HEAT TRACE EXPANSIONS FOR ELLIPTIC SYSTEMS
WITH PSEUDODIFFERENTIAL BOUNDARY CONDITIONS

GERD GRUBB

1. Introduction.
One of the purposes of this paper is to prove asymptotic expansions of heat traces

Tr(pe '8 ~ Z a; "% + Z(nlk logt + agvk)tk/Q, for t — 0,
(1.1) —n<k<0 k=0

Ay =Dp*Dp, Ay=DpDp",

for general realizations Dp of first-order differential operators D (e.g. Dirac-type opera-
tors) on a manifold X with pseudodifferential boundary conditions: B(u|x/) = 0 at the
boundary X = X'. In (1.1), ¢ denotes a compactly supported morphism. The unprimed
coefficients are locally determined, the primed coefficients global.

Such realizations were considered first by Atiyah, Patodi and Singer in [APS75] who
showed an interesting index formula in the so-called product case, when X is compact. We
say that D is of Dirac-type when D = (9., + Aj) on a collar neighborhood of X', with a
unitary morphism o and a first-order differential operator A; such that Ay = A+x, P+ P
with A selfadjoint on X’ and constant in 2, and the P; of order j; the product case is
where Py = Py = 0. B was in [APST75] taken equal to the orthogonal projection II> onto
the eigenspace for A associated with eigenvalues > 0.

For Dirac-type operators on compact manifolds, finite expansions (1.1) (up to k& = 0,
with ¢ =1 and a; o = 0) were shown in [G92], implying the index formula

(1.2) index Dp = a} g — ay, when ¢ =1 and X is compact.

Full expansions were established in Grubb and Seeley [GS95], with precisions for the prod-
uct case in [GS96]. Here B = II> + B, with special finite rank perturbations By.

Booss-Bavnbek and Wojciechowski studied, for the compact product case, the index of
Dp in [BW93] and other works with B = C* + S, where C'" is the Calderén projector
for D (having the same principal part as II>) and S is a pseudodifferential operator (ido)
of order —1. One of our motivations for the present work was to establish (1.1) for such
problems too. A different type of boundary condition was introduced by Briining and
Lesch in [BL97] (in a study of the gluing problem for the eta invariant), showing heat
trace expansions in the product case but with B principally different from IT> (Example
3.6 below). For this type, we obtain (1.1) without the product assumption.

Actually, we find that there are many more boundary conditions, different from the
above, for which (1.1) can be obtained. In fact, D need not even be of Dirac-type, but
can be any first-order elliptic differential operator. B need not be closely linked to the
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Calderdén projector but can be any ¥ do that is well-posed for D in the sense defined by
Seeley in [S69, Ch. VI]. We obtain (1.1) (and consequently also the index formula (1.2)
when X is compact and ¢ = I) in all these cases, including the previously known cases.
The freedom to choose more general B seems to be useful e.g. for variational studies. It
is also interesting to allow general D that are not tied, by the requirement of (principal)
selfadjointness of the tangential part, to a specific choice of Hermitian structures.

In our method to establish (1.1), we imbed Dg and Dg*, which are in themselves only
injectively elliptic, into a truly elliptic system Dy, which we treat by use of the Calderén
projector for D+ p and by an elaboration of the calculus of weakly polyhomogeneous v/do’s
introduced in [GS95]. This treatment works also for general elliptic systems P of order
d > 1 with appropriate pseudo-normal ©»do boundary conditions Sou = 0. We show a
general result on resolvent expansions and heat trace expansions for such realizations:

oo

Trdf'(Ps —A) 7'~ > (A kalog A)+ &) (AT
—n<k<0 k=0

ml»

(1.3)

Tr pe 105 ~ Z cktg + Z(ck logt + c;)t%, for t — 0;
—n<k<0 k=0

in the first formula, A — oo on a ray in C, and the second formula follows when this holds
on all rays with argument in [, 37”] Such expansions were shown in cases where S is a
differential operator by Seeley [S69,71] and Greiner [Gre71]; then there are no logarithmic
terms and all the coefficients are locally defined. The crucial step in the analysis is to
find the symbol structure of the resolvent. We do this not only for compact manifolds but
also in noncompact situations with spatially uniform estimates; here we use the calculi

established in [GK93] (with Kokholm), [G95], [G96].

The plan of the paper is as follows: We explain the general set-up in detail in Section 2,
and the special definitions and adaptations for first-order problems in Section 3, referring
also to the Appendix where the main properties of the Calderén projector are explained. In
Section 4 we recall the calculus of weakly polyhomogeneous 1/do’s introduced in [GS95] and
show a needed result on spectral invariance, also for one-sided elliptic cases and noncompact
manifolds, drawing on results from [G95]. In Section 5, we apply the various results to
establish a decomposition of the resolvent in a sum of compositions with strongly and
weakly polyhomogeneous factors. In Section 6 we derive trace results from this by use
of methods from [GS95] and [GS96], obtaining in particular (1.1) and (1.2) for first-order
operators with well-posed boundary conditions.

2. The general set-up.

On an n-dimensional C'*° manifold X with boundary 0X = X’ we consider an elliptic
differential operator of order d, P: C>(X, E1) — C*°(X, E3), between sections of Hermit-
ian C'*° vector bundles F; and Fs of dimension N. X is provided with a smooth volume
element v(x)dxr defining a Hilbert space structure on the sections.

In order to include noncompact manifolds such as R", R, + and exterior domains R" \ Y,

Ki \'Y (Y smooth compact), we take X to be admissible as defined in [GK93], [G96]; this
means that X is the union of a compact piece and finitely many conical pieces of the form
{x =txg | xg € M C 8" ', t > r}. X is covered by a finite system of local coordinate
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patches diffeomorphic to either bounded or conical open subsets of R”. We refer the reader
to the references for detailed descriptions; the crucial assumption is that the admissible
coordinate changes r are such that |k(x) — k(y)|/|x — y| is bounded above and below by
positive constants, and all derivatives of x and ! are bounded. Admissible vector bundles
are likewise defined. The differential operators and 1do’s considered in this context are
defined by reference to the admissible local coordinate systems; their symbols are assumed
to have global estimates in the space variable x, as in Héormander [H85, Sect. 18.1]. This
allows precise rules of calculus, with the usual composition formulas; the concepts are
extended to pseudodifferential boundary operators in [G96] (and [GK93]). For brevity,
we shall call such operators admissible (in [G96] they are called uniformly estimated or
globally estimated), and we always assume in the following when working with admissible
manifolds that the operators are of this type. A reader who is mainly interested in the
case of compact manifolds can just disregard this generality.

We denote by H*(X, Eq) or just H*(E) the Sobolev space of sections of Ey of order s,
defined in terms of admissible local coordinates; a similar notation will be used for other
manifolds and vector bundles.

The restrictions of the E; to the boundary X' are denoted E;. We assume that a
normal coordinate x,, has been chosen in a neighborhood U of the boundary X’ such that
the points are represented as 2 = (2, x,) there with 2’ € X', x, € [0,¢(2’)[, the E; are
isomorphic to the pull-backs of the E! there, and there is a normal derivative 0, . X'
is provided with the volume element v(z’,0)dz’ induced by v(2', x,)daz'dx, on U. For a
compact manifold, we take U as a collar neighborhood X, = X’ x [0, ¢[; more generally
this is used for the compact part and extended conically in the conical parts (cf. [G96,
Sect. A.5]).

Let 0 = {70, ..., Ya—1} with yju = (=10, ) ul,, =0 (i denotes the imaginary unit /—1).
For s > d — %./ o maps H*(E;) into H*(E/1) = HOS.7'<d H'**j*%(Eg) (Bl = EBOSj<d E)).
The sections u of By and w of Ey in H® (s > d — 1) satisfy the Green’s formula

(PU,IU)X - (U, P*w>X = (AQUJ Qw)X’a

2.1
(2.1) A= (Ajk)j k=0, .a—1 with A;, of order d — 1 — j — k.

Here the Aj;, are differential operators; those with k£ > d —1 — j are 0 (A is upper skew-
triangular) and those with k = d — 1 — j are isomorphisms, so .4 has an inverse of a similar
type, just lower skew-triangular.

When S is an operator on HY(E}?), the boundary condition

(2.2) Sou=10
determines the realization Pg of P, defined as the operator acting like P and with domain
(2.3) D(Ps) = {u € HYX, Ey) | Sou = 0}.

We shall study boundary conditions that are pseudo-normal in the following sense:

Assumption 2.1. (PSEUDO-NORMALITY) S is a matrix of admissible classical 1do’s Sjj,
going from E} to admissible bundles F; over X' such that
S = (Sjk)j,kzo,...,d—l-/ with Sjk OfOI‘dGI‘j — k, Sjk =0 fOI‘j <k,

2.4
(2:4) S;; surjective and uniformly surjectively elliptic.
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For convenience of notation, we here include bundles F; of dimension 0. We denote
®0Sj<d F; = F. That symbols and operators are taken admissible when the manifolds
and bundles are so, will often be tacitly understood.

The new generality in comparison with the normal boundary conditions considered in
[G96] (for compact manifolds, one can also find the information in [G86], this will not be
repeated), is that the S;; are now allowed to be 1)do’s; this is needed in our application to
first-order operators. The normal boundary conditions have just surjective morphisms as
the S;;, hence regularity v > 0, whereas the present boundary conditions have regularity
v = 0, in the sense of the regularity concept from [G96]. (There is a discussion in [G96,
Remark 1.5.8]. Note that the book also allows nonlocal terms in the interior, excluded
here.)

Our basic hypothesis for the resolvent analysis is the following:

Assumption 2.2. (RESOLVENT GROWTH CONDITION) Let Fy = Ey = E. There is an
open sector I' = {\ € C\ {0} | arg A € J} (for an open interval .J C [0, 2x]) such that the
following holds:

1° P is elliptic, and for the principal symbol p® of P, p®(x, &) — X is invertible for all
(z,&,\) with A € T U {0}, [£]? + |A|*/¢ > 1, the inverse being O((|¢|¢ + [A])~") on closed
subsectors I', uniformly in x.

2° F' has dimension Nd/2, the system {P, So} is elliptic, and for any closed subsector
[ there is an r > 0 such that the resolvent Ry = (Ps — \) ! exists as a bounded operator
in Ly and is O(A™") for A € T');

(2.5) I ={xel' ||\ >r)

The first condition means uniform parameter-ellipticity of P — A, as defined in [G96,
Sect. 3.1].

The second condition contains a global requirement of invertibility. If Sp is normal, such
invertibility for large A is assured by a condition on principal symbols, namely uniform
parameter-ellipticity of {P — X, So} as defined in [G96, Sect. 3.1]. This means that the
associated model problem on Ry for each (2/,&',\) with |¢/|? + |A]?/? = 1 is uniquely
solvable with uniform bounds in 2’ for the solution operator, for A in closed subsectors of
['. Then the results of [G96, Sect. 3.3] imply invertibility with the O(A™") estimate for
large A\. When §' is just pseudo-normal, condition 2° is more general.

Ry will now be supplied with a Poisson operator K to define an inverse of the full
system {P — A, Sp}. In the following lemma, K, \ denotes an auxiliary Poisson operator
such that oK, = I, constructed e.g. as in [G96, Lemma 1.6.4] with ({) replaced by
((€,|A]"/4)). (We use the notation () = (|z1]2 + -+ |2,|2 + 1) for 2 = (21....,2,).)
In its dependence on p = |A|'/9, K, » is strongly polyhomogeneous on all rays, cf. Section
4, [GS95, App.]. If holomorphy in A is desired, one can instead take the Poisson operator
K, : ¢ — u solving the following Dirichlet problem, where A2? is a positive differential
operator with principal symbol (¢)2? and |arg A — w| < 7/2:

(A" (e7“N)u=00on X, ou=¢pon X"
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Lemma 2.3. Let Assumptions 2.1 and 2.2 hold. For the A such that Ry is defined, there
exists a unique Poisson operator K such that

~1
P .
(26) ( SQ > = (R)\ IXA).
In a neighborhood of each ray in I', K\ equals
(2.7) K\ =1[I—Rx(P—\]K,\5"

here S" = (S;.k)‘,-ykzo,m,d,l is a right inverse of S, constructed such that for all j, k, S;.k is a
classical v»do of order j — k, S;k =0 for j < k, and S;-j is injective and injectively elliptic;
and K, \ is an auxiliary right inverse of ¢ as described above.

Proof. Let us first explain the construction of S’. We can write S = Sdiag + Ssub, Where
Sdiag = (0jxSjk)jk=0,....a—1 and Sg,p, is subtriangular (has zero entries in and above the
diagonal). Here Sgiag is surjective and surjectively elliptic of order 0 from E' to F,
hence SgiagSdiag~ is bijective and elliptic of order 0 in F' and therefore has an (elliptic)

inverse [Sdiangiag*]_l. Then Sdiag has the I‘ight inverse Séiag = Sdiag*[Sdiangiag*}_];
again a classical ¥do of order 0. Finally, since SS;ﬁag =1+ SsubSéiag, where SsubSéiag is

subdiagonal and hence nilpotent, S has the right inverse
S, = S;liag(f + SSlleéiag>_] = S;liag ZO§l<d(7SSUbS(Iiiag>l;

it is of the asserted form.
The operator K required in (2.6) is the solution operator for the problem

(2.8) (P—XNu=0o0onX, Sou=¢ponX".

First note that since R, is injective, the problem has at most one solution u for any .
Define Ky by (2.7); then check that u = K¢ solves (2.8) by observing:

(P—=XMN[I —Rx(P—X)]=0since (P— ARy =1,
and, using that SoR, = 0,
SQIX’)\ = SQIX’Q’)\S/ =71. O

For each fixed A, the inverse ( Ry K, ) belongs to the pseudodifferential boundary
operator calculus, but to start with, we in general only have a rough information on the
behavior of R\ with respect to A that comes from its definition as a resolvent. Before
showing this in an elementary lemma, let us recall the definition of parameter-dependent
Sobolev spaces (used e.g. in [G96], [GS95]):

I

For s € R, the space H%#(R") is the Sobolev space provided with the norm
(2.9) Jull frn = [1{(&, 1)) W(E) | Ly -

The notion is extended to sections of a Hermitian bundle F' over X by use of a finite
family of admissible local coordinate systems (the space is then denoted H**(X, F) or
H*#(F)). Note that H*°(F) ~ Lo(F), and that for s > 0, the norm is equivalent with

(el + (1)l 7,)2.
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Lemma 2.4. Let Ry and K, be as in Lemma 2.3. For any s > 0, R) and K, define
continous mappings (where p = |\, Hs+tE1(F) = [To<j<a H'*“Ld*-'*%’“(Fj))

Ry: HYM(E) — H*TH(E),

2.10
(210) Ky: HHOH(F) — HPOH(E),

uniformly for A in subsectors I'} (as in Assumption 2.2).

Proof. From the elliptic regularity for the A-independent system {P, So} and from the
resolvent growth condition follows that for & > 1, v € D(Ps) N H*(E;)

3

(2.11) lollie < eraIPsvllma—ne + lollma-na)s AR ll2s < eall il

uniformly for A € T".. We use this first with v = Ry f and k£ = 0 to see that on the ray

A= ptel® >t/

(2.12) [[Bafllgaw < cs([[Bafllga + NI BASf]|L,)
< ca(l(Ps = M) BRASflln, + MHIRAf [, + 1RASll2,) < eslfll s

in other words, R is continuous from Lo(E) to H%*(E), uniformly for p > r1/,

Next, combining (2.11) with (2.12) we find for k = 1:

IRAfll2an < 5UIRAflr2a + () 1RAFI 2,
< 4(II(Ps = N)Rafllga + INIBAfll e + R fll e + ()2 B fl )
< e5([[flre + Ml L2) < coll f e

This can be continued to give H* D41 estimates of Ryf in terms of H*®# estimates
of f for k = 2,3,..., and we conclude that the first line in (2.10) holds for s = dk,
k=0,1,2,.... The remaining values of s > 0 are included by interpolation.

For the second line, we observe: When C' is a parameter-independent ¢)do on X’ of
order | > 0, it is bounded from H** to H*~"* for all s € R, uniformly in p; cf. Section
2.5 in [G96] (using that C is of regularity v = [ > 0). It follows that S’ maps H**(E') =
[To<j<a H*=i=2:#(E') into H**(F) with uniform bounds in p, for s € R. [G96] also

shows that o maps H**(E) into H**(E'?) for s > d — 4 and that K, , is continuous in
the opposite direction, with uniform bounds in u. Applying these facts to the factors in
(2.7) and using what we just found for Ry, we obtain the statement for K in (2.10). O

Remark 2.5. There do exist boundary conditions other than those satisfying the assump-
tion of pseudo-normality, for which the resolvent is O(A~1!) on rays in C. One example
is the condition A’ "Dy, yu 4+ A'you = 0 for A on R’ studied in [G96, Ex. 1.7.17] (here

A = (I — Ay)?); the coefficient of 4, is not surjective. For another type of example
containing negative-order 1do’s on X’ and defining a realization Pg that skew-selfadjoint
and hence has many rays where the resolvent is O(A™!), see Remark 3.12 later. We expect
that such cases may still be handled by variants of the present methods, but will give extra
log terms at some of the negative powers of ¢ in (1.2).

A third example is Dg* Dpg considered below; here the surjectiveness is missing in the
boundary condition Bygu = 0, (I — B*)o*7(0y, + A1)u = 0; but the questions for this
operator are dealt with in a different way, as will be shown.
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3. First order well-posed boundary problems.

For first-order operators (and odd-order operators more generally) it may not be possible
to fulfill Assumptions 2.1 and 2.2 that lead to good resolvents  already the condition in
Assumption 2.2 that Nd be even need not hold. However, for compact manifolds there do
exist ¢do boundary conditions (not pseudo-normal)

(3.1) Bryou =0,

such that the realization Pg is a Fredholm operator with a similar adjoint Pg*. In this
case there is an interest in studying the positive selfadjoint operator Pg* Pg, which does
have a resolvent. We now consider such problems in detail.

To begin with, let X be compact and let D be a first-order elliptic operator on X;

(3.2) D: C=(Ey) — C®(Ey),

where Fi and Fy are N-dimensional Hermitian vector bundles over X. D can be repre-
sented on U = X, as

(3.3) D = o(3Z + Ay),

where o is an isomorphism from E4|y to Es|y and Ay is a first order differential operator

that acts in the 2’ variable at x,, = 0. A, —o has the principal symbol af(2’,¢’). For
these operators,

(3.4) A=-con X"and o=~y in (2.1).

A generalization to admissible manifolds will be included at the end of this section.

Definition 3.1. 1° We say that D is “of Dirac-type” when o is a unitary morphism, and
(3.5) A=A+, P+ P,

where A is an elliptic first-order differential in C°°(FE1{) which is selfadjoint with respect
to the Hermitian metric in £, and the P; are differential operators of order < j,

2° The product case is the case where D is of Dirac-type and, moreover, v(z)dr =
v(2',0)dx'dx, on U, o is constant in z,, and P; = Py = 0.

As explained in [G92, p. 2036], unitarity of ¢ in (3.3) can be obtained by a simple
homotopy near X', whereas the assumption on A; in 1° is an essential restriction in
comparison with arbitrary first-order elliptic systems; it means that the principal symbol
af(2’, &) of Ay at x, = 0 is Hermitian symmetric. P; and P, can be taken arbitrary near
X', but for larger x,,, P; is subject to the requirement that D be elliptic.

When 1° holds, a?(2', ') equals the principal symbol a®(2, ¢') of A. Along with A one
often considers the orthogonal projections II>,II, II<, I and II, onto the closed spaces
V>, Vs, V<, Ve and V), spanned by the eigenvalues of A in Ly(E7) that are > 0,>0,<0,<0
resp. = A. (Since A is selfadjoint and elliptic of order 1, it has a discrete spectrum consisting
of eigenvalues of finite multiplicity going to +00.) These operators are classical do’s of

order 0; ITy is of order —oc.
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Atiyah, Patodi and Singer considered in [APS75] the product case. It is also studied
e.g., in [GS96], [BWI3], [BLIT|, whereas the case where only 1° holds is studied in [G92],
[GS95] and other works. Cases where not even 1° holds, have to our knowledge not been
studied for the purpose of heat trace expansions for boundary problems before.

We shall study boundary problems satisfying the condition of well-posedness introduced
by Seeley in [S69]. The reader is encouraged to consult the Appendix, where the relevant
material on the Calderén projector CT is collected. Let us here just recall that CT is a
classical 1do of order 0 in E} that projects H5~2(E}) onto the space N3 of boundary
values of null-solutions, for all s € R;

(3.6) N3 =~oZ5 C H 3(E}), 2% ={z€ H*(X,Ey)|Dz=0on X}.

We denote I — Ct = C~. The principal symbol ¢t (2, ¢’) of C* is a projection in C onto
the space N (2/,¢') of boundary values of bounded solutions of p°(2’,0,¢', D, )z(x,) =
0 on Ry, such that the complementing projection ¢ (2',&') (the principal symbol of
C~) maps CV onto the space N_(z',¢’) of boundary values of bounded solutions of
p°(2',0,¢', D, )2(x,) = 0 on R_; of. (A.11)ff. In relation to af(z',¢’), Ni(2', &) are
the generalized eigenspaces for a{(a’, ¢') associated with eigenvalues having real part = 0.

Remark 3.2. When D is of Dirac-type, so that a?(2/, &) equals a®(a’,¢'), Ny(2',€¢') and
N_(a',¢") are orthogonal complements and are spanned by the eigenvectors belonging
to the positive, resp. negative eigenvalues of a’(2’,¢’). The projections ¢*(2',¢’) onto
N1 (X', ¢') along N¢(2',¢') are then orthogonal, and they are the principal symbols of IT>
resp. II.. Thus for Dirac-type operators,

(3.7) C* — I is a classical ¢do of order —1.

Definition 3.3. (WELL-POSEDNESS) Let X be compact and let D be an elliptic first-
order differential operator from C*°(E) to C*°(FE3). A classical ¢do B in E{ of order 0
is well-posed for D when:

(i) The mapping defined by B in H*(E") has closed range for each s € R.
(ii) For each (2',¢’) with |¢'| = 1, the principal symbol b°(2’, &) maps Ny (2/,&') in-
jectively onto the range of b° (2, ¢’) in CV.

In comparison with the general choices of B: H*(FE]) — H*(F) (for d = 1) discussed
in the Appendix, F = FE] here, so M = N. Condition (ii) assures that the system
{D, By} is injectively elliptic; see the explanation around (A.17). But (ii) is stronger
than injective ellipticity, since the range of b°(2’, ') can in general have a larger dimension
than b9(2, &) Ny (2/, €') has. (One can say that (ii) means injective ellipticity with smallest
possible range dimension for b°.)

Observe that when B satisfies Definition 3.3, {D, B~} cannot be surjectively elliptic if
n > 3, since N is even and strictly larger that dim N (2/,¢’) = N/2, cf. (A.20). (If n = 2,
this lack of surjective ellipticity holds when dim N, (2/,¢’) < N.) Therefore, the system
{D, By} is not elliptic in the standard terminology, and, for example, its range does not
have a smooth complement. The word “well-posed” does not conflict with this and was
well chosen by Seeley. (Some authors use the dangerous notation “globally elliptic” for
these boundary problems  sometimes even abbreviated to “elliptic”.)
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It is shown in [S69] that when Definition 3.3 is satisfied, one can always replace (3.1)
by an equivalent condition

(3.8) Biyou =0,

where By is a projection in the H?®-spaces, in addition to being well-posed for D. The
range of By in H*(E}) is closed for each s, since it is the nullspace of the complementing
projection I — By which is likewise a ¥’do of order 0. Thus it is no restriction to assume
that B in (3.1) is a projection; we shall often do that.

Seeley shows in [S69] that for each boundary condition (3.1) with B well-posed for D, the
realization Dp defined as in (2.3) (with domain D(Dg) = {u € H'(X, Ey) | Byou = 0})
is a Fredholm operator from D(Dpg) to La(FE3). Moreover, when B is a projection, the
adjoint D™ (when Dp is considered as an unbounded operator from Ly(E1) to La(E3))
is the realization of D* with domain

(39)  D(Dp") = {ue H'(X, Es) | (I - B )o*y0u =0} = D((D*)(1-peyo):

here (I — B*)o* is well-posed for D*. The nullspaces Z(Dg) and Z(Dg™) are finite
dimensional spaces of C™ sections, defining index D = dim Z(Dg) — Z(Dg").

It is useful to know that when B has been replaced by a projection By, then furthermore,
B can be replaced by a projection By that is orthogonal in Lo(EY). This may possibly be
inferred from [S69] which leaves out details on the proof of the relevant Lemma VI.3, but
it certainly follows from [BW93, Lemma 12.8], recalled as Lemma A.7 in the Appendix.
Lemma A.7 and Remark A.8 imply that when R is a classical ¥)do in E] which acts as a
projection in H*(FE7), then Rqy defined by (A.35) is a projection which is orthogonal in
Lo(E}) and has the same range as R in H*(E1) for all s. When we apply this construction
to R = I — By, (3.8) can be replaced by the condition Byyou = 0 with the orthogonal
projection By = I — Ryy¢. On the principal symbol level, since the range of r%(a’, ¢’) equals
the range of r0 ., (2',¢'), the operators bY(a’,¢’) and b9(2’, ') have the same nullspace, so
(A.18) for one of them implies (A.18) for the other. Moreover, the range dimensions for
bY(a2’, &) and b9(a’, ¢') must be the same (equal to N minus the dimension of the nullspace),
so also the surjectiveness required in (ii) carries over from b9 to 09. So also By is well-
posed for P. Only the orthogonal projection defining a boundary condition is uniquely
determined from it; without the orthogonality there can be many choices of projection
that give the same condition.

We now consider some examples.

Example 3.4. Clearly, the choice B = C'* is well-posed, and so is B = IT> when D is
of Dirac-type, in view of Remark 3.2. The first situation that was considered for index
questions, in [APS75], was the choice B = IT> in the product case. This choice is convenient
because it permits construction of the heat trace operators (in a good approximation) by
easy functional calculus for the selfadjoint operator A.

Grubb and Seeley consider in [GS96] the product case with B — IIs ranging in the
nullspace of A, and in [GS95] Dirac-type operators with B —IIs ranging in the eigenspace
for eigenvalues of A of modulus < a (some a > 0), showing full heat trace expansions.

Booss-Bavnbek and Wojciechowski [BW93] consider, for the product case, index ques-
tions for the full set of projections B of the form

(3.10) B=C"+S, S oforder —1;
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likewise well-posed. This includes the preceding cases, and moreover allows infinite rank
perturbations of 1I.

For our heat trace estimates later, it is important to observe:

Proposition 3.5. In the product case, when X is compact,

(3.11) Ct — 1 is a ¢do of order —oc

Proof. We shall compare D, extended as o(d,, + A) on X'x | — ¢, 0], with the operator
o DY, where

(3.12) D=0, +A, A =A+Tl,

on X° = X' xRy and on X° = X’ x R, provided with the volume element v(z’, 0) da’dx,,.

DY acts in EY and in E?, the pull-backs of B} to X and XO; it satisfies the Green’s
formula:

(D°u, w) xo — (u, D w) xo = —(you, yow) x

DO has an inverse Q° on X©, easily described by its action on functions of z,, taking values
in the eigenspaces V of A" (here Vj = {0}, V] = Vi@ Vg, V{ = V) for A # 0,1): When f(z,)
has values in VY, Q° acts on f as the ¥do in x, with symbol (i&, + A)~!; more generally
when f has an expan%ion () = > \eopec ar fr(n)un(z’) in terms of eigenfunctions wy,

then QF = Y, Fo ', [(i60 + A) ()] ().
For DY, the Calderén projector is constructed exactly as in the differential operator
case; it equals Y5 Q% as in (A.10). Tt acts on a ¢ € VJ like the Calderén projector for

6”/-|—)\ SO
0% _{apif)\>0
0if A <0

(one may also consult (A.12)). This implies that 5 Q%9 =1,

Now ¢ D° and D differ only by the term ¢TIy on X, = X’x ]—¢, ¢[. Let Q be a parametrix
of Don X = X UX,. Let y and 1 € C°(] — ¢, ¢[), equal to 1 on a neighborhood of 0
and satisfying yy; = x. Then, in view of (A.l)7 we have on X,

X(Q — (6D°))x = xQx10D°Q% " 'xix — 1 (@D — B)xiQ% 'y
(3.13) =XQx10D” ~ Dx1]Q% "'y + xT2x1Q"0 ™'\
= XQ[x10Tly — (92, x1)0]Q% ™'y + xTox1Q"0 ™'\
Define the anisotropic spaces H(8 (X’ x R) and H®(X'x ] —¢,¢[), via local coordinates
and a partition of unity on X', from the spaces H*!(R"~1 xR) with norm [|(£)*(¢") a(€)]|.
The operators have the continuity properties:
xQui: HOO (Bl ) = HUPM (B g ) Q% HOW(EY) — HUFEO(ED),
VExi: HOO(Blg ) — HO W (Byfg ). Tos HUO(BY) — HUW(ED),
o HO(X,) — HPH(X) Voo H2H(X) —» HOLO(X,)

Y Y
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for all s,s1,t,¢t; € R. Such properties are easy to show and are e.g. dealt with in [G86,G96,
Sect. 2.5] (that can be used with fixed u); for the statement on QY one can generalize those
proofs or use functional calculus, observing that A’~': HY(E}) 5 H'(E!), where the
norm in H'(E}) of u =37, o ar auy is equivalent with (37, ex|28)2. Then the operator
in (3.13) is continuous from H="D(Ey|5 ) to HM(Ey | ) for all £,t; € R, and when
we compose it to the left with ’ygL and to the right with ?é, we get an operator that is

continuous from H'(E}) to H" (E4) for all t,#; € R. Then this is a 1do of order —oo on
X'. Here

10 X(Q = (¢D") "o = 15 Q750 — 16 Q"F6 = CF =3 T — 1,
cf. (A7), s0 CT — I is a ¢do of order —oo on X'. O

Example 3.6. Well-posed B need not be of the type (3.10). One example was introduced
by Briining and Lesch [BL97], in the product case and under the additional hypotheses
that D is formally selfadjoint and

(3.14) cA=—Ac, o*=-I, TA=—-Ar, 1°=1, 710=—0T,
where 7 is an auxiliary morphism or ¢»do of order 0. The prototype is, for cos # 0,
(3.15) By = cos? 0115 +sin? Tl — cosfsin O (115 + 1) + B,

with a suitable projection B’ in V. Here By is principally different from I1> when cos?  #
1. Dp, is selfadjoint.
For the analysis it is useful to observe that (3.14) implies a spectral symmetry of A;

in fact 7 (as well as o) defines isometries of the eigenspaces V7-+ for positive eigenvalues

)\;L (ordered increasingly) onto the eigenspaces V™ for negative eigenvalues A, = —)\;'

and vice versa (in particular, n(A, s) = 0). Then the nullspace of By in V;~ is a “shifted
version” of V_:

(3.16) span{e;, +tanfel, |7 >0, k=1,..., v}
here the €ip 1< k < vj, are an orthonormal basis of V", and e;:k =TE€ -

For B = By, [BL97] shows a precise version of (1.1), related to that of [GS96] (see also
Grubb [G97, Remark 4.14]). The present study allows generalizations to the non-product
case and perturbations of order —1. The same holds for the more abstractly formulated
well-posed conditions in [BLI7].

Example 3.7. Without assuming spectral symmetry, we can give general examples of
well-posed B for Dirac-type operators by taking

(3.17) B =TI + I STl

where S is a classical ¢do of order 0 in E{. B is a projection, since II-II> = 0; so (i) in
Definition 3.3 is satisfied. For the principal symbols, the injectiveness (A.18) is obvious
for b0(2', &) = et (2!, &) + e (2, &) (2!, &) e (2!, €'). Moreover,

b()<$/7 fl)N_{_(JS,, £/> C b()<$/7 f’)CN C N+(JZ’, fl)-/
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so since the former has the same dimension as N, (2/,¢’), there must be equality. Then
also (ii) of Definition 3.3 is satisfied.

By use of Lemma A.7ff, B may be replaced by the orthogonal projection By = [—
(I — B)ort, defining the same boundary condition. To calculate By, write S and B in
blocks according to the decomposition Lo(E7) = V> & Vet

G — S11 Si2 B — I 0 n I 0 S11 Sio 0 0 . I Sis
- So1 Soe )7 ~\0 0 0 0 S91 S99 0 I/ \O 0 '
0 =S

ThenwithR:I—B:<0 1

>, we find from (A.35) that

3.18
(3.18) S+ 518t (I+ShySi)

Row = <512ST2(I+ S12579) 7" —Sia(l + S73512) 7! > )
0 0
0 I
symbol, which is the generic case (when 0 < dim Ni(2',¢') < N, in particular when
n > 3). Thus By = I — Ry, is an orthogonal projection that satisfies Definition 3.3 and
differs principally from II>. More generally, we can take B to have principal part (3.17).
Let us remark that if there is a spectral symmetry: A7 = —7A for some zero-order

Ydo 7 with 72 = I, then the following choice:

This is principally different from I1. = as soon as S72 has nonvanishing principal

(3.19) B =1Is + prll., some 3 € R,

is of the above type with S = 7, since 71l = 7II-I1. = [Is 71l.. The condition defined
by this B is similar to that defined by (3.15); in fact the nullspace of B in Vj;~ equals (3.16)
with tanf = —f.

Since C'T is not in general an orthogonal projection, it may be of interest to consider
also the orthogonalized version Cf,, called the orthogonal Calderén projector; cf. Lemma
A.7ff. When P is of Dirac-type, the principal symbol of C'T is the orthogonal projection
¢t (cf. Remark 3.2), so a replacement of C*T by Cf. changes only the lower order part;
(3.20) C* — CF, is of order — 1 when P is of Dirac-type.

Remark 3.8. When ¢t is not symmetric, C* — O is of order 0, not —1. For a simple
example with ¢+ non-symmetric, take e.g. (for a neighborhood of the boundary represented

as R%)
1 0 1 4 S
P_<0 1)8m2+<_1 1>8m]; herec+(§1)—<2i 1)51.
2

1
4

(The formula is easily shown using (A.12).) This ¢* is a projection but not an orthogonal
one.
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Example 3.9. Example 3.7 can be generalized to arbitrary D as follows: Consider C
and its complementing projection Cf- = I — CF..
and range spaces

ort
Let us denote their principal symbols

(3.21) chi IT—chy=chy. Ni(@.¢), CYe Ny ¢)=Ng@,¢).

Then the whole discussion in Example 3.7 is valid with II> and Il< replaced by Cf, and
ct-

T+, giving well-posed operators (where we can add S of order —1):

(3.22) B=Cl, +CHLSCH -+ 5.

ort

Example 3.10. Examples 3.7 and 3.9 are, in a microlocal sense, the most general pos-
sible. When B defines the condition Bygu = 0, so does C'B for any invertible classical
elliptic v»do C' of order 0; in this sense, B and C'B can be regarded as equivalent. Now if
B satisfies Definition 3.3, we can for (2',&’) in a neighborhood of each (xy, &) (1€ = 1)
find a smooth family of bijective matrices c(z’, ') such that c(a’, €)% (2, €') is of the form
ch (@, &) et (2, €)s(a!, ) el (2, ¢'), as follows: Note that CN has the two decompo-

sitions (depending smoothly on (2/,¢’))
(3.23) CY = Ny (2", &)+ NL (@' €)= RO (', €))F 2 (0°(a", &)

the latter denote the range and nullspace of b° (we now omit the indication (z/,¢’)).
Here 0° defines a homeomorphism ¢; of Ny onto R(b°). Let ¢ = ¢;' and let ¢3 be a

homeomorphism of Z(b°) onto N (it can be chosen to depend smoothly on (2/,¢') in a
neighborhood of (x(,¢])); then

(3.24) ey = cob® + e3(I — b°)

is a bijection in CV. Now its inverse ¢ = cZ] does the job: It is a bijection in CV that
maps R(b°) to Ny as an inverse of b° from Ny to R(b°). So c¢b® ranges in Ny and is the
identity on N, and hence

(3.25) cb” = (’ort(’bo( Cort T (’ort ) = C(—i—rt + ert(fboc(—;:;

it is of the desired form and is equivalent with b°.

We shall now show how the resolvents of the operators
(3.26) (A — N7 (A — A7 where Ay = Dp*Dp, Ay = DpDg*,

can be treated within the framework of Section 2. In fact, there is a nice trick of replacing
the study of the injectively elliptic first-order system {D, Bvy} by a truly elliptic first-
order system {D, By} satisfying the resolvent growth condition, in such a way that the
second-order resolvents (3.26) are found from the resolvent construction for Dp:

Let B be a well-posed projection and let us denote

(0 —D* (0 -—Dg*
a2 o (5 ) man ().
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The operator D in (3.27) is formally skew-selfadjoint on X. The operator Dp is skew-
selfadjoint as an unbounded operator in Ly(F), E = Ey & FE3. It then has a resolvent
R, = (Dp+p)~" for p € C\ iR A calculation shows that

_ -1 _ ply Dp*R,,,
R,=Dp+p)~ = (—DBRI,M WO E where

Riy=(A14+p*)7", Royu=(A0+p*)7h

(3.28)

this shows how the resolvents (3.26) can be recovered from R . Also DgR; , and D" R> ,
are determined. When pu € ',

(3.29) I'y={ze€C| |argz| < 7/2},

then A = —u? runs through C \ Ry, so it suffices for (3.26) to let u € T'y.
Now Djg is the realization of D in Lo(FE) of the boundary condition

(3.30) Byou =10, u= (ul > :

U2

where B is the row matrix (cf. (3.9))

I

(3.31) B=(B (I—B*)s*)

going from Lo(EY) x Lo(EY) to Lo(Eq). Since the ranges of B and I — B* are orthogonal
complements in Ly(E}), B is surjective; note that the dimension N of E7 is half of the
dimension 2N of E' = E| & El. Moreover, B has as a right inverse the ¥do C of order 0,

(3.32) C= <(U*>F&B)> [BB* + (I — B*)(I — B)] !

(cf. Lemma A.7); in particular, B is surjectively elliptic. Now {D + 1, Byp} has the inverse
(Ri Ky) with £y = [I — Ri(D + 1)]K,,1C as in (2.7). Since the inverse is continuous
from Lo(E) x H2(E}) to H'(E), {D + 1, By} and hence also {D, By} is elliptic. Thus
all the conditions in Assumption 2.1 and 2.2 are satisfied by {D, Bp}, with N replaced by
2]\[7(1:17 Q:’YO,F:FOZE{'

Then the consequences we draw later for the general systems in Section 2 apply in
particular to Dg.

Example 3.11. By Theorem A.6, the adjoint of Do+ is the realization of D* determined
by the analogous boundary condition €’ yqu = 0, where C’" is the Calderén projector
for D*, if D has an invertible extension to a closed neighborhood of X. More generally,
the adjoint boundary condition is (C”+ — Tg)vou = 0, where 75 is a ¥do of order —oo. In
view of (A.30), B is in this case the surjective operator

(3.33) B=(Ct (I-Ct")o*)=(Ct o*(C'"T - T)).

Remark 3.12. The trick of considering the “doubled-up” system (3.27) will be restricted to
first-order operators in this paper. Well-posed boundary conditions can also be defined for
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higher order systems, cf. [S69]. But here when one takes the example of B = C'T, one gets
an operator on the boundary with entries of negative order that are generally nontrivial,
and these exist also in the doubled-up version and violate the requirement concerning order
> 0 in Assumption 2.1. Manipulations with order-reducing operators do not seem to help;
they cannot at the same time remove a singularity in ¢’ and be strongly polyhomogeneous
in (¢, ). (See also Remark 2.5 and the calculations after (5.8).)

The analysis of (3.30)—(3.32) moreover tells us how to include admissible manifolds in
the study of first-order systems. Here we need a uniformity in 2’ in the well-posedness
condition. We restrict the attention to projections B.

Definition 3.14. (UNIFORM WELL-POSEDNESS) Let D be an admissible, uniformly el-
liptic first-order differential operator from E; to Eo (admissible vector bundles over an
admissible manifold X). Let B be an admissible classical ¥do of order 0 in E] with
B? = B. We say that B is uniformly well-posed for D, when B satisfies Definition 3.2
(ii) and in addition, B defined by (3.31) is uniformly surjectively elliptic and {D, By} (cf.
(3.27)) is uniformly elliptic.

When Definition 3.14 is satisfied, the realization Dg is seen by Green’s formula to be
skew-symmetric. It is skew-selfadjoint since (Dp)* acts like D* and w € D((Dg)*) implies
u € Ly(E) with D*u € Ly(E) and Bygu = 0 as an element of H~2(E!), hence by use of a
parametrix of {D, By} it is seen that u € H!(E) and thus u € D(Dg).

It follows that Assumptions 2.1 and 2.2 are satisfied, with T" = T'g; so (3.28) exists and
gives the resolvents of the A; as in the compact case.

Examples are constructed as in the preceding text, most easily when D has an invertible
extension to a boundaryless manifold so that there is a precise Calderén projector as in
Theorem A.1 (then B = C7 is a particular example).

4. Elements of weakly polyhomogeneous 'do calculus.
We here recall the more technical definitions of ¥do classes from Grubb and Seeley
[GS95], now allowing non-compact admissible manifolds and globally estimated operators

as in [G95], [G96].

First, the symbol space S™(R” x R™) consists of the functions p(x,{) € C*(R” x R")
such that

(4.1) 00¢p = O((&)™ 1) for all a € N”, B € NY;

N = { integers > 0}. The basic rules of calculus for this space are well-known from
Hormander [H85, Sect. 18.1]. (When we are only interested in symbols with estimates valid
over compact subsets of R", we can use the results of the global calculus by introducing
suitable cut-off functions.) A symbol p € S™(R” x R") is called classical (or classical
polyhomogeneous) of degree m if it has an expansion p ~ Zjeij7 where the p; are
homogeneous in ¢ of degree m — j for [{| > 1, and p— 3., p; € Sm=J(R” x R") for
JeN

Next, we define a class of symbols p depending on a parameter p varying in a sector
I' ¢ C\{0}. It is the behavior for || — oo that is important here, and we often describe it
in terms of the behavior of p(x, £, 1) for z — 0, T = pu € I'. For brevity of notation, we write
dp(x, &, L) (or just dIp) for the j'th z-derivative of the composite function z — p(x, €, 1).
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Definition 4.1. Let n and v be positive integers, and let m and d € R. Let I" be a sector in

C\ {0}. The space S™%(R” x R",T") consists of the functions p(x, &, ) € C®°(RY x R® x I)

that are holomorphic in p € T for |(&, )| > ¢ (some ¢ > 0) and satisfy, for all j € N,
Hp(-,-, 1) isin S"H(RY x R?) for L €T,

with estimates valid uniformly for |z| < 1,1 € closed subsectors of T.

Moreover, we set S™¢ = ;485m0; that is, S"™4(R” x R",T) consists of the functions p
(holomorphic in u € T for (&, p)| > ¢) such that for all j € N,

o (2%p(-,-, 1)) is in S™TI(RY x R") for 1 €T,

with estimates valid uniformly for |z| < 1, < € closed subsectors of I'.

Sometimes the symbols are only defined for |u| > a constant depending on the subsector
of I'; this requires obvious modifications. We can identify
(4.2) S™(R” x R") ¢ S™O(R” x R",C\ {0}).

Asymptotic expansions and polyhomogeneous subclasses are introduced as follows.

Definition 4.2. 1° Let p € S™~44(R” x R",T") and let p; be a sequence of symbols in
Sm—i—dd(RY x R*,T) such that
P — ZK’,pj c §m=J=dd(R¥ x R",T) for any J € N;
then we say that p ~ Zjeij in §m—dd,
2° If, moreover, the p; are weakly homogeneous of degree m — j, i.e.,
(4.3) pi(w t& tp) =" p;(x, & p) for €] > 1, >1, (&, u) € R" x T,

we say that p is weakly polyhomogeneous.
3° If, furthermore, the p; are strongly homogeneous of degree m — j, i.e.,

(4.4) pi(w, tétp) =" Tpi(x, & p) for €%+ [u* > 1,t>1, (&, pu) € R" x T,
and the following estimates hold for all indices a, 3, .J
(4.5) 0702040 — X5 pj) = O(((& )™ 7 1o17H),

then we say that p is strongly polyhomogeneous.

(For simplicity, we leave out the possibility of noninteger steps between the degrees of
the p;, included in [GS95].) It is shown in [GS95] that the conditions in 3° imply those
in 1° and 2°. Thus the strongly polyhomogeneous symbol can be thought of as the case
where p enters as an extra cotangent variable, on a par with the others, in a classical
symbol. For example, for m € Z,

S0 4 §0m for m > 0
4.6 24 2+1m/2€{ — 7
is strongly polyhomogeneous, whereas (with n = 2)
&+ &5 2\ ! 2.0 ~ q0,—2
4.7 <7 + ) eSS NS

is weakly polyhomogeneous. (For (4.7), cf. [GS95, Th. 1.17].) We shall use a special name
(as in [G97]) for symbols with this behavior:
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Definition 4.3. Let r be an integer > 0. A symbol s(x, &, ) (and the operator it defines)
is called special parameter-dependent of order —r, when

s(z,&,pu) € STTORY x R™,T)n S»"(R” x R*,T) with

m —r—m,0 v n 0,—r—m v n
Oms(x, &) €S (R" xR*.T)N S (R x R",T)

(4.8)

for any m, all 8;"‘5(.77, &, i) being weakly polyhomogeneous.

In particular, a strongly polyhomogeneous symbol of order —r has this property, cf.
[GS95, Th. 1.16].

The rules of calculus for the symbol spaces and the associated operators are described
in detail in [GS95]. Let us here just recall a few elements: A symbol p(x, ¢, 1) with x and
¢ € R" defines a family of v»do’s depending on pu € T,

(19) Puf(2) = OP()f(a) = (27) " [ " €pla. & ) (€) s
the indication sub-u may be left out. There holds the composition rule:

(410) PM = OP(Sm’d) P/; I OP(S’m’vdl) — PMP/; c OP(sm—}—m',d-{—d’)

) )

with symbol
(411 (pop)(w. & 1) ~ Lagwn ardep(e. & ) (=i02)°p/ (. & pr) in St

Theorem 1.23 in [GS95], formulated there for symbols with local estimates in 2, extends
without difficulty to symbols with global estimates in = (the proof is in fact simplified
because the compositions can be carried out directly, without cut-off functions, in the
global calculus):

Theorem 4.4. Let p(z,&, 1) € SYO(RY x R",T) @ L(CN,CN) be such that p = pg + p_,
withp 1 € S~"0 and with p, ' € C* bounded uniformly in (x,&, ) € R* x R* x T}, for
any closed subsector I of I' and '} = {p € I'" | |u| > 1}. Then there exists a parametrix
symbol q(x, €, i) € SP°(RY x R*,T) such that poq ~ I in S%°; here

4~ Qoo Y wen ", where

1

(4.12) )
qo=po ,r=1-pogqy, r°" =roro---or (k factors).

If p is weakly resp. strongly polyhomogeneous, so is q.

We shall not introduce a general ellipticity definition but just say that the operators
with symbol satisfying the hypotheses of Theorem 4.4 are uniformly parameter-elliptic in
the sense of Theorem 4.4.

It will be useful to observe that there are one-sided variants of Theorem 4.4:
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Corollary 4.5.

1° Let p(x,&,pn) € SPO(RY x R, T) @ L(CN,CM) be such that p = pg + p; with
p_1 € S™0 and with py having a right inverse qy € C that is bounded uniformly in
(,&, 1) € R" x R" x I}, for any closed truncated subsector I} of I'. Then there exists a
right parametrix symbol q(x, &, 1) € SOO(RY x R*,T) @ £L(CM,CN) such that poq ~ I in
S0-0: here

(4.13) q~p o(pop*) Tt

where (p o p*)° 1 is a parametrix symbol for p o p* according to Theorem 4.4.

2° When the assumptions in 1° hold with “right” replaced by “left,” there exists a left
parametrix symbol q(x, &, ;1) € SOO(RY x R*,T') @ L(CM,CN) such that gop ~ I in S°0;
here q ~ (p* o p)°~! o p*, where (p* o p)°~! is a parametrix symbol for p* o p according to
Theorem 4.4.

Proof. This follows immediately from Theorem 4.4, when we note that p* o p in case 1°,
resp. p o p* in case 2°, satisfies the hypotheses of Theorem 4.4. O

We say that symbols satisfying the hypotheses in 1° resp. 2° are uniformly surjectively,
resp. injectively, parameter-elliptic in the sense of Corollary 4.5.

In the previous works [GK93], [G95,G96], results were shown both for parameter-inde-
pendent ¥do’s and for parameter-dependent 1)do’s of a slightly different type than here; it
is the parameter-independent results from [G95] that are most fundamental for the next
theorem.

An important step in the resolvent construction in Section 5 is to show that when a
family of 1do’s P, is weakly polyhomogeneous of order 0 and is such that P, has an inverse
P/jl that is bounded in some H**-norm uniformly in pu, then the inverse Pljl is again
a weakly polyhomogeneous ¢¥do family of order 0, and symbol estimates of p-derivatives
for P, carry over to Pu_]' In fact we need a result of this kind when there is merely a
right inverse. When P, = I — S, with S, of suitably small norm, such results can be
shown by use the Neumann series expansion, and entered already in [GS95]. For more
general P,, more efforts are needed, and the question is closely related to the question of
spectral invariance — briefly expressed this means that when a do in a specific class has
an inverse in some operator sense, then the inverse is a ¥»do belonging to the calculus too,
and both operators are elliptic.

First we show the spectral invariance property for weakly polyhomogeneous vdo’s with
global estimates in x, using techniques from [G95] and [GS95].

Theorem 4.6. Let E, and Es be admissible vector bundles of dimension N over an
admissible boundaryless manifold )A(;, and let P, (depending on p in a sector I' of C) be a
weakly polyhomogeneous 1 do with symbol in S®° in admissible coordinate systems, such
that for some l € Z, P,: H'"*(FE1) — H"“"(Ey) (which is bounded uniformly for yu in closed
truncated subsectors I'.) has an inverse P, L that is likewise H“*-bounded uniformly for
p in subsectors T'.. Then P! is a weakly polyhomogeneous ¢)do with symbol in S%°.
Moreover, P,, and P, L are uniformly parameter-elliptic in the sense of Theorem 4.4.

If P, is strongly polyhomogeneous, then so is Pljl. If P, is special parameter-dependent
of order O (cf. Definition 4.3), then so is P ".
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Proof. Consider a I'".. First let [ = 0, so that H“* is simply Ly. We begin by reducing (as
in [9, Th. 1.14] or [7, Lemma 3.1.6]) to a consideration of operators of the form I — @,
with @, small: Since P, and P I are uniformly bounded, there exist positive constants
¢ < C such that

Then since || Pull7, p,) = (PrPutt, ) 1y,

c||u||%2(El) < (PPuu,u)p, ey < C’||11,||%2(E1)7 for all u € Ly(Ey), n € T.

It follows that

(4.15) 0<((I - C*IP:PM)U,U)LQ(E]) < (SCu,u)p, (). for all u € Lo(Ey), p € T,

. . . . 71
and hence when we introduce the selfadjoint operator Q, = I —C PP,

(4.16) C'PiPy =1 —Qpu. with |Qullzramy < S5E=6<1, Qu>0.

Since 4 < 1 and ||QZ|| < &% for k € N, the inverse (I — Q,) ! exists as >, oy QZ (the
Neumann series) with convergence in operator norm, uniformly in ¢ € T". Composition
with (I — Q,) " in (4.16) shows that

(4.17) P l=(I-Qu 'C P

We now study (I — Q,)~'. Since Q, has Ly-operator norm < ¢§ < 1 by (4.16), it
follows from a classically known fact (see e.g. the references around [7, Lemma 3.1.5]) that
the principal symbol ¢°(x, &, ) must have norm < 6. (In fact, when y(z) € C§°, the
essential spectrum of @, x for each p equals the union over x and €| > 1 of the spectra of
x(2)%q% (2, &, p).) Thus I —¢° has an inverse bounded uniformly in (x, &, ) € R* x R" x I/,
so I — @, is parameter-elliptic in the sense of Theorem 4.4 (the lower order symbol ¢ — q°
is in 7' in admissible local coordinates, since this holds for P). Thus I — @, has a
parametrix belonging to the calculus. Hence so does PP, = C(I — @), and then also
P,. (The parametrices are again u.p.-elliptic in the sense of Theorem 4.4.)

To see that the true inverse of I — (), belongs to the calculus, we can for operators on
compact manifolds appeal to a well-known result for standard ¢)do’s and use the uniformity
in u for the symbol and its derivatives, as in [GS95, Th. 3.8]. To include operators on
noncompact (admissible) manifolds, we appeal to a result of [G95]. Theorem 1.12 (1)
there implies that when P is a single (parameter-independent) 1)do of order 0, belonging
to the global calculus and elliptic uniformly in x, then if Py: Lo(FE1) — La(Fs3) has a
bounded inverse PO_]7 this inverse belongs to the calculus and is also a parametrix of F.
In particular, it is of order 0 and elliptic uniformly in z, and its symbol expansion is
found by the standard parametrix construction. Now when we consider the family I — @,
depending on p € I'., we use this result for each p, and note moreover that the analysis
used in the proof of [G95, Th. 1.12] relies on estimates that for / — @, hold uniformly in
p €T, Thus (I —Q,)~" will have its symbol belonging to S° uniformly in p € T (in
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admissible coordinate systems). This shows the first requirement for having the symbol in
590 For the remaining requirements on higher z-derivatives (z = i, cf. Definition 4.1),
we use successively the formulas

(4.18) = Q) = (1=Q) 'Y (‘;)321% oL = Q)" §>0

I<j

(that follow from 9Z[(I — Q,)(I — Q,)~'] = 0 by the Leibniz formula); they allow the
conclusion that 97(I — Q,)~" is in S7 uniformly in p € I',.

This shows that (I — Qu)*l has symbol in S%°. It is weakly polyhomogeneous there,
since a parametrix of I — @ is so by Theorem 4.4. Finally, since Pj is also weakly
polyhomogeneous with symbol in S%C, the formula (4.17) allows us to conclude, by the
composition rules, that P! is a weakly polyhomogeneous ¢)do with symbol in S%°. This
shows the main part of the theorem when s = 0. In this case the last statements follow
by use of a version of (4.18) with derivatives in p and I — @, replaced by P,; this shows
that the relevant estimates of the symbol of P, carry over to the symbol of the inverse.

If I # 0, we reduce to the preceding case as follows: For any admissible vector bundle F'
over X there exists a family of isomorphisms A} | from H"™*(F) to H"™™H(F) (m € Z)
with principal symbol essentially ((&, p))™ I and AOF’N =1, AT = (A}?’u)*l7 such that
the operator norm of Ay for any s is uniformly bounded in p, for argu in an interval
101,02]. (These order-reducing operators are a standard tool in [G86,G96,G95]; to get
holomorphicness in p for |argpu — w| < 6, say, one can for m > 0 take an operator as
in [G96, Corollary 3.2.12] with ((¢, 1)) replaced by (|€|>™ 4 (e=1)2™ + 1) that is well-
defined when 6 < 7/2m; for —m one takes the inverse). Then we replace P, and P! on
suitable subsectors by

(4.19) P, =AYy PAY Pl = Ay, PrAY

FEo,u Eq,u’ Ev,ut p Fo,u”
Here P, and Pf,l are uniformly bounded with respect to Lo norms. Assume e.g. that
b

[ > 0. In view of (4.6) and (4.10), PNAITJj,u has symbol in S0 N §% ! subsequently
Py, = A[Ez,uPMA;Jj,u has symbol in

(4.20) (80 4 89 0 (879N 507 c (890N §hh 4 (S7H N §90) ¢ §90,

It is seen in a similar way that the m’th p-derivative of P; , has symbol in §=™0n §0.=m,
This Py, satisfies the hypotheses with [ = 0, so the already proved part of the theorem
shows that Pfﬁ is as asserted. We get back to P/jl by considerations as in (4.20). O

When there is merely a one-sided inverse  right or left  of a given ¢'do, one cannot
in general expect to show that that particular operator belongs to the calculus, simply
because it is generally not uniquely determined. However, one can show in such cases that
there exists a right resp. left inverse with the expected symbol properties. (This seems to
be a new observation in general.)

Theorem 4.7.
1° Let E and F be admissible vector bundles of dimension N resp. M over an admissible
boundaryless manifold X, and let P, (depending on p in a sector I' of C) be a weakly
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polyhomogeneous 1do with symbol in S®° in admissible coordinate systems, such that
for some | € Z, P,: H**(E) — H"“"(F) has a right inverse R, that is likewise bounded
uniformly for p in truncated closed subsectors I';.. Then P, has a right inverse R), that is
a weakly polyhomogeneous v»do with symbol in S°°.

If P, is strongly polyhomogeneous, then so is R;. If P, is special parameter-dependent
of order 0, then so is P,

2° A similar statement holds with “right” replaced by “left.”

Proof. One can reduce to the case [ = 0 in the same way as in the preceding proof.
*

Consider a truncated closed subsector I',.. The identity P,R, = I implies R, P = 1.
Since R, is uniformly Ly-bounded for p € I, so is its adjoint R:

||RZ“‘||L2(F) < CHUHLZ(E) for u € LQ(E), ne ]_—‘;4/
for some fixed C' > 0. Insertion of u = Pjv for an arbitrary v € Ly(F) gives
lollZ ey = IR Pavlli, iy < C2IP0IT, (1) = C*(PuPiv.0)Ly(r).

This shows that the selfadjoint operator P, P} in Ly(F) has lower bound > C~?2, so it has
an inverse (P, P;)~! with Ly-operator norm < C~2 for p € I')..

Here Theorem 4.6 applies to P#P/j‘7 since it has symbol in S%Y by the composition rules
(cf. (4.9)). Then (P,P;)~" is a weakly polyhomogeneous ¢)do with symbol in S%° (since
I was arbitrary). From the identity P, Pr(P,P;)~" = I follows that

/o * *\—1
(4.21) Rl = P:(P,P})

is a right inverse of P,; it is likewise a 1do with symbol in S%0.

The statements on strong polyhomogeneity and special parameter-dependence follow in
a similar way from Theorem 4.6 applied to PMP:. This shows 1°, and assertion 2° follows
by obvious modifications of the proof. [

The theorem does not say anything about the structure of R, itself. However, we shall
use it in Section 5 in a situation where we can also infer that the given right inverse is a
weakly polyhomogeneous vdo.

5. Analysis of the resolvent.

Consider Pg as defined in Section 2; in particular it can be equal to Dy as introduced
in Section 3. We shall find a constructive expression of its resolvent in a form that allows
showing asymptotic expansions of traces.

The strategy in [GS95] for characterizing the resolvent (A; + u?)~1 associated with
a Dirac-type problem with a boundary condition (IIs> + Bp)you = 0 was essentially to
express the general resolvent as a suitable perturbation of the product case resolvent, by a
term that is of lower order at the boundary. When P is not of Dirac-type, we do not have
a simpler reference problem (like the product case) to depart from, so a new strategy is
needed. Here we establish the analysis directly by use of a Calderén projector for P — A.

For a general explanation of the Calderdn projector and associated Poisson operator and
their use, see the Appendix. As noted there, the Calderén projector is most manageable
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when the elliptic operator, one is dealing with, can be extended to a boundaryless manifold
X O X such that the extension is invertible there. This cannot be achieved for all P, but
in the present case, the resolvent assumption for P — A comes in useful. In fact, when
Assumption 2.2 1° holds, we can extend P — A to a ¥do ]BA on a neighboring manifold )Z',
such that Py is invertible for large A; then we can get a good definition of the Calderén
projector for this operator for such large A:

Theorem 5.1. Let P be such that Assumption 2.2 1° is satisfied. Let

(5.1) Ny ={z€eH(X,E)| (P~ Xz=0o0n X}, N, =073,

for s € R. Let X be an admissible boundaryless n-dimensional manifold in which X is
smoothly imbedded, the bundle E being extended to an admissible bundle E there; take
X compact when X is compact.

Each ray re'% in T' has a neighborhood T = { X = rel? | |§ — 0| < ¢} in T so that
for A € T, there is an extension Py of P — X to E (acting like P — X on X ), which is
a un1form1y parameter-elliptic strongly polyhomogeneous ydo of degree d with respect to
pe I’ = (—T")Y and has a parametrix Q, for A € I which is an inverse for |A| > +/
(some r' > 0). Then when we define (cf. (A.3)ff.)

(5.2) K= 1tQ\g"A, Cf =oKf, C;=1-Cf,

we have for A e I',, all s € R, cf. (2.5), (A.2):
K maps H*(E'?) onto Z3 4 with right inverse g, and CY is a projection in H*(E'")
with range N3 ,. Here C’;L is a matrix of classical ¥ do’s C’;L = (C’;L?k)j k=0

Cijk strongly polyhomogeneous of order j — k with respect to u € F’, and IxA is row of

‘ —+
Poisson operators (K/\J)j:o _____
the operators are admissible.

d—1 with K;L j strongly polyhomogeneous of order —j; all

Proof. We here use ideas from [S69], in particular from the appendix there. Denote
(5.3) Ly ={re’ [r>0,10/<a}l.

Consider a ray re'% in I'; multipying P — A by a complex constant we can obtain that
0o = m and that I 5y C —I" for some 6 > 0. Then for ¢ < 6/2:

— A€ F(5)7 —T € F(a) — ‘f|2d + A\ e F(QE) and — A\ — T(|f‘2d + )\2)% € F(gg)
— p(x,6) — A — 7(|€]** + A\?)? is invertible.

We can then, for X € I = —I'() and [£]*? 4 [A|? > 1 define a homotopy of p® — AI to the
symbol p(&, ) = (|€]2% + A\2)2 I: Set

G4 P& = BENGE [ NN 66 ) -7

where C is a curve in (—I'(.)U{|7| < 1})\R_ encircling the eigenvalues of p(&, A) ™" (p°(x, &) —
MT) (note that A? is well-defined on C). Here p°(z,&, X, 6) equals p(&, A\)I for # = 0 and
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equals p°(x, €) — M for # = 1, and it is homogeneous of degree d in (&, |A|'/?), holomorphic
in A, C*, and invertible for all § € [0,1], all [£]*? + [A|* > 1 with A € —T'.).

We can assume that X contains the neighboorhood UUU_ of X’ (described at the start
of the Appendix), where we can identify E with the pull-back of E’. In view of the uniform
parameter-ellipticity, there is a neighborhood V of X with X U(X’'x[-¢,0]) CV C XUU_
so that P extends to V as an admissible differential operator satisfying Assumption 2.2
1°. Moreover, we can deform the symbol p®(x, £) — X smoothly through u.p.-elliptic ¥ do

symbols homogeneous in (&, |A['/9) to p(¢,A)I by use of (5.4) when w,, goes from —2c

to —%c./ and then extend it as p(£, A)I on the rest of X. This gives a principal symbol
pY(x, €, \) defined on all of )A(:, defining a u.p.-elliptic ¥ do ﬁ,)\ of order d; it is strongly

polyhomogeneous for u € I’. Now take
(5.5) Py = ¢(P -~ M)p+ ¢Pra,

where ¢ and 1 are admissible (bounded with bounded derivatives) €™ functions on X
with ¢? +¢? = 1, such that ¢ is 1 on X U (X’ x [~ $¢,0]) and ¢ is 1 on the complement of
XU(X'x[-2 5,0]). This Py is a . p.-elliptic and strongly polyhomogeneous wdo of order
d that acts like P — X\ on distributions supported in a neighborhood of X. P,\,+ has the
same Green’s formula as P, (2.1).

P, has a parametrix QA for A € —TI'(.), u.p--elliptic and strongly polyhomogeneous of
order —d, by the usual formulas. Since P,\@’A = I + &) where 8, is strongly polyhomo-
geneous of order —1, hence has an Ly operator norm going to 0 for [A\| — oo in —T'(,),
I + 8y can be 1nverted within the calculus (by a Neumann series) for sufficiently large
A; here QA can be modified to the true inverse Q) = QA(I + 8)\)~'. This is strongly
polyhomogeneous with global spatial estimates, by Theorem 4.6. (A detailed account in a
more general situation is given in [G96, Th. 3.2.11]; for compact manifolds, [G86, Remark
3.2.12] or Shubin [Sh87] suffice.)

We now simply define Ky and C{ by (5.2); then the verification that they have the
mentioned mapping properties goes exactly as in Theorem A.1. The resulting operators
are strongly polyhomogeneous by [GS95, Lemma A.1, Th. 1.16] and have uniform spatial
estimates since @,\ and A do so. [

For use later in Corollary 5.4 let us also note that QéA’_f_ (as a function of u = (—\)/4 €

I') is a strongly polyhomogeneous trace operator of class 0, cf. [G95, Lemma A.1 (11)]
Now Theorem A .4 is valid for P — A with C*, K+ and Q, replaced by C KA and

QA +, in the exact form since the extension PA of P — X has the inverse QA on X. Consider

a system (27;‘) satisfying Assumptions 2.1 and 2.2. By Lemma 2.3, it is surjective from

HY(E) to Ly(E) x HY(F) for each large A € I'. Then we have in view of (A.14)—(A.16) (or
Theorem A.4) that the 1»do SCY on X' is surjective for each . We shall show that SC}
has a right inverse belonging to our weakly polyhomogeneous vdo’s.

Lemma 5.2. Let A € I, (with I as in Theorem 5.1 and r so large that Q, = ﬁ)\_] and
Assumption 2.2 is satisfied). Then SC’j\' has the right inverse, with K defined by Lemma
2.3,

(5.6) S\ = oKy;
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it is a ¢ do mapping H*"(F) onto H**(E'?) with uniform bounds in p = |A|'/¢, for all
s >d.

Proof. By the converse part of Theorem A.4 1°, (5.6) is a right inverse of SC’;L. The
mapping property follows from the second line in (2.10) by composition with go. O

We would like to use Theorem 4.7 to show that S is weakly polyhomogeneous in terms
of u = (=A)'/%. One difficulty in this is that S% is just a right inverse, not a two-sided
inverse (and such right inverses are not uniquely determined). Another difficulty is that S
and C;L are multi-order systems. But these difficulties can be overcome, as shown in the
following theorem.

To eliminate the effects of the multi-order, we conjugate the operators (in each subsector
I')) with

AR 0 .0
0 A2 ... 0

(5.7) Ora=1 . o N T COV IS
0 0 ... Ip, ,

and the analogous operator © g y; the entries are defined as in the proof of Theorem 4.6.
We set

(58) S\ = @F,)\SGE})\./ C;\F = ®E”i,>\C;—®E}d’>\'
Here the entries are of order 0. 5; is again strongly polyhomogeneous in terms of u € I’
since the A[E',u are so; hence it is in fact special parameter-dependent of order 0. For 5 is
follows from the lower triangular form of S that § \ is again lower triangular. The entries
in and below the diagonal are of the form A(E};] SjkA]}jL*d with 7 > k and thus, since

Sik € Si=k c §7=k:0 they are seen to have symbols in S%0 with p-derivatives of order m
in §7m9 N §O=" for any m, by calculations as around (4.20). (For k < j < d — 1 one
needs the observation that §7=F*=7ingi+1=dd=1=7 c §0.0 by interpolation since j—k > 0,
j+1—d<0.) Thus S, is special parameter-dependent of order 0. We also define

(59) :SVS\ — ®E’d,>\‘s$\®]_ﬂl)\'

Theorem 5.3. Let P and S satisfy Assumptions 2.1 and 2.2.
For X in truncated subsectors T, of T' (as in Lemma 5.2), the operator SCY has a right

inverse S\ = S S{O .\ where SV is special parameter-dependent of order 0 (in terms

B,
of 11 = (~ A1),
The right inverse S} defined in Lemma 5.2 equals CY SY, and S defined by (5.9) is

special parameter-dependent of order 0.

Proof. The operator §,\5;\L is continuous from H*(E'?) to H*(F) for any s, in particular
for s = 0. It has the right inverse 53\ which is continuous from H'*(F) to H"*(E'?),
uniformly in p, for t > %, in view of (5.6), (2.10) and the mapping properties of the Ale,u-
In particular, the continuity holds with ¢ = 1. We can then apply Theorem 4.7 with [ =1,
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which shows the existence of a right inverse gi\' that is special parameter-dependent of
order 0.
The right inverse we have constructed in this way need not be the same as S’ defined

. . | .
after Lemma 5.2 in (5.9). However, since ( So ) is bijective, we infer from the converse

parts of 1° and 2° in Theorem A.4 that <057 ) is injective and SC’;’ is surjective, hence S
A

defines a bijection of Ny , onto H?(F), and so does SC’;. Then SC’;L has only one right
inverse ranging in Ny . Now S} in (5.6) does map into Ny | since (P — A\)Ky =0, so it

is the right inverse of SC’j\' ranging in Ny . When S’ is an arbitrary right inverse, then

I=S8Ctsy =sctrctsy,

SO C’j\L S{" is a right inverse ranging in Ny 4; hence it must equal S{. In particular, for the
right inverse SY found above,

Sh = CF Sy

It then follows from the rules of calculus that also §§\ = Opu L0, = 5; §§\’ is a special
parameter-dependent ydo of order 0. [

Since @,\ is the inverse of 13,\, we can now apply the direct part of Theorem A.4 1° to
P—X
s

describe the inverse of ( . ) This gives as an immediate corollary:

Corollary 5.4. For \ in truncated subsectors I, of ' (as in Lemma 5.2), the resolvent
Ry = (Ps — X\)~" and the Poisson solution operator K in (2.6) satisfy

(5.10) Ry = Qx4 — Gy with G\ = K¥5,50Qx 4,
' Ky = K85,
where S’ is as in Theorem 5.3.

In terms of u = (—A)l/d, K;L resp. Q@A’_F are a strongly polyhomogeneous Poisson resp.
trace operator, and @E,d’kS'AG);& and @E,d’kSS\SGEK are special parameter-dependent
do’s of order 0. In particular, we can write

(5.11) Gy = KaS\T with Ky = K;@;J}d’k, S\ = @E,d,ksgse)];}d,k, T\ = O ,0Q +,
where K is a strongly polyhomogeneous Poisson operator of order 1 — d, Sy is a special
parameter-dependent 1)do on X' of order 0, and 7T, is a strongly polyhomogeneous trace
operator of order —1.

Here S} and S§S are covered by the analysis in Theorem 5.3, whereas K and Q@,\A_
were described in Theorem 5.1ff; see also (5.7).

6. Trace formulas.
We can finally obtain trace formulas, by the methods of [GS95].



GERD GRUBDB

Theorem 6.1. Let Ps be the realization (2.3) defined from a differential operator P of
order d in a bundle E over a manifold X together with a boundary condition (2.2) (all
admissible), such that Assumptions 2.1 and 2.2 are satisfied. When (m+1)d > n = dim X,
the resolvent Ry = (Ps — \) ! satisfies for any compactly supported morphism ¢ in E:

(6.1)  Tr(0dy' (Ps —A) 1) ~ ag(=A) T "1 4+ “(a; + b;) )t mel
7=1

+Z cx log(— —l—c%)(—)\)’%’m’l,
k=0

for )\ — 00 in closed subsectors of F The coefficients aj, b; and c¢j are integrals,
fX x) dz, fX, (2') dx’ and fX, cp(2")da', of densities a; locally determined by the
symbo]s ofP resp. b. and Ck Iocally determined by the symbols of P and S at X'; here
X is a smooth compact neighborhood of supp¢ in X such that X| = Xy N X' is a
neighborhood of supp ¢ N X’ in X'. The ¢ are in general globally determined.

Proof. pd{" Ry, is trace class since it maps Lo(E) into H(™+D4(E|x ) and the injection
Hm+DA(B|y ) < Ly(E|x,) is trace class. The kernel is continuous and the trace is the
integral of the fiber trace of the kernel on the diagonal, so one only has to integrate over
X;. Consider a truncated subsector I') as in Lemma 5.2. From Corollary 5.4 follows that

TRy = 0% (Ps — A~ =m!(Ps — A\ = m!(Qr 4 — Gy)™ !
(6.2) = ml(Qr4)" " + T poly(Qr 4, G)
= ml QY )4 + Gr+ 35 poly (@i 4, G),

where the expressions pol, are “polynomials” in the two (non-commuting) terms in R), in
the sense that they are linear combinations of compositions with m — & factors @ 4+ and
k factors G. The term G is the singular Green operator (cf. e.g. [G96, (1.2.35)])

(6.3) Gy =m!(Qxr)™ ™ — (Q7T)4).

In the dependence on g = (=\)'/?, we have in view of the rules of calculus of [GS95], [GI6]
that Qm+] is a strongly polyhomogeneous ¢do of order —(m + 1)d on )~(, G, is a strongly
polyhomogeneous singular Green operator of order —(m + 1)d on X, and the sum over
k is a sum of compositions containing strongly polyhomogeneous operators (of all types)
together with the special parameter-dependent vdo Sh.

Consider the trace

m+1

Trx pdV' Ry = Try cpm!(@ﬁihq + Trx ¢[Gy + Z polk(ékﬂh Gh)).
k=1

By the construction of Py in Theorem 5.1, the restriction ( m+]) of Qm+] is the restric-

tion of a strongly polyhomogeneous parametrix of (P — \)™*! defined on a neighborhood
Am—+1
A

n—

)+ contributes a well-known expansion Y, a;(—\) "7

i_m—1

of X, so Trx pm!(
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The singular Green operator @éA is strongly polyhomogeneous of order —(m + 1)d
and hence of regularity +o0o in the sense of [G86,G96], so it contributes an expansion

n

S bo i (—A)T "™~ by the proof of [G86, Th. 3.3.10ff.] or [G96, Th. 3.3.9ff.], also
recalled in [G92, App.].

In view of (5.11), the terms in the polynomials pol, contain Sy as one or several factors.
Here we use the invariance of the trace unde~r cyclic permutation of the operators, to reduce

to the study of an operator on X'. Since )5 4 composes with strongly polyhomogeneous
Poisson and trace operators to give Poisson resp. trace operators that are again strongly
polyhomogeneous, each term in pol, has the structure

(6.4) O = KA NS\TI AR nSaTon ... Ky ASAT s

with Gy of total order —(m +1)d and the K; \ and 7; , strongly polyhomogeneous Poisson
and trace operators of order < (. Let ¢ denote a morphism over X’ that is the identity
over a neighborhood of supp ¢ N X" and is supported in X7; then ¢y (I — ) is strongly
polyhomogeneous of order —oo, so its norm in Sobolev spaces is O((\)~M), any M, and
Tr oK1 A1 — 0)S\T1 AK2aS2 T x - - - KyaSaTyx is O((A) M), any M. For the remaining
part,

Trx oK1 VS\T1 K2 AS\ T2 ... KyaS\ T\ = Trx: Sy, with

6.5
(6.5) S\ = VS\TI A2 23S0 T - - - KiaSaTiaeKyy;

here the factors 7; \K;41,» and 7 @K » are strongly polyhomogeneous ¢do’s on X' of
orders < 0. It follows that the ¢do S} is a special parameter-dependent ¢do of order
—(m + 1)d. We can now apply [GS95, Th. 2.1] to this by integration over X/, using a
reduction to local trivializations and a partition of unity. Since X’ has dimension n — 1
and the symbol has degrees —(m + 1)d — k, k > 0, and p-exponent —(m + 1)d, we get an
expansion in a series of locally determined terms 5;@(—)\)%*”‘*17 k > 1, together with a
series of terms (¢ log(—\) + 52)(_)\)§—m—1’ k > 0, with ¢ locally determined.
Collecting all the contributions, we find (6.1). O

We have as an immediate consequence:

Corollary 6.2. When J in Assumption 2.2 contains [0y, 0] with |01, 62[ D [Z, 2Z], so that
the heat operator e~'"s can be defined for t > 0 by

27

etPs = L / e NPy — \) 7' d\, with
(6.6) c

C={A=e"r|r>r}+{A=c%q]0:>0>0}+{\=e%r|rg<r},
then there are trace expansions for t — 0, when ¢ has compact support:

(6.7) Tr(pe™t75) ~ agt=7 + Z(dj + Bj)t% + Z(Fk logt + (‘f;@)t%'
j=1 k=0

here the coefficients are proportional to those in (6.1) by universal factors.

Proof. (6.6) implies

Trpe s = L /(75)””64A Tr 0Oy (Ps — \)~ " d\.
C

27
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The expansion (6.7) is shown by insertion of sums of terms from (6.1) down to a given

order plus a remainder O((A)~"), and letting the order — —oo. Here one uses simple
calculations such as:

JC

= —L(—t)y7mgs / e %(—0)%do = const. t7" "5 ogt. O

Theorem 6.1 holds in particular for (Dg + ) !, giving expansions of the form

n—1 %)
(6.8) Tr(d, (Ds + 1)) ~ Z cj_nun—j—m—l i Z((,k log j1 + ¢ )u—k=m=1,
Jj=0 k=0

for ;1 — oo in closed subsectors of T'y. We apply this to (3.26) by use of (3.28) as in [GS95,
Sect. 3.4]: Take ¢ = (@ki)k.1=1,2 with just one block different from zero in order to get the
traces of the individual blocks in (3.28), and set A = —pu?. This gives trace expansions of
the m’th derivatives of p(A; —A\)~' (i =1,2), v Dp(A; = A)""and v Dg* (A —A)~!, and
consequences for heat trace expansions as in Corollary 6.2:

Theorem 6.3. Let Dg be the realization of a first-order uniformly elliptic differential
operator D from Fy to Ey with a uniformly well-posed boundary condition Byqu = 0
(manifolds, bundles and operators being admissible). Then when ¢ and 1) are compactly
supported morphisms (in E; resp. from E; to E;, i,j = 1,2), there are resolvent trace
expansions in closed truncated subsectors of C \ Ry, for m > n:

n

1
k

Tr(pd (A = A) 1) ~ Y i (=N T > (aixlog(=A) +aj ) (=A)= ",
0 k=0

.
I

(DB (A = A) 1)~ Db (-0) T

k41 1

(6.9) + ) (brilog(=A) + b ) (=N "2 "

with a similar formula for Tr(y D97 (Ay—\)~") with coefficients by , and b, . Moreover,
there are heat trace expansions when t — 04:

n—I1
Tr(ge '27) ~ an nf 2 -I—Z (aiklogt +aj )t tr, =12
7=0 k=0

(6.10)

oC

n—1
Tr(vDge~ A1) ~ Z bijnt 7 + Z(bl’k logt + bl],k)t%7
j=1

k=0
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with a similar formula for Tr(yDg*e~'2?) with coefficients by j, and b}, ,. The coefficients
in (6.10) are proportional to those in (6.9) by universal factors. The unprimed coefficients
are locally determined; the primed coefficients depend on the operators in a global way.

The terms lzi,_n(—)\) 2~ 1 and biy_nt% have been left out, since their coefficients are
formed by integration in ¢ of functions that are odd in £, which gives zero.

When X is compact, one can also pass via the zeta function as in [GS95]. One then
gets, with the same a; i, a} ;, b, and b ; as in (6.10):

n—1

i i_n Tr ollg(D = —a; a;
D) Tr(p ) ~ Y oo TPlDB) | sm( ey i),
j=0°" "2 N i (s—2)? s—3
(6.11) o . ’
_s 1,j—n —Ulk 1,k
['(s) Tr(y DpAT) ~ Z ,7'777%1 + Z( i T k71>’
s e I N

with a similar formula for Tr(y Dp*A5®) with coefficients by  and b, ;. (The left-hand
side is meromorphic on C and the right-hand side gives the full pole structure.)

The results apply of course to all the cases presented in the examples in Section 3.
For comparison with earlier results it is of interest to see how the expansions vary under
perturbations of B.

Theorem 6.4. Consider two choices By and By of B as in Theorem 6.3, such that B’ =
By — By is a vdo of order —1. Denote

87:(B7 (]_B'Zk>0-*)7i:1727 6,282_817

(6.12) —1

<€3;0ﬂ> = (Ripy Kiy) forpeC\iR, i=1,2.
Then
(613> RQ,N == Rl’u - ICLUB,’}/ORQ,M7 IC2;N = ICLM _ ICI,MB,’YOKQVM.

Here when m > n and ¢ has compact support, Tr 00" (K1 ,B'v0Rz,,) has an asymptotic
expansion for 1 — oo in closed subsectors of I'y:

n—1 o
(6.14)  Trody (KiwBroRau) ~ Y cjnp™ ™ 4+ (exlogp+ch)u ™ F,
j=2 k=0

so the first two terms in the expansions (6.9) (6.11) are the same for Dp, and Dp,. If B’
is of order —oo, the series (6.14) reduces to

oo

(6.15) Tr (PalZn(KLMB,'}/ORQ’u) ~ Zcfku_m_]_k,
k=0

so all the unprimed terms in the expansions (6.9) (6.11) are the same for Dg, and Dp,.

Proof. By the definition of the inverses,

—1
D+ I 0
Row Ko)=( . , .
< Bivo > (Raou Ka) <3 YoR2u I—B 70]C2,u>
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Composition with (R, K1, ) gives

I 0
(Roy Kop)=(Riyu Kiy) <—B’70R2,M I— B/VOICZu) ’

which implies (6.13). Now by use of circular permutation as in the proof of Theorem 6.1,
the Leibniz formula and the explicit formulas in Corollary 5.4,

Trx 90" (K1,uB'v0Ra,u) = Trx Y e, (7)) 005 K1, 1B 700 Ra .
= Tl"xl 82%(31’707?,2’“99]C]’M) = Tl"xl SIZ

where S/Z = 8;”(8,’70(@“’_{_ — K:SQ,MB270@#&)‘!9[{:51,11)3

here we denote by 5; , the right inverses of 5; C’lf constructed for the respective problems in

Lemma 5.2 and Theorem 5.3. As shown earlier, 70@%4_99[{;' and 7o K;F = CF are strongly
polyhomogeneous ¢do’s on X’ of orders —1 and 0, and the S; , are special parameter-
dependent of order 0. Since B’ is independent of ;1 and of order —1, it follows that SL has
symbol in §727m.0n §=L=1=mThen [GS95, Th. 2.1] implies (6.14).

If B’ is of order —oc, so is B'; then S}, has symbol in S—eel=m and [GS95, Th. 2.1]
or just [GS95, Prop. 1.21] implies (6.15). [

In the case with X compact and a product structure near X’, the Calderén projector
differs from II> by an operator of order —oo by Proposition 3.5, so for B = C*, the
expansions (6.9) (6.11) only differ in the primed coefficients from the expansions known
for B = II>. Here it was shown in [GS96] that all the logarithmic terms vanish when
n = dim X is odd; when n is even, the logarithmic terms with & even > 0 vanish, and the
logarithm at the power zero vanishes if in addition ¢ = I (exact formulas were also given).

So we find:

Corollary 6.5. Consider the product case with X compact, B = C'T. Then the expan-
sions (6.9) (6.11) differ from those known for B = II> only in the primed coefficients.
In particular: When n is odd, all the logarithmic terms vanish. When n is even, the
logarithmic terms with k even > 0 vanish in (6.9)—(6.10); also the a; o and a; ¢ vanish if
p=1.

Note that it is the global coefficients that may be changed when we replace II> by C* in
the product case, whereas the locally determined coefficients are unchanged. More precise
statements can be inferred from the precise formulas in [GS96], showing that the local
coefficients resulting from the boundary condition are proportional, by certain universal
constants, to specific coefficients in the zeta and eta function expansions (or heat trace
expansions) for A. Tt is shown in Gilkey and Grubb [GG97] that these coefficients are

generically nonzero.

Remark 6.6. Our results show that the boundary conditions considered in [BL97] give heat
operators with trace expansions (6.10) also when the structure is not of product type near
X’; this is a new result. One can moreover use Theorem 6.4 to conclude in the product
case that conditions that differ from those in [BL97] by an operator of order —oo have
similar locally determined coefficients, in the same way as in the comparison with the case
B = 1II> in Corollary 6.5.

Let us finally observe the resulting index formula:
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Corollary 6.7. Let X be compact and let B be well-posed for D. Then the index of Dg
equals

(6.16) index Dp = a} o — ay

where the a; , are the coefficients entering in (6.10) with ¢ = 1.
Moreover, when o = 1, all the other coefficents coincide for 1 = 1 and 2:

(6.17) ar, = agp for all k > —n and a' ,, = ay, for all k > 0.

Proof. This follows from the well-known fact (cf. e.g. [G86,G96, Sect. 4.3]) that
(6.18) index Dp = Tre™ ' — Tre™'2  for t > 0;

since this expression is constant in ¢, the variable terms must vanish. (One can make a

successive elimination of the terms (a1, —as )t 2, (a1,1-»n — as1 )t~ 77, etc., by
order of magnitude.) O

A. Appendix.

We here recall, and extend to admissible manifolds, the definition and application of the
Calderén projector CF for an elliptic differential operator P: C*° (X, Ey) — C°(X, E)
of order d, as introduced by Calderén [C63], Seeley [S66,569], see also Hormander [H66],
Boutet de Monvel [BM66], Grubb [GT77].

The manifold X is taken to be compact or, more generally, admissible as defined in
[GK93|, [G96], see the introduction to Section 2; P is assumed to be admissible and
uniformly elliptic. 'We can assume that X is smoothly imbedded in an n-dimensional
admissible boundaryless manifold X such that X’ is an (n — 1)-dimensional hyperqurfa(‘e
in X and FE and E5 are restrictions to X of N-dimensional bundles E1 and EQ over X one
such choice is to double up the neighborhood U along X', augmenting X by the reflected
piece U_. In U U U_ we write x = (2, x,), where |x,| < ¢(2), ¢(2') > ¢ > 0. In the
compact case one can add another piece to X U U_ to get a compact X.

If P extends to a uniformly elliptic operator (also denoted P) from C>(E;) to C™(E,),
we let () denote an admissible parametrix of P on )A(:; then

(A.1) PQ=1+T,, QP=I+T, onX,

where 77 and ’Tg are admissible ¥»do’s on X of order —oc. The use of Calderén projectors
is simplest if X and P can be chosen so that P is invertible on X then ) stands for the
inverse (necessarily admissible by the spectral invariance proved in [G95]), and 7; and 7
are zero. N N

Let us denote X° = X, X\ X = X_, Fj|x, = E; +. The mapping 0 = {y0,...,7a-1}
(vju = (D4 u)l|s,=0) can be regarded as a mapping either from functions on X 4, or from
functions on X _, or from functions on )~(, to functions on X'; to distinguish between the
three versions, we denote them o%, o~ resp. g (so 9 = ¢*). When F = Fy & ---& F,_1 are
vector bundles over X’ we denote

H(F) = Tlogjca H 77 (X' Fy)

(A.2) _ N
HO(F) = Tloejeqg B3 (X F)) = (H7(F))
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Indication of manifolds will often be left out. Writing Po; 4 E; = E!4, we have that

o and 9 map the respective H® spaces into HE (B for s > d — 1 The mapping

2
0: H(E;) — H*(E/) has the adjoint p* : H™*(E}%) — H~*(E;) for s > d — 3; it ranges
in distributions supported in X'. (For further explanation, note that ¢* is the row vector
{I,D,,,..., Dg;l}%‘? where 3¢ in local coordinates where X’ is replaced by R" ! sends
a function (2’) on R" 1 into the distribution ¢ (') @ 8(x,).) We use the notation A4 for

the truncation of a ¥»do A on X to X4

(A.3) Ay = r*Ae*, when A is a ¢do on X;
here r* means restriction to X4 and e* means extension by zero on X,

Define the spaces
Zi ={z€ H* (X4, F1+)|P=0o0n X3}, seR,
(A.4) Ni = 0575 c H¥ (B,
Zo={z€C®(X,E)nHYX,E)| P=0, suppz C X};

here 7 is identified with a subspace of the Z7 and has finite dimension when X is compact.
Although the trace operator g is defined on H*(E; 1) for s > d — % only, the definition of
the spaces Ni of Cauchy data for null solutions can be extended to all s € R, by results
in Lions and Magenes [LM68] or by the arguments in [S66,569]. Seeley showed in [S69], in
the case where X is compact, that there exist continuous mappings

(A.5) KT HY (B — H¥(Ey4), COF =o"K*: H(EY) — H(EY)

(defined consistently for all s € R) with the properties:
A.i) For each s € R, K+ maps H*(E'?) into Z%, such that
1 +

(A6) Z5 =Kt (H)+Zy, otKto=gpforpe N, Ktotz==zforze KT(H*).

(A.il) CT = pTK™ is a projection in ‘H*(E}?) with range N3.
(A.iii) The operators satisfy:

(A.7) Kt =—rTQo'A+T5, CT =—0"Qo" A+ 075,

where 73 and o773 are integral operators from X’ to X resp. X’ with C° kernels;
here 73 = 0 when @ is the inverse of P on X.

C7 is a matrix of classical ¥do’s, CtT = (Cﬁ)j,k:o,m,dq with C’ﬁ of order j — k; it is

called the Calderén projector for P. We also define the complementing Calderén projector
(A.8) C-=1-C".

In the terminology of [BM71], K" is a Poisson operator. Because of the presence of the
mapping o*, the full symbols of K+ and C* are determined from the symbol of P and its
derivatives at X’ (modulo symbols of order —c0).

Although the result is independent of the existence of convenient extensions of X and
P, the deduction of it is easiest to explain when P has an invertible extension to X. Then
it also has a nice generalization to non-compact cases:
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Theorem A.1. In the case of admissible manifolds, bundles and operators, assume that
P has the inverse (Q on X. Then the spaces Ni are complementing subspaces of H'Q(Eid):

(A.9) HE(EY) = N54+N*.
When we define
(A.10) K* =3r%Qu* A, CF = o K* = Fo5r*Q0" A,

the Poisson operators K*: H*(E}%) — H?*(F; 1) have range equal to Z% and provide right
inverses of p* on Z 1, respectively; and the ¢do’s C* (the Calderén projectors for P) are

the projections of H*(E}%) onto N§ along NZ, respectively.

Proof. The proof is a generalization of the deduction in [S66], [S69] for the invertible case
with X compact. In fact, the proof given in [G96, Ex. 1.3.5] carries over werbatim to
the present admissible manifolds, when the operators are admissible (have uniformly -
estimated symbols; the calculus for such operators is worked out in [G96, Ch. 2-3]), and
one allows the range bundle for P to be different from the initial bundle E. To save space,
we refrain from repeating the details here. [

When P merely satisfies (A.1), one can still define operators K+ and C* by formulas
similar to (A.7); then they have the desired mappping properties only modulo smoothing
operators. The properties (A.i) (A.ii) achieved in [S69] for the compact case require more
precision. A construction taking account of smoothing operators is worked out in [G77]
for general multi-order operators P on compact manifolds, with applications. The book
of Booss-Bavnbek and Wojciechowski [BW93] goes through the proof of Theorem A.1 for
first-order operators in the product case, cf. Definition 3.1.

The principal symbols are determined by the analogous (exact) construction for the
model operator p°(a’,0,¢’, D,,) in S(Ry)N for [¢'| = 1; here S(Ry) = rTS(R). The
nullspaces

(A.11) Zy(2', &) = {2(x,) € SRL)N | p°(2',0,6, D, )z =0 on Ry},

are finite dimensional subspaces of S(R+)" consisting of exponential polynomials decreas-
ing for z,, — too, respectively, and the corresponding Cauchy data spaces Ny(2',¢') =
ot Z4(2',¢") are complementing subspaces of H0<j<d CN = CN?. The dimension of
Ni(2',&") equals the sum of the multiplicities of the roots in det p°(2,0,¢,7) (consid-
ered as a polynomial in 7) with imaginary part = 0, respectively.

Example A.2. When d = 1 and P = D is written as in (3.3), the model operator is
d°(a’,0,¢',D,,) = o)) (7= + af(2/,¢)). Tt is seen e.g. by changing af(2',¢') to Jor-
dan normal form that the spaces Ny(a2/,¢’) € CVN are the generalized eigenspaces for
af(a’,¢') associated with the eigenvalues having real part = 0, respectively (i.e., the roots
of the polynomial det (it + al(2’,¢’)) in 7 having imaginary part = 0, respectively). The
corresponding Calderén projectors ¢* (2, ¢'), projecting onto Ny (2, ¢') along N (', &),

respectively, can be found from the formulas:

(A.12) ) = & [ T )
Jry
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here the integration curve L4 lies in Cx = {7 € C | Im7 2 0} and encircles the 7-roots of
det(it1 + af(2’,&")) (the poles of (d°)~!) there, respectively. ¢* is the principal symbol of
C*. The associated Poisson operator k* from N (2, &) to Z4(2', €') is the multiplication
by k*(2', ¢, x,) = irifgf_)mn(ifnl +af(a’, &))", where F is the Fourier transform.
When af(2', ') is symmetric, equal to a®(2’,¢’) as in (3.5)ff., Ny(2,¢) is the positive
resp. negative eigenspace of a’(a’,¢’) (here the roots of det(itl + a%(2’,¢’)) lie on the

imaginary axis, in C; resp. C_), and the ct(a’,¢') are orthogonal projections.

Let us now explain the use of the Calderén projectors in the study of boundary value
problems:

(A.13) Pu=fon X, Sou=¢onX,

where S is a system of ¢»do’s Sj;, of order j—k (j. k =0,...,d—1) going from E{ to bundles
Fjj of dimension > 0 over X'; M =, ,dim F;. (Say, f € H*=4(Ey) and ¢ € H*(F)
are given, and u is sought in H*(Ey), for some s > d — 1.) Assume for simplicity in this
explanation that () is the inverse of P on X. We can replace u by 2 = u — Q4 f (cf. (A.3))
and ¢ by ¥ = ¢ — SpQ, f; this reduces (A.13) to the problem

(A.14) Pz=0on X, Spz=1 on X'

Here ¢ € H*(F) and z is sought in Z%. If we set 1) = gz, i.e., 2 = KTp (cf. Theorem A.1),
the problem (A.14) is equivalent with the problem of finding 7 € H*(E!?) such that

(A.15) Sn =1, neNj.

Since N¥ is the nullspace for C'~ as well as the range space for C* in HE (B, we now
have the following two equivalent strategies to solve problem (A.15):

(4.16) (a) Find n such that (C:S‘ ) n = (15) :
(b) Find x such that SCTy = 1, then set n = C*y.

S
o
the problem has existence of solution if and only if SCT is surjective. This discussion is
followed up in Theorem A.4 below, after we have recalled the definitions of the appropriate
ellipticity concepts.

The problem (A.13) is called injectively resp. surjectively elliptic when the model prob-
lem

It follows that the problem has uniqueness of solution if and only if ( ) is injective; and

0 / /

p(2,0,¢,D, J)u=0onR,,
(A.17) ( o ,> "
s’ (', ou=v at x, =0,

for all 2/, all |¢/| = 1 has uniqueness, resp. existence of solution u € S(Ry)N for all

0
v € CM. This is equivalent with injectiveness resp. surjectiveness of the operator <S’BQ>
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from S(R;)N to S(Ry)N x CY. By the Calderén projector construction on the principal
symbol level, the solutions in S(R, )" of the first line of (A.17) are mapped bijectively onto
Ni(2',¢&") by o. Hence injective resp. surjective ellipticity is equivalent with injectiveness
resp. surjectiveness of the mapping s°(2',¢") from Ny (x',€') to CM . Observe that injective
ellipticity holds if and only if

(A.18) veCV S, =0, c (2, =0 = v=0;

i.e., the nullspaces of s and ¢~ are linearly independent; this can also be stated as the
So(ml7gl)
e (2 €
boundary value problem holds if and only if s%(2’, " )et(2/,&') is surjective for all 2, all
|¢| = 1. Thus, in other words:

property that ( ) is injective for all 2/, all |¢'| = 1. Surjective ellipticity of the

(5@) is injectively elliptic <= (g > is injectively elliptic;
(A.19) P
(Sg) is surjectively elliptic <= SCT is surjectively elliptic.

Note in particular that injective resp. surjective ellipticity implies that M > dim Ny (2/, £’),
resp. M < dim Ny (z',¢").

Problems that are both injectively and surjectively elliptic are simply called elliptic;
then M = dim Ny (2/,¢"). When M = dim N, (2/, &), ellipticity is equivalent with injec-
tive ellipticity and with surjective ellipticity, for dimensional reasons. The property is a
generalization of the Shapiro—Lopatinskﬁ condition.

For noncompact manifolds we need a spatial uniformity in the ellipticity hypotheses.
Here P and S are assumed to be admissible, and when P is uniformly elliptic, the problem
is called uniformly injectively resp. surjectively elliptic when there is a left resp. right
inverse of the model problem at the boundary that is uniformly bounded in a'; this is

o

Since p” satisfies p®(x, &) = (—1)%p°(x, £), the polynomial det p°(z’,0,&’, 7) in 7 has
equally many roots in Cy and C_ when n > 3 (then £’ can be connected to —¢ by a curve
in {n’ e R*=! | || = 1}), so Nd must be even and

equivalent with uniform injective resp. surjective ellipticity of ( S ) resp. SCT.

(A.20) dim Ny (2',¢) =dim N_(2', &) = Nd/2

then (the so-called properly elliptic case). Here ellipticity of (A.13) requires M = Nd/2.
As shown in [G77, Th. 3.1, 3.2] for very general systems on compact manifolds, one

P ..
Sg) when injec-
tive/surjective ellipticity holds. We shall extend this to admissible manifolds where The-
orem A.l1 applies, and at the same time keep track of how much is needed to get exact
formulas when Seeley’s projector (A.i)—(A.iii) is used in the compact case. ([G77] treats
systems P of mixed order; for such systems the formulas contain an extra block matrix B.
When P is of a single order, B is void  zero-dimensional  and the results hold with B
and its effects omitted.)

First we show a preparatory lemma. All calculations in the following are justified within
the extension of the calculus of Boutet de Monvel given in [G96]. Recall that operators
are said to be “of class 0” when they are well-defined on Ly(X) (do not involve 7).

can give explicit formulas for a left/right parametrix of the system (
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Lemma A.3. Let X be compact or admissible and let P be a uniformly elliptic differential
operator of order d. In the compact case, define the Calderén projectors C* as in (A.i)

(A.iii), (A.8); in the admissible case assume that P has an inverse () on X and define

C* as in Theorem A.1. The following formulas are valid on, respectively, H*(Ey) with
s> 3, H*(Ey) with s > %, or H*(E{") with s € R:

27
(i) PQy=1+"T4,
(A.21) (i) QuP=1 Kto+Th withTy = Toy + Tao,
(i) K+*C~ =T, with Ty = LK™ = To K+ + T,C+.

Here the T; come from (A.1), (A.7); they vanish when Q = P~ 1.

Proof. Formula (i) follows from the first formula in (A.1) by truncation to X (application
of (A.3)), since (PQ)4+ = PQ4. Next, we note that Green’s formula (2.1) can be written
in distributional form:

(A.22) etrt P = Petrta+ g*(Agu) for w € HY(Ey), u = rti.

Formula (ii) follows from this by composition with »*@ and use of (A.1) and (A.7). For
(iii), we use (ii) and the facts that KT = C*, PK* =0, in the calculation:

KTC =Kt - KtCt=K*" - KtpoK™*

— Kt - (I-Q.P-Thy Ty)Kt =T Kt +TCT. O

Theorem A.4. Assumptions as in Lemma A.3. Let S = (Sjx); k=0
admissible classical 1)do’s Sji, of orders j — k from Ei to Fj.

d—1 be a system of

-----

1° Assume that (;@) (equivalently, SC ) is uniformly surjectively elliptic.
When S, is a given right parametrix of SCT, then

(A.23) (Rs Ks)=(Qs— K*+$50Q, K*S)

is a right parametrix of ( ;Dg), in the sense that

(A.24) <§Q>(RS KS)—<é ?>+T,

where T is of order —oo and class 0. If, moreover, PQ, = I and Sy is a right inverse of
SC*, then (Rs Kg) is a right inverse of (5@).

Conversely, when ( Rs Kg ) is a given right parametrix or inverse of ( ;; ), then
(A25> S] = QKYS

is a right parametrix resp. inverse of SC™.

2° Assume instead that (;) (equivalently ((;q, )) is uniformly injectively elliptic.
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When (51 Sq) is a given left parametrix of ( OS, ), then the operator defined in (A.23)

is a left parametrix of ( ;), in the sense that

(A.26) (Rs Ks) (fg) —I+T,

where T' = T" +T"" o with T" and T"" of order —oo, T" of class 0. If, moreover, ) = P~!
and (S1 S2) is a left inverse of <(§, ), then (Rs Kg) is a left inverse of ( 5@).

Conversely, when ( Rs Kg ) is a given left parametrix or inverse of ( SPQ>, then
(A.27) (S1 Sy)=(0oKs I-—0Kg9)

is a left parametrix resp. inverse of ( 05, )

3° In the case where ( P

Sg) is two-sided elliptic, each of the constructions in 1° or

2°, departing from a right parametrix of SC™ resp. a left parametrix of ( CS, ), gives a

two-sided parametrix of ( SPQ )

Proof. For the first assertion in 1°, write SC*S; = I + R, where Ry is a ¥»do on X’ of
order —oc. Then by (A.21i) and the facts that PK+ =0 and oK+ = C™,
P(Qy — KT51S0Q)u=u+T yu,
So(Qy — K1t5150Q ) )u= SoQ u— SCtS150Q u=—R1S0Q u,
PK*tS,0 =0,
SoKTS1¢p=8C0%S10 = ¢+ Rip;

(A.28)

This shows (A.24). Since 0@+ is well-defined on Lo(X, E5), it is a trace operator of class 0
(cf. [BMT71] or e.g. [G96, pp. 27ff. and 279]); hence the composed trace operator R1S500Q 4,
which is of order —oc, is of class 0.

Now if, furthermore, 77 4 = 0 and Ry = 0, the smoothing terms in (A.28) are zero, so
(Rs Kg)is aright inverse.

In the converse direction, when (A.24) holds, then

PKg =T, SoKgs=1+ T,

with operators 7yo and 7Ty of order —oo. If 715 and 759 are 0, K's maps into Z3 so that
C 0oKg = 0 and consequently

SCToKg = SoKg— SC oKg =1I;
so oK is a right inverse of SCT. More generally, by (A.21ii),

SCtoKgs = SoK oKs = Bo(I — Q.P — T4)Ks
=1+Ty—50Q+T 2 — SoTuKs =1+ Ro,
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with Ry a vdo on X’ of order —o0; so oK is a right parametrix of SC*. This proves 1°.
For the first assertion in 2°, write 515 + SoC~ = [ + R3 with R3 of order —oc. Now

find:

(Q+ - I\/7+515QQ+ I{+Sl> (5@) == (I - I{_}—SlSQ)Q_FP + I{_}—SlSQ

= (I~ K*"8,S0)(I - Kto+Ty) +K*t5,S0
=1 K™(I—5SCT)o+ (I - K*tS,S0)Ty
=1 K1 (I-5C +R3)CMo+ (I K"5S0)T4
=1 -KtC o~ KtTR3C o+ (I - K*5,S0)74
=1 Ts50 KTR3CTo+ (I - Kt5,50)7T4,
which is of the asserted form. Here if moreover @) is the inverse of P and R3 = 0, all

smoothing terms vanish, so (Rg Kg ) is a left inverse.
For the converse statement, define (S; Sy) by (A.27) and check its left composition

with ( S ):
A.29 oKs I —oKgS S_ =0KsS +C —oKsSC = pKsSCT +1—-CT.
C

When w = KTC%y for some o € C®(E?), then Pw = 0, gw = CtCtp = Cty and
Sow = SCTp, so in view of (A.26)

I

w+T'w=KsSow=KgSCto.

It follows that
QKSSC""L,Q = ow+ oT'w = C’"ﬂp + Q’]"K*‘C’ﬂp7

for p € C°°(E1?). Then the expression in (A.29) equals
0KsSCH 41— CF = [+ oT'KTCH = T + R,

where R4 is a ¥»do on X' of order —oo. So (S7 S9) is a left parametrix. It is a left
inverse if 7' = 0. This ends the proof of 2°.
The statement in 3° is a standard consequence. [

When there is a left inverse, there is uniqueness of a solution u € H*(FE;) for the
boundary value problem (A.13) with data f € H*"%(E,), ¢ € H*(F), s > d — 5. When
there is a left parametrix, there is “best regularity of solutions,” in the sense that if
u € H'(E,) for some t, then Pu € H* 4(E,) and Sou € H*(F) imply u € H*(E;) (since
u=RsPu+ KgSou+T'u); s,t >d— % Moreover, if X is compact, there is uniqueness
modulo a finite dimensional smooth subspace.

When there is a right inverse, there is existence of solution for the boundary value
problem (A.13); when there is a right parametrix and X is compact, there is existence of
solution for data in the complement of a finite dimensional smooth space.

In the admissible case, when KT and Ct are merely defined modulo smoothing opera-
tors, there is a version of Theorem A.4 with parametrices everywhere.
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Example A.5. The systems <I;> and <C€g> are injectively elliptic; they both have the
left parametrix (Q4 KT ) (inverse when Q@ = P~ 1). In fact, by (A.21ii-iii),

QiP+Kto=1+T; Qi+P+KtCto=1+T,—Ts0.

This left parametrix/inverse is also found from (A.23), when we use that ((f, ) and <2i )

both have the left inverse (C* C~ ). The case S = C't is studied in Section 3 in the case
d=1.

Formula (A.21i) shows that @ is a right parametrix of P without boundary conditions;
i.e., in the case F' = (. This is also confirmed by the formulas in the theorem.

When S = C*, we have according to a result of Seeley [S69] (recalled in (3.9) for the
case d = 1) that the adjoint of the realization Ps is the realization of P* determined by
the boundary condition (I — C’+*)A* ou = 0. For completeness, we now show that this

boundary condition is the Calderén projector condition for P* (up to a smoothing term,
unless Q = P71).

Theorem A.6. For P* (provided with the parametrix Q* on X), denote by C'" the
associated Calderén projector according to (A.i)-(A.iii) or Theorem A.1. Then

(A.30) C'F = (AT - O AT + T,

where 7T is a 1vdo of order —oo that vanishes when Q = P~!.
In particular,

(A.31) (I - Ct A u=0 = (C'" — T5)ou =0,

Proof. Since P* has a Green’s formula similar to (2.1) but with A replaced by —A*, the
Calderdn projector and associated Poisson operator for P* satisfy formulas

(A.32) KT =rtQ A +T, 7 =p"Q 7 A + T},

where 77 is a 1do of order —oo, vanishing when Q = P~!.

There is a Poisson operator K, lifting sections ¢ € HY(E1?) to sections u € HY(Ey)
such that oK ,u = ¢, cf. e.g. [G96, Lemma 1.6.4] or the text before Lemma 2.3 above. We
have from (A.21ii), by application of p:

Ktou=u—QyPu+ T u+ Tzou,
(A.33) Cro=¢—0Q Pu+ 0T yu+ 0Tz
= = 0Q4 PRyp+ 0Ty 1 Koo + 0T3¢
For the term 0Q . Pu we note that when ¢ € HO(E!) (cf. (A.2)):

(0Q4 Pu, ) xr = (3Qet Pu, ) xr = (e* Pu, Q*3*¢) 5
Pu,r*Q* ") x = (Pu, [K'" — T)(A*) 1) x
fMKﬁ<)*wx—WPW“um*wx—WwﬂMﬂ*wx

(
=
=
= (9, A"C"T(A) W) xr = (9, (PR, T (A") M) x.
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It is used here that Qe™ Pu € Hd()?) so that g and pr™ give the same result, that PRt =
0, and that the Poisson operator PK, has as its adjoint a trace operator (PK,)* of class
0. Taking this together with (A.33), we find:

(CFo, ) x = (p.0) — (0, A C"T (A1) x
+ (0, (PK ) T (A) " 10) x0 + (0, (0T5,4 K,o) 0) x0 + (9, (0T3)*0) x,

which shows that

C+* _ ]—A*C,_{—(A*)il _i_/]%/./ Wlth

(A34) / s\ k! *\—1 CO)* *

Ts = (PK)"T3(A") " + (¢T2,+ K,)" + (¢73)".

Then (A.30) holds with 75 = (A*) ™' T{A*; 7{ and T4 are 1»do’s on X’ of order —oo by the
rules of calculus. [J

We end with some remarks for the case d = 1. Recall from the analysis of the boundary
value problem, in particular (A.15), that it is really the space Ni that matters in the
discussion of solvability, rather than a certain projection onto it. When d = 1, H%(E{) =
Ly(E}). Here it may be convenient to replace CT by a projection in H*(E}) = H* 2 (E})
that has the same range N3 and is orthogonal for s — 1 = 0 (on Ly(EY)), in particular if
the Lo-structure has an important meaning in the context. This can indeed be obtained,

by use of the following lemma shown for compact manifolds in [BW93, Lemma 12.8]:

Lemma A.7. When R is a projection in a Hilbert space H, then RR* + (I — R*)(I — R)
is invertible and

(A.35) Rowt = RR*[RR* + (I — R*)(I — R)] !
is an orthogonal projection in H satisfying
(A36> R(H) = Rort(H)'

Here if H = Lo(F'), where F' is an admissible vector bundle over a manifold X', and R is
an admissible classical 1 do of order 0 in F', then the same holds for R, and the principal
symbol is determined by a formula similar to (A.35) on the principal symbol level.

Proof. The formulas (A.35) and (A.36) are verified in detail in [BW93]. For the last
statement, the invertibility of [ | implies, by the spectral invariance shown in [G95], that
it is uniformly elliptic and its inverse is likewise admissible, classical and uniformly elliptic
of order 0. Then since the principal symbol of R is a projection, the formulas likewise hold
on the principal symbol level. [J

Remark A.8. Since the range of R in H*(F') equals the nullspace of I — R there, it follows
from the fact that I — R and I — Ry, have the same nullspace in Lo(F') that they also
have the same nullspace in H*(F'), s > 0. Hence

(A.37) R(H*(F)) = R (H*(F)),
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for s > 0. This property extends to negative s by consideration of the adjoint R*, which
is likewise a projection and a classical ¥/do of order 0. Indeed, the nullspace of I — R in
H=*(F) (s > 0) is the annihilator of the range of R = I — R* in H*(F'). Here one finds
from (A.35) that

(A.38) R

ort —

=1 Rort-

Since R'(H*(F')) = R,,.(H*(F)) for s > 0 as already shown, the annihilators, equal to the

nullspaces of I — R and I — Ry, in H *(F'), are the same.

Let us apply the lemma and remark to C* in the case d = 1. This gives a pseudodiffer-
ential projection Ct, of H*~2(E}) onto N3 (all s € R) that is an orthogonal projection of
1

Lo(E}) onto N?. The complementing projection is Cjfy = I — CJf; its range is a closed
1
subspace of H*~3(E!) that equals Lo(E!) & N? when s = 1. It will be different from

N# whenever C* is not selfadjoint, which is the most usual case. (See Remark 3.8 for an
example where C* and Cf, are even principally different.)

Together with C, we can consider the Poisson operator
(A.39) K}, =KtC/,,
it clearly maps N¥ into Z7 with the same range as K™, hence with range complement Z;
and

(A.40) VK, =Cctot, = o

ort - ort ort-

Note that C”Lt is uniquely determined from N2 Still, in the compact case where invert-

ibility of P is not assumed, Zy can be # 0 and then there are other Poisson operators K+
than K}, that map H*~3(FE}) into Z% and satisfy ot K+ = Cf,.

In much of the preceding analysis, C , C~ and K+ can be replaced by CF. I —C} =
CH. and Ixort For example, departing from (A.15), we can replace Ot and C~ by Cf,
and CF. in (A.16) and the subsequent discussion. However, the formulas generalizing
those in Theorem A.4 will be somewhat more complicated.

We shall call C, the orthogonal Calderén projector (recall that d = 1). One can argue
that it is more natural to consider C, than CT  at least when the norm in Lo(E})

is in some sense canonically given — on the other hand, C'* contains more information
1

from P; it is not determined from N} alone but from this together with the complement

Né representing essentially the Cauchy data of exterior null-solutions. (We underline that
the complete symbol of CT is determined from the symbol of P and its derivatives at X,
independently of a choice of extension outside X.) At any rate, C'T is defined regardless of
a choice of norm in Ly(E") and gives fairly simple formulas in the application to boundary
value problems.

As noted in [S66], the construction of the Calderén projectors C* generalizes the con-
struction of projection operators onto the boundary value spaces for holomorphic functions
inside resp. outside the unit disk; here the Cauchy-Riemann operator plays the role of P.

1
In fact, N7 then corresponds to the L, Hardy space. Here CT is orthogonal, but for more



general domains in C = R? it need not be so. Then C
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+

. corresponds to the Szego projec-

tion operator, whose kernel has been considered with great interest. In higher dimensions,
Dirac operators and Clifford analysis provide a tool to generalize the 2-dimensional func-
tion theoretic phenomena; see e.g., Calderbank [Ca96] for an account linking this with the
ideas around the Calderén projector for Dirac operators.
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