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Trace expansions for operator families such as the resolvent, the heat operator and the complex powers are
established for elliptic problems containing pseudodifferential elements. We consider operators on closed manifolds,
as well as operators on compact manifolds with boundary, where suitable boundary conditions must be added.
It is found in general that one can obtain expansions, e.g. of the heat operator trace, in powers t* and power-
logarithmic terms t* log ¢, and the stability of the coefficients under perturbations is discussed. A survey is given

of the methods relying on pseudodifferential calculus that lead to these results.

1. Introduction

1.1. Trace expansions and geometric in-
variants
One of the ways to determine invariants of Rie-
mannian manifolds is by showing trace expan-
sions associated with elliptic operators on the
manifold. Indeed, it has been known since the
work of Minakshisundaram and Pleijel [MP49]
that for a compact n-dimensional manifold X

with boundary 90X = X', the zeta-function
C((Ap,s) = Tr[(Ag)~*] of the Laplace Beltrami
operator A = —A on X with a boundary con-

dition Bu = 0 at X (such as the Dirichlet
condition), defined for large Res, extends mero-
morphically to all of C with simple poles at (at
most) the points s = "777 j € N (we write
N = {0,1,2,...}). The residues at these poles
characterize geometric properties of the manifold,
cf. e.g. McKean and Singer [MS67], and, more re-
cently, e.g. Branson and Gilkey [BG90], Gilkey
[G95], Avramidi [A90], for more general cases.
Instead of studying the powers A5*, one may
equivalently study the resolvent and its deriva-
tives 95 (Ap — AI)~!, or the heat operator e t4#,
in their dependence on A (for A — oc in sectors of
C), resp. t (for t — 0+4). In fact, there are tran-
sition formulas relating A5* and e 48 to each
other and to the resolvent (cf. e.g. Grubb and

Seeley [GS96] or Grubb [G97] for details),
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e tAs — t”’iﬂ/ e AT (A — AI) ' dA

= sz I s:Ct °T'(s)Agz® ds, (2)
which imply that there is an equivalence be-
tween a statement on the poles of I'(s)Tr A5*, an
asymptotic expansion of 95 Tr (Ag — AI)~" in de-
creasing half-powers powers of A, and an asymp-
totic expansion of Tre *4® in increasing half-
powers of t; the coefficients in these expansions
are closely related to the residues.

Seeley [S69], [S69'], and Greiner [G71] showed
such expansions for general elliptic differential op-
erator systems with differential boundary condi-
tion. In particular, they lead to index formulas,
in view of the general observation

index Ag = Tre 48" As _ Tre t4nds" (3)

New invariants came into the picture when See-
ley in [S67] initiated the study of similar ques-
tions for pseudodifferential operators (1pdo’s) A on
closed manifolds. As pointed out by Duistermaat
and Guillemin [DG75], this leads to logarithmic
terms in the expansions of the resolvent and heat
operator traces, corresponding to double poles of
[(s)TrA—*.

Related questions for manifolds with boundary
have only been taken up fairly recently. Finite



expansions are known for general pseudodifferen-
tial problems from Grubb [G96] (and its first edi-
tion from 1986), and [G92] gives a finite expan-
sion for the Atiyah—Patodi—Singer problem stop-
ping at the index term. Full expansions for APS-
problems were established by Grubb and Seeley
n [GS95], [GS96], and full expansions for rather
general pseudodifferential boundary problems for
differential operators have been established in
[G99].

For other types of manifolds, we should also
mention the work of Briining and Seeley [BS91]
and of Gil [G98] concerning operators on mani-
folds with conical singularities, and the work of
Loya [L98] treating resolvents on manifolds with
singularities such as corners and edges.

Underlying these studies is always a suitable
calculus of ¢)do’s depending on a parameter.

Plan of the paper: This is a survey paper, present-
ing published as well as new results. The prob-
lems in dealing with parameter-dependent do’s
are recalled in Section 1.2. Chapter 2 is con-
cerned with the boundaryless case. In Section
2.1, we go through a calculus that generalizes that
of [GS95] in a way that allows the treatment of
complex powers of resolvents [GHO1]. Section 2.2
gives the application to full trace expansions with
powers and logarithmic terms. Chapter 3 is con-
cerned with manifolds with boundary. First, we
show in Section 3.1 how the results for the bound-
aryless case can be used in the treatment of the
Atiyah Patodi Singer problem, including a new
result on the stability of the first half-integer log-
term [G01"]. Next, we explain in Section 3.2 a
systematic calculus for manifolds with boundary
[GO1'] that englobes and extends the APS meth-
ods. Finally in Section 3.3 we deal briefly with a
case that is not covered by [G01'] and is needed
for the study of the noncommutative residue in
the Boutet de Monvel calculus [GS01].

In each of these various theories, it is the appli-
cations to full trace expansions that are in focus.

1.2. Parameter-dependent calculi
Recall that the Fourier transform

) = f(6) = / e f(z) de, (4)

with inverse

/e+zz 13

(where d¢ = (2m)~"d¢€), turns a differential op-
erator D,, = —id/dx; into the multiplication
by &;; more generally with multi-index notation,
Dy = Dg'--- D2 is turned into multiplication
by &, So a dlﬁeren‘rlal operator on R"™ may be
written

Af= 3w = [ 3w
\a\<m lal<m

This motivates the more general definition
of a pseudodifferential operator (¢do) P =
P(p(z,€)) on R", by the formula:

Pf = OP(p(z, ) (x) = / e Ep (e, €) F(E)E. (5)

When p is independent of z, this simply means
that

OP(p(€)) f(2) = F¢, [P(E)(F ()], (6)

The formula (5) is a generalization:

OP(p(z,§)f(7) = Fe_u [Py, O (F F)(©)]ly=a-

The function p(z, ), called the symbol of the op-
erator, need not be a polynomial in £. Instead
it may be taken in the standard symbol space
S™(R™ x R™), consisting of the C™ functions

p(x, &) such that

050¢p = O((¢)™~1°1) for all o, B € N™; (7)

here we use the notation

(€ =1+

For the differential operator A, the symbol
a(®,£) = 3 |aj<m Ga(@)€” is in S™, m € N, but
an advantage of ¥do’s is that we can take the or-
der m negative or noninteger. For example, since
1 — A has symbol 1+ [¢|?, the inverse of 1 — A is
the 1do with symbol (1+£]?)~! = (£) 72, and we
can define the square root of 1 — A as OP((¢)).
The rules of calculus for wdo’s with sym-
bols in the S™-spaces are well-known, see e.g.
Hoérmander [H67], Seeley [S69"], Shubin [S78§],



Hormander [H85] for various set-ups with local
or global estimates in z.

There is an important concept of asymptotic
series used here: When p € S™° and there
are symbols p; € S™i for a decreasing sequence
m; — —oc (where j — oo in N), we say that

JEN

p— Z pj € 8™’ for any J € N. (8)
0<j<J

This does not at all mean that the series >, p;
converges to p, only that for any J, the sum up
to j = J — 1 differs from p by a symbol that has
the next order of magnitude O((£)™”) (along with
the associated estimates of derivatives). This is
similar to the way Taylor’s formula shows how a
C® function is close to a polynomial of a given
order, in the way that the error term is of the
next order of magnitude.

For any given sequence p; € S™ with m;
—o00, one can construct a p such that (8) holds,
by a generalization of the Borel construction of a
C*® function with given Taylor coefficients.

We call the symbols in S™(R" x R") classical
(or one-step polyhomogeneous), when they have
expansions in series of terms py,_;(z,€), j € N,
that are homogeneous in & of degree m—j for |£| >
1, such that p ~ 3", Pm—j in S™(R" x R").

A composition of two operators is very simple
in the case of z-independent, symbols:

OP(p(€))OP (' (§)) = F'pFF 'p'F
= OP(p(§)p'(£)).

For general symbols, this holds in the first ap-
proximation:

OP (p(,€))OP(p'(x,£)) = OP((pop')(x,£)),

where

_\lel
pop ~pp' + Y CLapasy,
la[>1

=)l aa o, ! m-+m’
Z ( a)! d¢pogp' in ST (9)
acN"

The formula, sometimes called the Leibniz prod-
uct, is used in the construction of approximate
inverses (parametrices) for elliptic operators. If
for example a € S™ with a=' € S~™, then

aoa ' =1—r for somer e S ',

so if we take

(o]
(1(71) ~alo § Tok
k=0
(where r°* = roro...or with k factors), then

we find that a o a{=") ~ 1. The symbol a(~" is
called a parametriz symbol; it defines an operator
such that

OP(a)OP(a"Y) =1+ Ry,
OP(a""Y)OP(a) =1+ R,,

with ¢)do’s Ry and Ry of order —oo.

In the study of resolvents one needs to carry out
such parametrix constructions for symbols a — AT
containing the extra parameter A (and, notably,
one needs a good control of how A interacts with
the other variables).

Here it is remarkably more difficult to handle
pseudodifferential than differential operators.

Let for example a(z, &) be homogeneous in £ of
order m > 0 for |£] > 1, C* and strongly elliptic:

R‘ea’(ng) Z c|§"m for |§‘ 2 C1,

with ¢ > 0. Let A = OP(a), then the resolvent
Qx = (A= AI)1 is defined for —\ € Ry with ||
sufficiently large. It is a ¢ydo with symbol

q(x,60) = ¢ m(z, &) + ¢ (2,6, 0),
Gom = (a(z,&) = N)7", ¢ of order < —m — 1.

Here A, or rather, yp = (f)\)#, can be considered
as one more “cotangent variable” in addition to
&,6,...,&, and g_,, is homogeneous of degree
—m in (fnu)

More precisely, if A is a differential operator,
then m is integer and a(x,£) — X = a(x, £) + u™ is
polynomial in (&, i), hence homogeneous and C*
in (&) € ﬁ:+17 $0 ¢_m(z, &, A) is homogeneous
of degree —m and C° outside (£, u) = (0,0). But



if A is truly pseudodifferential, the strictly ho-
mogeneous version of the symbol a(z,&) will in
general have a lack of smoothness at { = 0 (its
&-derivatives are bounded up to order < m only),
so a(z, &) + p™ will have this lack of smoothness
on the whole halfline {(0, ) | © > 0}, and so will
qd—m- When we modify the strictly homogeneous
symbol in a bounded neighborhood of ¢ = 0 to
be C'*°, the ensuing modification of a(z, ) + p™
takes place in an unbounded set.

This is also reflected in the estimates of q_,,.
Here one has (for |¢] > 1):

Dgq-m = O({(& )", for |a| <m,

Dgq—m = O(((& )~ >™ (&)™), for |af > m,

where the estimate in the first line extends to all «
if and only if a is polynomial in . In the polyno-
mial case one can apply the usual symbolic cal-
culus, just in one more variable, getting simple
and straightforward results, whereas in the gen-
eral case the fact that only the estimates up to
order < m are standard (the so-called regular-
ity number is only m), gives severe trouble. We
give in Chapter 2 below a definition of parameter-
dependent symbol classes (more restrictive than
in [G96] but more general than in [GS95] and
[L98]) that handles the problems with resolvents
of 1do’s in an efficient way, leading to full trace
expansions.

For boundary value problems there are similar
phenomena. In the differential operator case, the
resolvent parameter enters as another cotangent
variable, on a par with the others, whereas for
a pseudodifferential boundary operator (y»dbo), a
resolvent parameter, when considered as a cotan-
gent variable, gives symbolic estimates where only
the first finitely many are “good”. Again one can
assign a regularity number to the operator and
keep track of it in the calculus, this was an impor-
tant point in [G96], leading to trace expansions
with a finite number of power terms (related to
the regularity number). In Chapter 3, we present
several cases of more delicate (and restrictive) cal-
culi which allow complete trace expansions with
powers and logarithms.

2. Weakly polyhomogeneous pseudodiffer-
ential operators

2.1. Polyhomogeneous symbol classes
We here sketch a generalization of the symbol
classes introduced in [GS95], now allowing quasi-
homogeneous symbols. It was inspired from read-
ing Loya [L98], but is adapted to treat also e.g.
complex powers of resolvents. A detailed presen-
tation is given in Grubb and Hansen [GHO1].
Consider symbols p(z, &, A) that are C> func-
tions of z and £ € R", A € T (a sector of C\ {0}).
Let 0 € Ry. We shall say that:
p is strongly o-homogeneous of degree m,
when

p(x,t€,1°N) = t"p(z, €, N) (10)
for ¢ + A7 >1,¢>1,(€,X) € R" x (TU{0}).

p is weakly o-homogeneous of degree m,
when

p(a:7t§,t"/\) = tmp($=£7/\) (11)

for (] >1,21>1, (,A) e R" x I.

Example 2.1. Let a(z,£) be C* on R" xR"”
and homogeneous in ¢ of degree r > 0 for |¢] > 1,
taking values in a closed sector C \ I'. Then for
AeT, a(z, &) — X and (a(z,€) — X) 7! extend to:

strongly r-homogeneous symbols of degree r,
resp. —r, if r is integer and a is polynomial in ¢
(it is the symbol of a differential operator);

weakly r-homogeneous symbols of degree r,
resp. —r, if a is not polynomial in & (it is the
symbol of a genuine tdo).

For example, when r = n = 2, then a(z,§) =
&2 + €2 enters in the first case, and

a(z,€) = (& + &)/(& + &) (for €] > 1)

enters in the second case, with T = C\ R.

For the weakly o-homogeneous symbols, we
need extra conditions on the behavior when A\ is
large in comparison with £. Therefore we intro-
duce the following symbol spaces:

Definition 2.2. Let m € R, 0 € R;..



SmO(R"xR",T) consists of the C* functions
p(x,&,\) that are holomorphic in A € T° for

\(f A)| > e (for some ¢ > 0) and satisfy, with
3 =7

p(-,-, 1) isin SmTTI(R" xR™) for ler,

with uniform estimates for |z| < 1,
L in closed subsectors of T (12)

Moreover, we set, for any § € C,

SmOR"xR™,T) = NS™OR"xR™,T). (13)

The indication (R"xR™, T') is often abbreviated
to (T).
We have:

Theorem 2.3. When a is as in Example 2.1,
then for any N € N,

(a(z,&) =)~ € $,7MT) N SN,

(a(z,&) = NN € STV + SPM(T). (14)
Moreover, if § € C with Red < 0, then

(a(z, &) —A)"N*0 e s.rMr) N SYNH(D);

(a(z,€) = NN+ € SMT) + SPNHT). (15)

One cannot in general obtain (14) for noninte-
ger N.

The A-independent symbols fit into the calculus
as follows:

Theorem 2.4. When a symbol p(x, ) of order m
is considered as depending on one more variable
A, it lies in S™9:

S™R"xR") c S™(R"xR",T) (16)

forany I' C C, any o0 € R,..

We set
() S2(T) = S, >°(T);
meR
U sm°(r) = 529(1). (17)

meR

The operators have good composition rules,
since clearly

SmA(r) - SN (D) ¢ SmAm (D), (18)

and since one can refer to the standard rules for
S™ symbol classes, which must here hold uni-
formly in z as in (12). One finds for example
that

P € OP(S™%(I)), P' € OP(S™ 9" (I))
— PP' € OP(S7™ 9+ (1)) (19)

and the resulting symbol is described by the usual
formula:

(pop)(@.€A)

~ 2

a€eEN®

8Ep x,6,N) 00 (2,&,\) (20)

in §7+m0+8"(T) | This is an expansion in terms
with decreasing m-exponents m + m' — j, j —
oo (j = |a|). Here we use asymptotic series as
follows:

When p; € Sf,”""s(r) for a decreasing sequence
mj — —oo (for j = oo in N), and p € S7%(T),
we say that p ~ >, p; in Smod(T) if

p— > pj € SPA(D) for any J € N. (21)
i<J

For any given sequence p; € S,TJ’J(F) with m; N\
—00, one can construct a p such that (21) holds.

For the present special symbols there is another
type of expansion that is of great interest:

Theorem 2.5. When p € S™°(R"xR",T), then
the limits

P (,6) = lim 204 (7 p(z €, 1))

exist and belong to S™*7*(R™ x R"), and p has
an expansion in terms X;’kp((;’k) (z,€) such that
for any N,

P, &0 = D N (x,€) (22)

0<k<N

€ SpteNO=N(R"xR",T).



In the proof, one reduces to the case § = 0
by multiplication by A~%. Then the expansion is
essentially a Taylor expansion in z = ]X at z = 0;
it exists because of the uniform estimates for z —
0 in the sector.

Note that in (22), the order of p ) increases
with increasing k, whereas the power of A\ de-

creases. A very simple example is

NSV i 13
(€2 +X07 =27 (1= S-+ 50— )

Corollary 2.6. When p € S;>9(T), the kernel
K(z,y,\) of OP(p) has an expansion

K($=y7/\) ~ Z )‘{iikKk(aﬁy): (23)
keN

with K;, € C*.

Definition 2.2 contains no homogeneity require-
ments, but we now define a polyhomogeneous
subspace:

Definition 2.7. A symbol p € S™0°(T) is
called (weakly) o-polyhomogeneous of degree
mg + od, when p ~ ZjeN pj, with p; € S,T“S(F),
m; N\, —oo for j — oo, j € N, such that the p;
are weakly o-homogeneous of degrees m; + o6 (cf.
(11)).

If the p; are in addition strongly o-
homogeneous (cf. (10)), and

olozok (v vs) (24)

i<J
= O({(€, |\ 7)ym+otes—I—lal—cky,

for all indices «, 3, J, then p is called strongly
o-polyhomogeneous.

The o-polyhomogeneity is called classical (or
one-step) when the sequence m; is of the form
mj =mg —j,j€N.

Remark 2.8. One has in particular that clas-
sical pdo symbols in n + 1 cotangent variables
p(x, (&, &nr1)) give strongly 1-polyhomogeneous
symbols when &, is replaced by A.

The type of parameter-dependence mentioned
in Remark 2.8 was used by Agmon and by Agra-
novi¢ and Vishik in resolvent studies for dif-
ferential operators; for do’s this is the kind
of parameter-dependence studied e.g. in Shubin
[Sh78] and other works. It is a mild generaliza-
tion that does not cover resolvents (P—\I)~! and
parabolic operators such as 9/0t + P when P is
truly pseudodifferential (as treated e.g. in [G96]).

The operators behave in a standard way under
coordinate transformations, so they can also be
defined to act on sections of smooth vector bun-
dles over smooth manifolds.

2.2. Applications to kernel and trace ex-
pansions

Both the expansion in Theorem 2.5 and the ex-

pansion in Definition 2.7 enter in the proof of:

Theorem 2.9. Let p € S7%(T") be weakly o-
polyhomogeneous as in Definition 2.7, and as-
sume furthermore that the p; with m; > —n are
integrable with respect to ¢ for each A. Then
OP (p) has a continuous kernel K,(x,y,\) with
an expansion on the diagonal

o) -
Kp(z,z,\) ~ cj ()N =7

j=0

+ Z[(’}Q(T) log A + ¢ (z)]\F, (25)
k=0

for |\| = oo, uniformly for X in closed subsectors

of T' (|A| > 1). The coefficients c;(z) and c},(z)
(with k = fm’TM) are determined by p;(z,&,\)
for |£] > 1 (in particular, they are “local”), while
the cj(x) in general depend on the full symbol

(are “global”).

The proof, given in [GHO01], is a straightforward
extension of the proof of Theorem 2.1 in [GS95].
A brief explanation in local coordinates: One uses
the general principle that “remainders contribute
to ¢ terms,” by Corollary 2.6. The p; contribute
with

Ky, (2,2, \) = [R RUCARE

B -/5>A% pife s -/5<1 pide s -/1<£<>\% pide



=5 + I+ I3, (26)

where I; gives a power term (part of the ¢; term),
I, contributes to the ¢ terms, and I3 gives the
rest of ¢, and ¢}, with k = fm”'TM if this is an
integer > 0, plus some contributions to the ¢}
terms. One has of course to show that the con-
tributions to the ¢}/ pile up in a controlled way.
When the operator acts on a compact bound-
aryless manifold, integration of K,(z,z, A) (of its
fiber trace if P acts in a vector bundle) in z gives
a similar expansion of the trace of the operator:

Corollary 2.10. Let P be a A-dependent do
acting on the sections of a smooth vector bundle
over a compact manifold X of dimension n, with
symbol satisfying the hypotheses of Theorem 2.9
in local coordinates. Then it is trace-class, the
trace satisfying
o0 mitn oo
Tr P ~ Z P G -4—2:[(:}c log A+ ]A 7k (27)
j=0 k=0

for |A\] = oo, uniformly for X\ in closed subsec-
tors of I'. The coefficients are derived from those
in (25) for coordinate patches by integrating the
fiber traces over X .

The result applies in particular to expressions
containing a resolvent power:

P(\) =S(A - )N, (28)

where A is a classical elliptic 1do of positive or-
der m acting in a vector bundle over a compact
boundaryless manifold X of dimension n, with
principal symbol a,,(z, &) having no eigenvalues
on R_, S is a classical do of order v acting
in the bundle, and N is chosen so large that
v — Nm < —n. Since

O(A— A" =rl(A-X)"'", (29)
this also pertains to expressions with a differen-
tiated resolvent S5 (A — AI)~!.

By use of (14) one finds that for a narrow sec-
tor I around R_, the symbol is in S%~N™0(T) N
Sv:=N(T') and weakly m-polyhomogeneous. Then
Theorem 2.9 and its corollary apply. The kernel
satisfies on the diagonal:

K(z,2,S(A = \)™N) ~ Z‘” oj ()N

+ 3 (¢ (x)log A + ¢ (x)A N E, (30)
k=

o

for |A] = oo, uniformly in closed subsectors of T'.
Consequently, one has for the trace:

AD N ST N
Tr S(A— ) ijocj
-i—z:((:;c log A + )N Nk (31)

k=0

(by integration of the fiber traces over X).

If S is a differential operator (in particular if
S = I), then ¢y(z) = 0 and the complete coeffi-
cient of A=" is locally determined (by a general-
ization of the proof of this point in [GS95], Th.
2.7).

In view of (29) and the general transition for-
mulas (1), (2), we then also get trace expansions
for the following operator families:

oo

Tr(SeftA) ~ Ejt$
j=0
+> (=& logt + &)tk (32)
k=0
F(S)’I‘I‘(SAis) ~ .- CT? _ Tr(SHO(A))
oS + L=t S
3 761’“ EZ 33
+kzo((s+k)2+s+k)' (33)

For (32), it is required that the eigenvalues of the
principal symbol of A have positive real part; (32)
is considered for t — 0+. In (33), the sign “~”
indicates that the left hand side is meromorphic
for s € C with pole structure as in the right hand
side; here Iy (A) is the orthogonal projection onto
the zero eigenspace of A. The constants ¢, are
related to the c; by universal factors.

Finally, let us mention a new type of result,
made possible by the introduction of the present
symbol class allowing noninteger 9d:

Theorem 2.11. Let m € R, v € R and s €
C. Consider P(\) = S(A — AI)~*, where A is



a classical elliptic »do of order m acting on the
sections of a smooth vector bundle over a compact
manifold X of dimension n, with principal symbol
having no eigenvalues on R_, S is a classical }»do
of order v, and s satisfies Re s > (n+wv)/m. Then
for X\ in a sector I' around R_, the symbol of P
is in S%~*(T) (and in S*"R¢5™ for each \) and
weakly m-polyhomogeneous. The kernel satisfies
on the diagonal:

Kz, S(A=A7) ~ Z;oc.i(w)A"+r’i”' s
+2_(ch(@)log A+ (@A~ (34)
k=0

for |A\| = oo, uniformly in closed subsectors of T'.
Consequently, one has for the trace:

ntv—j

TeS(A =AD"~ Y AT
1=

+ Z(c’k log A + )Nk, (35)
k=0

The proof uses (15); details are given in [GHO1].

3. Operators on manifolds with boundary

3.1. First-order differential operators on

manifolds with boundary
Resolvents and other operator families can also be
studied for operators on manifolds with bound-
ary. In the case of elliptic differential operators
with differential boundary conditions, there are
the fundamental studies of Seeley [S69], [S69'] and
Greiner [G71] that show how trace expansions of
the resolvent or heat operator can be obtained
with purely power terms (no logarithms), and ac-
cordingly just simple poles in the expansion cor-
responding to (33).

Again, the problem is more complicated when
pseudodifferential elements enter. A prominent
case that has been the focus of much attention is
the Atiyah—Patodi—Singer problem, that we shall
briefly recall:

Let X be a compact C*>° n-dimensional mani-
fold with boundary X' and let D be a first-order
elliptic differential operator on X;

D:C®(X,E) = C®(X, E) (36)

where E; and E> are N-dimensional Hermitian
vector bundles over X.

The restrictions of the E; to the boundary X’
are denoted E;. We assume that a normal co-
ordinate x, has been chosen in a neighborhood
X. of the boundary X' such that the points are
represented as x = (2, ,) there with ' € X',
zn € [0,¢[, the E; are isomorphic to the pull-
backs of the E; there, and there is a normal
derivative 0,,. X' is provided with the volume
element v(z',0)dz' induced by v(z', x,,)dx'dz, on
X., which we view as X, = X' x [0, ¢[.

D can be represented on X, as

D =o(z% + Av), (37)

where o is a homeomorphism from E;|x, to Es|x,
and A; is a first order differential operator that
acts in the ' variable at x,, = 0. Ay|,,—o has the
principal symbol af(z’,¢'). With the notation

Yju = (—i0y, )ju‘zn:m (38)

we have Green’s formula for D, for the sections u
of By and w of E5 in the Sobolev space H',

(Du,w)x — (u, D*w)x = —(oyu,Yow)x. (39)

Definition 3.1. 1° We say that D is “of Dirac-
type” when o is a unitary morphism, and

Ar=A+x, P+ P, (40)

where A is an elliptic first-order differential oper-
ator in C*°(Ej) which is selfadjoint with respect
to the Hermitian metric in Ej, and the P; are
differential operators of order < j.

2° The product case is the case where
D is of Dirac-type and, moreover, v(z)dr =
v(z',0)dx'dz,, on X., o is constant in z,, and
P =F =0.

As explained in [G92], p. 2036, unitarity of o
in (37) can be obtained by a simple homotopy
near X', whereas the assumption on A; in 1° is
an essential restriction in comparison with arbi-
trary first-order elliptic systems; it means that
the principal symbol a?(z',¢') of A; at x, = 0
is Hermitian symmetric. P; and P, can be taken
arbitrary near X', but for larger x,,, P; is subject
to the requirement that D be elliptic.



When 1° holds, a?(z',¢') equals the principal
symbol a®(z',¢') of A. Along with A one con-
siders the orthogonal projections II>, I, IT<, IT«
and II, onto the closed spaces V>, V5, V<, V. and
V\ spanned by the eigenvalues of A in Ly(EY)
that are > 0,> 0,< 0,< 0 resp. = A. (Since A
is selfadjoint and elliptic of order 1, it has a dis-
crete spectrum consisting of eigenvalues of finite
multiplicity going to £00.) These projections are
classical ¥do’s of order 0; IT is of order —oo.

Atiyah, Patodi and Singer considered in
[APS75] the product case. This case is also
studied e.g., in [GS96], [BW93], [BL99], [W99],
whereas the case where only 1° holds is studied
in [G92], [GS95] and other works. Cases where
not even 1° holds are studied systematically in
[G99].

The problem considered in [APS75] was the
boundary value problem

Du=fon X, IIsyu=0on X, 41
>

with D of Dirac-type, in the product case. This
boundary condition (and slight modifications of
II> by finite dimensional eigenprojections) is of-
ten called the spectral boundary condition. One
can also replace II> by the exact Calderdn pro-
jector CT associated with D, as e.g. in [BW93],
[W99]; it differs from II> by a ido in X' of order
—o0 in the product case ([G99], Prop. 4.1).

As shown in [G99] (with reference to [S69']),
on may replace II> by much more general clas-
sical pseudodifferential 0-order projections B in
E{, adapted to a general elliptic first-order D,
such that the problem

Du= fon X, Byu=0onX' (42)

still defines a Fredholm operator Dg (the so-
called well-posed boundary conditions). Typi-
cally, B can be of the form B = II> + II>QIl<
with a zero-order vdo @), and lower-order pertur-
bations can be added.

In all these cases (most generally in [G99]) we
have obtained trace expansions of the form

Tr(goeiiD”*DB)N Z apth?

—n<k<0

+Z(ak logt + a} )t*/? for t — 0, (43)
k=0

with the associated expansions of resolvents and
of power operators; here ¢ is a morphism in Ej.
(Note that the notation differs slightly from that
in (32); there is only one infinite series.)

Let us give a quick explanantion of the general
strategy. One can write the resolvent in the form

(DyDp — AI) ' = Qx4 + K\SaTh,

where @y is a 1do representing (D*D — AI)~! on
an open manifold X o X, @+ is its truncation
to X, K is a Poisson operator going from X' to
X and T, is a trace operator going from X to X'
(more about such operators in Section 3.2 below),
and S is a ¢¥do on X' containing the particular
information connected with the boundary condi-
tion. The resolvent derivatives 05 (D Dp—AI)~!
have a similar form (cf. (29)). Then (for r so large
that the operator is trace-class) one finds by cir-
cular permutation

Trx (pd5(DpDp —AI)71)
= Trx (p03Q@x,+) + Trx (005 (KASATH))
= Trx (pdyQxr+) + Trx 05 (TapKrSy),  (44)

where the difficult term is turned into the trace
of a ¢ydo on the boundary. The trace of 5@, +
is well-known (has an expansion like in (31) with-
out the log-terms), and the operator on X' is
treated by use of our weakly parametric calcu-
lus for tdo’s, giving an expansion with powers
and logs. Taken together, they lead to (43).

An important question in this connection is
what the value of the coefficients are, and how
they reflect the geometry of the problem. In
[GS96], the coefficients in the product case with
spectral boundary condition were described in
terms of the zeta and eta functions of A. In the
non-product case in a natural setting with spec-
tral boundary condition, the first three terms in
(43) for n > 3 were determined by Dowker, Gilkey
and Kirsten in [DGK99] (moreover, the latter two
authors have recently determined the next term
in the case n > 4).

A basic information is of course whether some
of the coefficients in (43) wanish under suitable
circumstances. Here are some results to that ef-
fect:
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It is known, first from [G92] for spectral bound-
ary conditions in the case of Definition 3.1 1°, and
then for increasingly general cases (including the
condition with B = C'* in the product case [G99],
for odd n [W99], see moreover [GO01]), that ag van-
ishes when ¢ = I. The coefficient af, “behind” ag
is of great interest; it is global and contains the
eta invariant of A.

For the product case with a spectral bound-
ary condition, much more was shown in [GS96]:
When n is odd, all the log-coefficients a; with
k > 0 vanish. When n is even, the log-coefficients
with &k even > 0 vanish (so there are only higher
order log-terms of the form ct*2 logt, | € N).

The question of whether the remaining log-
coefficients are generically nonzero was answered
in the affirmative by Gilkey and Grubb in [GG9S].
We have recently (in [G01"]) considered pertur-
bations of the product case, in order to find out
to what extent the logarithmic terms preserve
their properties. The first half-integer log-term
a,t'/?logt in (43) has in the product case, when
o', z,) = ¢%(2') on X,, the coefficient

ay = —m ey (¢, A%) (45)
according to [GS96], where ¢; is the coefficient of

#1/2 in the heat trace expansion for A2 on X'

oo

“ Y al

k=1—n

T( 0 7fA2 AQ 7;]s‘/2 (46)

(cr(¢% A%) = 0 for k —n + 1 odd). When n is
odd, ¢1(p°, A?) = 0, and when n is even, it is
generically nonzero (cf. [GG98]). In [GO1"] we
show the following new result:

Theorem 3.2. Let D° be as in Definition 3.1 2°
and let D be a perturbation where A is replaced
by A + x, P near X', P, a first-order tangential
differential operator. Let BY = TI> and B =
II> 4+ .S with S a classical ¢ do of order < —n — 1.
Let p(2',x,) = @°(2') for x, € [0,¢[. Then the
coefficient a; in (43) is the same for D%, and Dg.
When n is odd, it is zero; when n is even, it is as
n (45), (46), generically nonzero.

For perturbations A + z, P, + Py with Py # 0
there does not seem to be a similar stability.

Let us finally mention that when only the
boundary condition is perturbed, there is the
following phenomenon, formulated explicitly in
[GO1] on the basis of results from [G99]:

Theorem 3.3. When B is replaced by B' = B+
S with S of order —.J < —1, then the coefficients
ay in (43) are the same for Dg and Dpg/ for k <
J —n.

There are similar results on trace expansions
for Dge~tP5 Ps  corresponding to the eta func-
tion TI‘(DB(DB*DB)fs).

3.2. Pseudodifferential boundary opera-
tors

To address the same questions for more general

boundary value problems connected with pseu-

dodifferential operators, we begin by recalling

some elements of the Boutet de Monvel calculus

[BM71] of boundary problems.

First let us describe the model case, concerned
with operators on the half-axis R4. The variable
is denoted z,,. We denote by r* the restriction
operators from distributions on R to distributions
on R4, and we denote by e™ the “extension by
zero” operator (applied to functions on Ry):

et f(zn) = f(z,) if 2, > 0,
et f(z,) =0if z, <0; (47)

with a corresponding definition of e~. Out of the
Schwartz space S(R) of rapidly decreasing C°
functions we construct the spaces

S=etS, fe S +C[]; (48)

here C[d'] indicates the “polynomials” in §',
i.e., linear combinations of derivatives of 4,
> o<j<k @j0j6. The Fourier transformed spaces
are denoted

HT = FetSy,
H™ =F(e S_+C[']) = H_, +C[&], (49)

H=FS=H"+1".



A constant-coefficient ¢pdo P = OP,(p(&,)) of
integer order m on R is said to satisfy the trans-
mission condition when p(&,) € H. Another de-
scription is that p has an asymptotic series devel-
opment p(&,) ~ Zm>j>7oo Sm—;&), in the sense
that

OF |&p(6n) — ) sm &

m>j>m—N
is O((&u)™H==N)

for all indices k,I, N € N. A third description is
that 7"p(7!) extends from 7 > 0 and 7 < 0 to
be C* at 7 = 0. Cf. e.g. [G96], Sect. 2.2.

When p is of this kind, the truncated v do Py,
defined on functions on Ry by

Piu=rTPetu, (50)

maps St into S; (no singularities arise at z,, =
0).

Besides the standard trace operators (38), we
introduce trace operators of class 0; for functions
u on R they are mappings

T = OPT, (%) : u(zn) = /000 t(zp)u(zy,) dz, (51)

with #(x,) € S;; more generally, a trace operator
of class r > 0 is an operator of the form

Tyu = Z sjvju+Tu (52)
0<j<r—1

with T" as in (51). Such operators map functions
on R, into numbers. There is another (dual)
type of mappings going the other way; the Pois-
son operators (in some texts called potential op-
erators)

K = OPK, (k) : v~ k(z,)v (53)

with k(z,) € Sy. Finally, there is an operator
type from functions on Ry to functions on R,
called a singular Green operator (s.g.o.). Denote

—2
Sit = S(R,) = rf,rf S(R?) (54)

R%, = R; xR;. A singular Green opera-
tor of class 0 is an integral operator with kernel
g(ﬂfmyn) € S++:

Gu = OPG,(§)u = /OOO 9(@n, Yn)u(yn) dyn. (55)
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A general s.g.0. G1 of class r > 0 is of the form

Giu = Z Kjvju + Gu, (56)
0<j<r—1

where the K; are Poisson operators and G is a
singular Green operator of class 0 as defined in
(55).

These are the basic ingredients in the calcu-
lus. In more generality, one allows x,,-dependence
in the symbol p of P, and one defines operators
relative to ﬁi by letting the operators act in
the tangential variables ' = (z1,...,2n,_1) as
pseudodifferential operators and in the normal
variable xz,, as described above. Then the func-
tions p, £, k, § are taken to depend moreover on
(z',€") € R*(»=1)_ For our purposes, we further-
more let the functions depend on a parameter u.
Denoting the 1do definition with respect to '
by OP' (cf. (5)), we then get operators defined
relative to ﬁj_:

Truncated do’s:

OP (p(z,&, 1))+ = OP'OP,(p(x, &, 1)) +

trace operators of class 0:

OPT(t(z', xn, &', 1))
= OP'OPT, (t(z', xn, €', 1)),

Poisson operators:

OPK(k(z', 2, €', 1)
= OP'OPK,, (k(z', 2., 1)),

s.g.o.s of class 0:

OPG(g(2", 2n,yn, €' 1)) (57)
= OP'OPG,(§(z', Tn,yn, &, p1)).

The definition of trace operators and s.g.0.s is ex-
tended to class > 0 as in (52), (56).

Example 3.4. As a simple and important ex-
ample defining a Poisson operator, we mention
k(z,, & p) = e 1€ mlzn with 4 € Ry; here
OPK (e~ (€ #m)en) is the solution operator for the
Dirichlet problem

(> — A)u(z) =0on R}, u(2',0) = v(z'). (58)
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A crucial question for a parameter-dependent
calculus is now how to prescribe the dependence
on all symbolic variables z', &', x,,, yn, p taken to-
gether, in order to get operators with the prop-
erties we want. We shall here only deal with 1-
polyhomogeneity (the case ¢ = 1 in Definition
2.2), where p enters in homogeneity considera-
tions with the same power as &’.

The calculus may be explained in another way
(the “complex formulation”) where the Fourier
transform in z, plays a great role. This in-
volves some complicated spaces of holomorphic
funtions of &,, defined in terms of H# and H*
(49), that we want to keep out of the presenta-
tion here. On the other hand, in the complex
explanation, £, enters in the homogeneities of
symbols in the same way as the other variables
&', pu, whereas in the present “real formulation”,
z, and y, enter in the functions , k, § (called
the symbol-kernels) in a quasi-homogeneous way
oppposite to that of (¢, u). (For example, the
symbol k = F,, ¢, etk of the operator described
in Example 3.4 is k(& pu) = (|(€',n)| + i&n) 1,
which is homogeneous of degree —1, whereas the
symbol-kernel k(x,,, €', p) = e~ € m)l2n hag a cer-
tain quasi-homogeneity.)

We shall now let the symbol spaces defined in
Definition 2.2 be based on z' € R ! and take
values in a Banach space B, consisting e.g. of
functions of z, € Ry. We let 0 = 1 and leave
it out of the notation, we denote the parameter
by u, and we replace § by an integer d. Now we
need to take powers of |(¢', )| into the definition.
To smooth out the behavior near (¢, u) = 0, it is
convenient to replace |(&', u)| by [(£, p)]; here [z]
denotes a C™ function of z € R" satisfying:

[] = |z] for |z > 1, [z] € [3,1] for [ < 1. (59)
Note that [(¢',1)] = (¢, 1)] for |z] < 1, and that
€, D =1(€ ] = [ul|(€/n,1)]

= |ul (€' /) = |27 (2€'), when p= 1. (60)

[(&', )] is also written [¢', u]; it will in the fol-
lowing be denoted k (as in [G96]), so from now
on,

k=€ 1] =[¢nl, with p=1. (61)

Definition 3.5. Let m € R, d and s € Z.
Then S™O99(R" ! xR" 1T, B) consists of the
C® functions p(x', ¢, u) valued in B which sat-
isfy, with % =z,

8{ ‘p(-, : %) e S™HI(R" ' xR" ', B) for % erl,

z

with uniform estimates for |z| <1,
1 in closed subsectors of T'. (62)

Moreover, we define
Sm’d’s(Rn71 % Rn71= F7 B)

= p'(¢, WP S™ R xR T, B).  (63)

The indication (R"~! x R""! T, B) will often
be abbreviated to (I, B). Keeping the identifica-
tion of y with % in mind, we shall also say that
p(a', ¢, 1) lies in S™45(T, B).

We have left the requirement of being holo-
morphic in pu € T° out of the definition since
k = [£', u] is not so (one could instead work with a
variant, of x that is holomorphic on suitable sec-
tors, as in [G96], (A.2") (A.2"")). The symbol
is assumed C* in u € T considered as a subset
of R%. Moreover, we write ). (instead of 9.),
since it is a control of the radial derivative that is
needed (uniformly when the argument of z runs in
a compact interval), and we shall in the following
let |z| enter as a real parameter.

To define symbol-kernels for the boundary op-
erators, we use the cases B = L, (R;) and

B = LOO(RLF), with variables x, or wu,, resp.
(Zn,yn) Or (un,v,); these variables will then be
mentioned in the detailed description of the func-
tion.

Definition 3.6. Let m € R, d and s € Z.

1° The space S™%*(R" ' x R" ' T,S,)
(briefly denoted S"™%*(T',S,)) consists of the
functions f(z',x,, €, p) in C°(R" ! x Ry x
R" ! xT) satisfying, for all I,1' € N,

g 1~
(=€)~ 0y, fa', |2lun, €', 3)

€ SR X R T, Loc . (Ry))  (64)



', 1) belongs to

(equivalently, u,ln@f;" fa') | z|un, €, :
c Sm’d+lill’s+lil+ll(ryLoo,u" (R+)))

2° The space S™%*(R"' x R"" ' T,8,,)
(briefly denoted S™%*(T",S,,)) consists of the
functions f(z', %, yn, &', p) in Cm(R"’lxﬁier
R" ! xT) satisfying, for all I,1' k, k' € N,
(€Y O, okl Fa |2 lun, |2lon, € 1)

Up N

€ ST (RIXR" T, Loo,u, 0. (R%.)).(65)

In detail, the statement in (64) means that for
all j,
107, (2 ()l 0L T 2ty €, )l

n“un,

< (g)ymH, (66)
with similar estimates for derivatives 9 85, with
m replaced by m — |a|. There is a related expla-
nation of (65). We here use < to indicate “< a
constant times”; also > will be used, and = is
used when both < and > hold.

The third index s is included to keep track of
factors k in a manageable way. When s = 0, we
may lave it out of the notation. For the trace
formulas later on, it is important to know that
we always have inclusions (in view of (14)):

Sm,d,s C Sm+s,d,0 N Sm,d+s,0 if s S 07
Sm,d7s C Sm+s,d70 + Sm,d+s70 if s > O, (67)

for S- as well as for S-spaces.

In applications, the symbols will often be as-
sumed to be holomorphic in p for u € I'° with
|(¢', )| > e (some e > 0); such symbols are called
holomorphic in u, and this property is preserved
in compositions.

Definition 3.7.

1° The functions in S™%$(T',S,) are the
Poisson symbol-kernels and trace symbol-
kernels of class 0, of degree m + d + s, in the
parametrized calculus.

2° The functions in S™%*(T', Sy ) are the sin-
gular Green symbol-kernels of class 0 and
degree m + d + s in the parametrized calculus.

13

One also defines subspaces of these symbol-
kernel spaces, consisting of the functions that
are series of terms with decreasing m-index and
quasi-homogeneity in (z,,&', u) or (Tpn,yn, &', 1)
(the Fourier transformed terms will be truly ho-
mogeneous in (&,,&, u) resp. (&n,mn, & p) for
|€'| > ¢ > 0). These symbol-kernels are called
(weakly) polyhomogeneous.

Remark 3.8. By Fourier transformation in
x, of the functions extended by 0 for =z, <
0, S™%3(I",S,) is carried over into the space
S™d3(I, H+) of Poisson symbols of degree
m + s + d, and co-Fourier transformation (for-
mula (4) with minus replaced by plus) gives the
space S™45(I',H ") of trace symbols of class
0 and degree m + s + d.

By Fourier transformation in =z, and co-
Fourier transformation in y,, of the functions in
S™4:3(T, S, 4) extended by 0 for z,, < 0,y, <0,
we get the space S™%%(T', HT®H~,) of singular
Green symbols of class 0 and degree m+d—+s.

The explanation for the +1 resp. +2 in the s-
index in (64) resp. (65) is that with this choice,
m + d + s is consistent with the top degree of
homogeneity in the Fourier transformed situation
for polyhomogeneous symbols, where the scalings
in z,, and y, lead to shifts in the indices. Further
details in [GO1'].

Remark 3.9. To motivate the scaling in z,
in the above definition of parameter-dependent
boundary symbols, consider the symbol-kernel in
the basic Example 3.4, l%(xn,f’,u) = e~ |€m)lzn
Setting u = %, we find for k(z,,¢, %) =
e~ (=07 (cf. (60)), by use of the formula (with
cj=je)

sup zhe " = cja~! for a > 0, (68)
z,>0

that sup, -q|0k(zn, €', 1)| behaves like z=7 for
each ¢'. This does not comply with the uni-
form estimates in z < 1 required in (62) (with
B = L.(R4)). But if we replace z, by
ZUy, we find using (68) that the resulting func-
tion ky(un, &, 2) = k(zu,, €', %) = ¢ (z€)un hag
SUp,, >0 |9de-un(z€)| < (€)1, j € N, which fits
well with (62). (It is easy to check a few steps by
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hand calculation; a systematic proof is given in
[GO1], Th. 3.2.)

On the other hand, because of the scaling, the
example e [€'1#= (constant in p) does not fit into
the calculus. This is an unpleasant difficulty
in the applications: p-independent ido’s on the
boundary R”~! are included, but p-independent
Poisson, trace and singular Green operators are
in general not so; Theorem 2.4 does not extend
to these new symbol families.

We also remark that the generalization of The-
orem 2.5 to the new s.g.o.s is not really conve-
nient.

It is easy to show that composition of the op-
erators in the list (57) leads to other operators
of these types. The basic step is the composition
with respect to the variable x,,, denoted o,,. Here
we have for example:

Proposition 3.10. Let
g(ml7mn7yn7£l7u) € Sm,d’s(r78++)7 (69)
f(mlamnaflau)7 ];7('7:,7'7:71/75/7//’) € Sm,d’s(lﬂ:S-F):

and let §', ¥ and k' be given similarly with m, d,
s replaced by m', d', and s'. Define

m'=m+m',d"=d+d,s" =s+5. (70)

Then (suppressing the variables (z',&') in the for-
mulas)

1° kopt = k(zn, W) (Yn, 1)
esm T, Sy ),
2° fo, k' = /00 @, )& (20, p) dzy,
0
e s, ),
¥ Foug = [ 50 s ) o
0
e s A LS, ),

4° .éonk’z/ 9T, Yns WK (Y 1) Ay
J0

c Sm”,d”76”+] (F‘S+)7

00
50 g On g’ = / g(ﬂfmzmﬂ)gl(znzymﬂ) dZn
0

c Sm”1 'u’s//+1 (F=S++)

Here 1° is a simple product result. For 2°, we
use that, according to (66),
‘Zdﬁfsflﬂ S <£I)m

)
' . 1

R e AL (L

with z, = |z|u,. Then we have on each ray u =
re' for |p| > 1:

z‘”d,kfs*sb]/ H(zn) k' (2,) d2y
0

<

00 7 e
/ 2V 67k (|2]un) 2 duy,
0

< (gym n / T+ E2u2)

<(ghymem,

since |zk| = (2£') (cf. (60), (61)). A similar pat-
tern is found for all the derivatives in ', ¢ and
z (using the Leibniz rule inside the integral); this
shows 2°. The other results are obtained in es-
sentially the same way.

Full composition rules in all variables are as in
(20) for the tangential variables and as in Propo-
sition 3.10 for the normal variable.

There is a special mapping that is important
for trace calculations, namely the application of
the normal trace tr,,

(trng) (@', €', 1) = /0 G o, € ) diy (71)

to a singular Green symbol-kernel g of class 0; this
gives the trace of the operator in the z,,-variable
defined by g. It is a 1¥»do symbol belonging to our
calculus:

Theorem 3.11. Let g be a singular Green
symbol-kernel on Ri:

g(xlzxn:yn:é-lnu) € Sm7d,8*](r73++). (72)



Then the normal trace of g is a do symbol on
R™ ! satisfying

tr,g(z', &, pn) € S™H(T, C). (73)

We refer to [GO1'] for the detailed proof. When
G = OPG(g), the ¥do with symbol tr,g will be
denoted tr,G.

There are further composition rules, involv-
ing also a parameter-dependent pseudodifferen-
tial operator on R", truncated to R’} and satis-
fying a suitable transmission condition at x, =0
taking the parameter into account. The basic
property needed here is that when @ is a u-
dependent do on R", the trace operator T" and
the Poisson operator K defined by

Tu= 70Q+'LL, Kv = T'+Q('U(£El) ® 6(3771)) (74)

should have symbols of the type introduced in
Definition 3.6. This restricts considerably the
generality of the tdo’s that are allowed. Re-
solvents of differential operators, and strongly
polyhomogeneous 1do’s (with symbols stemming
from tdo’s in one more cotangent variable which
is replaced by u) enter, but do’s that are con-
stant in p will in general not be included, since
they produce p-independent Poisson and trace
operators by (74), cf. Remark 3.9.

The precise definition of the appropriate trans-
mission condition, and the proof of the full com-
position rules, make heavy use of the complex for-
mulation of the theory and will be omitted here.
It is found that when A and A’ are systems of
operators belonging to the calculus, so is their
composition 4",

r_( P++G K PL+G K’
AA(T 5><T' s

" " "
()= (75)

with resulting symbol classes where the indices
are added and modified like in Proposition 3.10.

The operators behave in a standard way un-
der coordinate transformations, so they can be
defined to act on the sections of smooth vector
bundles over smooth compact manifolds X with
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boundary X'. (Suitable noncompact manifolds
may be included too, cf. e.g. [G96].)

Now let, us consider trace expansions. When A
is a u-dependent system as in (75), of order m <
—n and class 0, going from C> (X, E)xC*>° (X', F)
to itself (where E and F' are vector bundles over
X resp. X'), then

Tr A= Trx(P+ + G) + Trx:S.

For Trx Py and Trx,S we have results as in The-
orem 2.9 and Corollary 2.10, based on the theory
for boundaryless manifolds. But Trx G demands
new results. Tt is here that Theorem 3.11 is ex-
tremely useful, because it allows us to write, in
each local coordinate patch at the boundary,

TrxG = Trx: (tr,G).

Here tr,G is a ¥do on the boundary, which is it-
self a boundaryless manifold, and the symbol of
tr,G belongs to the weakly parametric calculus
of [GS95], so Theorem 2.9 and Corollary 2.10 can
be applied in dimension n — 1 to give a trace ex-
pansion for this term. One finds for example:

Theorem 3.12. Let G be a singular Green
operator of class 0 on X, with polyhomoge-
neous symbol-kernel lying in S™® 1(R"! x
R" ' T, 8, ) inlocal coordinates (whereby tr,,G
has symbol in S™®9(R"~! T, C) in local coordi-
nates on X'), holomorphic in pu. Assume more-
over that the homogeneous terms in the symbol
of tr,,G lying in S™~540 with m — j > —n are
integrable in &'. Then G is trace-class, and the
trace of G has an asymptotic expansion

oo
m+d+n—1—j3
TrG ~ Z cilt /

7=0

+3 (cilogp+ ¢t * (76)
k=0

for p — oo in closed subsectors of I'. The coeffi-
cients ¢; and ¢, are determined from the homo-
geneous terms in the symbol.

The use of tr,, here replaces the circular per-
mutation used in a special case in (44).
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This calculus covers all cases connected with
Dirac operators, and also much more general
cases, where the singular Green operators are not
finite sums of products of particular Poisson and
trace operators. The calculus is used in [G01"].

It should be noted that the “interior” ¢do’s P
allowed in this calculus are not nearly as general
as for example those considered in [G96] (since
most u-independent operators do not fit in). This
does not exclude that an expansion like (76) can
hold for other operators, since what we really
need in order to show this is that we get a ¢do
in the weakly parametric calculus of [GS95] or
[GHO1] after performing the reduction to X' (the
application of tr,).

In the last section we shall consider a case
with somewhat different ingredients: There is
a p-independent interior do involved, but the
parameter-dependence occurs in a factor which
is a very nice operator having a rational symbol
with full control over the poles: the resolvent of a
Dirichlet Laplacian. In this case it is possible to
make a full analysis of trace formulas by residue
calculus and use of special functions.

3.3. The non-commutative residue

Wodzicki introduced in [W84] a trace func-
tional (a linear functional vanishing on commu-
tators) for the algebra of classical ¢¥do’s S on
a compact manifold, called the non-commutative
residue res(S), and identified it with the residue
at zero in the trace expansion of SA™*:

res(S) = ord A - Ress—oTr(SA™?), (77)

here A is an auxiliary elliptic operator. In the cor-
responding formulation for the iterated resolvent
S(A — XI)™N, res(S) is the first log-coefficient
¢g in the trace expansion (31) (up to a universal
factor). Wodzicki also describes res(S) by an in-
tegral formula in terms of the symbol of S. See
also Guillemin [Gu85].

For operators Py + G in the Boutet de Mon-
vel calculus, a similar trace functional was intro-
duced by Fedosov, Golse, Leichtnam and Schrohe
[FGLS96], defined by an integral formula in terms
of the symbols of P and G. However, this was
not shown to be a residue as in (77), nor a log-

coefficient in a resolvent trace, simply because

such trace formulas were not sufficiently devel-
oped for the Boutet de Monvel calculus.

In a joint work with Schrohe [GSO01] we have
attacked this problem. It is interesting that in
this case it is a log-term one is after, whereas the
log-terms may seem to be something of a nuisance
in the previous cases.

We consider the product

(Py +G)(Pyp— A)™N,

where P; p stands for the Dirichlet realization of
a strongly elliptic second-order differential opera-
tor P; with scalar principal symbol near X’. The
calculus of [GO01'] is not helpful, since it does not
allow general interior parameter-independent fac-
tors. We use instead that Qy = (P, — AI)~! has
a symbol at X’ consisting of rational functions of
&n with a pole ix™ (2, €', p) with positive imagi-
nary part and a pole —ix ™~ (z', &', 1) with negative
imaginary part, where k¥ and k~ behave nicely
as functions of (&', p), p = (=A)=.
This is coupled with Laguerre expansions of the
symbols of P and G, which break the composed
symbols up in small pieces that can be treated by
residue calculus and summed up afterwards. The
Laguerre expansions used here are expansions in
the following orthogonal basis of H* (cf. (49)):

o —i&n)k
Fulbno) = )

W7 keN, o=(£),

and the corresponding orthogonal basis of et S, :
(e, 0) = H(wn)(0 = 0,,)" (xpe” ") [KL,

where H(z,) = 1R, .

(One might think that the composition of a
p-independent operator with a u-dependent op-
erator could in general be handled by expan-
sion of the former symbol in Laguerre functions
@ (€n, (€')) and the latter symbol in Laguerre
functions @} (&, ((¢', 1)), but this gives severe
problems with the convergence of the resulting
series.)

We show in [GSO01] that the normal trace of
each piece belongs to the calculus of [GS95], hence
defines an operator with a trace expansion as in
Corollary 2.10, and moreover, that these trace ex-
pansions sum up to a similar trace expansion of



the full operator. Keeping a special check of the
first log-coefficient ¢f, we show that it does in-
deed satisfy the integral formula of [FGLS96] for
res(Py + G).

4. Concluding remarks

After having recalled the definition and basic
properties of pseudodifferential operators (1do’s)
on R", we explained the special problems con-
nected with parameter-dependent do’s such as
the resolvent, and we introduced a symbol calcu-
lus for A-dependent operators that allows show-
ing complete trace expansions (for operators on
compact manifolds) in powers A\* and logarith-
mic terms A*logA. Heat trace expansions are
likewise obtained, as well as the pole structure
of zeta functions. An improved calculus allows
treatment of complex powers of resolvents too.

We have moreover explained a similar theory
for operators on manifolds with boundary, in par-
ticular Dirac operators with spectral boundary
conditions. New results on the vanishing or the
stability of the logarithmic terms were presented,
and we ended up by showing how the noncom-
mutative residue of a pseudodifferential boundary
operator enters as a log-coefficient.
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