
NONHOMOGENEOUS NAVIER-STOKES PROBLEMSIN Lp SOBOLEV SPACESOVER EXTERIOR AND INTERIOR DOMAINSG. GRUBBCopenhagen University Mathematics Department,Universitetsparken 5, DK-2100 Copenhagen, DenmarkE-mail: grubb@math.ku.dkWe here present our work on the solvability of completely nonhomogeneous initial-boundary value problems for the Navier-Stokes equations, in general anisotropicLp Sobolev and Besov spaces with p > 1. Introducing a new twist of the method(simplifying slightly), we can now extend the results to exterior domains, for �nitetime intervals.1 IntroductionIn a series of papers, the author has treated the nonhomogeneous Navier-Stokesproblem @tu��u+ nXj=1 uj@ju+ grad q = f on QIb = 
� Ib;div u = 0 on QIb ;Tkfu; qg = 'k on SIb = �� Ib;r0u = u0 on 
; (1.1)for bounded domains 
 � Rn, Ib = ]0; b[�R+, with various boundary opera-tors Tk of Dirichlet, Neumann or intermediate type (r0 indicates restriction tot = 0; further details are given below in Section 2). Strong solvability resultswere obtained in anisotropic L2 Sobolev spaces in joint works with V. A. Solon-nikov [11]{[14], and the results have been extended more recently to Lp Sobolevspaces [6]{[7], that we report on below (in Section 2). Besides this, we givegeneralizations to exterior domains (in Section 4), based on a simpli�ed proof(in Section 3).The main technique is to reduce the linearized problem@tu��u+ grad q = f on QIb ;div u = 0 on QIb ;Tkfu; qg = 'k on SIb ;r0u = u0 on 
; (1.2)1



which is degenerate parabolic, to a truly parabolic pseudodi�erential problem@tu��u+Gku = fk on QIb ;T 0ku =  k on SIb ;r0u = u0 on 
; (1.3)where the general theory of [4], [12], [9], [6] can be brought into use.Parabolic problems of the form @tu + A(x;Dx)u = f (with initial andboundary conditions) are much harder when A is of pseudodi�erential typethan when it is a di�erential operator, since the singularity of the symbol of Aat � = 0 has an important e�ect when there is an extra parameter-dependence(caused by @t). While trying to extend our results to exterior domains, we wereinspired by a recent collaboration with R. Seeley [10] to look for simpli�cationsin the treatment of (1.3) such that one can take advantage of the fact that thenon-di�erential aspects are connected with the boundary only.We shall show below in Section 3 how an important step in the treatmentof (1.3) can be broken up into three parts, treating: (i) a classical Dirichletor Neumann heat problem, (ii) a parameter-dependent ps.d.o. problem on theboundary �, (iii) a classical Dirichlet or Neumann problem for the Laplaceoperator. For exterior problems, this viewpoint has the advantage that wecan lean on known results for the unbounded domain, and need the technicalps.d.o. considerations only on the compact manifold �. It gives rather eas-ily some extensions of the results of [7] to unbounded domains, however forbounded time intervals only.For the unbounded time interval R+, the results for the Dirichlet problemin [7] do not seem readily extendible; and the new method is perhaps too rough.In fact, one may have to work in other spaces than those that we deal withhere (e.g. homogeneous spaces or weighted spaces), to get really satisfactoryresults.2 Results for the interior caseConsider the problems (1.1) and (1.2). Here u(x; t) is the velocity vectoru = fu1; : : : ; ung, q(x; t) is the (scalar) pressure, and Tk is one of the followingtrace operators:T0fu; qg = 0u;T1fu; qg = �1u� 0q ~n; T2fu; qg = (�1u)� + 0u�~n;T3fu; qg = 1u� 0q ~n; T4fu; qg = 1u� + 0u�~n; (2.1)2



where ~n = (n1; : : : ; nn) is the (interior) normal at �, v� resp. v� denotes thenormal resp. tangential component of an n-vector �eld v de�ned near �:v� = ~n � v; v� = v � (~n � v)~n; (2.2)ku = @k�uj� (with @� =Pnj=1 nj@j), and �1 is the special �rst order boundaryoperator de�ned via the strain tensor S(u) = (@iuj + @jui)i;j=1;:::;n as�1u = 0S(u)~n = 0�Xj(@iuj + @jui)nj�i=1;:::;n: (2.3)For k = 0 this gives the Dirichlet problem, k = 1 and 3 give Neumann problems,and k = 2 and 4 give problems with partially a Dirichlet, partially a Neumanncondition. More comments on these boundary conditions in [14].The data are assumed to satisfydiv u0 = 0; when k = 1 or 3;div u0 = 0; 0u0;� = 0; 'k;� = 0; when k = 0, 2 or 4: (2.4)The problem is considered in anisotropic Bessel-potential spacesH(s; s=2)p (QI)n and Besov spacesB(s; s=2)p (QI)n, where, as we recall, theH(s; s=2)pspaces are generalizations of the integer caseH2m;mp (QIb) = fu(x; t) 2 Lp(QIb) j D�xDjtu 2 Lp(QIb) for j�j+ 2j � 2m g(2.5)de�ned via local coordinates and restriction fromH(s; s=2)p (Rn�R) = OP((j�j4 + �2 + 1)�s=4)Lp(Rn�R); (2.6)this scale is preserved under complex interpolation. The Besov scale B(s; s=2)pis de�ned slightly di�erently, but arises from the H(s; s=2)p scale by suitable realinterpolation. (Further details are given e.g. in [6].)The B(s; s=2)p spaces must be included even if one is mainly interested insolving the problem in spaces (2.6), because they are the correct boundaryvalue spaces, as j maps H(s; s=2)p (QIb) continuously onto the spaceB(s�j� 1p ;(s�j� 1p )=2)p (SIb), for j < s � 1p . We denote by Bs+2;(k)p the rangespace for Tk applied to H(s+2; s=2+1)p (QIb)n.Let us �rst present the main results of [7] for bounded domains:Consider systems of functions�k = ff; 'k; u0g 2 H(s; s=2)p (QIb)n �Bs+2;(k)p �Bs+2�2=pp (
)n; (2.7)3



for s > 1p � 1 with s � n+2p � 3. The system is said to satisfy the compatibilitycondition of order s, whenr0@lt'k;� = 0u(l)� for k = 0; 2l � s+ 2� 3p ;r0@lt'k;� = (�1u(l))� for k = 1 and 2; 2l � s+ 1� 3p ;r0@lt'k;� = 1u(l)� for k = 3 and 4; 2l � s+ 1� 3p ;understood asI[@lt'k;� ;u(l)� ] <1 if k = 0; 2l = s+ 2� 3p ;I[@lt'k;� ;(S(u(l))~n)� ] <1 if k = 1 and 2; 2l = s+ 1� 3p ;I[@lt'k;� ;@�u(l)� ] <1 if k = 3 and 4; 2l = s+ 1� 3p ;
(2.8)

here the u(l) are de�ned successively byu(0) = u0;u(l+1) = (��Gk)u(l) � � lXm=0� lm�Qk(u(m); u(l�m)) + r0@ltfk; (2.9)where the Gk are certain singular Green operators stemming from the elimi-nation of the pressure q, andI[ ; v] = Zt2I Zx02� Zy2
 j (x0; t)� v(y)jp(jx0 � yjd + t)1+n=d dy d�x0 dt: (2.10)We then de�ne the data norm of �k byN (k)s;p;b(�k) = (kfkpH(s; s=2)p (QIb )n + k'kkpBs+2;(k)p + ku0kpBs+2�2=pp (
)n + Is;p;b� 1p ;(2.11)where Is;p;b = 0 if s + 2 � 3p =2 N, and otherwise equals the possible I termentering in the compatibility condition. The following result on uniquenessand on the existence of solutions on large time-intervals for small enough data,and on small enough time-intervals for large data, is proved in detail in [7].4



Theorem 2.1 Let 
 be a smooth bounded open set in Rn. Let k = 0; 1; 2; 3or 4, let s > 1p � 1 with s � n+2p � 3, and let b 2 R+. Consider �k as in (7),satisfying the compatibility condition of order s.1� There is at most one solution fu; qg withfu; gradqg 2 H(s+2; s=2+1)p (QIb)n �H(s; s=2)p (QIb) (2.12)of the Navier-Stokes problem (1.1) for each set of data �k (where q for k = 0; 2or 4 is subject to the side condition R
 q(x; t) dx = 0 for almost all t).2� When s � n+2p � 3 [s > n+2p � 3 if n2p � 32 2 N+, p 6= 2], there is aconstant Ns;p;b such that for data �k with data norm N (k)s;p;b(�k) < Ns;p;b thereexists a solution fu; qg of (1.1) with (2.12), the norm depending continuouslyon �k. When s � s0 for some s0 > n+2p � 3 [ s02 � 1p =2 N+ if p 6= 2], the normcondition for existence can be replaced by the condition N (k)s0;p;b(�k) < Ns0;p;b.3� When s > n+2p � 3, one can for each N > 0 choose b0 � b such thatthere exists a solution fu; qg of (1.1) satisfying (2.12) with b replaced by b0, andwith norm depending continuously on �k, for any set of data �k with normN (k)s;p;b0(�k) < N . For s � s0, s0 as above, the solution can be obtained with b0de�ned relative to s0.The statements hold with Hp replaced by Bp throughout, even without theconditions in [ : : : ].One concludes furthermore that q 2 H(s+1; s=2)p (QIb0 ) when s � 0 or f isas in (2.4); in some cases q belongs to a better space, see [7], Th. 3.6.For k = 0, s = 0, the result is consistent with Solonnikov's result [18],Th. 10.1 for n = 3, showing the existence of solutions in W (2;1)p (QIb)n to theDirichlet Navier-Stokes problem when f 2 Lp(
)n, ' = 0, u0 2prJ0 B2�2=pp (
)n and p � 53 .When both f and 'k are 0, one can get solutions with still more generalinitial data, e.g. in Ln(
), cf. [18] for the Dirichlet problem (n = 3), Giga-Miyakawa [3] and Giga [2] for Dirichlet and intermediate problems, and [8] forNeumann and Dirichlet problems. In [8], we use the semigroup U(t) associatedwith Ak = (�� + Gk)T 0k to obtain solutions e.g. in spaces C0(Ib0 ;Hrp(
)n),when u0 is taken in Hrp (
)n, allowed for r � np � 1. [18], [3], [2] and von Wahl[20] also treat problems with f 6= 0, '0 = 0, in related spaces.For the Dirichlet problem, we can include in�nite intervals I = R+ incertain cases:Theorem 2.2 Hypotheses as in Theorem 2.1. In the Dirichlet case (k = 0),the existence of solutions with (2.12) for su�ciently small data extends to b =5



+1 (generalizing Theorem 2.1 2�), when either 1�, 2� or 3� holds in additionto the conditions s > 1p � 1, s � n+2p � 3:1� n � 4.2� s < 3p .3� The data have vanishing initial values, i.e., satisfyff; '0; u0g 2 H(s; s=2)p (0) (QR+)n �B(s+2� 1p ;(s+2� 1p )=2)p (0) (F �;R+)� f0g:(2.13)There is a similar generalization with Hp replaced by Bp.The method of proof of Theorem 2.1 in [7] consists of the following foursteps: 1) Reduction of the linearized problem to a truly parabolic but pseudod-i�erential initial-boundary value problem ([11],[14]). 2) Solution of the linearreduced parabolic problem by pseudo-di�erential machinery (from [9], [6]). 3)Solution of the corresponding reduced nonlinear pseudodi�erential problem,by use of product estimates and iteration. 4) Conclusions for the original non-linear problem. For Theorem 2.2 one uses moreover, that the resolvent of thelinearized stationary problem is really only applied to the solenoidal space,where the spectrum for k = 0 is a closed subset of R+; this allows sharperestimates.3 A simpli�ed methodWe shall now explain the method of proof in a version where Step 2 is simpli�ed.We �rst treat the associated resolvent problem, where @t is replaced bythe complex parameter ��. To be concrete, consider (1.2) in the Neumanncase k = 1 (which has been studied less than the Dirichlet case k = 0):(��� �)u+ grad q = f on 
;div u = 0 on 
;�1u� 0q = ' on �; (3.1)with f and ' given in Hsp(
)n resp. Bs+1� 1pp (�)n; 
 bounded and smooth.Applying � div to the �rst line in (3.1) and taking the normal componentof the third line, we �nd: ��q = � div f;0q = 21u� � '� : (3.2)6



This is a Dirichlet problem for q, so if we denote ���0 ��1 = �RD KD�, wehave q = �RD div f +KD(21u� � '�); whereRD : Hs�1p (
)! Hs+1p (
) for s > 1p � 1;KD : Bs+1� 1pp (�)! Hs+1p (
) for s 2 R: (3.3)Insertion of q into (3.1) gives the equations for u:(��� �)u+ 2gradKD1 pr� u = f + gradRD div f + gradKD'� ;0 div u = 0;pr� �1u = '� : (3.4)A solution of u of (3.4) will satisfy (3.1) when q is de�ned from u, f and ' by(3.3) (note that div gradKD = 0).We write (3.4) in the short form(��� �)u+KTu = f1 on 
;T 01u =  1 on �; (3.5)where we have setK = 2gradKD; T = 1 pr� ; T 01 = fpr� �1; 0 divg;f1 = f + gradRD div f + gradKD'� ;  1 = f'� ; 0g; (3.6)here I + gradRD div equals the projection operator prJ that maps Hsp(
)nonto the solenoidal space Jsp = fu 2 Hsp(
)n j div u = 0 g for s > 1p � 1 (cf. [5],Example 3.14); K is a Poisson operator of order 1, and T and T 01 are traceoperators of order 1.In order to use other known properties of the Laplace operator, we nowmake a new reduction. Write the problem (3.5) as follows:(��� �)u = f1 �KTu on 
;1u =  1 � (T 01 � 1)u on �: (3.7)The system f�� � �; 1g is uniformly parameter-elliptic (in the sense of [9],[6]) for � on rays with argument � 2 ]0; 2�[ ; and it is bijective for � 2 C nR+.By a simple application of [6], the inverse is continuous for each s > 1p � 1,���� �1 ��1 = �RN;� KN;�� : Hs;�p (
)n �Bs+1� 1p ;�p (�)n ! Hs+2;�p (
)n;(3.8)7



uniformly for � in sets V", " > 0,V" = f� 2 C j arg� 2 ["; 2� � "]; j�j � " g; (3.9)here � = j�j 12 . (The Hs;�p and Bs;�p spaces are Hsp and Bsp spaces providedwith norms depending on �, as in the basic case of Hs;�p (Rn), which is thespace provided with the norm kOP�(j�j2 + j�j2 + 1)s=2�ukp, cf. [9]. Mappingproperties like (3.8) are well-known in the literature, cf. e.g. [15], except perhapsfor the extension to low values of s.) With (3.8), we can write (3.7) as:u = RN;�(f1 �KTu) +KN;�( 1 � (T 01 � 1)u); (3.10)or, if we set� = RN;�f1 +KN;� 1; K� = �RN;�K KN;�� ; T = � TT 01 � 1� ;(3.11)as: (I +K�T )u = �: (3.12)We observe that the operators in (3.11), when considered as depending on theparameter �, have regularity 12 in the sense of [4], since RN;�, KN;� and Thave regularity +1, and K, being of order 1, counts with regularity 12 by [4],Prop. 2.3.14.Now we need the elementaryLemma 3.1 Let A : V !W and B :W ! V be linear mappings. If I+AB :W !W is bijective, then I +BA : V ! V is bijective, with(I +BA)�1 = I �B(I +AB)�1A: (3.13)Proof: One just has to check:(I+BA)(I �B(I +AB)�1A)= I +BA�B(I +AB)�1A�BAB(I +AB)�1A= I +BA�B(I +AB)(I +AB)�1A = I; (3.14)with a similar calculation for the left composition. �8



The lemma will be applied withA = K� : Bs+1� 1p ;�p (�)n+1 ! Hs+2;�p (
)n;B = T : Hs+2;�p (
)n ! Bs+1� 1p ;�p (�)n+1; s > 1p � 1; � 2 V"; (3.15)and also with the roles of A and B interchanged. The lemma shows that (21)can be uniquely solved (in these spaces) if and only if I + T K� is invertible, inwhich case (I +K�T )�1 = I �K�(I + T K�)�1T : (3.16)Now I + T K� is much easier to deal with than I + K�T , since it is aparameter-dependent ps.d.o. on the boundaryless compact manifold �! Indetails, T K� is an (n+ 1)� (n+ 1)-matrixT K� = � TRN;�K TKN;�(T 01 � 1)RN;�K (T 01 � 1)KN;�� ; (3.17)where the entries are of regularity 12 , in the sense of [4].It is parameter-elliptic in the sense of [4], for � on rays in C nR+, sincethis is a question of bijectiveness of certain model operators at the boundary(and certain matrices), a property that can be traced all the way from (3.4)to (3.12); the parameter-ellipticity of (3.4) was shown in [14], Sect. 6. Thisimplies that for any " > 0, there is an r(") > 0 so that for any t 2 R,I + T K� : Bt;�p (�)n+1 ~!Bt;�p (�)n+1; uniformly for � 2 W";r(");W";r(") = f� 2 C j arg� 2 ["; 2� � "]; j�j � r(") g; (3.18)we denote the inverse (I + T K�)�1 = Q�: (3.19)For such � we also have the inverse, by Lemma 3.1,(I +K�T )�1 = I �K�Q�T : Hs+2;�p (
)n ~!Hs+2;�p (
)n; (3.20)uniformly for � 2W";r("), when s > 1p � 1.Altogether, we solve (3.1) by takingu = (I +K�T )�1� = (I �K�Q�T )(RN;�f1 +KN;�'1)= (I �K�Q�T )(RN;�(f + gradRD div f + gradKD'�)+KN;�f'� ; 0g); (3.21)9



and de�ning q by (3.3). The point is here that all operators except the factorQ� stem from classical resolvent problems for the Laplace operator; and Q� isa parameter-dependent ps.d.o. on �.For the other boundary conditions (the cases k = 0; 2; 3; 4 in (1.2)), thereare similar methods; for k = 0; 2; 4, the roles of the Dirichlet and Neumannproblems are interchanged.Also in the original problem where�� is replaced by @t, this approach givessome simpli�cations. Indeed, as described in [7], the resolvent considerationscarry over to solvability of the t-dependent problem with initial data 0, formallyby a Laplace transformation. Analogously to the derivation of (3.21) from (3.5)we �nd that the problem(@t ��� %)v +KTv = g1 on QR;T 01v = �1 on SR; (3.22)with v(x; t), g1(x; t) and �1(x; t) supported for t � 0, and % < inffRe� j � 2W";r(")g, has a solution operator described byv = (I �KQT )(RNg1 +KN�1); (3.23)with �RN KN� = �@t ��� %1 ��1 ;K = �RNK KN� ;Q = (I + TK)�1: (3.24)The latter exists since I + TK is derived from the parameter-dependent op-erator I + T K�+% by replacing �� by i� in the symbol and using a pseudo-di�erential de�nition in one more variable; here I + T K�+% is invertible for �in an obtuse neighborhood of fRe� � 0g, and the calculus of [6], Theorem 3.11� is applicable.The resulting estimates for the solution operator are the same as thosedescribed in detail in [7]. It is because of the constant % in (3.22), that we donot obtain time-global estimates in H(s;s=2)p spaces in general. See however thespecial considerations for the Dirichlet problem in [7].4 Exterior problemsConsider now the case where 
 is the complement of a compact set in Rn, stillwith smooth boundary �. We can then investigate how the method of Section10



3 can be used. Applying � div to the �rst line in (3.1) and taking the normalcomponent of the third line, we again arrive at (3.2), now an exterior Dirichletproblem for q.Theorem 4.1 The exterior Dirichlet problem��v = g in 
; 0v =  on �; (4.1)has a solution operator �RD KD� such thatgradKD : Bs+1� 1pp (�)! Hsp(
)n for s 2 R;gradRD div : Hsp(
)n ! Hsp(
)n for s > 1p � 1; (4.2)and gradKD maps into Tq>1;r2RHrq (fjxj � Rg), when fjxj � Rg � 
. (Moreprecisely, RD is de�ned for g with compact support, and gradRD div is ex-tended by continuity.)Here KD is uniquely determined by the property that gradKD should mapinto functions that are O(jxj�n) for jxj ! 1. It is also uniquely determined byrequiring gradKD to map into Tq>1 Lq(fjxj � Rg) | or just into Lp(fjxj �Rg), if p � n=(n� 1).Proof: The mapping KD is constructed as follows: We want to �nd a solutionof ��v = 0 in 
; 0v =  on �; (4.3)for given  2 Bs+1� 1pp (�), such that gradv is O(jxj�n) for jxj ! 1. (Thederivatives will also be O(jxj�n), and then gradu 2 Hrq (fjxj � Rg) for all r,all q > 1, when fjxj � Rg � 
.) Instead of (4.3), we can study��vc = 0 in 
; 0vc =  � c on �; (4.4)where c is a constant to be chosen freely; if vc solves (4.4), then v = vc + csolves (4.3) (and vice versa), and they have the same gradient.We can assume that 0 is in the complement of 
, so that the inversionx 7! x=jxj2 maps 
 onto 
� n f0g, where 
� is a bounded open smooth setwith 0 2 
�, and @
� = �� is the image of �. (In the following, let n � 3;there is a similar proof for n = 2.) Let W (x) be the solution of the specialDirichlet problem��W = 0 in 
�; 0W (x) = jxj2�n on ��; (4.5)11



since jxj2�n > 0 on ��, W (0) > 0 by the maximum principle.Now if a function V is harmonic in 
� n f0g, then the functionjxj2�nV (x=jxj2) is harmonic in 
, and vice versa (the Kelvin transformation).Since  on � is carried over to jxj2�n (x=jxj2) on ��, lying in Bs+1� 1pp (��),we can �nd a solution of (4.4) by solving��Vc = 0 in 
�; 0Vc = jxj2�n( (x=jxj2)� c) on ��: (4.6)The problem (4.6) has a unique solution Vc 2 Hs+1p (
�) \C1(
�) for each c;and by the linearity, Vc = V0 � cW , cf. (4.5). Takec� = V0(0)=W (0); (4.7)then Vc�(0) = 0. Now let vc�(x) = jxj2�nVc�(x=jxj2); (4.8)it solves (4.4). Since Vc�(0) = 0, D�vc�(x) is O(jxj1�n�j�j) for jxj ! 1, any� (seen from the Taylor expansion of Vc� at 0). In particular, grad vc� and itsderivatives are O(jxj�n) and hence Lq integrable at 1 for any q > 1. On theother hand, Vc� 2 Hs+1p (
�) implies that vc� is in Hs+1p over bounded subsetsof 
. Altogether, it is found that vc� , and hence v = vc� + c�, have gradientin Hsp(
) and in Tq>1;r2RHrq (fjxj � Rg). De�ning KD as the mapping from to v, we have obtained an operator with the asserted mapping properties.To show the uniqueness, let u be a solution of (4.3) with gradu = O(jxj�n)for jxj ! 1. Recall that any function u(x) that is harmonic on 
 has a uniqueLaurent expansion u(x) = 1Xk=0H�k (x) + 1Xk=0 Hk(x)jxjn�2+2k ; (4.9)where the functions H�k (x) and Hk(x) are homogeneous harmonic polynomialsof degree k; cf. Brelot [1], pp. 197{202, where also sets fR1 < jxj < R2gare considered. The �rst series in (4.9) converges uniformly on bounded sets,the second converges uniformly on sets fjxj � Rg contained in 
, and thederivatives of u are represented by the termwise di�erentiated expressions.When u has the form (4.9),gradu(x) = 1Xk=1 gradH�k (x) + 1Xk=0 grad Hk(x)jxjn�2+2k ; (4.10)12



where grad(Hk(x)=jxjn�2+2k) is O(jxj1�n�k) for each k � 0. The requirementthat gradu should be O(jxj�n) rules out the polynomials H�k for k � 1 as wellas the term H0=jxjn�2, sou(x) = H�0 + v(x); v(x) = 1Xk=1 Hk(x)jxjn�2+2k : (4.11)Now the Kelvin transform of v, V (x) = jxj2�nv(x=jxj2) has the representationV (x) = 1Xk=1Hk(x); (4.12)it is C1 on 
� with V (0) = 0. Thus V is the unique solution of (33) withc = H�0 . If eu = ec + ev(x) also solves (4.3), with ev = P1k=1 eHk(x)=jxjn�2+2k ,then ev is the Kelvin transform of the unique solution eV of (4.6) with c = ec;this also has eV (0) = 0. Now V � eV = (�H�0 + ec)W (cf. (4.5)), and sinceV (0) = eV (0) = 0 and W (0) 6= 0, ec must equal H�0 , and V = eV . Thus u isuniquely determined.To require gradu 2 Lq(fjxj � Rg) for some q � n=(n� 1) likewise reducesu to the form (4.11), since nonzero polynomials and jxj1�n =2 Lq(fjxj � Rg);and the analysis goes as above.Now consider RD. To solve the problem (4.1) with  = 0 and a nonzerog = div h, h 2 Hsp(
)n, we let l be a continuous linear extension operatorl : Hsp(
) ! Hs(Rn) such that div lf = l div f , and search for v in the formv = r
v1 + v2, where v1 and v2 solve��v1 = lg on Rn; resp. (��v2 = 0 in 
;0v2 = �0v1 on �: (4.13)(r
 denotes restriction to 
.) When g = div h, we want gradv to dependcontinuously on h in Hsp(
)n.To begin with, let g have compact support. To get a convenient solutionof the problem for v1, we de�ne R as the operator (for compactly supportedf) R : f 7! !njxj2�n � f � c(f);where c(f) is the constant R� 0(!njxj2�n � f) d�R� 1 d� ; (4.14)13



and !njxj2�n is the Newton potential (!njxj2�n � f can be viewed asOP(j�j�2)f). This satis�es ��Rf = f , andZ� 0Rf d� = 0: (4.15)When g 2 Hs�1p (
), then v1 = Rlg 2 Hs+1p;loc(Rn) by elliptic regularity, so0v1 2 Bs+1� 1pp (�) � Lp(�), and the expressions are well-de�ned.Now insert 0v1 in the equations for v2; then the operator KD establishedabove gives a solution v2 with grad v2 2 Hsp(
)n. Altogether, we takeRDg � v = r
v1 + v2 = r
Rlg �KD0Rlg: (4.16)In particular, when g = div h is inserted, thengrad v = r
 gradv1 + grad v2 = r
 gradR div lh� gradKD0R div lh:(4.17)Here we have for gradv1, by Fourier transformation,gradv1 = gradR div lh = OP�(�i�j=j�j2)i;j=1;:::;n�lh: (4.18)The operator OP�(�i�j=j�j2)i;j=1;:::;n� extends to a continuous operator inLp(Rn)n by a result of Calder�on and Zygmund; and it is likewise continu-ous in Hsp(Rn)n for all s 2 R, sinceOP�h�is�OP�(�i�j=j�j2)i;j=1;:::;n�OP�h�i�s� = OP�(�i�j=j�j2)i;j=1;:::;n�:(4.19)Thuskr
 grad v1kHsp(
) � k gradv1kHsp(Rn) � C1klhkHsp(Rn) � C2khkHsp(
):(4.20)This extends to h with arbitrary support, by approximation by �(x=N)h, for� 2 C10 (Rn) equal to 1 near 0 and N !1.For v2, we need to know that the mapping from h (or just from gradv1)to 0v1 is continuous from Hsp(
) to Bs+1� 1pp (�). This is shown by the help ofLemma 4.2 below. Take for � a large ball containing � in its interior. In viewof (4.15), the lemma gives thatk0v1kBs+1�pp (�) � C3kv1kHs+1p (�) � CC3k gradv1kHsp(�)� CC3C2khkHsp(
): (4.21)14



Altogether, the mapping gradRD div, as realized in (4.17), extends byclosure to a mapping with the continuity in (4.2). �In the course of the proof we used the following variant of the Poincar�einequality:Lemma 4.2 Let s > 1p � 1, and let � be a bounded connected open subsetof Rn with a su�ciently smooth boundary such that the injection of Hs+1p (�)into Hsp(�) is compact. Let � be a nonempty smooth closed hypersurface in �.There is a constant C such that for u 2 Hs+1p (�),kukHsp(�) � C(k gradukHsp(�) + j Z� 0u d�j): (4.22)Proof: Note that 0u = uj� is well-de�ned as an element of Bs+1� 1pp (�) �Lp(�), so that the integral has a sense. If a constant C cannot be found, there isa sequence uk with kukkHsp(�) = 1 but k gradukkHsp(�) ! 0 and R� 0uk d� ! 0.Since the sequence is bounded in Hs+1p (�), it has a subsequence ukj that is con-vergent in Hsp(�) to a limit u0. Since k gradukkHsp(�) ! 0, the subsequence ukjis convergent in Hs+1p (�), with limit u0, and 0ukj ! 0u0 in Bs+1� 1pp (�). Nowon one hand ku0kHsp(�) = 1, so u0 6= 0; on the other hand, k gradu0kHsp(�) = 0so u0 is a constant, and this constant must equal 0 since R� 0u d� = 0. Thiscontradiction proves the statement. �One can also replace the integral in the right hand side of (4.22) by anothersupplementary term, e.g. the integral of u over some small subdomain.The mapping KD is established in Simader and Sohr [16] for integer s � 0in a slightly di�erent way, and with lower smoothness assumptions on �; ourpresentation here was inspired by conversations with B. Fuglede.The operator I + gradRD div is the projection onto the solenoidal spaceJsp = fu 2 Hsp(
)n j div u = 0 g, s > 1p � 1, generalizing the situation where 
is bounded.Insertion of the formula for q into (3.1) leads to (3.4) and hence (3.5) and(3.7), with the same notation as before. We �nd by use of Theorem 4.1 thatf1 2 Hsp(
)n, when f 2 Hsp(
)n and ' 2 Bs+1� 1pp (�)n.For exterior domains we also have (3.8), by [9], so we can write the problemin the form (3.12). Again we can apply Lemma 3.1, using that (3.15) is valid.15



It is at this point that it is a great advantage that we can reduce to theinversion of I + T K�. For this is a ps.d.o. on the compact manifold �. Itsatis�es the symbol requirements for being parameter-elliptic of regularity 12on the rays in C nR+, hence is invertible on these rays for su�ciently largej�j, i.e. (3.18) holds. The inverse satis�es (3.20), and we get the solution as in(3.21),u = (I �K�Q�T )(RN;�(f + gradRD div f + gradKD'�) +KN;�f'� ; 0g);(4.23)which lies in Hs+2;�(
). Also the considerations for the problem with ��replaced by @t go through, and the discussion for nonzero initial values canbe completed as in [7]. For the pressure q we use the formula grad q =� gradRD div f + gradKD(21u� � '�), plus the fact that (4.2) carries overto anisotropic spaces as continuous mappingsgradKD : B(s+1� 1p ;(s+1� 1p )=2)p (SR)! H(s;(s)=2)p (QR)n;gradRD div : H(s;s=2)p (QR)n ! H(s;s=2)p (QR)n; (4.24)for s > 1p � 1. (For gradKD, one uses that the mapping property holds forbounded neighborhoods of � by [7], and that gradKD maps intoTr2RHrp (fjxj � Rg)n when R is large enough. For gradRD div, the propertyis straightforward when s � 0; to include lower s, one uses that the operatoris selfadjoint (being an orthogonal projection in L2), and that H(s;s=2)p (
)� =H(�s;�s=2)p0 (
)� for s 2 ] 1p � 1; 1p [ , here 1p + 1p0 = 1.)For the other boundary conditions (the cases k = 0; 2; 3; 4), the aboveanalysis can be carried through in suitably modi�ed versions.The application of the linear result to solve the nonlinear problem goesmechanically as in the bounded case in [7], so we arrive at the result:Theorem 4.3 Theorem 2.1 generalizes to the case of an exterior smooth do-main.(When p > n=(n � 1), grad q is only unique up to addition of functionsc(t) grad jxj2�n for n > 2, resp. c(t) grad log jxj for n = 2.)AcknowledgmentsThe author is grateful to B. Fuglede and to M. Yamazaki for useful conversa-tions. 16
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