
LOGARITHMIC TERMS IN ASYMPTOTICEXPANSIONS OF HEAT OPERATOR TRACESPeter B. Gilkeyy and Gerd GrubbzAbstract. Let P be an elliptic selfadjoint positive classical pseudodi�erential op-erator of order d on a compact m-dimensional manifold without boundary. The heattrace of P has an asymptotic expansion in t(l�m)=d and tk log t for l = 0; 1; 2; ::: andk = 1; 2; :::. We show that the coe�cients of all terms in this expansion are non-trivial for a dense set of P . We show that the coe�cient of the t(l�m)=d term is notlocally computable when (l �m)=d is a positive integer; the remaining coe�cientsare known to be locally computable. | Let PB be an operator of Dirac type ona compact n-dimensional manifold with smooth boundary such that the structuresare product near the boundary; here a spectral boundary condition is imposed. Let�1 = PB�PB and �2 = PBPB�. If n is even, the heat trace of �i has an asymptoticexpansion in t(l�n)=d and tk+1=2 log t for l = 0; 1; 2; ::: and k = 0; 1; 2; :::; if n is odd,there is an expansion without the tk+1=2 log t terms. We show that all coe�cients(all but one if n is odd) are nontrivial for a dense set of operators.1. Pseudodi�erential operators on manifolds without boundary.Let M be a compact boundaryless m-dimensional C1 manifold provided witha smooth volume element, let E be a smooth Hermitian vector bundle over M , letd be a positive integer, and let P be a classical pseudodi�erential operator ( do)in E of order d which is elliptic, selfadjoint and positive (> 0); such a P will besaid to be admissible. We refer to Seeley [15, 17], Greiner [10], Duistermaat andGuillemin [7], Grubb [12], Agranovi�c [1], and Grubb and Seeley [13] for proofs ofthe following analytic results.Let e�tP be the solution operator e�tP : f 7! u for the heat equation @tu+Pu = 0with initial value ujt=0 = f . This operator is trace class for each t > 0, and as t # 0there is an asymptotic expansion of the form:(1.1) h(P; t) := Tr e�tP �P1l=0 al(P )t(l�m)=d +P1k=1 bk(P )tk log t:For Re(s) >> 0, let �(P; s) := TrP�s; this has a meromorphic extension to C withisolated simple poles. The Mellin transform yields the relationship(1.2) �(s)�(P; s) = R10 ts�1h(P; t)dt:1991 Mathematics Subject Classi�cation. Primary 35S15, secondary 58G11, 53A55.Key words and phrases. Pseudodi�erential operator, heat operator trace, logarithmic terms,Dirac operator, spectral boundary condition.yResearch partially supported by the NSF (USA), Oberwolfach, and MPIM (Germany)zResearch partially supported by the Science Research Council of DenmarkGilkey-Grubb Paper version 33 processed 9 December 1996 Typeset by AMS-TEX1



Since h(P; t) decays exponentially as t ! 1, one can use equations (1.1) and(1.2) to see that �(s)�(P; s) has a meromorphic extension to C with poles at thepoints (m � l)=d, l = 0; 1; 2; : : : . Let N := f1; 2; :::g. The poles at the pointss = (m � l)=d 62 �N are (at most) simple, and the poles at the points s 2 �N are(at most) double. (The concept of poles is used in a general sense where residuesand other Laurent coe�cients can be zero.) There is the following straightforwardrelationship between the heat trace coe�cients and the coe�cients of the Laurentexpansions at these points:(1.3) al(P ) = Ress=(m�l)=d�(s)�(P; s); andbk(P ) = �Ress=�k(s+ k)�(s)�(P; s):The asymptotic expansion of h(P; t) determines the pole structure of �(s)�(P; s) andconversely, the pole structure of �(s)�(P; s) determines the asymptotic expansionof h(P; t).If P is a di�erential operator, then bk(P ) = 0 for all k, and al(P ) = 0 when l isodd (in this case the order d of P is necessarily even). There is a similar expansion,given in equation (2.1) below, when the di�erential operator P is considered ona compact manifold with boundary and is provided with a local elliptic boundarycondition.If P is merely assumed � 0, P�s is de�ned to be zero on the nullspace V0(P ), andthe transition between the heat trace expansion (1.1) and the pole structure (1.3)continues to hold when the residue at 0 is modi�ed by subtraction of dim(V0(P )).We say that a property holds generically for the values of a parameter in R�(or (R+)� or another complete metric vector space) close to x0 if it holds for thepoints in some small ball about x0 minus a set of Baire category I (recall that thesets of Baire category I are countable unions of nowhere dense sets). We denotethe imaginary unit (p�1) by i.1.4 Theorem. Let M be a compact boundaryless C1 manifold, E a C1 vectorbundle over M and d a positive integer. Let P be any elliptic, selfadjoint positiveclassical pseudodi�erential operator of order d in E. There exists a selfadjointclassical pseudodi�erential operator Q of order d� 1 in E commuting with P suchthat for generic small values of a and b, al(P + aQ + b) 6= 0 for all l � 0 andbk(P + aQ+ b) 6= 0 for all k � 1.1.5 Remark. Let m and k be odd and let d = 1. By considering the square rootof an operator of Laplace type, Cognola et al. [6] construct operators where bk isnon-trivial.Proof. Let P1 := P 1=d. For real parameters ~" = ("1; :::; "d�1) and %, de�ne:P2(~"; %) := P + "1P d�11 + :::+ "d�1P1 + %:By Seeley [15], P2(~"; %) is an admissible d'th order  do for small values of ~" and %.Let 1 � i � d� 1. Then@"i Tr e�tP2(~";0) = �tTrfP d�i1 e�tP2(~";0)g; and hence@"i�(s)�(P2(~"; 0); s)j~"=0 = ��(s+ 1)�(P; s + i=d):2



Note that a0(P ) > 0 (it is an integral of the principal symbol, see for example [15]).Thus the residue of �(s)�(P; s) at s = m=d is nonzero. Since �(m=d) is regular,�(P; s) has a non-trivial simple pole when s = m=d. Thus �(P; s+ i=d) has a simplepole with non-trivial residue at s(i) := (m � i)=d. Since s(i) > �1, �(s(i) + 1)is regular so @"i�(s)�(P2(~"; 0); s) has a non-trivial simple pole at s(i) when ~" = 0.The variation of the residue is the residue of the variation in this instance. Thus@"i Ress=s(i) �(s)�(P2(~"; 0); s) = Ress=s(i) @"i�(s)�(P2(~"; 0); s) 6= 0and @"iai(P2(~"; 0)) 6= 0 at ~" = 0. Thus we may choose ~" so that ai(P2(~"; 0)) 6= 0 for1 � i � d� 1; a0(P2(~"; 0)) = a0(P ) is always nonzero. Since(1.6) h(P2(~"; %); t) = h(P2(~"; 0); t)e�t%;al(P2(~"; %)) =P0�j�l=d(�%)jal�dj(P2(~"; 0))=j!:Choose j so that l� dj = i with 0 � i < d. Then al�dj(P2(~"; 0)) 6= 0 so al(P2(~"; %))is a non-trivial polynomial in % and is nonzero for generic %. This shows that thereexists an admissible  do P2 which has the same leading symbol as P and whichcommutes with P so that al(P2) 6= 0 for l � 0.We now study the invariants bk. Let P3(�1; �0) := P 21 + �1P1 + �0; P3 is anadmissible second order  do for small values of �0 and �1 [15]. The argument givenabove shows that �0 and �1 can be chosen so al(P3(�1; �0)) 6= 0 for all l � 0. LetP4 = pP3; it is an admissible �rst order  do [15]. Since am+1(P3) 6= 0 and since� is regular at s = �1=2, �(P3; s) has a non-trivial simple pole at s = �1=2. Thusat s = �1, �(P4; s) = �(P3; s=2) has a non-trivial simple pole and �(s)�(P4; s) hasa double pole so b1(P4) 6= 0. Let P5(�2) := P4 + �2; P5 is an admissible �rst order do for �2 small. Then h(P5(�2); t) = h(P4; t)e�t�2 sobk(P5(�2)) =P0�j<k(��2)jbk�j(P4)=j!:This is a non-trivial polynomial in �2 so we can choose �2 so that bk(P5(�2)) 6= 0 fork � 1; this implies that �(s)�(P5(�2); s) has a double pole at s 2 �N. Let P6 = P d5 ;it is an admissible  do of order d. Then �(s)�(P6; s) = �(s)�(P5(�2); ds) has adouble pole at s 2 �N so bk(P6) 6= 0 for k � 1. This shows that there exists anadmissible  do P6 which has the same leading symbol as P and which commuteswith P so that bk(P6) 6= 0 for k � 1.For 0 � �3 � 1, let P7(�3) = �3P2 + (1 � �3)P6; it is an admissible  do oforder d. The invariants al for 0 � l < d and b1 are non-trivial polynomials in �3so we can choose �3 so al(P7(�3)) 6= 0 for 0 � l < d and so b1(P7(�3)) 6= 0. LetQ = P7(�3) � P ; Q is a selfadjoint  do of order d � 1 which commutes with P .Let P (a; b) = P + aQ + b; this is an admissible  do of order d for small values of(a; b). Then al(P (a; 0)) for 0 � l < d and b1(P (a; 0)) are non-trivial polynomialsin a; hence they are nonzero for generic values of a and we restrict to such valuesof a henceforth. Since h(P (a; b); t) = h(P (a; 0); t)e�tb, al(P (a; b)) for l � 0 andbk(P (a; b)) for k � 1 are non-trivial polynomials in b; hence they are non-trivial forgeneric values of b. �Fix the order d, the dimension m of M and the rank r of E. Choose a localcoordinate system onM and a local frame for E. A local formula A(P )(x) is simply3



a smooth function of the values at x of a �nite number of derivatives of a �nitenumber of terms (up to a �xed number n0) in the asymptotic expansion of the totalsymbol of P such that A(P )(x) is de�ned for all admissible P ; this formula is said tobe invariant if the value is independent of the particular local coordinate system andframe which is chosen. A scalar valued function a(P ) is said to be locally computableif there is an invariant local formula so that a(P ) = RM A(P )(x). When P is anadmissible pseudodi�erential operator, the invariants al(P ) for (l �m)=d 62 N arelocally computable and the invariants bk(P ) for k 2 N are locally computable, byformulas based on the rules for composition and inversion of  dos (Seeley [15]).1.7 Theorem. If (l �m)=d = k 2 N, then al(P ) is not locally computable.Proof. Suppose the contrary; let Al be the corresponding local formula for �xed(m; d; r; n0). Let g be a Riemannian metric on M := Sm. Suppose �rst m > 1.Let �(g) := (�0(g)2+ jR(g)j2)1=4
 Ir acting on a trivial bundle of �ber dimensionr where �0(g) is the scalar Laplacian and where jR(g)j2 is the norm of the totalcurvature tensor. Then �(g) is a natural �rst order elliptic selfadjoint classical  dowith �(c�2g) = c�(g). Since Sm does not admit a 
at metric, jR(g)j2 does notvanish identically so �(g) is positive and hence admissible. If m = 1, let �(g) be�0(g)1=2 with coe�cients in r copies of the M�obius bundle; again �(g) is admissibleand �(c�2g) = c�(g). The operatorP (g; ~�) := �(�(g)2 + �1�(g) + �0)1=2 + �2	dis admissible when the components of ~� are nonnegative. Furthermore, the ar-gument used to prove Theorem 1.4 shows that bk(P (g; ~�)) is nonzero for genericsmall ~� with nonnegative components. For c > 0, let g(c) := c�2g, �1(c) := c�1,�0(c) := c2�0, and �2(c) := c�2. Then P (g(c); ~� (c)) = cdP (g; ~�). We will showfurther below that there exists an asymptotic expansion as c # 0 of the form:(1.8) Al(P (g(c); ~� (c))) =P0�n�N cnAl;n(g; ~�) +O(cN+1); for any N:Since dvol(g(c)) = c�mdvol(g), we integrate equation (1.8) to see that(1.9) al(P (g(c); ~� (c))) =P0�n�N cn�mal;n(g; ~�) +O(cN+1�m):On the other hand, since P (g(c); ~� (c)) = cdP (g; ~� ), we may equate asymptoticexpansions of h(cdP; t) and h(P; cdt) and compare the coe�cients of tk and tk log tto see that bk(cP ) = ckbk(P ) and that(1.10) al(P (g(c); ~� (c))) = ckfal(P (g; ~� )) + d log c bk(P (g; ~� ))g:Since bk(P (g; ~�)) is nonzero for generic small values of ~� , the expansion in equation(1.9) is inconsistent with the expansion in equation (1.10). This contradictionimplies that al is not locally computable.To establish equation (1.8) we generalize an argument given in Gilkey [8]. Fixx0 2 M and choose a system of local coordinates X on M centered at x0. Intro-duce formal variables gij(X; g) := g(@Xi ; @Xj ) and gij=�(X; g) := @�x gij(X; g). Then4



Al(P (g; ~�)) is an invariantly de�ned smooth function of the variables gij=� and ~�whose value is independent of the particular coordinate system X which is chosen.This function is de�ned for gij positive de�nite and �i � 0; there is no restrictionon the gij=�(X; g) variables for j�j > 0. We now see that the restriction P > 0 wasinessential; a local formula can not detect the globally de�ned kernel and hence wecan work with any natural selfadjoint nonnegative operator P (g). Let Xc = c�1Xbe a new coordinate system on M centered at x0. Then (see [8] for details):gij=�(Xc; c�2g)(x0) = cj�jgij(X; g)(x0); soAl(P (g(c); ~� (c))) = Al(cj�jgij=�(X; g)(x0); ~� (c))is a smooth function of c at c = 0. We expand this function in a Taylor series aboutc = 0 to derive the expansion given in equation (1.8); it is then immediate that theindividual terms in this expansion are invariant separately. �Theorem 1.4 shows that the set of admissible  dos for which all the invariantsal(P ) and bk(P ) do not vanish is a dense set (in a suitable topology). We shall nowshow that the set of admissible partial di�erential operators for which the invariantsal(P ) do not vanish for all even l is dense in the set of admissible partial di�erentialoperators. Here we cannot in general choose the perturbation to commute with P .1.11 Theorem. Let M be a compact boundaryless C1 manifold, E a C1 vectorbundle over M and d a positive integer. Let P be any elliptic, selfadjoint positivedi�erential operator of order 2d in E. There exists a selfadjoint di�erential operatorQ of order 2d� 2 on M such that for generic small values of a, al(P + aQ) 6= 0 forl even and � 0.Proof. First we recall the explicit combinatorial formulas for the invariants a2j(P )derivable from Seeley [15] (further details can be found in [9] or [11]). Let pd+:::+p0be the total symbol of the di�erential operator P . For � 2 C n [0;1[ , setq�d := (pd � �)�1 and inductively setq�d�l(x; �; �) := �q�dPj�j+d+j�k=l; j<l(�i)j�j@�� pk@�x q�d�j=�!:Let km := i(2�)�m�1 and let C be a suitably chosen contour in C about the positivereal axis. Then al(P ) = kmR T�MR Ce�� Tr q�d�l(x; �; �) d�d�dx:Use a partition of unity to construct an operator �0 in E with leading symbol givenby a Riemannian metric onM . Let P1(~"; %) := P +"1�d�10 + :::+"d�1�0+%. Then@"ja2j(P1(~"; 0))j~"=0 = �Cm;2j RT�M j�j2(d�j) RC e�� Tr q�d(x; �; �)2 d�d�dx 6= 0:Thus we may choose ~" so that a2j(P1(~"; 0)) 6= 0 for 0 < j < d; a0(P1(~"; 0)) isalways nonzero. Since h(P (~"; %); t) = h(P1(~"; 0); t)e�t%, there exists (~"; %) so thatal(P1(~"; %)) 6= 0 for l even and � 0. We set Q := P � P1(~"; %). Then al(P + aQ) isa non-trivial polynomial in a and hence is nonzero for generic a. �5



We say that a second order di�erential operatorD is of Laplace type if the leadingsymbol of D is scalar and is given by a Riemannian metric; D = �Pij gij@i@j+lower order terms. We say that a �rst order di�erential operator A is of Dirac typeif A2 is of Laplace type. Let Clifc(Rm ) denote the complex Cli�ord algebra. If eiis the usual orthonormal basis for Rm , this is the universal complex unital algebragenerated by the ei subject to the Cli�ord commutation relationseiej + ejei = �2�ij :The algebra Clifc(R2k ) has a unique complex irreducible representation S of dimen-sion 2k; the algebra Clifc(R2k+1 ) has two inequivalent complex irreducible repre-sentations Si of dimension 2k. Every complex representation of these algebras canbe expressed uniquely in terms of S or in terms of S1 and S2, see Atiyah, Bott,and Shapiro [2] for details. Let M be a compact connected boundaryless C1 man-ifold. Let D(M) be the space of selfadjoint operators of Dirac type on M ; this isa complete metric space in a suitable topology. The leading symbol of an operatorA 2 D(M) de�nes a Clifc(M) module structure on the �bers of the vector bundleon which A acts. Let m be odd. If M is orientable, let D(M; r1; r2) be the spaceof operators giving rise to a module structure isomorphic to r1S1 + r2S2. If M isnot orientable, locally the structure is always of the form r(S1+S2) and we denotethis space by D(M; r; r). If m is even, let D(M; r) be the space of operators givingrise to the module structure rS. If m is odd, D(M) is the disjoint union of theD(M; r1; r2) while if m is even, D(M) is the disjoint union of the D(M; r). D(M) isa Fr�echet space, e.g. with the seminorms de�ning the C1 spaces of coe�cients in a�nite system of local coordinate patches (also global seminorms could be de�ned).We shall need the following technical result.1.12 Lemma. Let M be a compact boundaryless C1 manifold, E a C1 vectorbundle over M , D an operator of Laplace type in E, and  i 2 C1(End(E)). LetD(") := D + " 1 + "2 2. Expand a2l(D(")) = P0�i�2l a2l;i(D; 1;  2)"i as apolynomial in ". Thena2l;2l(D; 1;  2) = (4�)�m=2(�1)l=l! RM Tr( l2):Proof. Let D1 = �(gij@i@j +Ak@k +B) be an operator of Laplace type where Akand B are endomorphisms of E. We de�ne:ord(@�x gij) := j�j; ord(@�xAk) := j�j+ 1; and ord(@
xB) := j
j+ 2:The combinatorial formula given in the proof of Theorem 1.11 shows a2l(D1) is thetrace of a non-commutative polynomial in the variables @�x gij (for j�j > 0), @�xAk,and @
xB which is homogeneous of order 2l with coe�cients which are smoothfunctions of the gij variables. See [9, Lemma 1.8.3] for further details. The coe�-cient of "2l in a2l(D(")) must therefore be of the form c(m; l) RM Tr( l2);  1 doesnot enter. We can evaluate this constant by taking  1 = 0 and  2 = I . Thenh(D + "2; t) = h(D; t)e�"2t, so a2l(D + "2) = (�1)l"2la0(D)=l! plus lower orderterms in ". We use the identity a0(D) = (4�)�m=2vol(M) dim(E) to complete theproof. �We now study the invariants al(A2) for operators A of Dirac type.6



1.13 Theorem.(1) Let M be a compact connected boundaryless C1 manifold of dimensionm > 1, and let A 2 D(M). Then a2l(A2) 6= 0 holds generically for operatorsclose to A in D(M).(2) If A 2 D(S1; r1; r2) with r1r2 = 0, then a2l(A2) = 0 for all l > 0.(3) If r1r2 6= 0 and A 2 D(S1; r1; r2), then a2l(A2) 6= 0 holds generically foroperators close to A in D(S1; r1; r2).Proof. The invariants a2l are given by local formulas so they are continuous on D.Consequently, to prove assertions (1) and (3), it su�ces to show for each l thata2l(A2) does not vanish on a dense set. The proof of (1) essentially follows fromwork of Branson and Gilkey [4]. We outline the proof since there is one technicalpoint that needs ampli�cation which was omitted in [4]. Let A 2 D(M). LetA(") := A+ ". We compute:Pi @2"ai(A(")2)t(i�m)=2 � @2" Tr(e�tA(")2)=@"Tr(�2tA(")e�tA(")2) = Tr((�2t+ 4t2A(")2)e�tA(")2)=2t(�1� 2t@t) Tr(e�tA(")2) �Pj 2(�1 +m� j)aj(A(")2)t(j�m+2)=2:We compare coe�cients of t in the two asymptotic expansions and set i = 2l andj = 2l� 2 to see:(1.14) @2"a2l(A(")2) = 2(1 +m� 2l)a2l�2(A(")2):Suppose that m is even or that 2l < m. Then m + 1 � 2l 6= 0, and equation(1.14) can be applied recursively to construct a non-zero constant c(m; l) so that@2l" a2l((A+ ")2)j"=0 = c(m; l)a0(A2) 6= 0:This shows that a2l is nonzero on a dense set. It remains to consider the caseswhere m is odd and 2l > m. Again, we can �nd c(m; k) 6= 0 so that@2k" am+1+2k(A(")2) = c(m; k)am+1(A(")2):Thus it su�ces to prove that am+1(A(")2) is nonzero on a dense set. If f 2 C1(M),there is an expansionTr(fAe�tA2) �P1l=0 al(f;A;A2)t(l�m�1)=2:Let A(%) := A+ %f . We computeP1i=0 @%ai((A+ %f)2)j%=0t(i�m)=2 � @% Tr(e�t(A+%f)2)j%=0=� 2tTr(fAe�tA2) � �2P1j=0 aj(f;A;A2)t(j�m+1)=2:We compare coe�cients of t in the two asymptotic expansions and set i = m + 1and j = m to see @%am+1((A+ %f)2)j%=0 = �2am(f;A;A2):7



The invariants al(f;A;A2) are locally computable;al(f;A;A2) = RM f(x)Al(A;A2)(x):Thus to show that am+1(A2) is generically non-zero, it su�ces to show that thelocal formula Am(A;A2)(x) does not vanish identically for a dense set of operatorsA. Relative to a system of local coordinates and in a local frame for E, we mayexpress the operator as A = Pi 
i@i + b. Fix x0 2 M and normalize the choice ofcoordinates so that gij(x0) = �ij . Fix (m; r1; r2). We can normalize the local frameon the vector bundle in question so that the 
i have a standard form at x0. ThenAm(A;A2)(x0) is a polynomial in the matrix components of b and its derivativesand in the matrix components of the derivatives of the 
i which is universallyde�ned. Thus we need only show that this polynomial is non-trivial; the topologyof the underlying manifold M plays no role. For m > 3 odd, the product argumentdescribed in [4, page 81] preserves the structure constants (r1; r2) and reduces thisto the case m = 3. The case m = 3 follows from [4, Theorem 4.1 (d)]. Thiscompletes the proof of assertion (1). We note that the argument given in [4] didnot take into account the need to specify the structure constants (r1; r2) and wasincomplete at this point.Suppose that m = 1. Parametrize the circle by arc length to write A = 
@x + bwhere 
2 = �I . If r1 = 0 or if r2 = 0, then 
 is scalar so A = �i@x + b. Choose alocal primitive B for b. Then A = �ie�iB@xe�iB so A is locally gauge equivalentto �i@x and all the higher order local invariants of A vanish. This proves assertion(2). If r1r2 6= 0, we can choose 
̂ selfadjoint so that 
̂
 + 

̂ = 0 and so thatTr(
̂2) 6= 0. Set A(") := A + "
̂. Then we have A(")2 = A2 + " + "2
̂2 where = b
̂ + 
̂b is an operator of order zero. By Lemma 1.12, the coe�cient of "2l ina2l(A(")2) is non-trivial and assertion (3) follows. �Let D be a self-adjoint positive operator of Laplace type and let u 2 C . LetLu;j(D) for j � �1 be the jth coe�cient in the Laurent expansion of �(s)�(D; s)about s = u; Lu;�1(D) = a2n(D) if u = (m � 2n)=2 for some n and Lu;�1(D) = 0otherwise. If m is even, let D(M; r1; r2) = D(M; r1). For A 2 D(M; r1; r2) withker(A) = 0, we consider the invariants Lu;j(A2). For generic values of ", A + " isinvertible; we restrict to such values of " henceforth. Let � > 0, let % 2 R n f0g,and let � be the multiplicity of the lowest eigenvalue � of A2. We have@2k" �(s)�((A + ")2; s) = 2s(2s+ 1):::(2s+ 2k � 1)�(s)�(A(")2; s+ k);(1:15) @k��(s)�(A2 + �; s) = (�1)ks(s+ 1):::(s+ k � 1)�(s)�(A2 + �; s+ k);(1:16) limk!1 �s+k�(A2; s+ k) = �:(1:17)Note that �((%A)2; s) = j%j�2s�(A2; s). We expand j%j�2s and �(A2; s) in Laurentseries separately, multiply the two series together, and collect terms to see that(1.18) Lu;j((%A)2) = j%j�2uP�1�k�j Lu;k(A2)(�2)j�k(log j%j)j�k=(j � k)!8



1.19 Lemma. Let (u;m; r1; r2) be given. There exists A 2 D(Sm; r1; r2) so thatLu;0(A) 6= 0.Proof. We shall assume r1 = 1 and r2 = 0; taking direct sums and replacing A by�A de�nes operators with arbitrary structure constants and reduces the proof ofthe lemma to this special case. Let A1 2 D(Sm; 1; 0) be the Dirac operator de�nedby the spin structure on Sm. Suppose that 2u is not a negative odd integer, andconsider a k 2 N. Since 2u(2u+ 1):::(2u + 2k � 1)�(u) 6= 0, we can use equations(1.15) and (1.17) to see that for su�ciently large k, @2k" Lu;�1((A1 + ")2) = 0 and@2k" Lu;0((A1 + ")2) 6= 0. This shows that Lu;0((A1 + ")2) 6= 0 for generic values of". For the remainder of the proof, we shall assume 2u is a negative odd integer.Suppose that m = 1. Let �(s) := Pn>0 n�s be the Riemann zeta function. Thefunctional equation ��s=2�(s=2)�(s) = ��(1�s)=2�((1 � s)=2)�(1 � s) shows that�(u) 6= 0. The eigenvalues of the Dirac operator A := �i@� on the M�obius bundleover the circle are fn + 1=2g for n 2 Z. Since �(s; A2) = 22s+1(1 � 2�2s)�(2s),�(u)�(u;A2) 6= 0 so Lu;0(A2) 6= 0.Suppose m > 1 is odd. Choose l > 0 so that u = (m� 2l)=2. By Theorem 1.13,there exists A2 2 D(Sm; 1; 0) close to the Dirac operator on Sm so that a2l(A22) 6= 0.We set j = 0 in Equation (1.18) to see Lu;0((%A2)2) 6= 0 for generic values of %.Suppose that m is even. The spin bundle on Sm decomposes into the half spinbundles S�. Let 
0 = �1 on S�; 
0 anti-commutes with the Dirac operator A1.Let A2(�) := A1 + 
0�1=2. Since (�u)(�u � 1):::(�u � k + 1)�(u) 6= 0, and sinceA2(�)2 = A21 + � , equations (1.16) and (1.17) show that @k�Lu;0(A2(�)2) 6= 0 forlarge k. �As recalled earlier, the invariants Lu;�1 are locally computable. On the otherhand:1.20 Theorem. The invariants Lu;j are not locally computable for j � 0.Proof. We �x (m; r1; r2). Suppose that Lu;j is given by a local formula Lu;j . Let% 2 R n f0g. Let X be a system of local coordinates centered at x0 2 M . LetA =Pi 
i@i + b. Let 
i=� := @�x 
i and b=� := @�x b. Then Lu;j(A) is an invariantlyde�ned smooth function of the variables 
i=� and b=� whose value is independentof the particular coordinate system which is chosen. This function is de�ned for 
isatisfying the Cli�ord commutation relations; there are no restrictions on the othervariables. Let % 2 R n f0g and let X% = %�1X . Then
i=�(X%; %A)(x0) = %j�j
i=�(X;A)(x0);b=�(X%; %A)(x0) = %1+j�jb=�(X;A)(x0); andLu;j((%A)2)(x0) = Lu;j(%j�j
i=�(X;A); %1+j�jb=�(X;A))(x0):Thus Lu;j((%A)2) is smooth at % = 0. We expand this function in a Taylor seriesabout % = 0 to showLu;j((%A)2) =P0�n�N Lu;j;2n(A2)%2n +O(%2N+2); for any N ;9



only even powers of % appear since Lu;j((%A)2) is an even function of %. We integratethis expression with respect to the metric de�ned by the leading symbol of A to see(1.21) Lu;j((%A)2) =P0�n�N Lu;j;2n(A2)j%j2n�m +O(%2N+2�m):Use Lemma 1.19 to choose A 2 D(Sm; r1; r2) so that Lu;0(A) 6= 0. If j > 0, thepresence of (log j%j)jLu;0 in equation (1.18) contradicts equation (1.21). If j = 0and if u 6= (m�2n)=2 for n � 0, then Lu;�1(A2) = 0. Thus equation (1.18) impliesLu;0((%A)2) = j%j�2uLu;0(A2); this contradicts equation (1.21) since the power of% is not of the correct form.Suppose that j = 0 and that u = (m�2n)=2 for some n. If m > 1, use Theorem1.13 to choose A so that Lu;�1(A2) 6= 0. The presence of (log j%j)Lu;�1(A2) inequation (1.18) contradicts equation (1.21). If m = 1, then u = (1 � 2n)=2. Ifn = 0, Lu;�1(A) = a0(A2) 6= 0 and the same argument shows Lu;�1 is not locallycomputable. Suppose n � 1. Choose A 2 D(S1; 1; 0) so that Lu;0(A) 6= 0; we takethe direct sum of copies of A and of �A to treat the general case. Let A(%) = %A for% 6= 0. Since Lu;�1(A(%)2) = 0, we have Lu;0(A(%)2) = %2nLu;0(A2). The operatorA(%) is locally gauge equivalent to the operator A; consequently Lu;0(A(%)2) =Lu;0(A2). Since n 6= 0, Lu;0(A) = 0 so Lu;0(A) = 0 which is false. �2. Operators of Dirac type with spectral boundary conditions.Let X be a compact connected n-dimensional C1 manifold with smooth bound-ary M = @X (of dimension m = (n � 1)). Let D be a realization of a secondorder strongly elliptic di�erential operator with a local boundary condition. Thenequation (1.1) generalizes to become(2.1) h(D; t) := Tr e�tD �P1l=0 al(D)t(l�n)=2:For example, if we let D act like �@2� + c on the interval [0; �] with Dirichletboundary condition, then h(D; t) = (p� t�1=2 � 1=2)e�ct + O(tk) for any k; thisprovides an example where all the coe�cients al in equation (2.1) are nonzero.If a non-local boundary condition is imposed (as in Atiyah, Patodi, and Singer[3]), then there is an asymptotic expansion which can furthermore contain logarith-mic terms. Let us recall the setting of [3], [13]. Choose a collared neighborhoodXc :=M � [0; c[ of M in X for some c > 0. Let xn denote the coordinate in [0; c[(it is considered as the normal coordinate). Let X have a smooth volume element�X and suppose there is a volume element �M on M so that �X = �M dxn on Xc.Let Ei be Hermitian C1 vector bundles over X and letP : C1(E1)! C1(E2)be a �rst-order elliptic di�erential operator from E1 to E2. Let E0i denote therestriction of the bundles Ei to the boundary M . On Xc, the Ei are isomorphic tothe pull-backs of the E0i. Let @n denote the normal derivative. We assume on Xcthat P = �(@n + A) where � is a unitary morphism from E01 to E02, independentof xn, and where A is a �xed elliptic �rst order di�erential operator on C1(E01)which is selfadjoint in L2(E01), de�ned with respect to the Hermitian metric in E01.In this setting, we shall say that the structures are product near the boundary.10



TheAPS operator PB is de�ned as the operator from L2(E1) to L2(E2) acting likeP and with domain de�ned by a nonlocal (so-called spectral) boundary condition:D(PB) = fu 2 H1(E1) (Sobolev space) j B(ujM ) = 0 g;here B is an orthogonal projection in L2(E01) of the form B = �� + B0, where�� is the orthogonal projection onto the sum of eigenspaces for A with eigenvalues� � 0, and B0 commutes with A and ranges in V0(A). (More general boundaryconditions are considered in Grubb and Seeley [14] and in Br�uning and Lesch [5].)By [16], PB is a Fredholm operator.Now consider the associated second order operators�1 := PB�PB and �2 := PBPB�:The following analogues of the expansion (2.1) for the heat traces of these operatorsh(�i; t) := Tr e�t�i were established in [13]. If n = dim(X) is even, then(2.2) h(�i; t) �P1l=0 al(�i)t(l�n)=2 +P1k=0 bk(�i)tk+1=2 log t;with coe�cients satisfying, for suitable universal constants �(k; n) and 
(k; n) 6= 0:(2.3) bk(�i) = �(k; n)a2k+n(A2);a2k(�i) = a2k;+(e�i) + fk(A);a2k+1(�i) = 
(k; n)a2k(A2) for k < n=2;a2k+1(�i) = f 0k(A) for k � n=2:Here a2k;+(e�i) = RX A2k(e�i)(x) where the A2k(e�i)(x) are the local formulas de�n-ing the coe�cients in the heat trace expansions for e�1 = eP � eP resp. e�2 = eP eP �,with eP denoting the extension of P to the double eX described in [3]. The fk(A)are locally computable functions of A when 2k 6= n, and the f 0k(A) are, by Theorem1.20, not locally computable.If n is odd, the log t terms do not appear and the expansion has a form similarto that given in equation (2.1):(2.4) h(�i; t) �P1l=0 al(�i)t(l�n)=2;with(2.5) a2k(�i) = a2k;+(e�i) + g0k(A);a2k+1(�i) = 
(k; n)a2k(A2) for 2k + 1 6= n;an(�i) = g00(A):where the g0k(A) are 0 for k < n=2 and are, by Theorem 1.20, not locally computablefor k > n=2.Let P(X) be the space of all operators of Dirac type over X such that thestructures are product near the boundary. Then the tangential operator A is ofDirac type on M . If n is even, let P(X; r1; r2) be the subset of operators such thatA 2 D(M; r1; r2), with structure constants ri independent of the particular bound-ary component considered. In the following theorem, we show that the invariantsof the expansions (2.2) and (2.4) are non-trivial.11



2.6 Theorem. Consider PB with P of Dirac type.(1) Let n = 2. If r1r2 = 0, then bk(�i) = 0 for all k if P 2 P(X; r1; r2).(2) Let n = 2. If r1r2 6= 0, then a1(�i) 6= 0 and bk(�i) 6= 0 for k � 0 holdsgenerically for operator close to P in P(X; r1; r2).(3) Let n � 4 be even. Then al(�i) 6= 0 for l odd < n and bk(�i) 6= 0 for k � 0holds generically for operators close to P in P(X).(4) Let n be odd. Then al(�i) 6= 0 for l odd 6= n holds generically for operatorsclose to P in P(X).(5) Let n be even, let r1r2 6= 0 and let P 2 P(X; r1; r2). Then al(�i) 6= 0 foreven l holds generically for operators close to P in P(X; r1; r2).(6) Let n be odd and let P 2 P(X; r). Then al(�i) 6= 0 for even l holdsgenerically for operators close to P in P(X).Proof. The �rst 4 assertions follow immediately from Theorem 1.13 in view of theformulas (2.3), (2.5) for the coe�cients in question.When l is even, (2.3) and (2.5) show that the invariants al depend on the behaviorof P in the interior; we exploit this fact in the proof. Let ' be a smooth function onX which vanishes near the boundary and which has support in a small coordinateneighborhood O on X . On O, we write P = Pi �iei + b where ei is a localorthonormal frame for the tangent bundle of X . We use �1 to identify E1 and E2over O and therefore assume without loss of generality that �1 = I . The conditionthat P �P has leading symbol given by the metric tensor then yields that the 
i areskew-adjoint and satisfy the Cli�ord commutation conditions 
i
j + 
j
i = �2�ijfor 2 � i � n. Under the assumptions of the theorem, we can �nd 
0 selfadjointwith 
20 = I so that 
0
i + 
i
0 = 0 for 2 � i � n. We let P (") := P + "'
0. Thenthe commutation relations involved imply there exists an operator  of order zeroso that �i(") = �i(0) + " + "2'2.Consider the coe�cients a2j(e�i(")) in the heat trace for the associated Lapla-cians e�i on the doubled manifold eX. Here e�(") = e�(0) + " e + "2 e'2. By Lemma1.12, a2j(e�i(")) is a non-trivial polynomial in ". The same holds for the invarianta2j;+(�i(")) = 12a2j(e�i(")). Since fk(A) in (2.3) and g0k(A) in (2.5) depend onlyon the behavior of P near the boundary, and ' has support in the interior of X ,a2j(�i("))� a2j(�i(0)) = a2j;+(e�i("))� a2j;+(e�i(0))is a non-trivial polynomial in ". Thus a2j(�i(")) is nonzero for all j for genericvalues of " near 0 and the theorem follows. �For the odd dimensional case we conclude, since a union of two sets of Bairecategory I is of Baire category I:2.7 Corollary. Let n be odd and consider PB as above. Then all coe�cientsal(�i) except possibly an(�i) are nonzero generically for operators close to P inP(X).In the even dimensional case, we can include all the remaining coe�cients asfollows: 12



2.8 Theorem. Let n be even and consider P as above. If n = 2, assume r1r2 6= 0.Then all coe�cients are nonzero for operators in a dense subset of a neighborhoodof P in P(X; r1; r2).Proof. We already have that the coe�cients bk and al with l � n or l even arenonzero generically for P1 near P . We shall show that there is a P2 close to P1such that also the al with l odd > n are nonzero.Let P1(�) = e�P1. The corresponding Laplacian is �1;i(�) = e2��1;i(0); thespectral boundary condition is unchanged. Thus h(�1;i(�); t) = h(�1;i(0); e2� t).Let 2k+1 = l�n. We compare coe�cients in the asymptotic expansion to see thatal(P1(�)) = e�(l�n)fal(P1(0)) + 2�bk(P1(0))g:Since bk is nonzero, al is nonzero for � in a dense set. �We have not investigated whether the al with l odd > n are continuous onP(X; r1; r2) and can therefore not conclude they are generically nonzero.Let dX and �X be the derivative and the coderivative on X . Then dX + �Xbelongs to P(X; r; r) if n is even and dX + �X 2 P(X) if n is odd so these theoremsprovide non-trivial examples in all dimensions.References[1] M. S. Agranovi�c, Some asymptotic formulas for elliptic pseudodi�erential operators, Funkt.Analysis Appl. 21 (1987), 63{65.[2] M. F. Atiyah, R. Bott, and A. Shapiro, Cli�ord modules, Topology 3 Suppl. 1 (1964), 3{38.[3] M. F. Atiyah, V. K. Patodi and I. M. Singer, Spectral asymmetry and Riemannian geometry,I, Math. Proc. Camb. Phil. Soc. 77 (1975), 43{69.[4] T. Branson and P. Gilkey, Residues of the eta function for an operator of Dirac Type, J.Funct. Analysis 108 (1992), 47{87.[5] J. Br�uning and M. Lesch, On the eta-invariant of certain non-local boundary value problems,(preprint available http://spectrum.mathematik.hu-berlin.de/�lesch).[6] G. Cognola, L. Vanzo, and S. Zerbini, Regularization dependence of vacuum energy in arbi-trarily shaped cavities, J. Math. Phys. 33 (1992), 222{228.[7] J. J. Duistermaat and V. W. Guillemin, The spectrum of positive elliptic operators andperiodic bicharacteristics, Inventiones Math. 25 (1975), 39{69.[8] P. B. Gilkey, Smooth invariants of a Riemannian manifold, Adv. in Math. 28 (1978), 1{10.[9] , Invariance Theory, the Heat Equation, and the Atiyah-Singer Index theorem (2ndedition), ISBN 0-8493-7874-4, CRC Press, Boca Raton, Florida, 1994.[10] P. Greiner, An asymptotic extension for the heat equation, Arch. Rat. Mech. Analysis 25(1967), 40{63.[11] G. Grubb, Functional calculus of pseudodi�erential boundary problems, Progress in Math.,vol. 65, Birkh�auser, Boston, 1986, (2nd edition 1996).[12] , Parametrized pseudodi�erential operators and geometric invariants, Proceedings ofNATO Advanced Study Institute on Microlocal Analysis and Spectral Theory 1996, Kluwer(to appear).[13] G. Grubb and R. Seeley, Weakly parametric pseudodi�erential operators and Atiyah-Patodi-Singer boundary problems, Inventiones Math. 121 (1995), 481{529.[14] , Zeta and eta functions for Atiyah-Patodi-Singer operator, J. Geometric Analysis (toappear).[15] R. T. Seeley, Complex powers of an elliptic operator, in Proc. Sympos. Pure Math. 10 (1967),A. M. S., 288{307.[16] , Topics in pseudo-di�erential operators, CIME Conference on Pseudo-Di�erentialOperators 1968, Edizioni Cremonese, Roma, 1969, pp. 169{305.13



[17] , Analytic extension of the trace associated with elliptic boundary problems, Amer. J.Math. 91 (1969), 963{983.Mathematics Department, University of Oregon, Eugene Or 97403 USAE-mail address: gilkey@math.uoregon.eduCopenhagen University Mathematics Department Universitetsparken 5 DK-2100Copenhagen DenmarkE-mail address: grubb@math.ku.dk

14


