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We here present our work on the solvability of completely nonhomogeneous initial-
boundary value problems for the Navier-Stokes equations, in general anisotropic
Ly, Sobolev and Besov spaces with p > 1. Introducing a new twist of the method
(simplifying slightly), we can now extend the results to exterior domains, for finite
time intervals.

1 Introduction

In a series of papers, the author has treated the nonhomogeneous Navier-Stokes
problem

8,,u—Au+Zuj8ju+gradq:f on @, =N x I,
j=1
divu=0 on @y, (1.1)
Ti{u,qt = on Sy, =T x I,

rou = ug on §Q;

for bounded domains Q@ C R”, I, =]0,b[ C Ry, with various boundary opera-
tors T} of Dirichlet, Neumann or intermediate type (rq indicates restriction to
t = 0; further details are given below in Section 2). Strong solvability results
were obtained in anisotropic Ly Sobolev spaces in joint works with V. A. Solon-
nikov ['']-['*], and the results have been extended more recently to L, Sobolev
spaces [°]-[7], that we report on below (in Section 2). Besides this, we give
generalizations to exterior domains (in Section 4), based on a simplified proof
(in Section 3).
The main technique is to reduce the linearized problem

Oiu —Au+gradg=f on @y,
diveu =0 on Qy,,

Te{u,q} = pr on Sy,

rou = ug on §);

(1.2)
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which is degenerate parabolic, to a truly parabolic pseudodifferential problem

Ou—Au+ Gru=f, on Qy,,
Tyu =1y on Sy, (1.3)

rou = ug on §;

where the general theory of [*], ['?], [°], [°] can be brought into use.

Parabolic problems of the form d;u + A(x, D,)u = f (with initial and
boundary conditions) are much harder when A is of pseudodifferential type
than when it is a differential operator, since the singularity of the symbol of A
at & = 0 has an important effect when there is an extra parameter-dependence
(caused by 9;). While trying to extend our results to exterior domains, we were
inspired by a recent collaboration with R. Seeley ['°] to look for simplifications
in the treatment of (1.3) such that one can take advantage of the fact that the
non-differential aspects are connected with the boundary only.

We shall show below in Section 3 how an important step in the treatment
of (1.3) can be broken up into three parts, treating: (i) a classical Dirichlet
or Neumann heat problem, (ii) a parameter-dependent ps.d.o. problem on the
boundary T, (iii) a classical Dirichlet or Neumann problem for the Laplace
operator. For exterior problems, this viewpoint has the advantage that we
can lean on known results for the unbounded domain, and need the technical
ps.d.o. considerations only on the compact manifold I'. It gives rather eas-
ily some extensions of the results of [7] to unbounded domains, however for
bounded time intervals only.

For the unbounded time interval R, the results for the Dirichlet problem
in [’] do not seem readily extendible; and the new method is perhaps too rough.
In fact, one may have to work in other spaces than those that we deal with
here (e.g. homogeneous spaces or weighted spaces), to get really satisfactory
results.

2 Results for the interior case

Consider the problems (1.1) and (1.2). Here u(z,t) is the velocity vector
w={u,...,un}, q(z,t) is the (scalar) pressure, and T}, is one of the following
trace operators:

TO{“‘? q} = 7ou,
Tl {’U.7 q} = X1u — 70qﬁ7 T2{”7 q} = (X]u)'r + ’}/O’U.,/ﬁ., (21)
T3{u.q} = mu—q7, Ti{u,q} = nur +ou,
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where @ = (n1,...,n,) is the (interior) normal at T', v, resp. v, denotes the
normal resp. tangential component of an n-vector field v defined near I':

v, =1 -0, v, =v— (i -v), (2.2)

Yeu = OFulr (with 9, = >5—1m;0;), and x; is the special first order boundary
operator defined via the strain tensor S(u) = (9;u; + Oju;)i j=1,...n as

X1t = YS(u) i = (Zy_(@ﬂ@- + (37-11,1-)17,]-)1.:]7“.}71. (2.3)
For k = 0 this gives the Dirichlet problem, £ = 1 and 3 give Neumann problems,
and k£ = 2 and 4 give problems with partially a Dirichlet, partially a Neumann
condition. More comments on these boundary conditions in ['4].
The data are assumed to satisfy
divug =0, when k=1 or 3;

. (2.4)
divug =0, vup, =0, ¢, =0, when k=0, 2 or 4.

The problem is considered in anisotropic Bessel-potential spaces

H /2 (@) and Besov spaces BS™ */?)(Q )", where, as we recall, the HS**/?
spaces are generalizations of the integer case

H2™™(Q) = {u(e.) € L(Qr,) | DID}u € Ly(Qu,) for |o| +2j < 2m }

(2.5)

defined via local coordinates and restriction from
H*/D(R"xR) = OP((|¢[* + 72 + 1) */Y)L,(R"xR);  (2.6)
(s,5/2)

this scale is preserved under complex interpolation. The Besov scale B,

is defined slightly differently, but arises from the HI(,S’ */2) gcale by suitable real
interpolation. (Further details are given e.g. in [].)

The BI(JS’S/Z) spaces must be included even if one is mainly interested in
solving the problem in spaces (2.6), because they are the correct boundary

value spaces, as <, maps Hés’s/Q)(Q,b) continuously onto the space
1

Bz(,siji’_”(siji;_’)ﬂ)(gfb)7 for j < s — 4. We denote by B 2™ the range

space for Ty applied to H£S+2’S/2+])(§Ih)".
Let us first present the main results of [7] for bounded domains:

Consider systems of functions

@i = {f, onu0} € HY /(@) x By ) x B2 2lr@)r,
(2.7)



for s > % — 1 with s > 2£2 _ 3. The system is said to satisfy the compatibility
condition of order s, when

3

TOB,@kT—'yg11() for k =0, 21§s+2757
! 1) 3
ro0; 0k = (xau'"), fork=1and 2, 21 <s+1— 5,
. 0 3
r00; Pk, = Y1U; fork=3and 4, 21 <s+1-— 5,

understood as

710} o, - ull)] < 00 if k=0, 2l:5+2—%,

T[0! ok (S(uit),] <o ifk=Tand 2, 20=s+1— %7

[0k on -0 ull)] < oc ifk:3and4,2l:s+1—%;
here the uY) are defined successively by

u(® =y,

u = (A — Gyl KZ< )Qk u™ ) £ 00l fis (2.9)

where the Gy are certain singular Green operators stemming from the elimi-
nation of the pressure ¢, and

t) —v(y)l”
I[Y,v] = / / / dy do . dt.
terJorer Jyea Iw —y\(’+t)”"/" (2.10)

We then define the data norm of ®; by

N (@0) = (e e

F llorll oo + ol etz 5 b) 7
(QII))TL Bn+2 () B71+2 2/p(9)n (211)

where Z; ,, = 0if s +2 — % ¢ N, and otherwise equals the possible Z term
entering in the compatibility condition. The following result on uniqueness
and on the existence of solutions on large time-intervals for small enough data,
and on small enough time-intervals for large data, is proved in detail in [7].
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Theorem 2.1 Let Q be a smooth bounded open set in R™. Let k = 0,1,2,3
or 4, let s > % — 1 with s > ”TfQ —3, and let b € Ry. Consider ®; as in (7),
satisfying the compatibility condition of order s.

1° There is at most one solution {u,q} with

{u,gradq} € H P2 220(@, )" x H/2(@Q,) (2.12)
of the Navier-Stokes problem (1.1) for each set of data ®y (where q for k = 0,2
or 4 is subject to the side condition fQ q(z,t)dz = 0 for almost all t).

2° WhensZ"Tfo?)[.9>"Tf273if%f%EN+,p;é2], there is a

constant N, such that for data ®, with data norm Ns(,l;),b(q)k) < Nj pp there
exists a solution {u,q} of (1.1) with (2.12), the norm depending continuously
on ®. When s > sq for some sq > ”TTQ -3 [% - ; ¢ N, if p # 2], the norm

condition for existence can be replaced by the condition Ns(:,)p,b(q)’“) < Ny .pb-

3° When s > "’;2 — 3, one can for each N > 0 choose ' < b such that
there exists a solution {u,q} of (1.1) satisfying (2.12) with b replaced by b', and
with norm depending continuously on ®y, for any set of data ®p with norm
./\/S(I;)b,(@k) < N. For s > sq, sg as above, the solution can be obtained with b’
deﬁfzed relative to sq.

The statements hold with H, replaced by B, throughout, even without the
conditions in [ ... ].

One concludes furthermore that ¢ € H,(,SH’S/Q)(@,M) when s > 0 or f is
as in (2.4); in some cases ¢ belongs to a better space, see [7], Th. 3.6.

For k = 0, s = 0, the result is consistent with Solonnikov’s result ['®],
Th. 10.1 for n = 3, showing the existence of solutions in Wf’l)(alh)" to the
Dirichlet Navier-Stokes problem when f € L,(Q)", ¢ = 0, uy €
pry, By /P(@)" and p > 2.

When both f and ¢ are 0, one can get solutions with still more general
initial data, e.g. in L,(Q), cf. ['®] for the Dirichlet problem (n = 3), Giga-
Miyakawa [?] and Giga [?] for Dirichlet and intermediate problems, and [?] for
Neumann and Dirichlet problems. In [?], we use the semigroup U(t) associated
with Ay = (=A + Gy)7y to obtain solutions e.g. in spaces CO(Ly; HI()™),

when ug is taken in H(Q)", allowed for r > 2 — 1. ['*], [’], [*] and von Wahl
[20] also treat problems with f # 0, ¢o = 0, in related spaces.
For the Dirichlet problem, we can include infinite intervals I = Ry in

certain cases:

Theorem 2.2 Hypotheses as in Theorem 2.1. In the Dirichlet case (k =0),
the existence of solutions with (2.12) for sufficiently small data extends to b=
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+o0o (generalizing Theorem 2.1 2°), when either 1°, 2° or 3° holds in addition
to the conditions s > % -1,s> ”71'2 -3

1°n <4.

2° s < %.

3° The data have vanishing initial values, i.e., satisfy

s,8/2) 7~ n (5+2*%1(5+27%)/2)
{£.00,u0} € HY /P (@r, )" % By (ET7R+)><{0}~( |
2.13

There is a similar generalization with H, replaced by B,.

The method of proof of Theorem 2.1 in [7] consists of the following four
steps: 1) Reduction of the linearized problem to a truly parabolic but pseudod-
ifferential initial-boundary value problem ([''],['*]). 2) Solution of the linear
reduced parabolic problem by pseudo-differential machinery (from [°], [6]). 3)
Solution of the corresponding reduced nonlinear pseudodifferential problem,
by use of product estimates and iteration. 4) Conclusions for the original non-
linear problem. For Theorem 2.2 one uses moreover, that the resolvent of the
linearized stationary problem is really only applied to the solenoidal space,
where the spectrum for £ = 0 is a closed subset of R, ; this allows sharper
estimates.

3 A simplified method

We shall now explain the method of proof in a version where Step 2 is simplified.

We first treat the associated resolvent problem, where d; is replaced by
the complex parameter —A. To be concrete, consider (1.2) in the Neumann
case k = 1 (which has been studied less than the Dirichlet case k = 0):

(=A = MNu+gradg=f onQ,
divu=0 on Q, (3.1)
X1t —70¢ = onl,

1
with f and ¢ given in H,(Q)" resp. B;H 7(T)™; © bounded and smooth.
Applying — div to the first line in (3.1) and taking the normal component
of the third line, we find:
—Aq = —div f,
1 ! (3.2)
Yoq = 271Uy — Pu.
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This is a Dirichlet problem for ¢, so if we denote (;A> = (RD KD)7 we
0

have

qg=—Rpdiv f+ Kp(2v1u, — ¢,), where
— — 1
Rp : H;’](Q) — H;“(Q) for s > — —1, (3.3)
p

_1 _
Kp:By "' "7(T) = H;Y'(Q) for s € R.
Insertion of ¢ into (3.1) gives the equations for u:

(=A — Nu+2grad Kpvy; pr, u = f + grad Rp div f + grad Kpyp,,
Yo divu = 0,

pr.X1U = ©r. (3.4)

A solution of u of (3.4) will satisfy (3.1) when ¢ is defined from u, f and ¢ by
(3.3) (note that divgrad K, = 0).
We write (3.4) in the short form

(A~ Nu+KTu=f onQ,

3.5
Tiu=1; onT, (3:5)

where we have set
K=2gradKp, T=mpr,, Ti=/{pr,x1,vdiv},

3.6
fi = f+gradRpdiv f +grad Kpp,, 1 = {p-,0}; .

here I + grad Rp div equals the projection operator pr; that maps H;(Q)"
onto the solenoidal space J3 = {u € H3(Q)" [ divu =0} for s > & —1 (cf. [7],
Example 3.14); K is a Poisson operator of order 1, and T and T} are trace
operators of order 1.

In order to use other known properties of the Laplace operator, we now

make a new reduction. Write the problem (3.5) as follows:
“A=MNu=fi —KTu on €,
(<D= Xu= fi KT .
mu=1v; — (T{ —v)u onT.

The system {—A — X, v} is uniformly parameter-elliptic (in the sense of_[g],
[]) for A on rays with argument § €]0, 27[; and it is bijective for A € C\ R;.
By a simple application of [6], the inverse is continuous for each s > % -1,

—1
<A — )\) _ (RN,)\ I(N7/\) :H;’“(ﬁ)n > B;+1757H(F)n N Hls)+2,u(ﬁ)n7
m (3.8)
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uniformly for A in sets V., ¢ > 0,
Vo={deClaghe[g2rn—¢|, |\ >c}; (3.9)

here p = |A 3 (The Hp»* and B)* spaces are H, and B; spaces provided
with norms depending on y, as in the basic case of Hy#(R"), which is the
space provided with the norm || OP((|¢[? + |u|? + 1)*/?)u]|,, cf. [’]. Mapping
properties like (3.8) are well-known in the literature, cf. e.g. ['%], except perhaps
for the extension to low values of s.) With (3.8), we can write (3.7) as:

u=Ryn(fi — KTu) + Ky (= (T) — y1)u), (3.10)

or, if we set
. R T
®=Ryafi + Knatr, Ka=(BvaK Kno), T=(p" ),
M7 (3.11)

as:
(I +K\T)u= . (3.12)

We observe that the operators in (3.11), when considered as depending on the
parameter A, have regularity % in the sense of [*], since Ry, Ky and 7
have regularity +o00, and K, being of order 1, counts with regularity % by [*],
Prop. 2.3.14.

Now we need the elementary

Lemma 3.1 Let A:V — W and B : W — V be linear mappings. If | + AB
W — W is bijective, then I + BA :'V — V is bijective, with

(I+BA)™'=1-B(I+AB) 'A. (3.13)

Proof: One just has to check:

(I+BA)(I — B(I + AB)™ ' A)
=I1+BA-B(I+AB) 'A - BAB(I + AB) 'A
— I+ BA-B(I+AB)(I+AB) ‘A =1, (3.14)
with a similar calculation for the left composition. O
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The lemma will be applied with
1, —
A=Ky By TTHI)M S HPRR Q)

— sl 1 1
B=T:H* @ = B HHO >0 o1 heVe 3y

and also with the roles of A and B interchanged. The lemma shows that (21)
can be uniquely solved (in these spaces) if and only if I + 7, is invertible, in
which case

(I+K\T) ' =1-K\(I+TKy)"'T. (3.16)

Now I + TK, is much easier to deal with than I 4+ K, 7, since it is a
parameter-dependent ps.d.o. on the boundaryless compact manifold I'!' In
details, 7Ky is an (n 4+ 1) x (n + 1)-matrix

TRN})\I( TI(N7,\ ) (3 17)

TKy = , ’
* <(T]’ -MN )RN7/\I( (T]’ - ’}/])IX N,

where the entries are of regularity 1, in the sense of [*].

It is parameter-elliptic in the sense of [*], for A on rays in C \ Ry, since
this is a question of bijectiveness of certain model operators at the boundary
(and certain matrices), a property that can be traced all the way from (3.4)

to (3.12); the parameter-ellipticity of (3.4) was shown in ['*], Sect. 6. This
implies that for any ¢ > 0, there is an r(¢) > 0 so that for any ¢ € R,

I+TKy: B;’,’“(F)"‘H%B;’“(F)"“, uniformly for A € W, (),
Wy ={ A€ Clarg) € [e,2r — ], |A| > 7(e) }; (3.18)
we denote the inverse
(I+7TKy) " =Qx. (3.19)
For such A\ we also have the inverse, by Lemma 3.1,

(I4+K\T)™' =1—K\Qa\T : HP»H(Q)"SHS P+ (Q)",

(3.20)
uniformly for A € W, (., when s > 3— - 1.
Altogether, we solve (3.1) by taking
u=T+K\T)"'®=(I-KaQ:xT)(Byf1+ Knaer)
=T - K\Q\T)(Rn(f +grad Rp div f + grad Kpe,)
+ Kn{p-,0}), (3.21)



and defining ¢ by (3.3). The point is here that all operators except the factor
@, stem from classical resolvent problems for the Laplace operator; and @, is
a parameter-dependent ps.d.o. on I'.

For the other boundary conditions (the cases k = 0,2,3,4 in (1.2)), there
are similar methods; for £ = 0,2,4, the roles of the Dirichlet and Neumann
problems are interchanged.

Also in the original problem where —\ is replaced by 0;, this approach gives
some simplifications. Indeed, as described in [7], the resolvent considerations
carry over to solvability of the t-dependent problem with initial data 0, formally
by a Laplace transformation. Analogously to the derivation of (3.21) from (3.5)
we find that the problem

(0 —A—pov+ KTv=¢g:1 on Qr,

, (3.22)
Tiv=C_C on Sgr,

with v(z,t), g1(x,t) and ((z,t) supported for ¢ > 0, and ¢ < inf{ReX | A €
W. (=)}, has a solution operator described by

v=(I-KQT)(Rng +Kn(1); (3.23)
with

-1
(RN KN)_<81/—A_Q) s
el

K= (RNI( KN)
Q=(T+7K) "

(3.24)

3

The latter exists since I + 7K is derived from the parameter-dependent op-
erator I + 7K1, by replacing —A by ¢7 in the symbol and using a pseudo-
differential definition in one more variable; here I + 7K, is invertible for A
in an obtuse neighborhood of {Re A < 0}, and the calculus of [¢], Theorem 3.1
1° is applicable.

The resulting estimates for the solution operator are the same as those
described in detail in [7]. It is because of the constant g in (3.22), that we do
not obtain time-global estimates in HI(JS’S/Q) spaces in general. See however the
special considerations for the Dirichlet problem in [7].

4  Exterior problems

Consider now the case where 2 is the complement of a compact set in R”, still
with smooth boundary I'. We can then investigate how the method of Section
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3 can be used. Applying — div to the first line in (3.1) and taking the normal
component of the third line, we again arrive at (3.2), now an exterior Dirichlet
problem for q.

Theorem 4.1 The exterior Dirichlet problem
—Av=ginQ, yv=1 onl, (4.1)

has a solution operator (RD KD) such that
1 _
grad Kp : By"' " 7(T) — H(Q)" for s € R,
) . . 1 (4.2)
grad Rp div : Hy(2)" — H (Q)" for s > — — 1,
p

and grad Kp maps into (<, g Hy ({|z| > R}), when {|z| > R} C Q. (More
precisely, Rp is defined for g with compact support, and grad Rp div is ez-
tended by continuity.)

Here Kp is uniquely determined by the property that grad Kp should map
into functions that are O(|x|~") for |z| — oco. It is also uniquely determined by
requiring grad Kp to map into (,~, Lo({|z| > R}) — or just into Ly({|z| >
RY), if p < n/(n—1).

Proof: The mapping K p is constructed as follows: We want to find a solution
of

—Av=0inQ, ~yv=vonl, (4.3)

for given ¢ € B;+]7%(I‘), such that gradv is O(|z|™™) for |z] — oo. (The
derivatives will also be O(|]x|~"), and then gradu € H;({|z| > R}) for all r,
all ¢ > 1, when {|z| > R} C Q.) Instead of (4.3), we can study

~Av,=0in Q, ~v. =% —con T, (4.4)

where ¢ is a constant to be chosen freely; if v. solves (4.4), then v = v, + ¢
solves (4.3) (and vice versa), and they have the same gradient.

We can assume that 0 is in the complement of , so that the inversion
x — z/]z|? maps Q onto Q* \ {0}, where Q* is a bounded open smooth set
with 0 € Q*, and 9Q* = I'* is the image of I'. (In the following, let n > 3;
there is a similar proof for n = 2.) Let W (z) be the solution of the special
Dirichlet problem

~AW =0in Q*, ~4W(z)=]z]> " on I'*; (4.5)
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since |z[>~™ > 0 on T'*, W(0) > 0 by the maximum principle.
Now if a function V is harmonic in Q* \ {0}, then the function
|22~V (z/|x|?) is harmonic in €, and vice versa (the Kelvin transformation).
s+1—1
Since 1 on T is carried over to |z|> ™(z/|z|?) on T*, lying in BT (T,
we can find a solution of (4.4) by solving

SAV, =0in @, V= a2 (/o) — ) on I*. (46)

The problem (4.6) has a unique solution V, € H;“( YN (%) for each ¢;
and by the linearity, V. = V5 — ¢W, cf. (4.5). Take

¢ =15 (0)/W (0); (4.7)

then V.« (0) = 0. Now let
ver (2) = a7 Vie (2/1]?), (4.8)

it solves (4.4). Since V,.(0) = 0, D%v,.(x) is O(|z|'~"~ 1) for |z| — oo, any
a (seen from the Taylor expansion of V.- at 0). In particular, grad v.- and its
derivatives are O(|z|~™) and hence L, integrable at oo for any ¢ > 1. On the
other hand, V- € H;H(ﬁ*) implies that v, is in H3*" over bounded subsets
of Q. Altogether, it is found that v.+, and hence v = v+ + ¢*, have gradient
in H? ( ) and in (), ., g Hy({|z] > R}). Defining K as the mapping from
1) to v, we have obtained an operator with the asserted mapping properties.

To show the uniqueness, let u be a solution of (4.3) with gradu = O(|z|™™)
for |z| — oco. Recall that any function u(x) that is harmonic on Q has a unique
Laurent expansion

ZHI» +Z| | 2+2k’ (4.9)

where the functions H; () and Hy(z) are homogeneous harmonic polynomials
of degree k; cf. Brelo‘r [Y], pp. 197 202, where also sets {R; < |z| < Ra}
are considered. The first series in (4.9) converges uniformly on bounded sets,
the second converges uniformly on sets {|z| > R} contained in 2, and the
derivatives of u are represented by the termwise differentiated expressions.
When u has the form (4.9),

grad u(z Z grad Hj (z) + Z grad F 2+)2k , (4.10)
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where grad(Hy(x)/|z["~2+2F) is O(|a|' " *) for each k > 0. The requirement
that grad u should be O(|z|~™) rules out the polynomials H; for k > 1 as well
as the term Hy/|z|""2, so

w(z) = Hi +v(z Z| |n Mk (4.11)
Now the Kelvin transform of v, V(z) = |22 "v(x/|z|?) has the representation

V(z) =Y Hix); (4.12)

k=1

it is C*° on Q* with V(0) = 0. Thus V is the unique solution of (33) with
¢ = Hj. I =¢+0(x) also solves (4.3), with & = 372, Hy(x)/|x|" 2+2k,
then @ is the Kelvin transform of the unique solution V of (4.6) with ¢ = &
this also has V(0) = 0. Now V —V = (—H} + &)W (cf. (4.5)), and since
V(0) = V(0) = 0 and W(0) # 0, ¢ must equal H, and V = V. Thus u is
uniquely determined.

To require gradu € Ly({|z| > R}) for some g < n/(n —1) likewise reduces
u to the form (4.11), since nonzero polynomials and |z|'™" ¢ L,({|z| > R});
and the analysis goes as above.

Now consider Rp. To solve the problem (4.1) with ¥ = 0 and a nonzero
g = divh, h € H3()", we let I be a continuous linear extension operator
l: H;(Q) — H*(R") such that divlf = Idiv f, and search for v in the form
v = rqv1 + v2, where v; and vy solve

—Avy =01in Q,
—Av; =lg on R, resp. { v2 R (4.13)
Yov2 = —7yov1 on L.

(rq denotes restriction to 2.) When g = divh, we want gradv to depend
continuously on h in H3(Q)".

To begin with, let g have compact support. To get a convenient solution
of the problem for vy, we define R as the operator (for compactly supported

)

R:fr wnlz|> " f—c(f),
Jrvo(wnlzP" % f) do (4.14)
Jy1do -

where ¢(f) is the constant
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and w,|z|>~™ is the Newton potential (w,|z[> ™ % f can be viewed as
OP(|¢]72)f). This satisfies —ARf = f, and

/%Rf do = 0. (4.15)
T

When g € H;’l(ﬁ)., then v; = Rlg € HT' (R™) by elliptic regularity, so

p,loc

s41-1 )
Yov1 € B,,+1 7(T") € Ly(T"), and the expressions are well-defined.
Now insert 7gv; in the equations for vs; then the operator K p established

above gives a solution vy with gradvy € H;(Q2)". Altogether, we take
Rpg=v=rqui +vs =rqRlg— KpyoRlg. (4.16)
In particular, when g = div h is inserted, then

gradv = rq grad v; + grad vy = rq grad Rdivlh — grad KpyoR div lh.
(4.17)

Here we have for grad v, by Fourier transformation,
gradv; = grad Rdivlh = OP((§i£j/|£\2),;}j:],___}n)lh. (4.18)

The operator OP((&&;/1€/?)ij=1,...n) extends to a continuous operator in
L,(R™)™ by a result of Calderén and Zygmund; and it is likewise continu-
ous in H(R"™)" for all s € R, since

OP(()") OP((&:&/I€1*)i,j=1,...n) OP (&)™) = OP((&:&/1€)i5=1,...m)

Thus

ra gradvill . ) < |l gradvi || azmn) < Crllthllazre) < Collhll 4w
! " (4.20)

This extends to h with arbitrary support, by approximation by n(x/N)h, for
n € Cg°(R™) equal to 1 near 0 and N — oc.
For vy, we need to know that the mapping from h (or just from gradwv)

- S -1 . .
to yov is continuous from H;(€2) to B}JH 7(T). This is shown by the help of
Lemma 4.2 below. Take for = a large ball containing T in its interior. In view
of (4.15), the lemma gives that

||’}/0’l)1 || H;+17"(F) S Cg”?)l ||H;,+1(§) S CC‘;H grad V1 ||H;(E)

< OOl o - (4.21)
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Altogether, the mapping grad Rp div, as realized in (4.17), extends by
closure to a mapping with the continuity in (4.2). O

In the course of the proof we used the following variant of the Poincaré
inequality:
1

Lemma 4.2 Let s > 5 — 1, and let = be a bounded connected open subset

of R™ with a sufficiently smooth boundary such that the injection of H;“(E)
into H;(E) 1s compact. Let T be a nonempty srﬁooth closed hypersurface in =.
There is a constant C such that for u € Hit'(Z),

Il 2y < Ol grad ., +1 [ soudol) (4.22)

s41—1
Proof: Note that you = ul|r is well-defined as an element of B}JH () C
L,(T'), so that the integral has a sense. If a constant C' cannot be found, there is
a sequence uy with ||uk||H5(§) = 1 but || gradukHHs(g) — 0and [} your do — 0.
Since the sequence is bounded in H‘;“ (Z), it has a subsequence ug; that is con-

vergent in H>(Z) to a limit ug. Since || grad ug|| ;. &) — 0, the subsequence uy,
e

1

is convergent in 3! (Z), with limit ug, and yguz, — 7oug in Bf,+1 7(T"). Now

on one hand ||11,0||H,(E) =1, so up # 0; on the other hand, || grad “‘0||H~(E) =0
P\ o=

So ug is a constant, and this constant must equal 0 since fr You do = 0. This

contradiction proves the statement. O

One can also replace the integral in the right hand side of (4.22) by another
supplementary term, e.g. the integral of u over some small subdomain.

The mapping K p is established in Simader and Sohr [*%] for integer s > 0
in a slightly different way, and with lower smoothness assumptions on I'; our
presentation here was inspired by conversations with B. Fuglede.

The operator I + grad Rp div is the projection onto the solenoidal space
Js={ue Hy(Q)" |divu =0}, s > + — 1, generalizing the situation where
is bounded.

Insertion of the formula for ¢ into (3.1) leads to (3.4) and hence (3.5) and

(3.7), with the same notation as before. We find by use of Theorem 4.1 that
s(O\n s(O\n s+l—g n
fir € Hy(S)", when f € Hy(2)" and ¢ € B, 7(I')".
For exterior domains we also have (3.8), by [?], so we can write the problem
in the form (3.12). Again we can apply Lemma 3.1, using that (3.15) is valid.
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It is at this point that it is a great advantage that we can reduce to the
inversion of I + 7/ ,. For this is a ps.d.o. on the compact manifold I'. It
satisfies the symbol requirements for being parameter-elliptic of regularity %
on the rays in C\ Ry, hence is invertible on these rays for sufficiently large
|A], i.e. (3.18) holds. The inverse satisfies (3.20), and we get the solution as in
(3.21),

u=(I—-K\xQ\T)(Ry(f +grad Rpdiv f + grad Kpp,) + Knx{¢-,0}),
(4.23)

which lies in H*+2#(Q). Also the considerations for the problem with —\
replaced by J; go through, and the discussion for nonzero initial values can
be completed as in [7]. For the pressure ¢ we use the formula gradq =
—grad Rp div f + grad K p(2y1u, — ¢,), plus the fact that (4.2) carries over
to anisotropic spaces as continuous mappings

grad Kp : B,(,SJFPJ_”(‘SJFP%)/Q)(?R) — H;S’(S)/Z)(QR)H-,
grad Rp div : H{™*/? (Qg)" — H{**/?(Qg)", (4.24)

for s > % — 1. (For grad Kp, one uses that the mapping property holds for
bounded neighborhoods of I' by [7], and that grad Kp maps into
Nyer B, ({|2] > R})"™ when R is large enough. For grad Rp div, the property
is straightforward when s > 0; to include lower s, one uses that the operator
is selfadjoint (being an orthogonal projection in L), and that H,(,S“S/Q)(ﬁ)* =

—5,—5/2) ;3\ %
HI(,, /)(Q) forse]%—l,%[,here%—l—ﬁ:l.)
For the other boundary conditions (the cases k = 0,2,3,4), the above
analysis can be carried through in suitably modified versions.
The application of the linear result to solve the nonlinear problem goes

mechanically as in the bounded case in [7], so we arrive at the result:

Theorem 4.3 Theorem 2.1 generalizes to the case of an exterior smooth do-
main.

(When p > n/(n — 1), gradq is only unique up to addition of functions
c(t) grad |z|?>~™ for n > 2, resp. c(t) grad log |z| for n = 2.)
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