces to the case d = 0 by multiplication by p~¢;
then the expansion is essentially a Taylor expansion in z = % at z = 0.

Note that in (3.10), the order of p(y) increases with increasing k,
whereas the power of u decreases. A very simple example is

A+ P+ ==+ MO =),

Corollary 3.4 When p € S=°4, the kernel Ky(x,y, 1) of OP(p) has an
eLpansion

Kp(z,y.p) ~ > u" FKyp(a,y), Kype O (3.11)
keN

Definition 3.2 contains no homogeneity requirements, but we now define
a polyhomogeneous subspace:

Definition 3.5 A symbol p € §™Mo~dd ig called weakly polyhomoge-
neous, when p ~ > cnpj, with p; € e gmi—dd, mj N\, —oo for j — oo,
J € N, such that the p; are weakly homogeneous of degrees m; (cf. (3.2)).

This will be compared with:

Definition 3.6 A function p(z,£, ) € C®°(R" x R™ x (I'U {0}) is called
strongly polyhomogeneous of degree m if there is a sequence of functions
p; € C®°(R" x R" x (I' U {0}) that are strongly homogeneous of degree
m — j (cf. (3.1)) such that

92020k (p— 3 pj) = O(((&, p))y™ 7 lel=hy, (3.12)

1<J
for all indices, uniformly for p in closed subsectors of I' U {0}.

Then one has in fact:

Theorem 3.7 When p is strongly polyhomogeneous of degree m € Z., then
it 18 also weakly polyhomogeneous, with degrees m — j, 3 € N, and with
pe S04 S0M rm >0, pesS™ONSOT ifm <o,
afagaﬁp e §mlal=k0 q gOm=lal=k fop 0| + & > m, all 5. (3.13)
As a consequence, classical symbols of order m € Z in n+ 1 cotangent

variables give strongly polyhomogeneous symbols in n cotangent variables,
when one cotangent variable is replaced by p (here T = Ry UR_).
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The type of parameter-dependence entering in Theorem 3.7 was used
by Agmon and by Agranovi¢ and Vishik in resolvent studies for differential
operators; for ©»do’s this is the kind of parameter-dependence studied e.g. in
Shubin [24] and many other works. It is a mild generalization that does not
cover resolvents (P — A\)~! and parabolic operators such as 9/t + P when
P is truly pseudodifferential (as treated in [12]).

3.2. APPLICATIONS TO KERNEL AND TRACE EXPANSIONS

Both the expansion in Theorem 3.3 and the expansion in Definition 3.5
enter in the proof of:

Theorem 3.8 Let p be weakly polyhomogeneous as in Definition 3.5, with
mo —d < —n. Then OP(p) has a continuous kernel Ky(z,y,pn) with an
expansion on the diagonal

o0

(2,2, ) Z m’+"+2[(’k ) log pu + (@)’ " a1
3.14

for |p| — oo, uniformly for p in closed subsectors of I'. The coefficients
aj(w) and cq_m; n(z) are determined by p;(x,&, i) for || > 1 (are “local”),
while the ¢ (x) are “global.”

Details of proof are given in [14]. A brief explanation: One uses the
general principle that “remainders contribute to ¢} terms,” by Corollary
3.3. The p; contribute with (cf. (3.6))

Ky (. z,p1) = /R" pj(@, &, ) dE

= Pj d§+/ Pj d£+/ pjdé =T+ 1, + I3, (3.15)
e €< 1<¢1<]ul

where I; gives part of the a; term, I gives ¢, terms, and I3 gives the rest
of aj and cq_pp; (if d—mj;—n € N) and some ¢}, terms. One has of course
to show that the contributions to the ¢ pile up in a controlled way.

When the operator acts on a compact boundaryless manifold, integra-
tion of K,(x,z, ) in x gives a similar expansion of the trace:

Corollary 3.9 Let P be a pu-dependent ¥do on a compact manifold M of
dimension n, with symbol satisfying the hypotheses of Theorem 3.8 in local
coordinates. Then it is trace class, the trace satisfying

o o
TeP oY ™ Y [ log pu + chlut (3.16)
7=0 k=0
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for || — oo, uniformly for u in closed subsectors of T'. The coefficients are
derived from those in (3.14) for coordinate patches by integration over M.

The result applies in particular to expressions containing a differentiated
resolvent:

P=89"Q N1, (3.17)

where @ is a classical elliptic ¥do of positive integer order r on a compact
boundaryless manifold M of dimension nj, with principal symbol ¢, (z, &)
having no eigenvalues on R_, S is a classical ¢do of order d, and m is
chosen so that d — (14 m) < —ny. With g = (~A\)"/7 for A in a narrow
sector I around R_, the symbol is in §4-7(1+m).0 0 §0.d=r(1+m) 4 weakly
polyhomogeneous. Then Theorem 3.8 and its corollary lead to an expansion
of the diagonal kernel and the trace, generalizing the result of Agranovic¢
[1] for S = I (cf. [14] for details). The kernel K(x,y, P) satisfies on the
diagonal:

K(z,2,500(Q — A1)

oo
~ ijoa,j(x)/\

o

TS (ep(w) log A+ (z)ATFTmL (318)
k=0

nitd—j
T

for [A\| — oo, uniformly in closed subsectors of I'. Consequently, one has for
the trace:

ni+d—j ©°
ajA S emel Z((’k log A + cj)Ak-m-1

TO@NT Y, (3.19)
k=0 .

=0

where the coefficients are the integrals over M of the fiber traces of the
coefficients defined in (3.18).

If S is a differential operator (in particular if S = I), then c¢q(x) = 0
and the complete coefficient of A=~ is locally determined.

If S and ) are both differential operators, we are in the well-known
case where no logarithms occur, and all coefficients are locally determined
(cf. [22]). This is shown by a simpler version of the above proof where
the decomposition (3.15) is not needed since the symbols are smooth and
homogeneous at £ = 0, and it gives an expansion we may write as follows
(denoting S by D):
nitd—j 1

m

K(r,r,DE)T(Q - /\)7]) ~ Z;x; bj(ervQ)(i/\) " S

TrDOF(Q =N~ 37 (D, Q)N L (3.20)

0
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for A — oo in suitable sectors. Let r be even. Then since the symbol terms
homogeneous of odd degree satisfy p(x, —&, u) = —p(x,&, 1), their contri-
butions to the diagonal kernel and the trace vanish (cf. (3.6)); hence

bj(z,D,Q) and b;(D, Q) are zero for d — j odd. (3.21)

For later reference we list the formula for the zeta function that follows
from (3.20) by Corollary 2.2, in the case where the differential operator @
is selfadjoint > 0 and of order 2. We have to take the singularity resulting
from the nullspace V5(Q) (of finite dimension 1(Q)) into account; in fact,

DR(Q =N~ = DIy(Q)AR (=A) " (3.22)

is holomorphic at 0. Here TI3(Q) is an integral operator with C'> kernel
K(z,y,10(Q)) = Xi<i<p, w(x) @ W(y), where the w; are a smooth or-
thonormal basis of Vy. The kernel of DIIg(Q) is 301 <;<,, (Du(x)) @ @(y).
Then the singularity at 0 of K (2,2, DOT(Q—X)"1), resp. Tr DIT(Q—A) "1,
is

K (2,2, DTI(Q))3F(—~A)™", resp. Tr DITy(Q)25(—A)~".
(3.23)

In this case (3.20) is seen to correspond, by (2.10) and Corollary 2.2, to the
following pole descriptions of the diagonal kernel and trace of I'(s)DZ(Q, s):

D(s)K (2,2, DZ(Q, s)) ~ i C-f(“’i%lg _ K(%%DHU(Q))7

j—0 St . 2 §
T(s) Te(DZ(Q, 5)) ~ i C-f(iﬂnf{)d _T(P(Q) — (3.24)
j=0 8T T s
with
bi(x, D
C]'('T"a Da Q) = F(m jl-(:]c.j—F ;Q731d) s Cj(Da Q) = /M tr Cj(.’I,', Da Q) d.’L’,
) < .

c; =0 for j —d odd. (3.25)

In particular, if @ is the square of a selfadjoint first-order differential
operator A, and D is multiplication by ¢(x), we get for the pole structure of
the zeta and eta functions, taking the vanishing of coefficients into account:

T(5)¢ (1, A%, 5) = T(s) Te($Z(A%, 5)) ~ i :ﬁ(;fw“n_f - Tf(wfio(A))’
- Q

k=0"

o0

L(s)n(t. 4,25 — 1) = D(s)Te(pAZ(A%,5) ~ Y %(3-2@
k=0 ° ’ 2
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Let us also list the consequences for the heat kernel and trace, by The-
orem 2.3:

K(z, 2, De QT (Q)) ~ i ¢;(x, D, Q)7 — K(z,x, DIIy(Q)),

oo .
K(z,r,De 1) ~ ch(m,D,Q)tj 2 d,
=0 (3.27)
sl j—my—d
Tr(De @) ~ > ¢ (D,Q)t 7 ;
j=0

note that the effects of the nullspace projection have been cancelled out in
the second and third lines. (In Theorem 2.3, a simple pole at s = 0 for ¢(s)
corresponds to a constant term for e(t).)

4. The APS resolvent in the product case
4.1. GENERALITIES ON RESOLVENTS

We now return to the APS operator on a manifold with boundary, as de-
scribed in Section 1.2.

One auxiliary tool is to consider an extension of P to a larger manifold
without boundary. As mentioned after (1.14), one can choose a specific
extension P to the double X in the product case. However, in the final
formulas, the choice of extension really plays no role, since all operators are
restricted back to X (more comments in [15], Remark 3.6), so we can let P
stand for any extension satisfying the ellipticity requirements. In the general
case, we just extend to a neighboring open manifold X = XU(X'x]—1,0[)
preserving the ellipticity hypotheses there.

We denote the extended “Laplacians” Ay = P*P and Ay = 15]5*, and
set

Qir=(A; — NN (4.1)

In the product case where A, is selfadjoint > 0 on the compact manifold X',
this is well-defined for A € C outside a discrete subset of R, and the zeta
and eta functions as well as the heat trace for the A; behave as described
at the end of the preceding section.

In the general case, Q; ) is, to begin with, just defined in a parametrix
sense, but it can be modified such that for sufficiently large A

(Ais = MNQin+ =Ton X (4.2)
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(as explained in detail in [14], p. 508 9). Here we use the convention of
defining, for an operator S on X, the truncation S, to X by

Siu=rtSetu, (4.3)

where eTu denotes the extension of v with etu(z', x,) = 0 for z,, < 0, and
r* denotes restriction to {z;, > 0}. We shall also write

Try S = Tr[S4]. (4.4)

(The plus-subscript is often omitted when one deals with differential oper-
ators, since they act locally.)

The @; ) enter as pseudodifferential parts of the resolvents we are look-
ing for:

Ri\=Qix+ +Gix (4.5)

where the G; ) are singular Green operators (in the notation of Boutet de
Monvel [4]); s.g.0.s..

Remark 4.1 One of the well-known ways to describe the resolvent of a
given boundary value problem is the following: Consider a problem

(P—~XNu=fonX, Tu=¢ponX, (4.6)

where P is elliptic of order d in a bundle F over X, and T'is a trace operator
(from H(X, F) to a suitable Sobolev space Hy (X', F) over the boundary
X'). The resolvent R) is the solution operator Ry : f — u for the problem
(4.6) with ¢ = 0. Assume that P — ), extended to a larger manifold X,
has an inverse @) such that (P — A)Qx 4+ = [ on X, where Q) + maps
Ly(X, E) into HY(X, F). Assume moreover that the problem (4.6) with
f = 0 has a solution operator K : ¢ — u (such that (P — A\)K, = 0,
TK, = I), mapping Hy(X', F) into H(X,F). Such an operator going
from the boundary to the interior is called a Poisson operator in [4].

Then the full problem (4.6) has at most one solution for any data {f, o}
in Ly(X, E) x Hp(X', F), since null-data give the null-solution. Moreover,
the resolvent equals

Ry =Q\+— K\TQx+, (4.7)

for this operator verifies (P — A\)R) = I and TR) = 0 and is defined on all
of Ly(X, E) so it must be the unique solution operator.

In (4.7) we see the structure of the resolvent as the sum of a ¢/do term
and a term composed of a Poisson operator K and a general type of trace
operator T'Q) 4: here K)T'Q) ;4 is an example of a singular Green operator.
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Another auxiliary tool in the analysis of the inverse (4.5) is to compare
it with the inverse on the cylinder X = X’ x R.,. Define

P’ =5(8, + A), P =(-8,+ A", so

/ / (4.8)
PYP’ =D} + A*, P°P" =o(D; + A*)o*.

They have a meaning on X°, where P? goes from EY to EY, the respective
liftings of E| and F}, and P% is the formal adjoint of P® with respect
to the product measure. They can be extended to bundles E‘,O over X0 =
X' x R; the simplest choice is to take the E? as the liftings of F! and
extend the formulas in (4.8). We denote the extensions P°, AV = (P?)'PY,
AY = po(pYy.

On the cylinder X° we consider the realization P% of PY defined by
the boundary condition Byyu = 0, with the Laplacians A} = P%*P% and
AY = P9 PY%. The resolvents are:

R\ = Q4 +GPy, with
?,,\ = (D +A* =), Qg,,\ =o(Dj + A = A)" 0", (4.9)

the G?}A being singular Green operators (as in Remark 4.1).

In the product case one can show that the true resolvent R; ) is, near
X', very closely related to R?’)\, in such a way that the singular Green
contributions to the asymptotic expansions we are looking for are essentially
the same. In the general case, R?,)\ is a first order approximation in some
sense, so we can take it as a point of departure for the construction of the
true resolvent R; y.

4.2. DECOMPOSITION FORMULAS IN THE PRODUCT CASE

In the product case, very precise information will be obtained for the asymp-
totic expansions, on the basis of exact formulas for the operators involved.
Let

Ay = (A2 -2 for e C\Ry; A = A+TI(A).
(4.10)

We shall here describe the results for the case B = Il (i.e., By = 0) in
detail. [15] moreover treats B = II> + By with By ranging in Vj(A). In
a recent manucript [6], Briining and Lesch treat certain other boundary
conditions for problems as in Remark 1.3, see Remark 4.14 below.

Using the cylindrical structure, we shall write the s.g.o. terms in (4.9)
explicitly in terms of the special operator

(G)\u)(m',mn):/[] e~ @Y ) Ay (3! ) dyp. (4.11)
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When G is an operator defined by Gu = [;° G(2n, yn)u(a’, yn) dy,, where
G is a function of x,,y, valued in operators on z'-space, we call G(zy,,yn)
the normal kernel of G, and define its normal trace as

tr, G = / G(xn,xn) dry, (4.12)
Jo

Ay

when it exists. The normal kernel of G is e~ (@»t¥=)Ax and the normal

trace is

o0
10 Gy = / R e (4.13)
Jo
Example 4.2 To explain how G) enters, consider the Dirichlet problem
for D2 + A?> — X on XY,
(D2+ A= XNu=f, Aou=¢, (4.14)

from the point of view of Remark 4.1. The Poisson operator solving (4.14)
with f =0 is

7.’13,,,14/\

I(]%ir,)\so =€ @ (415)

and the composition WUQ? a4 acts like
2 2 1 T A A /
(D + A7 =N) et f = Wom/o el IMet f (o gy )dy,

00
= /0 ﬁe*yn/‘kf(m”yn)dyn’ (416)

so the singular Green operator term as in (4.7) equals the composed oper-
ator

GODir,,\f = —K%ir,,\%Q?,,\,Jrf
= 515 OOO et f (! ) dyn = 77 G S (417)
Thus the resolvent equals
(Ady, —A) ' = R][])ir,)\ = Q?,/\,+ - Q]TXG)\‘ (4.18)

For a Robin-type boundary condition (9, + S)u = 0, where S com-
mutes with A2 and Ay, — S is invertible, one finds in a similar way that the
singular Green operator term in the resolvent is

Ay+S
GRobr = 7 P22 G- (4.19)

In particular for the Neumann condition, GONQU’)\ = 2,]TAG>\'
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The actual boundary conditions mix boundary values and normal de-
rivatives in a more complicated way; for example, A} has the boundary
condition (cf. (1.6))

Hz’ygu =0, H<70(8n + A)u =0, (420)

where we have used that Il = I —1II> and that c*o = I. This is a Dirichlet
condition on the functions of x,, valued in V> and a Robin-type condition
on the functions of x,, valued in V., so by applying Example 4.2 to each
component, we find that the singular Green term in (A} — \)~! has the
form

GY ) = (5Tl + o 24 T110) Gy (4.21)

(which has a good sense since —A is positive on V). Along with the cor-
responding formula for Ggw this may be written as in [13], [15]:

GO\ = Gox + Gy — 1Ay,

2v/=X\
GY | = O’(G A — Gon+ HO(A)G)\)O'*, where
2.0 :A‘ o, 2\/,—:2 f (4.22)
Gex = QAA(\AHAA)G)‘ - (2)\/4)\ T ﬁ)G)"
— —1 A _ A Ay A
Gor = sy a1 = (53 + R

Recall (4.10); for the last expressions it is used that 1/(|A| + A)) = (J4] —
Ay) /(A% — (A% = ))) = |A]/X — Ay/A. The indices e and o refer to the
evenness and oddness of the principal symbols with respect to &'. (The
parity alternates between even and odd in the sequences of lower order
symbols.) All the operators are defined and holomorphic for A € C\ R,.
Moreover, G\ and G, ) are holomorphic at 0 because of the factors |A|
and A that vanish on the nullspace.
From (4.13), (4.22) follow:

_ A2 A =4 4 1.4
tr, Gex = AT +1nx nGon=ma; t o [AT

(4.23)

Example 4.3 The corresponding expressions for the Dirichlet and Robin-
type problems considered in Example 4.2 are

2 S
A (4.24)

Now one can show that near X', the true s.g.o G is very similar to
the cylindrical version G?)\.
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Lemma 4.4 (Product case.) Let x € C§°(R) with x(x,) =1 for |z,| < g,

X(xn) = 0 for |v,| > 2. Then Gy — XG?,AX is trace class in Lo(Eq)

with norm O(|A|=N) for |\| — oo with arg\ € [6,2n — 6], any 6§ > 0.
The same is true of E)’;[G],A — XG?,AX] for k=1,2,..., and of expressions
DG\ — XDIG?,AX; where D is a differential operator, constant in x, near
X' and equal to D' there.

Similar estimates hold for G27)\_XG(2)7)\X in Ly(Es), and for the operators
(1-— X)G?’)\ and GY, — XG?,AX in Ly(E?). Here the G?’)\ can be replaced by
Gex or Gg ). ’

All these functions are holomorphic in A € C\ Ry.

The proof is given in detail in [15], using elements of [13]. It extends to
show that the operators also map into H*, any s, with O(|A| ") estimates
for any V.

We now construct the zeta functions. For this, we integrate A\™°R; \
along an appropriate curve C as in Theorem 2.1, running along the negative
axis and around a small circle of radius

ro < min{ A1 (A;), A (A;), A (4%)}, (4.25)

where \; denotes the smallest positive eigenvalue. (C could also be taken
to be a curve in Re A > 0 closer to the spectra.) Then (cf. (4.3))

Z(Ajys) = o= [o AP RN AN = o= [L AT Qin g AN + 5 [o A5G dA

=Z(A,5)4 + Gz, where we have set
Gis = 5= Jo AT5GirdA. (4.26)

In the trace calculations in Theorem 4.6 below, we shall replace G; \ by
G?\ by use of Lemma 4.4. Define the transforms

Gres = Jo AN 5Gepnd), Gros= 5= [o A5G\ dA.
(4.27)

To describe the various Gz, we use the function defined for Re(—t) <
Res < 0 by

Fi(s) = ﬁ Je. " 51— 1) tdr
= %(e(*sq)i” — e(5+1)i7r) I u (1 + ) tdu
1 D(—3)(s41) D(s+t) . (4.28)

= zsin7(s + 1) =77 = et

Cr.ro is taken with 79 €]0,1[, cf. (2.2). Fy(s) coincides with the binomial
s+i—1 1

11 ), also equal to (sB(t,s))”", where B is the beta function.

coefficient (
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Fy(s) extends meromorphically to general s and ¢ € C. In particular,

N =

P+l ]
F%() fr(g_H) = (, )’ Fi(s)=1

3 (4.29)
Fo(s)=0if s #0, Fi(0) =1if I'(t) # oo.

That Fi(s) = 1 follows directly from the first integral in (4.14), and the
formula for Fy(s) follows from the fact that ﬁ Jom % tdr =0 for Res > 0.

The formulas for the singular Green operator terms are greatly simpli-
fied when we take normal traces.

Proposition 4.5 Define Gz s and Gz 5 by (4.27), cf. also (4.13), (4.10).
Then

tr, Gres = 1(FL(s) —1)Z(A2,s),

(5)V (A, 25). (4.30)

2
1
trn GZ,O,S == _ZF

N

Proof: Expand the operators on X’ with respect to the orthogonal eigen-
projections {11} ,esp(a) for A. Our Gz s and Gz, s are both 0 in the zero
eigenspace. Using (4.23) we find, by replacing A by p?7 for each p,

i — i —ss —A2 A
0 G s =t 2 Jo A" G dX = 5 fo A (55 + i) )

1 —s—1 i Iz
_2421 JoA—® (—ﬁJr(u;/\)%)d/\.Hﬂ

:Zzlul B e i+ ) dr - 1, (4.31)

1 (177')%

= (= Fi(s) + F1(5))Z(4%,5) = 3(=1 + F1(5)) Z(A%, 5);

try, G705 = trn o= Jo A P GoxdX = 5= [0 A (5ra- + 2y o) dX

Ay T INTAT
— 1 ]
2421 Je A~ ﬁ—l—‘—z‘)d)\.ﬂu
:Zu:zu\u Ol ler Ny A AT L 4)

= 1(~F1(s) + Fo(s))Y (4,25) = —{F1(s)Y (4, 25). O

N =

Note that the even part produces a function derived from the zeta func-
tion of A, and the odd part produces a function derived from the eta func-
tion of A. This is the fundamental observation for the following, relating
the power functions of the boundary value problem to those of A.

Now we combine this with the interior contribution, taken from the
doubled manifold X. This leads to the key result:
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Theorem 4.6 (Product case with By = 0.) The zeta functions have the
following decompositions:

L(s)C(Ai8) = D(8)[C4 (A, )+ 5 (FL(5)=1)¢ (A%, 8)+(=1)' 3 F1(5)n(A, 25)]
+ [T (To(Ay)) = vo(Aq) + (=1) fro(A)] + hi(s),  (4.33)

where the h; are entire. Moreover, T'(s)C(A;, s) is O(el~ 3 HNM sy for | Tm 5|
>1, —c0o< (] <Res <y <oo, any € > 0.

Here ¢, (A, 8) = Ty Z(A,,8) (cf. (4.4)).

The bagl(’ idea in the proof goes as follows: By Lemma 4.4, the resolvent
(A — N1 = (A — M) + G\ has the same asymptotic behavmr for A
going to infinity as (A; — )\)+ +XG7;7,\X= and the last term behaves like G?’)\.

Here the contribution from A; is well-known; and the contributions from
Ge and G, in GY ) have been dealt with in Proposition 4.5; they give the
terms 1nv01v1ng F1 (s). What remains is some adjustments due to the Lau-

rent expansions of the resolvents at A = 0 and the trace of GOA restricted

to the nullspace of A, plus the contribution from an O(]A|") term; these
adjustments yield the coefficient of 1 in (4.33) and the entire function. The
explanation is slightly technical because of the need to consider differenti-
ated resolvents as in (2.11). We leave out further details; they are given in
[15].

Example 4.7 For the Dirichlet realization ADH of D2 + A?, a calculation
as in (4.31) gives, by (4.24),
trn GZDirs = tn 9z Jo A Gl AN = g Jo A gy dA = =3 Z(A%,5).

Then the zeta function for the Dirichlet realization Ap;. of P*P has the
decomposition (with A(s) entire):

()¢ (Apir, 8) = T(s)C4 (A1, 8) = $T()C(A%,8) + h(s).
(4.34)

For the Neumann case one gets this formula with f% replaced by —l—%.

A similar analysis applies to the eta functions associated with Pg, and
to functions with differential operators inserted in front. Consider e.g. the
eta function I'(s) Tr(¢PA;®), where ¢ is a bundle morphism from E; to
E1, equal to ¢* = ¢|x: on X’ x [0, c]. (Some morphism is needed in order
to allow taking the trace in Lo(Eq); e.g., o can be used for ¢.)
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Theorem 4.8 (Product case with By = 0.) The eta function
L (s)n(e, Pp,2s — 1) has the following decomposition:

D(s)n(g. Pp,2s — 1) = T(s) Te(pPA )
= T(s) [Try (¢PA*) + 1 (Fy (s — 1) = (0. A, 25 — 1)]

T ke Te(oTo(A))(s — 1)+ ba(s). (435)

where hy(s) is entire. Moreover, I'(s)n(, Pp,2s —1) is O(el= 3T msl) for
[Ims| > 1, —oo < €1 <Res < (Cy < o0, any € > 0.

There is a similar result for I'(s) Tr(eP*A, %), where ¢ is a morphism
from Eq to Es.

4.3. PRECISE TRACE FORMULAS IN THE PRODUCT CASE

It is shown in Theorems 4.6 and 4.8 how the zeta and eta functions of the
APS operator arise by simple addition of known zeta and eta functions with
factors defined from Fi (s) in front.

2

This makes it easy to determine the pole structure! We know the pole
structure of the zeta and eta functions of the operators P, A; and A, and we
also know the pole structure of F'1 () from its gamma function components.

2

The result is that we get from each decomposition a meromorphic function
with poles where those functions have them; and the poles will be double
when there are coincidences. Accordingly, there will be heat trace expan-
sions with powers t# corresponding to the simple poles —f, and powers 7
plus t# logt terms corresponding to double poles — /3.

We list the precise result below. An interesting aspect is that it shows
a difference between the cases n even and n odd.

In the case n even, coincidences between poles give rise to double poles
(hence log-terms in the heat operator formulation). At a double pole —f,
the singular part consists both of a coefficient ¢ times (s+3) "2 and another
coefficient ¢’ times (s + (). The first coefficient ¢ is determined from the
symbols of the operators in a well-known local way, whereas the second
coefficient ¢’ is usually just globally determined.

In the case n odd, there are no coincidences, hence no double poles. But
here the poles of F:1 force us to evaluate the zeta and eta functions at the

points midways betzween their well-known poles; also this gives new global
coefficients. (These are the points where the poles according to (3.24) have
vanishing residue (3.25), so the value can also be regarded as the second
coefficient where the first one is 0.)

Now comes the detailed description:
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We denote the second coefficient in the Laurent series for I'(s)((D, @, s)
at a pole s; = %ﬂﬁd by ¢;(D, Q):

(D, Q) = lim [[(s)((D,Q, 5) — UL = Res,_, L),

5—5; §—84

(4.36)

here Res,—y means the residue at s'. (In case ¢;(D, Q) =0, ¢j(D, Q) is the
value of T'(s)((D, @, s) at the point.)
We also need to define some universal constants:

—1)™
ﬁm = Ress:féfm zllF%(g) 4m!\;FF)(%7m)’
—— 1 )1
By = RBSS:,%,m 4F%(s)(3+ 5 —m) -,
(kL
= 5(F (5 - 1) = [ Zrars - 1. .
4.37
_1\ym+1
Em = Resszféfm %F%(S)F(S) = #(WH—]—)’
= 1 _ _ 1y (=)™,
6m - R‘eSS:%fm 4F% s 1) ( ) RGS 1 —m 4\/_ ( ) ~ a/rm!’

here m € N, and the k are integers avoiding negative odd numbers. (The
explicit expressions are found by use of the formula I'(s) = 7['(1—s)/sin 7s.
Also 3], can be written more explicitly, departing from the fact that —T7(1)
equals Euler’s constant.)

From (3.24) we find, omitting vanishing coefficients,

D(s)Ce(Aq, ) ~ f: iaiz(%ﬂ) - Tr+(HSO(A]))
k=0 2

, (4.38)

where cj7+(ﬁl) =[x trcj(x,ﬁl)dm; cf. also (4.4). Since A acts on X' of
dimension n — 1, we get from (3.26):
cok (A% vo(A)

2 ~ - _
Po)o(% ) ~ 3 Ty = 2 (439

and, for example, when 9 is a morphism in Fq,

D(s)Fy (s)n(1, A, 25) = ﬁ[’(s + (A, A2 s+ )

A, A? A
N Z Cor1(VA, A7) — + 0y, 4. 0) if n is odd,
R I ISV EE I R ) R
2
N Z o1 (YA, A7) (4.40)

n n

+ Cnfl(wAvAQ) + Clnfl(wAaAQ)
XL Vs

if n is even,
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where ¢/, (1A, A?) is defined as in (4.36). When ¢ = I then ¢, 1(4, A%) =
0 and ¢, (A, A%) = /7n(A,0).

Insertion of these expansions in our decompositions gives:

Corollary 4.9 The zeta function T'(s)((A;, s) is meromorphic on C, with
the following singularity structure:
For n even:

D(8)C( A s) ~ 3 L’QJICFZ(_&Q) Ty l_iO(Ai) n %717214021;(:‘112)
>0 2 0<k<z P th— 5
el Br—neap(A?) N Br—nchy(A%) + (5;#% — 3)eai(A?)
= (s+k— 2512 s+k— 2t
i s Copi1(A, A7) L (A 0) + VU(A)]_
40%&" VEE k- +Hhk+1-5) S (441)
For n odd:
D()C(Ans) ~ 3 0219,+(51:72  Try To(A) n 7n7172kc2l;(:4112)
k205+k__ s =0 s+k— 5=
N Z emC(A% —m — %)
mso ST m+ 3
DY Copy1(A, A7) (A, 0) +V0(A)]_ (4.42)
k>0\/_——k—1)(s+k+1——) s

[15] moreover shows the formulas where a morphism is included. The
terms [, were missing in the Preprint version of [15].

Corollary 4.10 The eta function I'(s)n(e, Pp,2s — 1) =I'(s) Tr(@PA|®)
18 meromorphic on C, with the following singularity structure:
For n even:

. cori1,4 (9P, Ay)
D(s) Tr(pPA ") ~ 3 2
k>0 ‘ 2

.S %73721@(32“1(@‘001‘1,1‘12)4_ S

5k+1 —2C2h+1 (SOOUA, AQ)

n—1 1
0<k<% -1 stk - k>Z-1 (s 4+ k- 25=)2
+ ﬁk+]7%€ék+l(¢00‘4"42) + (ﬁllc+1*§ - %)C%H(SOO”A,AQ)]
s+k— 2t
Tl (), 4

4/ — 1)
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For n odd:
_ Cok41, (pP, Ay) Yn—3-2kCok41 (T A, A?)
D(s) Tr(pPAT) ~ 3 =g 4 3 e
E>0 ' £>0 S+ k— "5
n(gp oA, —2m) Tr(gooo*Hg(A))
+> om ; 0 —~. (4.44)
meo Stm—3 V(s —3)

There are similar formulas for Tr(@P*Ay®), with "o replaced by o* 0.

Let us finally list the consequences for heat traces, derived from Corol-
lary 4.9 4.10 by use of Theorem 2.3:

Corollary 4.11 The exponential trace Tr(e’tAi) has the following behavior

fort — 0.
For n even:
n n—1
*tA Z o+ th=% 4 Z %171721#5219(142)7‘/]%T
k>0 0<k<2
n—1
+ > [ B mea(A) logt + By nch (A7) + (By_n — Pear(AP)] 5 7
k>2
iy kWA g o) u(a)]. (445)
il 0<in V(5 —k—1)
For n odd:
e )~ 3 o (Ag) R
k>0
n—1 1
+ 3 o 1akea(AN) T £ Y (A%, —m - )t
k>0 m>0

1 C2/!<+1 A A? ) k+1-2
— _E:—t 2 +n(A,0) +v9(A)]. (4.46

Corollary 4.12 The associated exponential trace Tr(goPe’tAl) has the fol-
lowing behavior for t — 0.
For n even:

Te(pPe A1) ~ 3 eopyr (9P A1) 172
k>0

_n-l
+ Z Vn—a-akCars1(F oA, A tF
0<k<Z -1
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n—1
+ > [Ber—zconn(PoA, A%t logt
k>2 1

w3

n—1

+ (Brg1-n (00 A, A%) + (Bpgr-= = Deargr (oA, A)) 7]

+ 2= Te(p ol (A)) 172, (4.47)
For n odd:
Tr(pPe ") ~ > coppr (9P Ay) 72
k>0
n—1
+ ) nos—akcoks1 (VoA AP T
k>0
+ 37 b0 A, —2m) 13 + L Ta(OoTlp(4)) 472, (4.48)
m>0

There are similar formulas for Tr(eP*e™'?), with %0 replaced by
o* V.

The proof shows the advantage of working with the power functions,
where the contributions from the boundary condition appear as simple
multiplicative formulas involving the zeta and eta functions of A; this allows
an exact analysis of the pole coefficients which can then be carried over
to the heat expansions by Theorem 2.3. If working directly in the heat
operator framework (a point of view taken up in [6]), one has to deal with
convolution-type integrals.

Gilkey and Grubb [11] show that all terms, in particular the logarithmic
ones, are nontrivial in general. Dowker, Apps, Kirsten and Bordag [7] find
no logarithms for the Dirac operator on the ball; this is due to special
symmetries and does not contradict the above since it is not a product
case.

Example 4.13 For the Dirichlet problem considered in Examples 4.2, 4.3
and 4.7, formula (4.34) implies in a similar way:

. X _n _n_1
Tr(e "2P) o 3 cop (A1) 1777 — 13 e (AP 17
k>0 k>0 (4.49)

note that all the integer and half-integer powers enter here too. There is a
similar formula for the Neumann problem, with f% replaced by —l—%.

Remark 4.14 In a recent study of the gluing problem for the eta-invariant,
[6], Briining and Lesch treat boundary conditions of a somewhat different
nature than those considered here and in [14], [15]; moreover they depend
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on a parameter and the variation in this parameter is studied. We show
below how those new boundary conditions can be handled in the present
framework: Restrict the attention to selfadjoint operators P satisfying o* =
—0, 0A = —Ac as in Remark 1.3. Let B be an orthogonal projection in
Ly(E}) commuting with A% and satisfying

(i) oB = (I — B)o,

4.50
(iil) BAB = «|A|B for some a > —1. (4.50)

([6] gives special examples of the form B = o111< + o9ll. + By with mor-
phisms or zero order 1¥)do’s o1 and o3.) Because of (i), Pp is selfadjoint, and
Ap = Pg? is the realization of P? under the boundary condition (where
B~y is written g B)

YoBu =0, ~Bo(dn+ A)u=0. (4.51)

For the second equation we note that when voBu = 0, then in view of (i),
YoBo(Op+A)u = oy(I—B)(0p+A)(I—B)u = 0vy(0p+ (I —B)A)(I—B)u.
Here, by (i) and (ii), (I — B)A(I — B) = —«|A|(I — B). Thus the boundary
condition may be written:

YoBu =0, ~(0, —alA|)(I — B)u=0. (4.52)

This is a Dirichlet condition for the functions of x, valued in R(B), and a
Robin-type condition as in Example 4.2 with S = —a|A| for the functions
valued in R(I — B). Then by the calculations in Example 4.2, the resolvent
on X%is (A% — N7t = ?’)\7+ + G%’)\ with

0 1 1 Ax—alA]
Gpy= (g2, B+ 55 Aygala(d — B))G)

— Ay—alA
= (g, + 2((1fa2)/‘12LA) +otraray (U = 2B))Gx. (4.53)

Now Lemma 4.4 can be extended to this case. Therefore we have as in the
proof of Theorem 4.6,

T(s)¢(Ap,s) = T(s)(1 (A1, 5) +T(s) Trx 5 /C ATIGH N AN+ h(sz,4 "

with h(s) entire; and here

’I\I‘X ﬁ /C AiSG%,)\ d)\ = ’I\I'XI trn ﬁ /C AiSG%’)\ dA =

i —s( —1 Ax—alA 1 1
Trxrﬁ/c/\ ket L (1 2B)) o d (455)
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The term m([ — 23)% contributes with zero, for by (i) and the
fact that o and B commute with A2,
1 1 1 1 x
o raran L~ 2B)aa; = ammnraran U — B) — s varap 0B

(I -B)—o (I — B)o; (4.56)

-1 *__ 1
T 4AN(Ax+alA]) 1A\ (Ax+alA])

here since the trace is invariant under circular perturbations (that we can
use in a reformulation with sufficiently high A-derivatives as in (2.10)), the
contributions from these two terms will cancel each other. The remaining
terms are treated as in Proposition 4.5 (we give the details for aw < 1; the
case a > 1 is similar and the case o = 1 is simpler):

i —s( —1 Ax—alA|
o /C A (m + Taray) dA

i —s(_—1 1 - oy .
Z 427 -[C A S(‘u27)\ + (]70{2)“2,)\ (,u27)\)%((]7o¢2)‘u?7)\)) dA HN

_ 1), 1—2s i —s(=14+(01=a)"" o . 4.57
- S for (e, (450

= (14 e 08007 4 F(5)) Z(A2, 5);

Fols) = 5 /C e (4.58)

(1—a?-71)
This is a hypergeometric function whose pole structure is easily determined
by use of Theorem 2.1. In fact, F,(s) is of the form (2.17) with f(r) =

—a(l — 7)7%(1 —a? — 7)~'. It is holomorphic on C\ [1,0c[ and has the
asymptotic expansion for —7 — oo in closed subsectors:

f(—7)= *(177%(1 + %)7%(1 i ¢)7]

~ _an% Z (71%)7'4C Z(a2 - 1)l7'7l = Z w-jTigij' (4.59)

keEN IEN JEN

An application of Theorem 2.1 carries the terms w]-tfgf-j over into simple
poles at s = —j — % for ﬁﬁ‘a(e) with residues w;. The poles at integers
J + 1 stemming from the Taylor expansion at 0 are removed when we mul-
tiply by 7~ !sinws. Consequently, F,(s) is meromorphic on C with simple
poles at the points —j — %, j € N, with residues 7 '(—1)/"1w,.

Finally,

L(s)((Ap,5) =T(s)((Ar,s)
+ L1+ e 870D 1 B (5))D(5)C (A, 5) + h(s),  (4.60)
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which is meromorphic on C with poles at the points (n — k)/2, k € N; here
the poles at the negative half-integers —j — % are in general double when
n is even; otherwise the poles are simple. A heat trace expansion in terms

of t(:=m)/2 and ¢+2 logt (k,l € N) follows as usual by Theorem 2.3.

Note that (4.58) also implies: 1) F,(s) equals 7! sin 7s times the Mellin
transform of —a(1 + 7)7%(1 —a?4+ 1) tats—1;cf (2.18), (2.33).

2) (1 — a?)Ey(s) — Fo(s — 1) = —aFy (s~ 1); cf. (4.28).

5. The general case

5.1. A GENERAL RESOLVENT CONSTRUCTION

In the non-product case the results will be more qualitative. A useful trick
here is to replace the separate consideration of Pg and Pg* by the study
of the skew-selfadjoint operator

_ (0 P,
Pa=(p, o) (5.1)
this is the realization of
0 —P*
o (b0 o

under the following boundary condition on u = {uy,us} (cf. (1.5)):

Ly(E7)
Byou =0, where B= (B B'): x — Ly(E}). (5.3)
Ly(Ey)

The advantage of taking Pg and Pg* together in this way is that Pg is
two-sided elliptic, and R, = (P + p)~ 1, defined for p € £y, Iy =
{ueC\{0}||argu| <m/2}, satisfies

w(Ay +p*) ™t Pg*(Ay + p?) !

Re= o = (e A AD ) (54)

where (A;+ %)t = R, _ 2 are the resolvents we are looking for (cf. (1.7)).
The diagonal terms give back the individual resolvents, and the off-diagonal
terms can be used to describe eta functions instead of zeta functions.

This allows us to stay working with first-order systems (instead of pass-
ing to second order), at the cost of doubling up the size of the matrix.

We shall denote Fy ¢ E; = E and E} & E), = E'.
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We let P = (}% ’[I;* ), where P is an elliptic extension of P to a bundle

E =FE @®E, over X = XU(X'x]—=1,0[). Then P+ p has a parametrix Qu
(of strongly polyhomogeneous type) for u € 1"y, and as shown in detail in
[14], p. 508-9, it can be modified such that for large u in closed subsectors
of :‘:Fg,

(P+p)Qu+=1onX. (5.5)

Also here, a comparison with the cylinder case (cf. (4.8)) plays a role.
We denote (120 *50’) =P acting in E° = E? @ EY. We extend P° to X0
simply by extending the formulas (4.8) to x, € R, letting E* = EY ¢ EY
be the lifting of E' = E} @ E). Then the extended operator P’ is skew-

selfadjoint, and the resolvent is

Q=P +u)' =
u(Df + A 4 i)~ (=0n + YDy 4 A* 4 %) o™y
—0 (9 + A) (D} + A* 4 p?) 7! po(Dy + A* +p?)~lo* S
In particular,

(P° + ) 214_ =T on X°. (5.7)

Along with Pg, we study the realization Pg, acting like P° on XY and
with the same boundary condition (5.3) as P. With a slight abuse of nota-
tion, we now denote

A, = (A% + ,uz)%, for p € £T. (5.8)

Lemma 5.1 Define the ¢pdo from sections of E} to sections of E} & Ej:

_(B+u (A, +A)B
SBlt_ (ul(Au—A)B—I—B ; (5'9)
and the Poisson operator from sections of F} to sections of E°:
1 0\ _
Ky, = (0 0) e S (5.10)

Then Kl%# satisfies

ByoKg, =1 on X', (P°+u)Kg, =0 on X" (5.11)
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The proof is a direct verification, using that B commutes with A.
In other words, Kg ut 1 — u solves the problem

(P° + p)u =g on X,

5.12
Bryou =1 on X', (5.12)

when g = 0. We note that by (5.7), the full solution operator for (5.12) is

(RS, KR,). where R = (PE+ )" = QU — KB, BroQb

cf. also Remark 4.1.
Now Rg is principally like the true resolvent R, at X'. However, we
prefer to use a better adapted approximate resolvent, namely

RL = QNF“ — G4 with Gy = XI(Z%’HB’YUQ;L,-H (5]‘4)

where @), 4 satisfies (5.5) and x is a cut-off function as in Lemma 4.4. By
(5.11), R}, maps into the domain of Pp, and by (5.5), we have for large
enough p,

(P+ )R, = (P + 1) Qu+ — (P + m)x Kz, BroQu,+
=1 ([P.x]+x(P—P°)Kp ,.BvQu+
=T Gy with G =(2,P + Po)KL ,BroQ s >

the P; denoting differential operators of order j with smooth coefficients
vanishing for =z, > %(’ (G1 and G9 are p-dependent, and so are many
other auxiliary operators in the following, where we do not indicate the
p-dependence explicitly.)

The exact inverse R, of Pg + p can then be described by

Ru=Ry(I = Go) ™" = (Qus — G1)I = G2) ™, (5.16)

whenever I — (9 is invertible. The main point is now to show that this
holds for large x and leads to a constructive expression for R,.

For this purpose, we analyze the various factors in (5.14) and (5.15).
Let us denote

I(O = eim"A“’ T[] == ’YUQ}L,-F? SO = SB1NB7

i} i . i (5.17)
Ky =x({Y) Ko, Ky=(2,P1+Po)(} 2) K,

here Ky goes from C®(E}) to C®°(EY), Ky and K go from C*®°(E| & E}) to
C®(E), Ty goes from C*°(E) to C*°(E"), and Sj goes from from C*°(E’) to
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C*°(E} & E}). (They also define mappings beween suitable Sobolev spaces.)
Then

G1 = I(lngg, G2 = I(QSUTU. (518)

In the terminology of Boutet de Monvel [4] and Grubb [12], the K; are
parameter-dependent Poisson operators and Ty is a parameter-dependent
trace operator of class 0 (trace operators of class 0 are well-defined on
Ls), but their usage entered elliptic theory much earlier, cf. Seeley [21],
Hormander [17]. For the considerations of these operators, we do not need
to introduce new and complicated symbol classes and composition rules for
boundary operators, for in fact they are of the strongly polyhomogeneous
type: When the parameter p runs on a ray {u = 0e'% | o > 0}, o enters like
another cotangent variable on a par with £q,...,£,_1, in the sense that the
standard estimates described in [4] are satisfied with {&,...,&,-1, 0} as
the boundary cotangent variable. This is similar to the situation described
in Theorem 3.7, now for boundary operators.

Let us refrain from further details (that presuppose a lengthy introdu-
tion to the calculi described in [4], [12], summarized in the appendix of
[14]), but just mention a consequence we need:

Lemma 5.2 With K1, Ky and Ty defined above, and @ a morphism in E,
the compositions Ty K ; are strongly polyhomogeneous 1do’s on X' of order

—1. Moreover, the compositions TopQ, +IK; are strongly polyhomogeneous
Ydo’s on X' of order —2.

An important trick in the following is to reduce considerations of the
singular Green operators G; to considerations of ¢do’s in the boundary.
This is done on several levels; one is in the study of inverses that uses
Lemma 5.3 below, another is in the study of traces in Section 5.2, where a
cyclic permutation brings operators of the form T K into the picture.

First consider the problem of inversion of I — (G3. Here we shall use the
elementary lemma:

Lemma 5.3 Let K : V — W and T : W — V be linear mappings between
vector spaces. Then I — KT : W — W s bijective if and only if [ — TK :
V — V is byjective, and

(I-KT)'=I+K(I-TK)'T. (5.19)
Proof: A straightforward verification. O

The lemma will be applied with K = K (going from sections of E}| & E}
to sections of E) and T' = SyTp (going the other way). This replaces the
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construction of the inverse of I — K'T' = I — (G5 by the construction of the
inverse of I — TK =1 — SyTyKy; so that

(I — Gz)il =1+ I(?(I — Sl)ilsoTo with 51 = STy Ks
(5.20)

holds when I — Sy is invertible. The advantage of this reduction is that S;
is a ¥do on the boundaryless manifold X'. The factor Ty K> is a strongly
polyhomogeneous ©do of order —1 by Lemma 5.2, and it remains to examine
the other factor in S; and the composition, and to apply this to construct
the inverse (I — Sp) L.

Here we go more in details with the symbol classes introduced in Section
3.1. The following class will play a special role:

Definition 5.4 Let r be integer > 0, and let S = OP(s(x,&, pu)) (or let S
have the symbol s in local coordinates). S and its symbol will be called
special parameter-dependent of order —r, when

s(z, &, p) € SR, R, T)NS» (R, R",T) with
O s(x.6.p) € SR R".T) N S* (R, R".T)

for any m, all d,'s being weakly polyhomogeneous.

Example 5.5 To give examples, we first note that any strongly polyhomo-
geneous symbol of degree —r satisfies Definition 5.4 by Theorem 3.7. But
there are also important weakly polyhomogeneous examples, such as the
symbol (a(x, &) + p") " (u in a sector I'), where a(x,¢) is homogeneous of
degree 7 in ¢ for [£] > 1 and a(x, &) 4+ u” is invertible when p € T' (by [14],
Th. 1.17).

For the operators entering in the APS problem we have:

Proposition 5.6 The ¢do Sp,, on X', with i running in £y, is special
parameter-dependent of order 0. So are B and the composition Sy = Sp ,B.

Proof: (Indication.) For the proof we split Sg ,, in several terms:

_ [ B+p 1(A,+A)B~
S = (u’l(Au*A)BJrB’ )

() () ¢ () oo

The second term has a polyhomogeneous symbol in S° ¢ S%0 (cf. (3.4))
and is independent of u, hence is special parameter-dependent of order 0.
(This proves the statement on B.) The third term is of order —oo, and its
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boundedness in p (with improved estimates for derivatives) is seen from
considerations on the involved eigenspaces for eigenvalues of modulus < R.

It is the first term in (5.21) that requires most of the analysis. The
crucial fact used here is that

o A+ A = (A + A) (A — A) (A +[A]) T
= p(Ay +|AD L,

p (A~ A = 7 (A = A) (A + A) (A + AT (5.99)
= p( A+ [A]) L.

Again Il and II> are in S% ¢ 890 and independent of y, hence special
of order 0. In view of the composition rules (cf. (3.7)), it remains to prove
the statement for yu(A, + |A])~!. The advantage of this expression is that
A, and |A| are both “positive” (strongly elliptic), so that the inverse of
A, + |A| can be described by a natural elliptic construction. (Details are
given in [14], Proposition 3.5.) The statement on Sy now follows from the
composition rules. ]

These operators act on X', of dimension n — 1 (where the space variable
and cotangent variable are denoted 2’ and ¢'). For s € R we define the
space H**(R"~!) as the Sobolev space with norm

lells e = 1K(E" 1)) * @€ 1y (Rn-1) (5.23)

and extend the notion to sections of a Hermitian bundle E” over X' by
use of a finite family of local coordinate systems (the space is then denoted
H*#(E")). Note that HO*(E") ~ Ly(E").

We shall need

Proposition 5.7 Let S be a special parameter-dependent Y do of order —1
in a bundle E" over X', with p running in a sector I'. Then for s € R,
S is continuous from H*M(E") to H*TVH(E"), uniformly for p in closed
subsectors T of T, |u| > 1; and its norm as an operator in H>*(E") satisfies

ISlcqaencmny = O(ul ™) for lu| = oo, weT. (5.24)

For each T' there is an rri > 0 such that I — S is invertible for u € T’
with |p| > rpi. The inverse equals

I-85)'=1+58, => ¢, (5.25)
1=1

where the series converges in the norm of operators in Lo(E").
Moreover, S' is a special parameter-dependent do of order —1.
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Proof: (Indication.) By the composition rules, S composed with an in-
vertible ¢do with principal symbol ((¢', i)) is special parameter-dependent
of order 0; it is not hard to show that such an operator is continuous in
H%#, uniformly as stated. This implies the asserted continuity from H**
to H¥* 14 and (5.24) follows since

illlallo < const. ullasr (5.26)

For each sector I, take rpv so large that the operator norm of S in
Ly(E") is < % for |pu| > rpv; then (5.25) holds in operator norm.

The powers S/ are special parameter-dependent ¥do’s of order —j, by
the composition rules. Further efforts are needed to show that the sum S’
is indeed a ¥do that is special parameter-dependent of order —1; see the
details in [14], proof of Theorem 3.8, as explained for Sy there. O

Now we use these facts to show:

Theorem 5.8 The operator Sy in (5.20) is a special parameter-dependent
tdo of order —1 in the bundle E{ = E{® E} over X'. Hence for each closed
subsector T of Ty (or —T) there is an rp > 0 such that I — Sy is invertible
for w € T with |u| > rp, with inverse

(I=S) ' =1+58, S=Y 5] (5.27)
j=1

Sy being a special parameter-dependent ¥ do of order —1 in EY.
Furthermore, for such pu,

(I = Gy) ' = T4 Ko(I 4 S5)SyT. (5.28)
and finally

Ry = (Quyt —G1)(I —Gy)!
= (Qu+ — K1S0To)({ + Ko(I + S2)SoTh)
= Qu+ — (K1 — K3)(I + S5)SoTy, with K3 = Q1 Ky. (3:29)

Proof: In the formula (5.20) for Sy, Sy is a special parameter-dependent
1do of order 0 by Proposition 5.6, and Ty K, is a special parameter-depen-
dent do of order —1 by Lemma 5.2 and Example 5.5, so it follows from
the composition rules (cf. (3.7)) that S; is a special parameter-dependent
¥do of order —1. Then Proposition 5.7 applies, showing the assertions for

Sa.
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Now the formula for (I — G3) ! follows from (5.20). The first two lines
n (5.29) then follow from (5.16) and (5.18). Consequently we have:
Ry = (Qu+ — K1SoTo)(I + Kao(I + S2)SoT0)
= Qu+t + Qu+ Ko (I + 52)S0Th
— K1S0Ty — K1SoToIo(I + S2)SoTo
= Qu+ + Qu+I(I + S9)SoTy
— K1S0Ty — K1S1(I + S2)SoTy
= Quq+ — (K1 — Qu+K2)(I + S52)SoTh,

using formula (5.20) for S; and the fact that I+ S1(I+S3) = I 4+ Sy. This
ends the proof. O

(5.30)

Taking the structure of the entering Poisson and trace operators into
account, we have obtained:

Corollary 5.9 For each closed subsector I' of £1'¢ one can find rp > 0 so
that the resolvent R, = (Pg+ pu)~" for p € T with |u| > rr is of the form

Ry =Quy + KST, (5.31)

where K resp. T are a strongly polyhomogeneous Poisson resp. trace op-
erator of degree —1 and S is a special parameter-dependent 1pdo on X' of
order 0. The detailed structure is given in (5.29).

5.2. TRACE CALCULATIONS

Consider R, = (Ps+p) !, as described above. Since the injection of H*(X)
into Ly(X) is trace class for s > n, the terms in ;'R are trace class when
m > n.

Theorem 5.10 Let ¢ be any morphism in E = E1 @ Ey, and let m > n =
dim X. Then

Te(pd (P +p) ') ~ agu” ™! Z aj+ by "I

[ee]
+ > (ejlogp+cp ™1 as |p| — oo, (5.32)
j=0

for p in closed subsectors of £1g. The coefficients a;, bj and c; are integrals,
[x aj(z)dz, [y bj(2")dx" and [y, cj(x )d:c', of densities locally determined
by the symbols ofP and B, while the c- are in general globally determined.
The coefficients cq and ¢y are the sa,Th,e as for the case where the P; are
zero in (1.2) (the product case).
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Proof: We find from (5.29):

wI (P +p) =
goa;”Qﬂ,Jr goa [I(lngg] 30621‘[(}(152 — 1(3(1 + SQ))S[]T()]. (5.33)

First, Tr(pdy'Q+) contributes the  well-known expansion
> aju”*mflfj. For the other terms we can use the invariance of the
trace under cyclic permutation of the operators, to reduce to a study of
operators on X'. For the middle term we find, by the Leibniz rule:

Trx (0, [K150T0])
= Z Cmy,ma,ms3 Trx(spaltnl K’l aan S[] aLngTU)

mi1+ma+mgz=m
=Trx (Y Cry mamy Ol So O Ty K1)
mi+ma+maz=m

== TI'Xr 8;”(507'0@}(1). (534)

By Lemma 5.2, Ty K is a strongly polyhomogeneous ¢do on X' of order
—1, hence special parameter-dependent by Theorem 3.7. Then since Sy is
special parameter-dependent by Proposition 5.6, it follows that
IM(SoTowK1) is a special parameter-dependent ¢/do on X' of order —m —1.

To this we can apply our general Theorem 3.8 and its corollary, after
a reduction to local trivializations by use of a partition of unity. Since the
symbol has degrees —m — 1 —j, 7 > 0, and p-exponent d = —m — 1, we
get an expansion in a series of locally determined terms bkﬂu’m’u("’])’k,
k > 0, together with a series of terms (¢;1 log pu + C;jl)#,mq,j’ j >0, with
c;1 locally determined.

The third term is treated similarly; here the circular permutation of the
terms resulting from the Leibniz rule gives a special parameter-dependent
¥do of order —m — 2, so Corollary 3.9 gives an expansion in a series of
locally determined terms bkjg,u’m’u("’])’k, k > 0, together with a series
of terms (¢;2 log p + (;3’2)M*m*1fj’ J > 1, with ¢; 2 locally determined.

Taking the contributions together we get the expansion (5.32). One
observes moreover that the terms (cqlog p + cp)pu™ "' in (5.32) come only
from Tr(pd) [K1S0T0]), which leads to the last statement in the theorem.
For, Ky and Sy are the same as for the case where the P; and P]’- are (. The
third factor Ty = 49Q,.+ uses the symbol of (P + ) ! evaluated at x,, = 0.
The leading term of this is the same as for the case where P; and P are
0, and the lower order terms contribute ultimately with spemal paranieter—
dependent ¥do’s of order —m — 2 only; the first possible nonlocal and log
contributions from this are the terms with £=~2 and p~"2 log p. g
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In view of (5.4), it is now easy to draw conclusions from this on asymp-
totic expansions for traces of A-derivatives of p(A; — \)~! = o(Pg*Pp —
A)~Vand oPg(A; — \) ! = oPg(Pg*Pg — \) !, etc.

Corollary 5.11 Let g : By — Ei be morphisms, for k,l =1,2.
The traces Tr(p1107 (A1 —=N)"1) and Tr(p2207 (Ay—A)"1) have asymp-
totic expansions (for k =1 resp. 2):
oo e
a0 kek(=A)2 "D (g 4 bjak) (A T
J=1

—J

o
+ > (cjrrlog A+ ¢ ) (=A)7 " (5.35)
7=0

and Tr(p1200" Pp(A1 — X)) and Tr(p2107' Pp*(Ay — N\)™ ') have asymp-
totic expansions (for {k,1} = {1,2} resp. {2,1}):

[ee]
n—1 n—j—1
ao (=N T "+ Y (aj +big) (N TE ™
Jj=1
o0 .
+ 3 (eplog A+ &) (- N)TT ™ (5.36)
Jj=0

with coefficients described as in Theorem 5.10.
The coefficients co i and C(),kl are the same as those for the product case.

Proof: Using (5.4), take

QO - ( 9 9 9 resp. 9
0 0 0 w2 0 0 w21 0 (5.37)

in Theorem 5.10, and divide by g in the first two cases. Now replace p by
(—/\)% and note that 9y = (2u) " 1d,. O

These results yield asymptotic expansions of the traces of heat operators
prie "8 19 Pge” A1 ete., and power operators 11 (A1), 012 Pp(Ay)7*,
etc., by use of the transition formulas in Section 2:

Theorem 5.12 There are coefficients a; g, bj ki, Cj ki, E_Ij,klr related by suit-
able gamma factors to those in Corollary 5.11 (cf. Theorems 2.1 and 2.3)
such that, with v1 = Tr(p11g(Pp)), ve = Tr(peelly(Pg*)), the zeta and
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eta functions have singularity structures described by:

~ b
T(s) Tr(grrZ(A1, 8)) ~ —2 + 0, kk i Z ajkk + bjkk

i S s gl
I
%k Gkk Y
+Z( 4 3+%)’
F(S)TT(KPWPBZ(A],S)) resp. T(s) Tr(go1 P*Z (A, 5)) (5.38)
a 1
a0,k (]7 kKt + b] Kl 7 kl Cj ki
i Y )

and the heat traces have the asymptotic behavior for t — 0:

oo .
— ~ _n ~ ¥ J—n
Tr(ppwe ") ~aopet 2 + > (a@jkk + bjk)t 2
Jj=1
o0

+ Z(féj,kkt% logt + aj,lckt%)v
Jj=0
Tr(golgPBeftAl) resp. Tr(gozlPB*PftAz) (5.39)
o0
_ - - j=1 - j—1
~ ao k]t + Z aj Kkl + bj kl B Z —Cj kit 2 logt + C,/j,klt 2 ),

Jj=1 Jj=0

The E_'j,kl and vy are in general globally defined, while the other coefficients
are local. The coefficients ¢o  and 66,kl are the same as those for the product
case.

A detailed account is given in [14]. [14] and [15] also give some informa-
tion on variations of parameter-dependent situations.

Remark 5.13 Similar considerations allow the calculation of Tr(DJ;'R,,)
when D is an arbitrary differential operator on X, for m > n +d, d = the
order of D. One finds that

Tr(DI]'Ry) ~ ao(D, P)p ™+~ 1+Z (D, P)+b;(D, Pg))p"~m+4177

1=1
00

+ > (¢j(D, Pg)log ju+ ¢;(D, Pg))u ™19 (5.40)
Jj=0

(the primed coefficients global, the others local); and consequences are
drawn as above for the corresponding zeta and eta functions and expo-
nential traces.
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