
HEAT TRACE EXPANSIONS FOR ELLIPTIC SYSTEMSWITH PSEUDODIFFERENTIAL BOUNDARY CONDITIONSGerd Grubb1. Introduction.One of the purposes of this paper is to prove asymptotic expansions of heat traces(1.1) Tr('e�t�i) � X�n�k<0 ai;ktk=2 + 1Xk=0(ai;k log t+ a0i;k)tk=2, for t! 0;�1 = DB�DB ; �2 = DBDB�;for general realizations DB of �rst-order di�erential operators D (e.g. Dirac-type opera-tors) on a manifold X with pseudodi�erential boundary conditions: B(ujX0) = 0 at theboundary @X = X 0. In (1.1), ' denotes a compactly supported morphism. The unprimedcoe�cients are locally determined, the primed coe�cients global.Such realizations were considered �rst by Atiyah, Patodi and Singer in [APS75] whoshowed an interesting index formula in the so-called product case, when X is compact. Wesay that D is of Dirac-type when D = �(@xn +A1) on a collar neighborhood of X 0, with aunitary morphism � and a �rst-order di�erential operator A1 such that A1 = A+xnP1+P0with A selfadjoint on X 0 and constant in xn and the Pj of order j; the product case iswhere P1 = P0 = 0. B was in [APS75] taken equal to the orthogonal projection �� ontothe eigenspace for A associated with eigenvalues � 0.For Dirac-type operators on compact manifolds, �nite expansions (1.1) (up to k = 0,with ' = 1 and ai;0 = 0) were shown in [G92], implying the index formula(1.2) indexDB = a01;0 � a02;0; when ' = 1 and X is compact:Full expansions were established in Grubb and Seeley [GS95], with precisions for the prod-uct case in [GS96]. Here B = �� + B0 with special �nite rank perturbations B0.Booss-Bavnbek and Wojciechowski studied, for the compact product case, the index ofDB in [BW93] and other works with B = C+ + S, where C+ is the Calder�on projectorfor D (having the same principal part as ��) and S is a pseudodi�erential operator ( do)of order �1. One of our motivations for the present work was to establish (1.1) for suchproblems too. A di�erent type of boundary condition was introduced by Br�uning andLesch in [BL97] (in a study of the gluing problem for the eta invariant), showing heattrace expansions in the product case but with B principally di�erent from �� (Example3.6 below). For this type, we obtain (1.1) without the product assumption.Actually, we �nd that there are many more boundary conditions, di�erent from theabove, for which (1.1) can be obtained. In fact, D need not even be of Dirac-type, butcan be any �rst-order elliptic di�erential operator. B need not be closely linked to the1



2 GERD GRUBBCalder�on projector but can be any  do that is well-posed for D in the sense de�ned bySeeley in [S69, Ch. VI]. We obtain (1.1) (and consequently also the index formula (1.2)when X is compact and ' = I) in all these cases, including the previously known cases.The freedom to choose more general B seems to be useful e.g. for variational studies. Itis also interesting to allow general D that are not tied, by the requirement of (principal)selfadjointness of the tangential part, to a speci�c choice of Hermitian structures.In our method to establish (1.1), we imbed DB and DB�, which are in themselves onlyinjectively elliptic, into a truly elliptic system DB, which we treat by use of the Calder�onprojector for D+� and by an elaboration of the calculus of weakly polyhomogeneous  do'sintroduced in [GS95]. This treatment works also for general elliptic systems P of orderd � 1 with appropriate pseudo-normal  do boundary conditions S%u = 0. We show ageneral result on resolvent expansions and heat trace expansions for such realizations:(1.3) Tr'@m� (PS � �)�1 � X�n�k<0 ~ck(��) kd�m�1 + 1Xk=0(~ck log(��) + ~c0k)(��) kd�m�1;Tr'e�tPS � X�n�k<0 ckt kd + 1Xk=0(ck log t+ c0k)t kd , for t! 0;in the �rst formula, �!1 on a ray in C , and the second formula follows when this holdson all rays with argument in [�2 ; 3�2 ]. Such expansions were shown in cases where S is adi�erential operator by Seeley [S69,71] and Greiner [Gre71]; then there are no logarithmicterms and all the coe�cients are locally de�ned. The crucial step in the analysis is to�nd the symbol structure of the resolvent. We do this not only for compact manifolds butalso in noncompact situations with spatially uniform estimates; here we use the calculiestablished in [GK93] (with Kokholm), [G95], [G96].The plan of the paper is as follows: We explain the general set-up in detail in Section 2,and the special de�nitions and adaptations for �rst-order problems in Section 3, referringalso to the Appendix where the main properties of the Calder�on projector are explained. InSection 4 we recall the calculus of weakly polyhomogeneous  do's introduced in [GS95] andshow a needed result on spectral invariance, also for one-sided elliptic cases and noncompactmanifolds, drawing on results from [G95]. In Section 5, we apply the various results toestablish a decomposition of the resolvent in a sum of compositions with strongly andweakly polyhomogeneous factors. In Section 6 we derive trace results from this by useof methods from [GS95] and [GS96], obtaining in particular (1.1) and (1.2) for �rst-orderoperators with well-posed boundary conditions.2. The general set-up.On an n-dimensional C1 manifold X with boundary @X = X 0 we consider an ellipticdi�erential operator of order d, P : C1(X;E1)! C1(X;E2), between sections of Hermit-ian C1 vector bundles E1 and E2 of dimension N . X is provided with a smooth volumeelement v(x)dx de�ning a Hilbert space structure on the sections.In order to include noncompact manifolds such as Rn , Rn+ and exterior domains Rn nY ,Rn+ nY (Y smooth compact), we take X to be admissible as de�ned in [GK93], [G96]; thismeans that X is the union of a compact piece and �nitely many conical pieces of the formfx = tx0 j x0 2 M � Sn�1; t > rg. X is covered by a �nite system of local coordinate



HEAT TRACE EXPANSIONS 3patches di�eomorphic to either bounded or conical open subsets of Rn . We refer the readerto the references for detailed descriptions; the crucial assumption is that the admissiblecoordinate changes � are such that j�(x)� �(y)j=jx� yj is bounded above and below bypositive constants, and all derivatives of � and ��1 are bounded. Admissible vector bundlesare likewise de�ned. The di�erential operators and  do's considered in this context arede�ned by reference to the admissible local coordinate systems; their symbols are assumedto have global estimates in the space variable x, as in H�ormander [H85, Sect. 18.1]. Thisallows precise rules of calculus, with the usual composition formulas; the concepts areextended to pseudodi�erential boundary operators in [G96] (and [GK93]). For brevity,we shall call such operators admissible (in [G96] they are called uniformly estimated orglobally estimated), and we always assume in the following when working with admissiblemanifolds that the operators are of this type. A reader who is mainly interested in thecase of compact manifolds can just disregard this generality.We denote by Hs(X;E1) or just Hs(E1) the Sobolev space of sections of E1 of order s,de�ned in terms of admissible local coordinates; a similar notation will be used for othermanifolds and vector bundles.The restrictions of the Ei to the boundary X 0 are denoted E0i. We assume that anormal coordinate xn has been chosen in a neighborhood U of the boundary X 0 such thatthe points are represented as x = (x0; xn) there with x0 2 X 0, xn 2 [0; c(x0)[ , the Ei areisomorphic to the pull-backs of the E0i there, and there is a normal derivative @xn . X 0is provided with the volume element v(x0; 0)dx0 induced by v(x0; xn)dx0dxn on U . For acompact manifold, we take U as a collar neighborhood Xc = X 0 � [0; c[; more generallythis is used for the compact part and extended conically in the conical parts (cf. [G96,Sect. A.5]).Let % = f0; : : : ; d�1g with ju = (�i@xn)jujxn=0 (i denotes the imaginary unit p�1).For s > d � 12 , % maps Hs(Ei) into Hs(E0di ) = Q0�j<dHs�j� 12 (E0i) (E0di =L0�j<dE0i).The sections u of E1 and w of E2 in Hs (s > d� 12) satisfy the Green's formula(2.1) (Pu;w)X � (u; P �w)X = (A%u; %w)X0;A = (Ajk)j;k=0;:::d�1 with Ajk of order d� 1� j � k:Here the Ajk are di�erential operators; those with k > d� 1� j are 0 (A is upper skew-triangular) and those with k = d�1� j are isomorphisms, so A has an inverse of a similartype, just lower skew-triangular.When S is an operator on Hd(E0d1 ), the boundary condition(2.2) S%u = 0determines the realization PS of P , de�ned as the operator acting like P and with domain(2.3) D(PS) = fu 2 Hd(X;E1) j S%u = 0g:We shall study boundary conditions that are pseudo-normal in the following sense:Assumption 2.1. (Pseudo-normality) S is a matrix of admissible classical  do's Sjkgoing from E01 to admissible bundles Fj over X 0 such that(2.4) S = (Sjk)j;k=0;:::;d�1; with Sjk of order j � k; Sjk = 0 for j < k;Sjj surjective and uniformly surjectively elliptic.



4 GERD GRUBBFor convenience of notation, we here include bundles Fj of dimension 0. We denoteL0�j<d Fj = F . That symbols and operators are taken admissible when the manifoldsand bundles are so, will often be tacitly understood.The new generality in comparison with the normal boundary conditions considered in[G96] (for compact manifolds, one can also �nd the information in [G86], this will not berepeated), is that the Sjj are now allowed to be  do's; this is needed in our application to�rst-order operators. The normal boundary conditions have just surjective morphisms asthe Sjj , hence regularity � > 0, whereas the present boundary conditions have regularity� = 0, in the sense of the regularity concept from [G96]. (There is a discussion in [G96,Remark 1.5.8]. Note that the book also allows nonlocal terms in the interior, excludedhere.)Our basic hypothesis for the resolvent analysis is the following:Assumption 2.2. (Resolvent growth condition) Let E1 = E2 = E. There is anopen sector � = f� 2 C n f0g j arg � 2 Jg (for an open interval J � [0; 2�]) such that thefollowing holds:1� P is elliptic, and for the principal symbol p0 of P , p0(x; �)� � is invertible for all(x; �; �) with � 2 � [ f0g, j�j2 + j�j2=d � 1, the inverse being O((j�jd + j�j)�1) on closedsubsectors �0, uniformly in x.2� F has dimension Nd=2, the system fP; S%g is elliptic, and for any closed subsector�0 there is an r � 0 such that the resolvent R� = (PS ��)�1 exists as a bounded operatorin L2 and is O(��1) for � 2 �0r;(2.5) �0r = f� 2 �0 j j�j � rg:The �rst condition means uniform parameter-ellipticity of P � �, as de�ned in [G96,Sect. 3.1].The second condition contains a global requirement of invertibility. If S% is normal, suchinvertibility for large � is assured by a condition on principal symbols, namely uniformparameter-ellipticity of fP � �; S%g as de�ned in [G96, Sect. 3.1]. This means that theassociated model problem on R+ for each (x0; �0; �) with j�0j2 + j�j2=d = 1 is uniquelysolvable with uniform bounds in x0 for the solution operator, for � in closed subsectors of�. Then the results of [G96, Sect. 3.3] imply invertibility with the O(��1) estimate forlarge �. When S is just pseudo-normal, condition 2� is more general.R� will now be supplied with a Poisson operator K� to de�ne an inverse of the fullsystem fP � �; S%g. In the following lemma, K%;� denotes an auxiliary Poisson operatorsuch that %K%;� = I, constructed e.g. as in [G96, Lemma 1.6.4] with h�i replaced byh(�; j�j1=d)i. (We use the notation hxi = (jx1j2 + � � �+ jx� j2 + 1) 12 for x = (x1; : : : ; x�).)In its dependence on � = j�j1=d, K%;� is strongly polyhomogeneous on all rays, cf. Section4, [GS95, App.]. If holomorphy in � is desired, one can instead take the Poisson operatorK%;� : ' 7! u solving the following Dirichlet problem, where �2d is a positive di�erentialoperator with principal symbol h�i2d and j arg�� !j < �=2:(�2d + (e�i!�)2)u = 0 on X; %u = ' on X 0:



HEAT TRACE EXPANSIONS 5Lemma 2.3. Let Assumptions 2.1 and 2.2 hold. For the � such that R� is de�ned, thereexists a unique Poisson operator K� such that(2.6) �P � �S% ��1 = (R� K� ) :In a neighborhood of each ray in �, K� equals(2.7) K� = [I � R�(P � �)]K%;�S0;here S0 = (S0jk)j;k=0;:::;d�1 is a right inverse of S, constructed such that for all j; k, S0jk is aclassical  do of order j � k, S0jk = 0 for j < k, and S0jj is injective and injectively elliptic;and K%;� is an auxiliary right inverse of % as described above.Proof. Let us �rst explain the construction of S0. We can write S = Sdiag + Ssub, whereSdiag = (�jkSjk)j;k=0;:::;d�1 and Ssub is subtriangular (has zero entries in and above thediagonal). Here Sdiag is surjective and surjectively elliptic of order 0 from E0d1 to F ,hence SdiagSdiag� is bijective and elliptic of order 0 in F and therefore has an (elliptic)inverse [SdiagSdiag�]�1. Then Sdiag has the right inverse S0diag = Sdiag�[SdiagSdiag�]�1;again a classical  do of order 0. Finally, since SS0diag = I + SsubS0diag, where SsubS0diag issubdiagonal and hence nilpotent, S has the right inverseS0 = S0diag(I + SsubS0diag)�1 = S0diagP0�l<d(�SsubS0diag)l;it is of the asserted form.The operator K� required in (2.6) is the solution operator for the problem(2.8) (P � �)u = 0 on X; S%u = ' on X 0:First note that since R� is injective, the problem has at most one solution u for any '.De�ne K� by (2.7); then check that u = K�' solves (2.8) by observing:(P � �)[I � R�(P � �)] = 0 since (P � �)R� = I;and, using that S%R� = 0, S%K� = S%K%;�S0 = I: �For each �xed �, the inverse (R� K� ) belongs to the pseudodi�erential boundaryoperator calculus, but to start with, we in general only have a rough information on thebehavior of R� with respect to � that comes from its de�nition as a resolvent. Beforeshowing this in an elementary lemma, let us recall the de�nition of parameter-dependentSobolev spaces (used e.g. in [G96], [GS95]):For s 2 R, the space Hs;�(Rn) is the Sobolev space provided with the norm(2.9) kukHs;� = kh(�; �)isû(�)kL2(Rn):The notion is extended to sections of a Hermitian bundle F over X by use of a �nitefamily of admissible local coordinate systems (the space is then denoted Hs;�(X;F ) orHs;�(F )). Note that Hs;0(F ) ' L2(F ), and that for s � 0, the norm is equivalent with(kuk2Hs + h�i2skuk2L2) 12 .



6 GERD GRUBBLemma 2.4. Let R� and K� be as in Lemma 2.3. For any s � 0, R� and K� de�necontinuous mappings (where � = j�j1=d, Hs+d;�(F ) =Q0�j<dHs+d�j� 12 ;�(Fj))(2.10) R� : Hs;�(E)! Hs+d;�(E);K� : Hs+d;�(F )! Hs+d;�(E);uniformly for � in subsectors �0r (as in Assumption 2.2).Proof. From the elliptic regularity for the �-independent system fP; S%g and from theresolvent growth condition follows that for k � 1, v 2 D(PS) \Hkd(E1),(2.11) kvkHkd � c1;k(kPSvkH(k�1)d + kvkH(k�1)d); j�j kR�fkL2 � c2kfkL2 ;uniformly for � 2 �0r. We use this �rst with v = R�f and k = 0 to see that on the ray� = �dei�, � � r1=d,(2.12) kR�fkHd;� � c3(kR�fkHd + h�ikR�fkL2)� c4(k(PS � �)R�fkL2 + h�ij kR�fkL2 + kR�fkL2) � c5kfkL2;in other words, R� is continuous from L2(E) to Hd;�(E), uniformly for � � r1=d.Next, combining (2.11) with (2.12) we �nd for k = 1:kR�fkH2d;� � c03(kR�fkH2d + h�i2kR�fkL2)� c04(k(PS � �)R�fkHd + j�j kR�fkHd + kR�fkHd + h�i2kR�fkL2)� c05(kfkHd + h�ikfkL2) � c6kfkHd;� :This can be continued to give H(k+1)d;� estimates of R�f in terms of Hkd;� estimatesof f for k = 2; 3; : : : , and we conclude that the �rst line in (2.10) holds for s = dk,k = 0; 1; 2; : : : . The remaining values of s � 0 are included by interpolation.For the second line, we observe: When C is a parameter-independent  do on X 0 oforder l � 0, it is bounded from Hs;� to Hs�l;� for all s 2 R, uniformly in �; cf. Section2.5 in [G96] (using that C is of regularity � = l � 0). It follows that S0 maps Hs;�(E0d) =Q0�j<dHs�j� 12 ;�(E0) into Hs;�(F ) with uniform bounds in �, for s 2 R. [G96] alsoshows that % maps Hs;�(E) into Hs;�(E0d) for s > d � 12 and that K%;� is continuous inthe opposite direction, with uniform bounds in �. Applying these facts to the factors in(2.7) and using what we just found for R�, we obtain the statement for K� in (2.10). �Remark 2.5. There do exist boundary conditions other than those satisfying the assump-tion of pseudo-normality, for which the resolvent is O(��1) on rays in C . One exampleis the condition �0�1Dx11u + �00u = 0 for � on Rn+ studied in [G96, Ex. 1.7.17] (here�0 = (I � �x0) 12 ); the coe�cient of 1 is not surjective. For another type of examplecontaining negative-order  do's on X 0 and de�ning a realization PS that skew-selfadjointand hence has many rays where the resolvent is O(��1), see Remark 3.12 later. We expectthat such cases may still be handled by variants of the present methods, but will give extralog terms at some of the negative powers of t in (1.2).A third example is DB�DB considered below; here the surjectiveness is missing in theboundary condition B0u = 0, (I � B�)��0(@xn + A1)u = 0; but the questions for thisoperator are dealt with in a di�erent way, as will be shown.



HEAT TRACE EXPANSIONS 73. First order well-posed boundary problems.For �rst-order operators (and odd-order operators more generally) it may not be possibleto ful�ll Assumptions 2.1 and 2.2 that lead to good resolvents | already the condition inAssumption 2.2 that Nd be even need not hold. However, for compact manifolds there doexist  do boundary conditions (not pseudo-normal)(3.1) B0u = 0;such that the realization PB is a Fredholm operator with a similar adjoint PB�. In thiscase there is an interest in studying the positive selfadjoint operator PB�PB , which doeshave a resolvent. We now consider such problems in detail.To begin with, let X be compact and let D be a �rst-order elliptic operator on X;(3.2) D : C1(E1)! C1(E2);where E1 and E2 are N -dimensional Hermitian vector bundles over X. D can be repre-sented on U = Xc as(3.3) D = �( @@xn + A1);where � is an isomorphism from E1jU to E2jU and A1 is a �rst order di�erential operatorthat acts in the x0 variable at xn = 0. A1jxn=0 has the principal symbol a01(x0; �0). Forthese operators,(3.4) A = �� on X 0 and % = 0 in (2.1).A generalization to admissible manifolds will be included at the end of this section.De�nition 3.1. 1� We say that D is \of Dirac-type" when � is a unitary morphism, and(3.5) A1 = A+ xnP1 + P0;where A is an elliptic �rst-order di�erential in C1(E01) which is selfadjoint with respectto the Hermitian metric in E01, and the Pj are di�erential operators of order � j,2� The product case is the case where D is of Dirac-type and, moreover, v(x)dx =v(x0; 0)dx0dxn on U , � is constant in xn, and P1 = P0 = 0.As explained in [G92, p. 2036], unitarity of � in (3.3) can be obtained by a simplehomotopy near X 0, whereas the assumption on A1 in 1� is an essential restriction incomparison with arbitrary �rst-order elliptic systems; it means that the principal symbola01(x0; �0) of A1 at xn = 0 is Hermitian symmetric. P1 and P0 can be taken arbitrary nearX 0, but for larger xn, P1 is subject to the requirement that D be elliptic.When 1� holds, a01(x0; �0) equals the principal symbol a0(x0; �0) of A. Along with A oneoften considers the orthogonal projections ��;�>;��;�< and �� onto the closed spacesV�; V>; V�; V< and V� spanned by the eigenvalues of A in L2(E01) that are� 0; > 0;� 0; < 0resp. = �. (Since A is selfadjoint and elliptic of order 1, it has a discrete spectrum consistingof eigenvalues of �nite multiplicity going to �1.) These operators are classical  do's oforder 0; �� is of order �1.



8 GERD GRUBBAtiyah, Patodi and Singer considered in [APS75] the product case. It is also studiede.g., in [GS96], [BW93], [BL97], whereas the case where only 1� holds is studied in [G92],[GS95] and other works. Cases where not even 1� holds, have to our knowledge not beenstudied for the purpose of heat trace expansions for boundary problems before.We shall study boundary problems satisfying the condition of well-posedness introducedby Seeley in [S69]. The reader is encouraged to consult the Appendix, where the relevantmaterial on the Calder�on projector C+ is collected. Let us here just recall that C+ is aclassical  do of order 0 in E01 that projects Hs� 12 (E01) onto the space Ns+ of boundaryvalues of null-solutions, for all s 2 R;(3.6) Ns+ = 0Zs+ � Hs� 12 (E01); Zs+ = f z 2 Hs(X;E1) j Dz = 0 on Xg:We denote I�C+ = C�. The principal symbol c+(x0; �0) of C+ is a projection in C N ontothe space N+(x0; �0) of boundary values of bounded solutions of p0(x0; 0; �0; Dxn)z(xn) =0 on R+ , such that the complementing projection c�(x0; �0) (the principal symbol ofC�) maps C N onto the space N�(x0; �0) of boundary values of bounded solutions ofp0(x0; 0; �0; Dxn)z(xn) = 0 on R� ; cf. (A.11)�. In relation to a01(x0; �0), N�(x0; �0) arethe generalized eigenspaces for a01(x0; �0) associated with eigenvalues having real part ? 0.Remark 3.2. When D is of Dirac-type, so that a01(x0; �0) equals a0(x0; �0), N+(x0; �0) andN�(x0; �0) are orthogonal complements and are spanned by the eigenvectors belongingto the positive, resp. negative eigenvalues of a0(x0; �0). The projections c�(x0; �0) ontoN�(X 0; �0) along N�(x0; �0) are then orthogonal, and they are the principal symbols of ��resp. �<. Thus for Dirac-type operators,(3.7) C+ ��� is a classical  do of order �1.De�nition 3.3. (Well-posedness) Let X be compact and let D be an elliptic �rst-order di�erential operator from C1(E1) to C1(E2). A classical  do B in E01 of order 0is well-posed for D when:(i) The mapping de�ned by B in Hs(E01) has closed range for each s 2 R.(ii) For each (x0; �0) with j�0j = 1, the principal symbol b0(x0; �0) maps N+(x0; �0) in-jectively onto the range of b0(x0; �0) in C N .In comparison with the general choices of B : Hs(E01) ! Hs(F ) (for d = 1) discussedin the Appendix, F = E01 here, so M = N . Condition (ii) assures that the systemfD;B0g is injectively elliptic; see the explanation around (A.17). But (ii) is strongerthan injective ellipticity, since the range of b0(x0; �0) can in general have a larger dimensionthan b0(x0; �0)N+(x0; �0) has. (One can say that (ii) means injective ellipticity with smallestpossible range dimension for b0.)Observe that when B satis�es De�nition 3.3, fD;B0g cannot be surjectively elliptic ifn � 3, since N is even and strictly larger that dimN+(x0; �0) = N=2, cf. (A.20). (If n = 2,this lack of surjective ellipticity holds when dimN+(x0; �0) < N .) Therefore, the systemfD;B0g is not elliptic in the standard terminology, and, for example, its range does nothave a smooth complement. The word \well-posed" does not conict with this and waswell chosen by Seeley. (Some authors use the dangerous notation \globally elliptic" forthese boundary problems | sometimes even abbreviated to \elliptic".)



HEAT TRACE EXPANSIONS 9It is shown in [S69] that when De�nition 3.3 is satis�ed, one can always replace (3.1)by an equivalent condition(3.8) B10u = 0;where B1 is a projection in the Hs-spaces, in addition to being well-posed for D. Therange of B1 in Hs(E01) is closed for each s, since it is the nullspace of the complementingprojection I � B1 which is likewise a  do of order 0. Thus it is no restriction to assumethat B in (3.1) is a projection; we shall often do that.Seeley shows in [S69] that for each boundary condition (3.1) with B well-posed forD, therealization DB de�ned as in (2.3) (with domain D(DB) = fu 2 H1(X;E1) j B0u = 0g)is a Fredholm operator from D(DB) to L2(E2). Moreover, when B is a projection, theadjoint DB� (when DB is considered as an unbounded operator from L2(E1) to L2(E2))is the realization of D� with domain(3.9) D(DB�) = fu 2 H1(X;E2) j (I � B�)��0u = 0g = D((D�)(I�B�)��);here (I � B�)�� is well-posed for D�. The nullspaces Z(DB) and Z(DB�) are �nitedimensional spaces of C1 sections, de�ning indexDB = dimZ(DB)� Z(DB�).It is useful to know that when B has been replaced by a projection B1, then furthermore,B1 can be replaced by a projection B2 that is orthogonal in L2(E01). This may possibly beinferred from [S69] which leaves out details on the proof of the relevant Lemma VI.3, butit certainly follows from [BW93, Lemma 12.8], recalled as Lemma A.7 in the Appendix.Lemma A.7 and Remark A.8 imply that when R is a classical  do in E01 which acts as aprojection in Hs(E01), then Rort de�ned by (A.35) is a projection which is orthogonal inL2(E01) and has the same range as R in Hs(E01) for all s. When we apply this constructionto R = I � B1, (3.8) can be replaced by the condition B20u = 0 with the orthogonalprojection B2 = I�Rort. On the principal symbol level, since the range of r0(x0; �0) equalsthe range of r0ort(x0; �0), the operators b01(x0; �0) and b02(x0; �0) have the same nullspace, so(A.18) for one of them implies (A.18) for the other. Moreover, the range dimensions forb01(x0; �0) and b02(x0; �0) must be the same (equal toN minus the dimension of the nullspace),so also the surjectiveness required in (ii) carries over from b01 to b02. So also B2 is well-posed for P . Only the orthogonal projection de�ning a boundary condition is uniquelydetermined from it; without the orthogonality there can be many choices of projectionthat give the same condition.We now consider some examples.Example 3.4. Clearly, the choice B = C+ is well-posed, and so is B = �� when D isof Dirac-type, in view of Remark 3.2. The �rst situation that was considered for indexquestions, in [APS75], was the choice B = �� in the product case. This choice is convenientbecause it permits construction of the heat trace operators (in a good approximation) byeasy functional calculus for the selfadjoint operator A.Grubb and Seeley consider in [GS96] the product case with B � �� ranging in thenullspace of A, and in [GS95] Dirac-type operators with B��� ranging in the eigenspacefor eigenvalues of A of modulus � a (some a > 0), showing full heat trace expansions.Booss-Bavnbek and Wojciechowski [BW93] consider, for the product case, index ques-tions for the full set of projections B of the form(3.10) B = C+ + S; S of order � 1;



10 GERD GRUBBlikewise well-posed. This includes the preceding cases, and moreover allows in�nite rankperturbations of ��.For our heat trace estimates later, it is important to observe:Proposition 3.5. In the product case, when X is compact,(3.11) C+ � �� is a  do of order �1.Proof. We shall compare D, extended as �(@xn + A) on X 0� ] � c; 0], with the operator�D0, where(3.12) D0 = @xn +A0; A0 = A+ �0;on X0 = X 0�R+ and on eX0 = X 0�R, provided with the volume element v(x0; 0) dx0dxn.D0 acts in E01 and in eE01 , the pull-backs of E01 to X0 and eX0; it satis�es the Green'sformula: (D0u;w)X0 � (u;D0�w)X0 = �(0u; 0w)X0 :D0 has an inverse Q0 on eX0, easily described by its action on functions of xn taking valuesin the eigenspaces V 0� of A0 (here V 00 = f0g, V 01 = V1�V0, V 0� = V� for � 6= 0; 1): When f(xn)has values in V 0�, Q0 acts on f as the  do in xn with symbol (i�n + �)�1; more generallywhen f has an expansion f(x) = P�2specA0 f�(xn)u�(x0) in terms of eigenfunctions u�,then Q0f =P� F�1�n!xn [(i�n + �)�1f̂�(�n)]u�(x0).For D0, the Calder�on projector is constructed exactly as in the di�erential operatorcase; it equals +0 Q0e�0 as in (A.10). It acts on a ' 2 V 0� like the Calder�on projector for@xn + �, so +0 Q0e�0' = � ' if � � 00 if � < 0(one may also consult (A.12)). This implies that +0 Q0e�0 = ��.Now �D0 andD di�er only by the term ��0 on eXc = X 0� ]�c; c[ . LetQ be a parametrixof D on eX = X [ eXc. Let � and �1 2 C10 ( ] � c; c[ ), equal to 1 on a neighborhood of 0and satisfying ��1 = �. Then, in view of (A.1), we have on eXc:(3.13) �(Q� (�D0)�1)� = �Q�1�D0Q0��1�1�� ��1(QD � T2)�1Q0��1�= �Q[�1�D0 �D�1]Q0��1�+ �T2�1Q0��1�= �Q[�1��0 � (@xn�1)�]Q0��1�+ �T2�1Q0��1�:De�ne the anisotropic spaces H(s;t)(X 0�R) and H(s;t)(X 0� ]�c; c[ ), via local coordinatesand a partition of unity on X 0, from the spaces H(s;t)(Rn�1�R) with norm kh�ish�0itû(�)k.The operators have the continuity properties:�Q�1 : H(s;t)(E2j eXc)! H(s+1;t)(E1j eXc); Q0 : H(s;t)( eE01)! H(s+1;t)( eE01);�T2�1 : H(s;t)(E2j eXc)! H(s1;t1)(E1j eXc); �0 : H(s;t)( eE01)! H(s;t1)( eE01);+0 : H(1;t)(Xc)! H 12+t(X 0); e�0 : H� 12+t(X 0)! H(�1;t)( eXc);



HEAT TRACE EXPANSIONS 11for all s; s1; t; t1 2 R. Such properties are easy to show and are e.g. dealt with in [G86,G96,Sect. 2.5] (that can be used with �xed �); for the statement on Q0 one can generalize thoseproofs or use functional calculus, observing that A0�1 : Ht(E01) �! Ht+1(E01), where thenorm in Ht(E01) of u =P�2specA0 c�u� is equivalent with (P� jc�j2t) 12 . Then the operatorin (3.13) is continuous from H(�1;t)(E1j eXc) to H(1;t1)(E1j eXc) for all t; t1 2 R, and whenwe compose it to the left with +0 and to the right with e�0 , we get an operator that iscontinuous from Ht(E01) to Ht1(E01) for all t; t1 2 R. Then this is a  do of order �1 onX 0. Here +0 �(Q� (�D0)�1)�e�0� = +0 Qe�0� � �0Q0e�0 = C+ � +0 T3 ���;cf. (A.7), so C+ � �� is a  do of order �1 on X 0. �Example 3.6. Well-posed B need not be of the type (3.10). One example was introducedby Br�uning and Lesch [BL97], in the product case and under the additional hypothesesthat D is formally selfadjoint and(3.14) �A = �A�; �2 = �I; �A = �A�; �2 = I; �� = ���;where � is an auxiliary morphism or  do of order 0. The prototype is, for cos � 6= 0,(3.15) B� = cos2 ��> + sin2 ��< � cos � sin � �(�> +�<) + B0;with a suitable projection B0 in V0. Here B� is principally di�erent from �� when cos2 � 6=1. DB� is selfadjoint.For the analysis it is useful to observe that (3.14) implies a spectral symmetry of A;in fact � (as well as �) de�nes isometries of the eigenspaces V +j for positive eigenvalues�+j (ordered increasingly) onto the eigenspaces V �j for negative eigenvalues ��j = ��+jand vice versa (in particular, �(A; s) � 0). Then the nullspace of B� in V ?0 is a \shiftedversion" of V<:(3.16) spanfe�j;k + tan � e+j;k j j > 0; k = 1; : : : ; �jg;here the e�j;k, 1 � k � �j , are an orthonormal basis of V �j , and e+j;k = �e�j;k.For B = B�, [BL97] shows a precise version of (1.1), related to that of [GS96] (see alsoGrubb [G97, Remark 4.14]). The present study allows generalizations to the non-productcase and perturbations of order �1. The same holds for the more abstractly formulatedwell-posed conditions in [BL97].Example 3.7. Without assuming spectral symmetry, we can give general examples ofwell-posed B for Dirac-type operators by taking(3.17) B = �� +��S�<;where S is a classical  do of order 0 in E01. B is a projection, since �<�� = 0; so (i) inDe�nition 3.3 is satis�ed. For the principal symbols, the injectiveness (A.18) is obviousfor b0(x0; �0) = c+(x0; �0) + c+(x0; �0)s0(x0; �0)c�(x0; �0). Moreover,b0(x0; �0)N+(x0; �0) � b0(x0; �0)C N � N+(x0; �0);



12 GERD GRUBBso since the former has the same dimension as N+(x0; �0), there must be equality. Thenalso (ii) of De�nition 3.3 is satis�ed.By use of Lemma A.7�, B may be replaced by the orthogonal projection B1 = I�(I � B)ort, de�ning the same boundary condition. To calculate B1, write S and B inblocks according to the decomposition L2(E01) = V� � V<:S = �S11 S12S21 S22� ; B = � I 00 0�+ � I 00 0��S11 S12S21 S22�� 0 00 I � = � I S120 0 � :Then with R = I � B = � 0 �S120 1 �, we �nd from (A.35) that(3.18) Rort = �S12S�12(I + S12S�12)�1 �S12(I + S�12S12)�1�S�12(I + S12S�12)�1 (I + S�12S12)�1 � :This is principally di�erent from �< = � 0 00 I � as soon as S12 has nonvanishing principalsymbol, which is the generic case (when 0 < dimN+(x0; �0) < N , in particular whenn � 3). Thus B1 = I � Rort is an orthogonal projection that satis�es De�nition 3.3 anddi�ers principally from ��. More generally, we can take B to have principal part (3.17).| Let us remark that if there is a spectral symmetry: A� = ��A for some zero-order do � with �2 = I, then the following choice:(3.19) B = �� + ���<; some � 2 R;is of the above type with S = �� , since ��< = ��<�< = �>��<. The condition de�nedby this B is similar to that de�ned by (3.15); in fact the nullspace of B in V ?0 equals (3.16)with tan � = ��.Since C+ is not in general an orthogonal projection, it may be of interest to consideralso the orthogonalized version C+ort, called the orthogonal Calder�on projector; cf. LemmaA.7�. When P is of Dirac-type, the principal symbol of C+ is the orthogonal projectionc+ (cf. Remark 3.2), so a replacement of C+ by C+ort changes only the lower order part;(3.20) C+ � C+ort is of order � 1 when P is of Dirac-type.Remark 3.8. When c+ is not symmetric, C+ � C+ort is of order 0, not �1. For a simpleexample with c+ non-symmetric, take e.g. (for a neighborhood of the boundary representedas R2+) P = � 1 00 1� @x2 + � 1 4�1 1� @x1 ; here c+(�1) = � 12 i� 14 i 12 � �1:(The formula is easily shown using (A.12).) This c+ is a projection but not an orthogonalone.



HEAT TRACE EXPANSIONS 13Example 3.9. Example 3.7 can be generalized to arbitrary D as follows: Consider C+ortand its complementing projection C+?ort = I � C+ort. Let us denote their principal symbolsand range spaces(3.21) c+ort; I � c+ort = c+?ort ; N+(x0; �0); C N 	N+(x0; �0) = N?+ (x0; �0):Then the whole discussion in Example 3.7 is valid with �� and �< replaced by C+ort andC+?ort , giving well-posed operators (where we can add S1 of order �1):(3.22) B = C+ort + C+ortSC+?ort + S1:Example 3.10. Examples 3.7 and 3.9 are, in a microlocal sense, the most general pos-sible. When B de�nes the condition B0u = 0, so does CB for any invertible classicalelliptic  do C of order 0; in this sense, B and CB can be regarded as equivalent. Now ifB satis�es De�nition 3.3, we can for (x0; �0) in a neighborhood of each (x00; �00) (j�0j = 1)�nd a smooth family of bijective matrices c(x0; �0) such that c(x0; �0)b0(x0; �0) is of the formc+ort(x0; �0) + c+ort(x0; �0)s(x0; �0)c+?ort (x0; �0), as follows: Note that C N has the two decompo-sitions (depending smoothly on (x0; �0))(3.23) C N = N+(x0; �0) _+N?+ (x0; �0) = R(b0(x0; �0)) _+Z(b0(x0; �0));the latter denote the range and nullspace of b0 (we now omit the indication (x0; �0)).Here b0 de�nes a homeomorphism c1 of N+ onto R(b0). Let c2 = c�11 and let c3 be ahomeomorphism of Z(b0) onto N?+ (it can be chosen to depend smoothly on (x0; �0) in aneighborhood of (x00; �00)); then(3.24) c4 = c2b0 + c3(I � b0)is a bijection in C N . Now its inverse c = c�14 does the job: It is a bijection in C N thatmaps R(b0) to N+ as an inverse of b0 from N+ to R(b0). So c b0 ranges in N+ and is theidentity on N+, and hence(3.25) cb0 = c+ortc b0(c+ort + c+?ort ) = c+ort + c+ortc b0c+?ort ;it is of the desired form and is equivalent with b0.We shall now show how the resolvents of the operators(3.26) (�1 � �)�1; (�2 � �)�1; where �1 = DB�DB ; �2 = DBDB�;can be treated within the framework of Section 2. In fact, there is a nice trick of replacingthe study of the injectively elliptic �rst-order system fD;B0g by a truly elliptic �rst-order system fD;B0g satisfying the resolvent growth condition, in such a way that thesecond-order resolvents (3.26) are found from the resolvent construction for DB:Let B be a well-posed projection and let us denote(3.27) D = � 0 �D�D 0 � ; DB = � 0 �DB�DB 0 � :



14 GERD GRUBBThe operator D in (3.27) is formally skew-selfadjoint on X. The operator DB is skew-selfadjoint as an unbounded operator in L2(E), E = E1 � E2. It then has a resolventR� = (DB + �)�1 for � 2 C n iR. A calculation shows that(3.28) R� = (DB + �)�1 = � �R1;� DB�R2;��DBR1;� �R2;� � ; whereR1;� = (�1 + �2)�1; R2;� = (�2 + �2)�1;this shows how the resolvents (3.26) can be recovered fromR�. Also DBR1;� and DB�R2;�are determined. When � 2 �0,(3.29) �0 = f z 2 C j j arg zj < �=2 g;then � = ��2 runs through C n R+, so it su�ces for (3.26) to let � 2 �0.Now DB is the realization of D in L2(E) of the boundary condition(3.30) B0u = 0; u = �u1u2� ;where B is the row matrix (cf. (3.9))(3.31) B = (B (I � B�)�� ) ;going from L2(E01)� L2(E02) to L2(E01). Since the ranges of B and I �B� are orthogonalcomplements in L2(E01), B is surjective; note that the dimension N of E01 is half of thedimension 2N of E0 = E01 �E02. Moreover, B has as a right inverse the  do C of order 0,(3.32) C = � B�(��)�1(I � B)� [BB� + (I �B�)(I � B)]�1(cf. Lemma A.7); in particular, B is surjectively elliptic. Now fD+1;B0g has the inverse(R1 K1 ) with K1 = [I � R1(D + 1)]K0;1C as in (2.7). Since the inverse is continuousfrom L2(E)�H 12 (E01) to H1(E), fD + 1;B0g and hence also fD;B0g is elliptic. Thusall the conditions in Assumption 2.1 and 2.2 are satis�ed by fD;B%g, with N replaced by2N , d = 1, % = 0, F = F0 = E01!Then the consequences we draw later for the general systems in Section 2 apply inparticular to DB.Example 3.11. By Theorem A.6, the adjoint of DC+ is the realization of D� determinedby the analogous boundary condition C 0+0u = 0, where C 0+ is the Calder�on projectorfor D�, if D has an invertible extension to a closed neighborhood of X. More generally,the adjoint boundary condition is (C 0+ � T6)0u = 0, where T6 is a  do of order �1. Inview of (A.30), B is in this case the surjective operator(3.33) B = (C+ (I � C+�)�� ) = (C+ ��(C 0+ � T6) ) :Remark 3.12. The trick of considering the \doubled-up" system (3.27) will be restricted to�rst-order operators in this paper. Well-posed boundary conditions can also be de�ned for



HEAT TRACE EXPANSIONS 15higher order systems, cf. [S69]. But here when one takes the example of B = C+, one getsan operator on the boundary with entries of negative order that are generally nontrivial,and these exist also in the doubled-up version and violate the requirement concerning order� 0 in Assumption 2.1. Manipulations with order-reducing operators do not seem to help;they cannot at the same time remove a singularity in �0 and be strongly polyhomogeneousin (�0; �). (See also Remark 2.5 and the calculations after (5.8).)The analysis of (3.30){(3.32) moreover tells us how to include admissible manifolds inthe study of �rst-order systems. Here we need a uniformity in x0 in the well-posednesscondition. We restrict the attention to projections B.De�nition 3.14. (Uniform well-posedness) Let D be an admissible, uniformly el-liptic �rst-order di�erential operator from E1 to E2 (admissible vector bundles over anadmissible manifold X). Let B be an admissible classical  do of order 0 in E01 withB2 = B. We say that B is uniformly well-posed for D, when B satis�es De�nition 3.2(ii) and in addition, B de�ned by (3.31) is uniformly surjectively elliptic and fD;B0g (cf.(3.27)) is uniformly elliptic.When De�nition 3.14 is satis�ed, the realization DB is seen by Green's formula to beskew-symmetric. It is skew-selfadjoint since (DB)� acts like D� and u 2 D((DB)�) impliesu 2 L2(E) with D�u 2 L2(E) and B0u = 0 as an element of H� 12 (E01), hence by use of aparametrix of fD;B0g it is seen that u 2 H1(E) and thus u 2 D(DB).It follows that Assumptions 2.1 and 2.2 are satis�ed, with � = �0; so (3.28) exists andgives the resolvents of the �i as in the compact case.Examples are constructed as in the preceding text, most easily when D has an invertibleextension to a boundaryless manifold so that there is a precise Calder�on projector as inTheorem A.1 (then B = C+ is a particular example).4. Elements of weakly polyhomogeneous  do calculus.We here recall the more technical de�nitions of  do classes from Grubb and Seeley[GS95], now allowing non-compact admissible manifolds and globally estimated operatorsas in [G95], [G96].First, the symbol space Sm(R� � Rn ) consists of the functions p(x; �) 2 C1(R� � Rn)such that(4.1) @�x@�� p = O(h�im�j�j) for all � 2 Nn ; � 2 N� ;N = f integers � 0 g. The basic rules of calculus for this space are well-known fromH�ormander [H85, Sect. 18.1]. (When we are only interested in symbols with estimates validover compact subsets of Rn , we can use the results of the global calculus by introducingsuitable cut-o� functions.) A symbol p 2 Sm(R� � Rn ) is called classical (or classicalpolyhomogeneous) of degree m if it has an expansion p � Pj2N pj , where the pj arehomogeneous in � of degree m � j for j�j � 1, and p �Pj<J pj 2 Sm�J (R� � Rn) forJ 2 N .Next, we de�ne a class of symbols p depending on a parameter � varying in a sector� � C nf0g. It is the behavior for j�j ! 1 that is important here, and we often describe itin terms of the behavior of p(x; �; 1z ) for z ! 0, 1z = � 2 �. For brevity of notation, we write@jzp(x; �; 1z ) (or just @jzp) for the j'th z-derivative of the composite function z 7! p(x; �; 1z ).



16 GERD GRUBBDe�nition 4.1. Let n and � be positive integers, and letm and d 2 R. Let � be a sector inC nf0g. The space Sm;0(R� �Rn ;�) consists of the functions p(x; �; �) 2 C1(R� �Rn��)that are holomorphic in � 2 �� for j(�; �)j � " (some " > 0) and satisfy, for all j 2 N ,@jzp(�; �; 1z ) is in Sm+j(R� � Rn) for 1z 2 �;with estimates valid uniformly for jzj � 1; 1z 2 closed subsectors of �:Moreover, we set Sm;d = �dSm;0; that is, Sm;d(R� � Rn ;�) consists of the functions p(holomorphic in � 2 �� for j(�; �)j � ") such that for all j 2 N ,@jz(zdp(�; �; 1z )) is in Sm+j(R� � Rn ) for 1z 2 �;with estimates valid uniformly for jzj � 1; 1z 2 closed subsectors of �:Sometimes the symbols are only de�ned for j�j � a constant depending on the subsectorof �; this requires obvious modi�cations. We can identify(4.2) Sm(R� � Rn) � Sm;0(R� � Rn ; C n f0g):Asymptotic expansions and polyhomogeneous subclasses are introduced as follows.De�nition 4.2. 1� Let p 2 Sm�d;d(R� � Rn ;�) and let pj be a sequence of symbols inSm�j�d;d(R� � Rn ;�) such thatp�Pj<J pj 2 Sm�J�d;d(R� � Rn ;�) for any J 2 N ;then we say that p �Pj2N pj in Sm�d;d.2� If, moreover, the pj are weakly homogeneous of degree m� j, i.e.,(4.3) pj(x; t�; t�) = tm�jpj(x; �; �) for j�j � 1; t � 1; (�; �) 2 Rn � �;we say that p is weakly polyhomogeneous.3� If, furthermore, the pj are strongly homogeneous of degree m� j, i.e.,(4.4) pj(x; t�; t�) = tm�jpj(x; �; �) for j�j2 + j�j2 � 1; t � 1; (�; �) 2 Rn � �;and the following estimates hold for all indices �; �; J :(4.5) @�x@�� @k�(p�Pj<J pj) = O(h(�; �)im�J�j�j�k);then we say that p is strongly polyhomogeneous.(For simplicity, we leave out the possibility of noninteger steps between the degrees ofthe pj , included in [GS95].) It is shown in [GS95] that the conditions in 3� imply thosein 1� and 2�. Thus the strongly polyhomogeneous symbol can be thought of as the casewhere � enters as an extra cotangent variable, on a par with the others, in a classicalsymbol. For example, for m 2 Z,(4.6) (j�j2 + j�j2 + 1)m=2 2 � Sm;0 + S0;m for m � 0;Sm;0 \ S0;m for m � 0;is strongly polyhomogeneous, whereas (with n = 2)(4.7) � �41 + �42�21 + �22 + 1 + j�j2��1 2 S�2;0 \ S0;�2is weakly polyhomogeneous. (For (4.7), cf. [GS95, Th. 1.17].) We shall use a special name(as in [G97]) for symbols with this behavior:



HEAT TRACE EXPANSIONS 17De�nition 4.3. Let r be an integer � 0. A symbol s(x; �; �) (and the operator it de�nes)is called special parameter-dependent of order �r, when(4.8) s(x; �; �) 2 S�r;0(R� � Rn ;�) \ S0;�r(R� � Rn ;�) with@m� s(x; �; �) 2 S�r�m;0(R� � Rn ;�) \ S0;�r�m(R� � Rn ;�)for any m, all @m� s(x; �; �) being weakly polyhomogeneous.In particular, a strongly polyhomogeneous symbol of order �r has this property, cf.[GS95, Th. 1.16].The rules of calculus for the symbol spaces and the associated operators are describedin detail in [GS95]. Let us here just recall a few elements: A symbol p(x; �; �) with x and� 2 Rn de�nes a family of  do's depending on � 2 �,(4.9) P�f(x) = OP(p)f(x) = (2�)�n Z eix��p(x; �; �)f̂(�) d�;the indication sub-� may be left out. There holds the composition rule:(4.10) P� 2 OP(Sm;d); P 0� 2 OP(Sm0;d0) =) P�P 0� 2 OP(Sm+m0;d+d0);with symbol(4.11) (p � p0)(x; �; �) �P�2Nn 1�!@�� p(x; �; �)(�i@x)�p0(x; �; �) in Sm+m0;d+d0 :Theorem 1.23 in [GS95], formulated there for symbols with local estimates in x, extendswithout di�culty to symbols with global estimates in x (the proof is in fact simpli�edbecause the compositions can be carried out directly, without cut-o� functions, in theglobal calculus):Theorem 4.4. Let p(x; �; �) 2 S0;0(R� � Rn ;�)
L(C N ; C N ) be such that p = p0 + p�1with p�1 2 S�1;0 and with p�10 2 C1 bounded uniformly in (x; �; �) 2 Rn � Rn � �01, forany closed subsector �0 of � and �01 = f� 2 �0 j j�j � 1g. Then there exists a parametrixsymbol q(x; �; �) 2 S0;0(R� � Rn ;�) such that p � q � I in S0;0; here(4.12) q � q0 �Pk2N r�k; whereq0 = p0�1; r = I � p � q0; r�k = r � r � � � � � r (k factors).If p is weakly resp. strongly polyhomogeneous, so is q.We shall not introduce a general ellipticity de�nition but just say that the operatorswith symbol satisfying the hypotheses of Theorem 4.4 are uniformly parameter-elliptic inthe sense of Theorem 4.4.It will be useful to observe that there are one-sided variants of Theorem 4.4:



18 GERD GRUBBCorollary 4.5.1� Let p(x; �; �) 2 S0;0(R� � Rn ;�) 
 L(C N ; CM ) be such that p = p0 + p1 withp�1 2 S�1;0 and with p0 having a right inverse q0 2 C1 that is bounded uniformly in(x; �; �) 2 Rn � Rn � �01, for any closed truncated subsector �01 of �. Then there exists aright parametrix symbol q(x; �; �) 2 S0;0(R� � Rn ;�)
L(CM ; C N ) such that p � q � I inS0;0; here(4.13) q � p� � (p � p�)��1;where (p � p�)��1 is a parametrix symbol for p � p� according to Theorem 4.4.2� When the assumptions in 1� hold with \right" replaced by \left," there exists a leftparametrix symbol q(x; �; �) 2 S0;0(R� � Rn ;�)
L(CM ; C N ) such that q � p � I in S0;0;here q � (p� � p)��1 � p�, where (p� � p)��1 is a parametrix symbol for p� � p according toTheorem 4.4.Proof. This follows immediately from Theorem 4.4, when we note that p� � p in case 1�,resp. p � p� in case 2�, satis�es the hypotheses of Theorem 4.4. �We say that symbols satisfying the hypotheses in 1� resp. 2� are uniformly surjectively,resp. injectively, parameter-elliptic in the sense of Corollary 4.5.In the previous works [GK93], [G95,G96], results were shown both for parameter-inde-pendent  do's and for parameter-dependent  do's of a slightly di�erent type than here; itis the parameter-independent results from [G95] that are most fundamental for the nexttheorem.An important step in the resolvent construction in Section 5 is to show that when afamily of  do's P� is weakly polyhomogeneous of order 0 and is such that P� has an inverseP�1� that is bounded in some Hs;�-norm uniformly in �, then the inverse P�1� is againa weakly polyhomogeneous  do family of order 0, and symbol estimates of �-derivativesfor P� carry over to P�1� . In fact we need a result of this kind when there is merely aright inverse. When P� = I � S� with S� of suitably small norm, such results can beshown by use the Neumann series expansion, and entered already in [GS95]. For moregeneral P�, more e�orts are needed, and the question is closely related to the question ofspectral invariance | briey expressed this means that when a  do in a speci�c class hasan inverse in some operator sense, then the inverse is a  do belonging to the calculus too,and both operators are elliptic.First we show the spectral invariance property for weakly polyhomogeneous  do's withglobal estimates in x, using techniques from [G95] and [GS95].Theorem 4.6. Let E1 and E2 be admissible vector bundles of dimension N over anadmissible boundaryless manifold eX, and let P� (depending on � in a sector � of C ) be aweakly polyhomogeneous  do with symbol in S0;0 in admissible coordinate systems, suchthat for some l 2 Z, P� : H l;�(E1)! H l;�(E2) (which is bounded uniformly for � in closedtruncated subsectors �0r) has an inverse P�1� that is likewise H l;�-bounded uniformly for� in subsectors �0r. Then P�1� is a weakly polyhomogeneous  do with symbol in S0;0.Moreover, P� and P�1� are uniformly parameter-elliptic in the sense of Theorem 4.4.If P� is strongly polyhomogeneous, then so is P�1� . If P� is special parameter-dependentof order 0 (cf. De�nition 4.3), then so is P�1� .



HEAT TRACE EXPANSIONS 19Proof. Consider a �0r. First let l = 0, so that H l;� is simply L2. We begin by reducing (asin [9, Th. 1.14] or [7, Lemma 3.1.6]) to a consideration of operators of the form I � Q�with Q� small: Since P� and P�1� are uniformly bounded, there exist positive constantsc � C such that(4.14) ckuk2L2(E1) � kP�uk2L2(E2) � Ckuk2L2(E1); for all u 2 L2(E1); � 2 �0r:Then since kP�uk2L2(E2) = (P ��P�u; u)L2(E1),ckuk2L2(E1) � (P ��P�u; u)L2(E1) � Ckuk2L2(E1); for all u 2 L2(E1); � 2 �0r:It follows that(4.15) 0 � ((I � C�1P ��P�)u; u)L2(E1) � (C�cC u; u)L2(E1); for all u 2 L2(E1); � 2 �0r;and hence when we introduce the selfadjoint operator Q� = I � C�1P ��P�,(4.16) C�1P ��P� = I �Q�; with kQ�kL(L2(E1)) � C�cC = � < 1; Q� � 0:Since � < 1 and kQk�k � �k for k 2 N , the inverse (I � Q�)�1 exists as Pk2NQk� (theNeumann series) with convergence in operator norm, uniformly in � 2 �0r. Compositionwith (I �Q�)�1 in (4.16) shows that(4.17) P�1� = (I �Q�)�1C�1P �� :We now study (I � Q�)�1. Since Q� has L2-operator norm � � < 1 by (4.16), itfollows from a classically known fact (see e.g. the references around [7, Lemma 3.1.5]) thatthe principal symbol q0(x; �; �) must have norm � �. (In fact, when �(x) 2 C10 , theessential spectrum of �Q�� for each � equals the union over x and j�j � 1 of the spectra of�(x)2q0(x; �; �).) Thus I�q0 has an inverse bounded uniformly in (x; �; �) 2 Rn�Rn��0r,so I �Q� is parameter-elliptic in the sense of Theorem 4.4 (the lower order symbol q� q0is in S�1;0 in admissible local coordinates, since this holds for P ). Thus I � Q� has aparametrix belonging to the calculus. Hence so does P ��P� = C(I � Q�), and then alsoP�. (The parametrices are again u.p.-elliptic in the sense of Theorem 4.4.)To see that the true inverse of I �Q� belongs to the calculus, we can for operators oncompact manifolds appeal to a well-known result for standard  do's and use the uniformityin � for the symbol and its derivatives, as in [GS95, Th. 3.8]. To include operators onnoncompact (admissible) manifolds, we appeal to a result of [G95]. Theorem 1.12 (1)there implies that when P0 is a single (parameter-independent)  do of order 0, belongingto the global calculus and elliptic uniformly in x, then if P0 : L2(E1) ! L2(E2) has abounded inverse P�10 , this inverse belongs to the calculus and is also a parametrix of P0.In particular, it is of order 0 and elliptic uniformly in x, and its symbol expansion isfound by the standard parametrix construction. Now when we consider the family I �Q�depending on � 2 �0r, we use this result for each �, and note moreover that the analysisused in the proof of [G95, Th. 1.12] relies on estimates that for I � Q� hold uniformly in� 2 �0r. Thus (I � Q�)�1 will have its symbol belonging to S0 uniformly in � 2 �0r (in



20 GERD GRUBBadmissible coordinate systems). This shows the �rst requirement for having the symbol inS0;0. For the remaining requirements on higher z-derivatives (z = 1� , cf. De�nition 4.1),we use successively the formulas(4.18) @jz(I �Q�)�1 = (I �Q�)�1Xl<j �jl�@j�lz Q� @lz(I �Q�)�1; j > 0(that follow from @jz [(I � Q�)(I � Q�)�1] = 0 by the Leibniz formula); they allow theconclusion that @jz(I �Q�)�1 is in Sj uniformly in � 2 �0r.This shows that (I � Q�)�1 has symbol in S0;0. It is weakly polyhomogeneous there,since a parametrix of I � Q� is so by Theorem 4.4. Finally, since P �� is also weaklypolyhomogeneous with symbol in S0;0, the formula (4.17) allows us to conclude, by thecomposition rules, that P�1� is a weakly polyhomogeneous  do with symbol in S0;0. Thisshows the main part of the theorem when s = 0. In this case the last statements followby use of a version of (4.18) with derivatives in � and I � Q� replaced by P�; this showsthat the relevant estimates of the symbol of P� carry over to the symbol of the inverse.If l 6= 0, we reduce to the preceding case as follows: For any admissible vector bundle Fover eX there exists a family of isomorphisms �mF;� from Hr;�(F ) to Hr�m;�(F ) (m 2 Z)with principal symbol essentially h(�; �)imI and �0F;� = I, ��mF;� = (�mF;�)�1, such thatthe operator norm of �mF;� for any s is uniformly bounded in �, for arg� in an interval]�1; �2[ . (These order-reducing operators are a standard tool in [G86,G96,G95]; to getholomorphicness in � for j arg� � !j < �, say, one can for m > 0 take an operator asin [G96, Corollary 3.2.12] with h(�; �)i replaced by (j�j2m + (e�i!�)2m + 1) 12 that is well-de�ned when � � �=2m; for �m one takes the inverse). Then we replace P� and P�1� onsuitable subsectors by(4.19) P1;� = �lE2;�P���lE1;�; P�11;� = �lE1;�P�1� ��lE2;�:Here P1;� and P�11;� are uniformly bounded with respect to L2 norms. Assume e.g. thatl > 0. In view of (4.6) and (4.10), P���lE1;� has symbol in S�l;0 \ S0;�l; subsequentlyP1;� = �lE2;�P���lE1;� has symbol in(4.20) (Sl;0 + S0;l) � (S�l;0 \ S0;�l) � (S0;0 \ Sl;�l) + (S�l;l \ S0;0) � S0;0:It is seen in a similar way that the m'th �-derivative of P1;� has symbol in S�m;0 \S0;�m.This P1;� satis�es the hypotheses with l = 0, so the already proved part of the theoremshows that P�11;� is as asserted. We get back to P�1� by considerations as in (4.20). �When there is merely a one-sided inverse | right or left | of a given  do, one cannotin general expect to show that that particular operator belongs to the calculus, simplybecause it is generally not uniquely determined. However, one can show in such cases thatthere exists a right resp. left inverse with the expected symbol properties. (This seems tobe a new observation in general.)Theorem 4.7.1� Let E and F be admissible vector bundles of dimension N resp.M over an admissibleboundaryless manifold eX, and let P� (depending on � in a sector � of C ) be a weakly



HEAT TRACE EXPANSIONS 21polyhomogeneous  do with symbol in S0;0 in admissible coordinate systems, such thatfor some l 2 Z, P� : H l;�(E) ! H l;�(F ) has a right inverse R� that is likewise boundeduniformly for � in truncated closed subsectors �0r. Then P� has a right inverse R0� that isa weakly polyhomogeneous  do with symbol in S0;0.If P� is strongly polyhomogeneous, then so is R0�. If P� is special parameter-dependentof order 0, then so is P 0�.2� A similar statement holds with \right" replaced by \left."Proof. One can reduce to the case l = 0 in the same way as in the preceding proof.Consider a truncated closed subsector �0r. The identity P�R� = I implies R��P �� = I.Since R� is uniformly L2-bounded for � 2 �0r, so is its adjoint R��:kR��ukL2(F ) � CkukL2(E) for u 2 L2(E); � 2 �0r;for some �xed C > 0. Insertion of u = P ��v for an arbitrary v 2 L2(F ) giveskvk2L2(F ) = kR��P ��vk2L2(F ) � C2kP ��vk2L2(E) = C2(P�P ��v; v)L2(F ):This shows that the selfadjoint operator P�P �� in L2(F ) has lower bound � C�2, so it hasan inverse (P�P ��)�1 with L2-operator norm � C�2 for � 2 �0r.Here Theorem 4.6 applies to P�P �� , since it has symbol in S0;0 by the composition rules(cf. (4.9)). Then (P�P �� )�1 is a weakly polyhomogeneous  do with symbol in S0;0 (since�0r was arbitrary). From the identity P�P ��(P�P �� )�1 = I follows that(4.21) R0� = P �� (P�P �� )�1is a right inverse of P�; it is likewise a  do with symbol in S0;0.The statements on strong polyhomogeneity and special parameter-dependence follow ina similar way from Theorem 4.6 applied to P�P �� . This shows 1�, and assertion 2� followsby obvious modi�cations of the proof. �The theorem does not say anything about the structure of R� itself. However, we shalluse it in Section 5 in a situation where we can also infer that the given right inverse is aweakly polyhomogeneous  do.5. Analysis of the resolvent.Consider PS as de�ned in Section 2; in particular it can be equal to DB as introducedin Section 3. We shall �nd a constructive expression of its resolvent in a form that allowsshowing asymptotic expansions of traces.The strategy in [GS95] for characterizing the resolvent (�1 + �2)�1 associated witha Dirac-type problem with a boundary condition (�� + B0)0u = 0 was essentially toexpress the general resolvent as a suitable perturbation of the product case resolvent, by aterm that is of lower order at the boundary. When P is not of Dirac-type, we do not havea simpler reference problem (like the product case) to depart from, so a new strategy isneeded. Here we establish the analysis directly by use of a Calder�on projector for P � �.For a general explanation of the Calder�on projector and associated Poisson operator andtheir use, see the Appendix. As noted there, the Calder�on projector is most manageable



22 GERD GRUBBwhen the elliptic operator, one is dealing with, can be extended to a boundaryless manifoldeX � X such that the extension is invertible there. This cannot be achieved for all P , butin the present case, the resolvent assumption for P � � comes in useful. In fact, whenAssumption 2.2 1� holds, we can extend P � � to a  do eP� on a neighboring manifold eX,such that eP� is invertible for large �; then we can get a good de�nition of the Calder�onprojector for this operator for such large �:Theorem 5.1. Let P be such that Assumption 2.2 1� is satis�ed. Let(5.1) Zs�;+ = f z 2 Hs(X;E) j (P � �)z = 0 on Xg; Ns�;+ = %Zs�;+;for s 2 R. Let eX be an admissible boundaryless n-dimensional manifold in which X issmoothly imbedded, the bundle E being extended to an admissible bundle eE there; takeeX compact when X is compact.Each ray rei�0 in � has a neighborhood �0 = f� = rei� j j� � �0j � " g in � so thatfor � 2 �0, there is an extension eP� of P � � to eE (acting like P � � on X), which isa uniformly parameter-elliptic strongly polyhomogeneous  do of degree d with respect to� 2 e�0 = (��0)1=d and has a parametrix eQ� for � 2 �0 which is an inverse for j�j � r0(some r0 � 0). Then when we de�ne (cf. (A.3)�.)(5.2) K+� = �r+ eQ�e%�A; C+� = %K+� ; C�� = I � C+� ;we have for � 2 �0r0 , all s 2 R, cf. (2.5), (A.2):K+� maps Hs(E0d) onto Zs�;+ with right inverse %, and C+� is a projection in Hs(E0d)with range Ns�;+. Here C+� is a matrix of classical  do's C+� = (C+�;jk)j;k=0;:::;d�1 withC+�;jk strongly polyhomogeneous of order j � k with respect to � 2 e�0, and K+� is row ofPoisson operators (K+�;j)j=0;:::;d�1 with K+�;j strongly polyhomogeneous of order �j; allthe operators are admissible.Proof. We here use ideas from [S69], in particular from the appendix there. Denote(5.3) �(�) = f rei� j r > 0; j�j � � g:Consider a ray rei�0 in �; multipying P � � by a complex constant we can obtain that�0 = � and that �(�) � �� for some � > 0. Then for " � �=2:� � 2 �("); �� 2 �(") =) j�j2d + �2 2 �(2") and � �� �(j�j2d + �2) 12 2 �(2")=) p(x; �)� �� �(j�j2d + �2) 12 is invertible:We can then, for � 2 �0 = ��(") and j�j2d + j�j2 � 1 de�ne a homotopy of p0 � �I to thesymbol p(�; �) = (j�j2d + �2) 12 I: Set(5.4) ep0(x; �; �; �) = p(�; �) i2� ZC ��[p(�; �)�1(p0(x; �)� �I)� �I]�1 d�;where C is a curve in (��(")[fj� j � 1g)nR� encircling the eigenvalues of p(�; �)�1(p0(x; �)��dI) (note that �� is well-de�ned on C). Here ep0(x; �; �; �) equals p(�; �)I for � = 0 and



HEAT TRACE EXPANSIONS 23equals p0(x; �)��I for � = 1, and it is homogeneous of degree d in (�; j�j1=d), holomorphicin �, C1, and invertible for all � 2 [0; 1], all j�j2d + j�j2 � 1 with � 2 ��(").We can assume that eX contains the neighboorhood U [U� of X 0 (described at the startof the Appendix), where we can identify eE with the pull-back of E0. In view of the uniformparameter-ellipticity, there is a neighborhood V of X with X[(X 0�[�c; 0]) � V � X[U�so that P extends to V as an admissible di�erential operator satisfying Assumption 2.21�. Moreover, we can deform the symbol p0(x; �)� � smoothly through u.p.-elliptic  dosymbols homogeneous in (�; j�j1=d) to p(�; �)I by use of (5.4) when xn goes from � 13cto � 23c, and then extend it as p(�; �)I on the rest of eX. This gives a principal symbolp01(x; �; �) de�ned on all of eX, de�ning a u.p.-elliptic  do eP1;� of order d; it is stronglypolyhomogeneous for � 2 e�0. Now take(5.5) eP� = '(P � �I)'+  eP1;� ;where ' and  are admissible (bounded with bounded derivatives) C1 functions on eXwith '2+ 2 = 1, such that ' is 1 on X [ (X 0� [� 19c; 0]) and  is 1 on the complement ofX [ (X 0 � [� 29 ; 0]). This eP� is a u.p.-elliptic and strongly polyhomogeneous  do of orderd that acts like P � � on distributions supported in a neighborhood of X. eP�;+ has thesame Green's formula as P , (2.1).eP� has a parametrix eQ0� for � 2 ��("), u.p.-elliptic and strongly polyhomogeneous oforder �d, by the usual formulas. Since eP� eQ0� = I + S� where S� is strongly polyhomo-geneous of order �1, hence has an L2 operator norm going to 0 for j�j ! 1 in ��("),I + S� can be inverted within the calculus (by a Neumann series) for su�ciently large�; here eQ0� can be modi�ed to the true inverse eQ� = eQ0�(I + S�)�1. This is stronglypolyhomogeneous with global spatial estimates, by Theorem 4.6. (A detailed account in amore general situation is given in [G96, Th. 3.2.11]; for compact manifolds, [G86, Remark3.2.12] or Shubin [Sh87] su�ce.)We now simply de�ne K+� and C+� by (5.2); then the veri�cation that they have thementioned mapping properties goes exactly as in Theorem A.1. The resulting operatorsare strongly polyhomogeneous by [GS95, Lemma A.1, Th. 1.16] and have uniform spatialestimates since eQ� and A do so. �For use later in Corollary 5.4 let us also note that % eQ�;+ (as a function of � = (��)1=d 2e�0) is a strongly polyhomogeneous trace operator of class 0, cf. [G95, Lemma A.1 (ii)].Now Theorem A.4 is valid for P � � with C�, K+ and Q+ replaced by C�� , K+� andeQ�;+, in the exact form since the extension eP� of P �� has the inverse eQ� on eX. Considera system � P��S% � satisfying Assumptions 2.1 and 2.2. By Lemma 2.3, it is surjective fromHd(E) to L2(E)�Hd(F ) for each large � 2 �. Then we have in view of (A.14){(A.16) (orTheorem A.4) that the  do SC+� on X 0 is surjective for each �. We shall show that SC+�has a right inverse belonging to our weakly polyhomogeneous  do's.Lemma 5.2. Let � 2 �0r (with �0 as in Theorem 5.1 and r so large that eQ� = eP�1� andAssumption 2.2 is satis�ed). Then SC+� has the right inverse, with K� de�ned by Lemma2.3,(5.6) S0� = %K�;



24 GERD GRUBBit is a  do mapping Hs;�(F ) onto Hs;�(E0d) with uniform bounds in � = j�j1=d, for alls � d.Proof. By the converse part of Theorem A.4 1�, (5.6) is a right inverse of SC+� . Themapping property follows from the second line in (2.10) by composition with %. �We would like to use Theorem 4.7 to show that S0� is weakly polyhomogeneous in termsof � = (��)1=d. One di�culty in this is that S0� is just a right inverse, not a two-sidedinverse (and such right inverses are not uniquely determined). Another di�culty is that Sand C+� are multi-order systems. But these di�culties can be overcome, as shown in thefollowing theorem.To eliminate the e�ects of the multi-order, we conjugate the operators (in each subsector�0r) with(5.7) �F;� = 0BBB@�d�1F0;� 0 : : : 00 �d�2F1;� : : : 0... ... . . . ...0 0 : : : IFd�1
1CCCA ; � = (��)1=d;and the analogous operator �E0d;�; the entries are de�ned as in the proof of Theorem 4.6.We set(5.8) eS� = �F;�S��1F;�; eC+� = �E0d;�C+� ��1E0d;�:Here the entries are of order 0. eC+� is again strongly polyhomogeneous in terms of � 2 e�0since the �lE0;� are so; hence it is in fact special parameter-dependent of order 0. For eS� isfollows from the lower triangular form of S that eS� is again lower triangular. The entriesin and below the diagonal are of the form �d�1�jFj ;� Sjk�k+1�dFk;� with j � k and thus, sinceSjk 2 Sj�k � Sj�k;0, they are seen to have symbols in S0;0 with �-derivatives of order min S�m;0 \ S0;�m for any m, by calculations as around (4.20). (For k < j < d � 1 oneneeds the observation that Sj�k;k�j\Sj+1�d;d�1�j � S0;0 by interpolation since j�k > 0,j + 1� d < 0.) Thus eS� is special parameter-dependent of order 0. We also de�ne(5.9) eS0� = �E0d;�S0���1F;�:Theorem 5.3. Let P and S satisfy Assumptions 2.1 and 2.2.For � in truncated subsectors �0r of � (as in Lemma 5.2), the operator SC+� has a rightinverse S00� = ��1E0d;� eS00��F;� where eS00� is special parameter-dependent of order 0 (in termsof � = (��)1=d).The right inverse S0� de�ned in Lemma 5.2 equals C+� S00� , and eS0� de�ned by (5.9) isspecial parameter-dependent of order 0.Proof. The operator eS� eC+� is continuous fromHt;�(E0d) to Ht;�(F ) for any s, in particularfor s = 0. It has the right inverse eS0�, which is continuous from Ht;�(F ) to Ht;�(E0d),uniformly in �, for t � 12 , in view of (5.6), (2.10) and the mapping properties of the �lFj ;�.In particular, the continuity holds with t = 1. We can then apply Theorem 4.7 with l = 1,



HEAT TRACE EXPANSIONS 25which shows the existence of a right inverse eS00� that is special parameter-dependent oforder 0.The right inverse we have constructed in this way need not be the same as eS0� de�nedafter Lemma 5.2 in (5.9). However, since � P��S% � is bijective, we infer from the converseparts of 1� and 2� in Theorem A.4 that � SC�� � is injective and SC+� is surjective, hence Sde�nes a bijection of Ns�;+ onto Hs(F ), and so does SC+� . Then SC+� has only one rightinverse ranging in Ns�;+. Now S0� in (5.6) does map into Ns�;+ since (P � �)K� = 0, so itis the right inverse of SC+� ranging in Ns�;+. When S000� is an arbitrary right inverse, thenI = SC+� S000� = SC+� C+� S000� ;so C+� S000� is a right inverse ranging in N�;+; hence it must equal S0�. In particular, for theright inverse S00� found above, S0� = C+� S00� :It then follows from the rules of calculus that also eS0� = �E0d;�S0���1F;� = eC+� eS00� is a specialparameter-dependent  do of order 0. �Since eQ� is the inverse of eP�, we can now apply the direct part of Theorem A.4 1� todescribe the inverse of � P��S% �. This gives as an immediate corollary:Corollary 5.4. For � in truncated subsectors �0r of � (as in Lemma 5.2), the resolventR� = (PS � �)�1 and the Poisson solution operator K� in (2.6) satisfy(5.10) R� = eQ�;+ �G� with G� = K+� S0�S% eQ�;+;K� = K+� S0�;where S0� is as in Theorem 5.3.In terms of � = (��)1=d, K+� resp. % eQ�;+ are a strongly polyhomogeneous Poisson resp.trace operator, and �E0d;�S0���1F;� and �E0d;�S0�S��1F;� are special parameter-dependent do's of order 0. In particular, we can write(5.11) G� = K�S�T� with K� = K+� ��1E0d;�; S� = �E0d;�S0�S��1E0d;�; T� = �E0d;�% eQ�;+;where K� is a strongly polyhomogeneous Poisson operator of order 1 � d, S� is a specialparameter-dependent  do on X 0 of order 0, and T� is a strongly polyhomogeneous traceoperator of order �1.Here S0� and S0�S are covered by the analysis in Theorem 5.3, whereas K+� and % eQ�;+were described in Theorem 5.1�; see also (5.7).6. Trace formulas.We can �nally obtain trace formulas, by the methods of [GS95].



26 GERD GRUBBTheorem 6.1. Let PS be the realization (2.3) de�ned from a di�erential operator P oforder d in a bundle E over a manifold X together with a boundary condition (2.2) (alladmissible), such that Assumptions 2.1 and 2.2 are satis�ed. When (m+1)d > n = dimX,the resolvent R� = (PS � �)�1 satis�es for any compactly supported morphism ' in E:(6.1) Tr('@m� (PS � �)�1) � a0(��)nd�m�1 + 1Xj=1(aj + bj)(��)n�jd �m�1+ 1Xk=0(ck log(��) + c0k)(��)� kd�m�1;for � ! 1 in closed subsectors of �. The coe�cients aj , bj and ck are integrals,RX1 aj(x) dx, RX01 bj(x0) dx0 and RX01 ck(x0)dx0, of densities aj locally determined by thesymbols of P , resp. bj and ck locally determined by the symbols of P and S at X 0; hereX1 is a smooth compact neighborhood of supp' in X such that X 01 = X1 \ X 0 is aneighborhood of supp' \X 0 in X 0. The c0k are in general globally determined.Proof. '@m� R� is trace class since it maps L2(E) into H(m+1)d(EjX1) and the injectionH(m+1)d(EjX1) ,! L2(EjX1) is trace class. The kernel is continuous and the trace is theintegral of the �ber trace of the kernel on the diagonal, so one only has to integrate overX1. Consider a truncated subsector �0r as in Lemma 5.2. From Corollary 5.4 follows that(6.2) @m� R� = @m� (PS � �)�1 = m!(PS � �)�m�1 = m!( eQ�;+ �G�)m+1= m!( eQ�;+)m+1 +Pm+1k=1 polk( eQ�;+; G�)= m!( eQm+1� )+ + eG� +Pm+1k=1 polk( eQ�;+; G�);where the expressions polk are \polynomials" in the two (non-commuting) terms in R�, inthe sense that they are linear combinations of compositions with m � k factors eQ�;+ andk factors G�. The term eG� is the singular Green operator (cf. e.g. [G96, (1.2.35)])(6.3) eG� = m!(( eQ�;+)m+1 � ( eQm+1� )+):In the dependence on � = (��)1=d, we have in view of the rules of calculus of [GS95], [G96]that eQm+1� is a strongly polyhomogeneous  do of order �(m+1)d on eX, eG� is a stronglypolyhomogeneous singular Green operator of order �(m + 1)d on X, and the sum overk is a sum of compositions containing strongly polyhomogeneous operators (of all types)together with the special parameter-dependent  do eS�.Consider the traceTrX '@m� R� = TrX 'm!( eQ�)m+1+ +TrX '[ eG� + m+1Xk=1 polk( eQ�;+; G�)]:By the construction of eP� in Theorem 5.1, the restriction ( eQm+1� )+ of eQm+1� is the restric-tion of a strongly polyhomogeneous parametrix of (P � �)m+1 de�ned on a neighborhoodof X, so TrX 'm!( eQm+1� )+ contributes a well-known expansion P10 aj(��)n�jd �m�1.



HEAT TRACE EXPANSIONS 27The singular Green operator ' eG� is strongly polyhomogeneous of order �(m + 1)dand hence of regularity +1 in the sense of [G86,G96], so it contributes an expansionP11 b0;j(��)n�jd �m�1, by the proof of [G86, Th. 3.3.10�.] or [G96, Th. 3.3.9�.], alsorecalled in [G92, App.].In view of (5.11), the terms in the polynomials polk contain S� as one or several factors.Here we use the invariance of the trace under cyclic permutation of the operators, to reduceto the study of an operator on X 0. Since eQ�;+ composes with strongly polyhomogeneousPoisson and trace operators to give Poisson resp. trace operators that are again stronglypolyhomogeneous, each term in polk has the structure(6.4) G� = 'K1;�S�T1;�K2;�S�T2;� : : :KJ;�S�TJ;�;with G� of total order �(m+1)d and the Kj;� and Tj;� strongly polyhomogeneous Poissonand trace operators of order � 0. Let  denote a morphism over X 0 that is the identityover a neighborhood of supp'\X 0 and is supported in X 01; then 'K1;�(I � ) is stronglypolyhomogeneous of order �1, so its norm in Sobolev spaces is O(h�i�M), any M , andTr'K1;�(I �  )S�T1;�K2;�S�T2;� : : :KJ;�S�TJ;� is O(h�i�M ), any M . For the remainingpart,(6.5) TrX 'K1;� S�T1;�K2;�S�T2;� : : :KJ;�S�TJ;� = TrX0 S 0�; withS 0� =  S�T1;�K2;�S�T2;� : : :KJ;�S�TJ;�'K1;�;here the factors Tj;�Kj+1;� and TJ;�'K1;� are strongly polyhomogeneous  do's on X 0 oforders � 0. It follows that the  do S 0� is a special parameter-dependent  do of order�(m + 1)d. We can now apply [GS95, Th. 2.1] to this by integration over X 01, using areduction to local trivializations and a partition of unity. Since X 0 has dimension n � 1and the symbol has degrees �(m+ 1)d� k, k � 0, and �-exponent �(m+ 1)d, we get anexpansion in a series of locally determined terms ~bk(��)n�kd �m�1, k � 1, together with aseries of terms (~ck log(��) + ~c0k)(��) kd�m�1, k � 0, with ~ck locally determined.Collecting all the contributions, we �nd (6.1). �We have as an immediate consequence:Corollary 6.2. When J in Assumption 2.2 contains [�1; �2] with ]�1; �2[� [�2 ; 3�2 ], so thatthe heat operator e�tPS can be de�ned for t > 0 by(6.6) e�tPS = i2� ZC e�t�(PS � �)�1 d�; withC = f� = ei�2r j r � r0g+ f� = ei�r0 j �2 > � > �1g+ f� = ei�1r j r0 � rg;then there are trace expansions for t! 0, when ' has compact support:(6.7) Tr('e�tPS ) � �a0t�nd + 1Xj=1(�aj +�bj)t j�nd + 1Xk=0(�ck log t+ �c0k)t kd ;here the coe�cients are proportional to those in (6.1) by universal factors.Proof. (6.6) impliesTr'e�tPS = i2� ZC(�t)�me�t� Tr'@m� (PS � �)�1 d�:



28 GERD GRUBBThe expansion (6.7) is shown by insertion of sums of terms from (6.1) down to a givenorder plus a remainder O(h�i�N ), and letting the order ! �1. Here one uses simplecalculations such as:ZC(�t)�me�t�(��)s log(��) d� = � dds ZC(�t)�me�t�(��)s d�= � dds (�t)�mt�s�1 ZC0 e�%(�%)s d% = const. t�m�s�1 log t: �Theorem 6.1 holds in particular for (DB + �)�1, giving expansions of the form(6.8) Tr('@m� (DB + �)�1) � n�1Xj=0 cj�n�n�j�m�1 + 1Xk=0(ck log�+ c0k)��k�m�1;for �!1 in closed subsectors of �0. We apply this to (3.26) by use of (3.28) as in [GS95,Sect. 3.4]: Take ' = ('kl)k;l=1;2 with just one block di�erent from zero in order to get thetraces of the individual blocks in (3.28), and set � = ��2. This gives trace expansions ofthe m'th derivatives of '(�i��)�1 (i = 1; 2),  DB(�1��)�1 and  DB�(�2��)�1, andconsequences for heat trace expansions as in Corollary 6.2:Theorem 6.3. Let DB be the realization of a �rst-order uniformly elliptic di�erentialoperator D from E1 to E2 with a uniformly well-posed boundary condition B0u = 0(manifolds, bundles and operators being admissible). Then when ' and  are compactlysupported morphisms (in Ei resp. from Ej to Ei, i; j = 1; 2), there are resolvent traceexpansions in closed truncated subsectors of C n R+, for m � n:Tr('@m� (�i � �)�1) � n�1Xj=0~ai;j�n(��)n�j2 �m�1 + 1Xk=0�~ai;k log(��) + ~a0i;k�(��)�k2 �m�1;Tr( DB@m� (�1 � �)�1) � n�1Xj=1 ~b1;j�n(��)n�j+12 �m�1+ 1Xk=0�~b1;k log(��) + ~b01;k�(��)�k+12 �m�1;(6.9)with a similar formula for Tr( DB�@m� (�2��)�1) with coe�cients ~b2;k and ~b02;k. Moreover,there are heat trace expansions when t! 0+:
(6.10) Tr('e�t�i) � n�1Xj=0 ai;j�nt j�n2 + 1Xk=0�ai;k log t+ a0i;k�t k2 ; i = 1; 2;Tr( DBe�t�1) � n�1Xj=1 b1;j�nt j�n�12 + 1Xk=0�b1;k log t+ b01;k�t k�12 ;



HEAT TRACE EXPANSIONS 29with a similar formula for Tr( DB�e�t�2) with coe�cients b2;k and b02;k. The coe�cientsin (6.10) are proportional to those in (6.9) by universal factors. The unprimed coe�cientsare locally determined; the primed coe�cients depend on the operators in a global way.The terms ~bi;�n(��) 12�m�1 and bi;�ntn+12 have been left out, since their coe�cients areformed by integration in � of functions that are odd in �, which gives zero.When X is compact, one can also pass via the zeta function as in [GS95]. One thengets, with the same ai;k; a0i;k; bi;k and b0i;k as in (6.10):(6.11) �(s) Tr('��si ) � n�1Xj=0 ai;j�ns� j�n2 + Tr'�0(DB)s + 1Xk=0� �ai;k(s� k2 )2 + a0i;ks� k2 �;�(s) Tr( DB��s1 ) � n�1Xj=1 b1;j�ns� j�n�12 + 1Xk=0� �b1;k(s� k�12 )2 + b01;ks� k�12 �;with a similar formula for Tr( DB���s2 ) with coe�cients b2;k and b02;k. (The left-handside is meromorphic on C and the right-hand side gives the full pole structure.)The results apply of course to all the cases presented in the examples in Section 3.For comparison with earlier results it is of interest to see how the expansions vary underperturbations of B.Theorem 6.4. Consider two choices B1 and B2 of B as in Theorem 6.3, such that B0 =B2 � B1 is a  do of order �1. Denote(6.12) Bi = (Bi (I �B�i )�� ) ; i = 1; 2; B0 = B2 � B1;�D + �Bi0 ��1 = (Ri;� Ki;� ) for � 2 C n iR; i = 1; 2:Then(6.13) R2;� = R1;� �K1;�B00R2;�; K2;� = K1;� � K1;�B00K2;�:Here when m � n and ' has compact support, Tr'@m� (K1;�B00R2;�) has an asymptoticexpansion for �!1 in closed subsectors of �0:(6.14) Tr'@m� (K1;�B00R2;�) � n�1Xj=2 cj�n�n�m�1�j + 1Xk=0(ck log�+ c0k)��m�1�k;so the �rst two terms in the expansions (6.9){(6.11) are the same for DB1 and DB2 . If B0is of order �1, the series (6.14) reduces to(6.15) Tr'@m� (K1;�B00R2;�) � 1Xk=0 c0k��m�1�k;so all the unprimed terms in the expansions (6.9){(6.11) are the same for DB1 and DB2 .Proof. By the de�nition of the inverses,�D + �B10 ��1 (R2;� K2;� ) = � I 0�B00R2;� I � B00K2;�� :



30 GERD GRUBBComposition with (R1;� K1;� ) gives(R2;� K2;� ) = (R1;� K1;� )� I 0�B00R2;� I � B00K2;�� ;which implies (6.13). Now by use of circular permutation as in the proof of Theorem 6.1,the Leibniz formula and the explicit formulas in Corollary 5.4,TrX '@m� (K1;�B00R2;�) = TrXPk�m �mk �'@k�K1;�B00@m�k� R2;�= TrX0 @m� (B00R2;�'K1;�) = TrX0 S0�;where S0� = @m� (B00( eQ�;+ �K+� S2;�B20 eQ�;+)'K+� S1;�);here we denote by Si;� the right inverses of BiC+� constructed for the respective problems inLemma 5.2 and Theorem 5.3. As shown earlier, 0 eQ�;+'K+� and 0K+� = C+� are stronglypolyhomogeneous  do's on X 0 of orders �1 and 0, and the Si;� are special parameter-dependent of order 0. Since B0 is independent of � and of order �1, it follows that S0� hassymbol in S�2�m;0 \ S�1;�1�m. Then [GS95, Th. 2.1] implies (6.14).If B0 is of order �1, so is B0; then S0� has symbol in S�1;�1�m, and [GS95, Th. 2.1]or just [GS95, Prop. 1.21] implies (6.15). �In the case with X compact and a product structure near X 0, the Calder�on projectordi�ers from �� by an operator of order �1 by Proposition 3.5, so for B = C+, theexpansions (6.9){(6.11) only di�er in the primed coe�cients from the expansions knownfor B = ��. Here it was shown in [GS96] that all the logarithmic terms vanish whenn = dimX is odd; when n is even, the logarithmic terms with k even > 0 vanish, and thelogarithm at the power zero vanishes if in addition ' = I (exact formulas were also given).So we �nd:Corollary 6.5. Consider the product case with X compact, B = C+. Then the expan-sions (6.9){(6.11) di�er from those known for B = �� only in the primed coe�cients.In particular: When n is odd, all the logarithmic terms vanish. When n is even, thelogarithmic terms with k even > 0 vanish in (6.9){(6.10); also the ~ai;0 and ai;0 vanish if' = I.Note that it is the global coe�cients that may be changed when we replace �� by C+ inthe product case, whereas the locally determined coe�cients are unchanged. More precisestatements can be inferred from the precise formulas in [GS96], showing that the localcoe�cients resulting from the boundary condition are proportional, by certain universalconstants, to speci�c coe�cients in the zeta and eta function expansions (or heat traceexpansions) for A. It is shown in Gilkey and Grubb [GG97] that these coe�cients aregenerically nonzero.Remark 6.6. Our results show that the boundary conditions considered in [BL97] give heatoperators with trace expansions (6.10) also when the structure is not of product type nearX 0; this is a new result. One can moreover use Theorem 6.4 to conclude in the productcase that conditions that di�er from those in [BL97] by an operator of order �1 havesimilar locally determined coe�cients, in the same way as in the comparison with the caseB = �� in Corollary 6.5.Let us �nally observe the resulting index formula:



HEAT TRACE EXPANSIONS 31Corollary 6.7. Let X be compact and let B be well-posed for D. Then the index of DBequals(6.16) indexDB = a01;0 � a02;0where the a0i;0 are the coe�cients entering in (6.10) with ' = 1.Moreover, when ' = 1, all the other coe�cents coincide for i = 1 and 2:(6.17) a1;k = a2;k for all k � �n and a01;k = a02;k for all k > 0:Proof. This follows from the well-known fact (cf. e.g. [G86,G96, Sect. 4.3]) that(6.18) indexDB = Tr e�t�1 � Tr e�t�2 for t > 0;since this expression is constant in t, the variable terms must vanish. (One can make asuccessive elimination of the terms (a1;�n � a2;�n)t�n2 , (a1;1�n � a2;1�n)t�n�12 , etc., byorder of magnitude.) �A. Appendix.We here recall, and extend to admissible manifolds, the de�nition and application of theCalder�on projector C+ for an elliptic di�erential operator P : C1(X;E1) ! C1(X;E2)of order d, as introduced by Calder�on [C63], Seeley [S66,S69], see also H�ormander [H66],Boutet de Monvel [BM66], Grubb [G77].The manifold X is taken to be compact or, more generally, admissible as de�ned in[GK93], [G96], see the introduction to Section 2; P is assumed to be admissible anduniformly elliptic. We can assume that X is smoothly imbedded in an n-dimensionaladmissible boundaryless manifold eX such that X 0 is an (n� 1)-dimensional hypersurfacein eX and E1 and E2 are restrictions to X of N -dimensional bundles eE1 and eE2 over eX; onesuch choice is to double up the neighborhood U along X 0, augmenting X by the reectedpiece U�. In U [ U� we write x = (x0; xn), where jxnj < c(x0), c(x0) � c > 0. In thecompact case one can add another piece to X [ U� to get a compact eX.If P extends to a uniformly elliptic operator (also denoted P ) from C1( eE1) to C1( eE2),we let Q denote an admissible parametrix of P on eX; then(A.1) PQ = I + T1; QP = I + T2 on eX;where T1 and T2 are admissible  do's on eX of order �1. The use of Calder�on projectorsis simplest if eX and P can be chosen so that P is invertible on eX; then Q stands for theinverse (necessarily admissible by the spectral invariance proved in [G95]), and T1 and T2are zero.Let us denote X� = X+, eX nX = X�, eEijX� = Ei;�. The mapping % = f0; : : : ; d�1g(ju = (Djxnu)jxn=0) can be regarded as a mapping either from functions on X+, or fromfunctions on X�, or from functions on eX, to functions on X 0; to distinguish between thethree versions, we denote them %+, %� resp. e% (so % = %+). When F = F0� � � ��Fd�1 arevector bundles over X 0 we denote(A.2) Hs(F ) =Q0�j<dHs�j� 12 (X 0; Fj) ;eHs(F ) =Q0�j<dHs+j+ 12 (X 0; Fj) = (H�s(F ))0 :



32 GERD GRUBBIndication of manifolds will often be left out. Writing L0�j<dE0i = E0di , we have that%� and e% map the respective Hs spaces into Hs(E0di ) for s > d � 12 . The mappinge% : Hs( eEi) ! Hs(E0di ) has the adjoint e�� : eH�s(E0di ) ! H�s( eEi) for s > d � 12 ; it rangesin distributions supported in X 0. (For further explanation, note that e%� is the row vectorfI;Dxn ; : : : ; Dd�1xn ge�0 , where e�0 in local coordinates where X 0 is replaced by Rn�1 sendsa function '(x0) on Rn�1 into the distribution '(x0)
 �(xn).) We use the notation A� forthe truncation of a  do A on eX to X�:(A.3) A� = r�Ae�; when A is a  do on eX;here r� means restriction to X� and e� means extension by zero on X�.De�ne the spaces(A.4) Zs� = f z 2 Hs(X�; E1;�) j Pz = 0 on X�g; s 2 R;Ns� = %�Zs� � Hs(E0d1 );Z0 = f z 2 C1( eX; eE1) \Hd( eX; eE1) j Pz = 0; supp z � Xg;here Z0 is identi�ed with a subspace of the Zs+ and has �nite dimension when X is compact.Although the trace operator % is de�ned on Hs(E1;�) for s > d� 12 only, the de�nition ofthe spaces Ns� of Cauchy data for null solutions can be extended to all s 2 R, by resultsin Lions and Magenes [LM68] or by the arguments in [S66,S69]. Seeley showed in [S69], inthe case where X is compact, that there exist continuous mappings(A.5) K+ : Hs(E0d1 )! Hs(E1;+); C+ = %+K+ : Hs(E0d1 )!Hs(E0d1 )(de�ned consistently for all s 2 R) with the properties:(A.i) For each s 2 R, K+ maps Hs(E0d1 ) into Zs+, such that(A.6) Zs+ = K+(Hs) _+Z0; %+K+' = ' for ' 2 Ns+; K+%+z = z for z 2 K+(Hs):(A.ii) C+ = %+K+ is a projection in Hs(E0d1 ) with range Ns+.(A.iii) The operators satisfy:(A.7) K+ = �r+Qe%�A+ T3; C+ = �%+Qe%�A+ %+T3;where T3 and %+T3 are integral operators from X 0 to X resp. X 0 with C1 kernels;here T3 = 0 when Q is the inverse of P on eX.C+ is a matrix of classical  do's, C+ = (C+jk)j;k=0;:::;d�1 with C+jk of order j � k; it iscalled the Calder�on projector for P . We also de�ne the complementing Calder�on projector(A.8) C� = I � C+:In the terminology of [BM71], K+ is a Poisson operator. Because of the presence of themapping e%�, the full symbols of K+ and C+ are determined from the symbol of P and itsderivatives at X 0 (modulo symbols of order �1).Although the result is independent of the existence of convenient extensions of X andP , the deduction of it is easiest to explain when P has an invertible extension to eX. Thenit also has a nice generalization to non-compact cases:



HEAT TRACE EXPANSIONS 33Theorem A.1. In the case of admissible manifolds, bundles and operators, assume thatP has the inverse Q on eX. Then the spaces Ns� are complementing subspaces of Hs(E0d1 ):(A.9) Hs(E0d1 ) = Ns+ _+Ns�:When we de�ne(A.10) K� = �r�Qe%�A; C� = %�K� = �%�r�Qe%�A;the Poisson operators K� : Hs(E0d1 )! Hs(E1;�) have range equal to Zs� and provide rightinverses of %� on Zs�, respectively; and the  do's C� (the Calder�on projectors for P ) arethe projections of Hs(E0d1 ) onto Ns� along Ns�, respectively.Proof. The proof is a generalization of the deduction in [S66], [S69] for the invertible casewith eX compact. In fact, the proof given in [G96, Ex. 1.3.5] carries over verbatim tothe present admissible manifolds, when the operators are admissible (have uniformly x-estimated symbols; the calculus for such operators is worked out in [G96, Ch. 2{3]), andone allows the range bundle for P to be di�erent from the initial bundle E. To save space,we refrain from repeating the details here. �When P merely satis�es (A.1), one can still de�ne operators K+ and C+ by formulassimilar to (A.7); then they have the desired mappping properties only modulo smoothingoperators. The properties (A.i){(A.ii) achieved in [S69] for the compact case require moreprecision. A construction taking account of smoothing operators is worked out in [G77]for general multi-order operators P on compact manifolds, with applications. The bookof Booss-Bavnbek and Wojciechowski [BW93] goes through the proof of Theorem A.1 for�rst-order operators in the product case, cf. De�nition 3.1.The principal symbols are determined by the analogous (exact) construction for themodel operator p0(x0; 0; �0; Dxn) in S(R+)N for j�0j = 1; here S(R�) = r�S(R). Thenullspaces(A.11) Z�(x0; �0) = fz(xn) 2 S(R�)N j p0(x0; 0; �0; Dxn)z = 0 on R�g;are �nite dimensional subspaces of S(R�)N consisting of exponential polynomials decreas-ing for xn ! �1, respectively, and the corresponding Cauchy data spaces N�(x0; �0) =%�Z�(x0; �0) are complementing subspaces of Q0�j<d C N = C Nd . The dimension ofN�(x0; �0) equals the sum of the multiplicities of the roots in det p0(x0; 0; �0; �) (consid-ered as a polynomial in �) with imaginary part ? 0, respectively.Example A.2. When d = 1 and P = D is written as in (3.3), the model operator isd0(x0; 0; �0; Dxn) = �(x0)( ddxn + a01(x0; �0)). It is seen e.g. by changing a01(x0; �0) to Jor-dan normal form that the spaces N�(x0; �0) � C N are the generalized eigenspaces fora01(x0; �0) associated with the eigenvalues having real part ? 0, respectively (i.e., the rootsof the polynomial det(i�I + a01(x0; �0)) in � having imaginary part ? 0, respectively). Thecorresponding Calder�on projectors c�(x0; �0), projecting onto N�(x0; �0) along N�(x0; �0),respectively, can be found from the formulas:(A.12) c�(x0; �0) = 12� ZL�(i�I + a01(x0; �0))�1 d� ;



34 GERD GRUBBhere the integration curve L� lies in C � = f� 2 C j Im � ? 0g and encircles the � -roots ofdet(i�I + a01(x0; �0)) (the poles of (d0)�1) there, respectively. c� is the principal symbol ofC�. The associated Poisson operator k� from N�(x0; �0) to Z�(x0; �0) is the multiplicationby k�(x0; �0; xn) = �r�F�1�n!xn(i�nI + a01(x0; �0))�1, where F is the Fourier transform.When a01(x0; �0) is symmetric, equal to a0(x0; �0) as in (3.5)�., N�(x0; �0) is the positiveresp. negative eigenspace of a0(x0; �0) (here the roots of det(i�I + a01(x0; �0)) lie on theimaginary axis, in C + resp. C �), and the c�(x0; �0) are orthogonal projections.Let us now explain the use of the Calder�on projectors in the study of boundary valueproblems:(A.13) Pu = f on X; S%u = ' on X 0;where S is a system of  do's Sjk of order j�k (j; k = 0; : : : ; d�1) going from E01 to bundlesFj of dimension � 0 over X 0; M = P0�j<d dimFj . (Say, f 2 Hs�d(E2) and ' 2 Hs(F )are given, and u is sought in Hs(E1), for some s > d � 12 .) Assume for simplicity in thisexplanation that Q is the inverse of P on eX. We can replace u by z = u�Q+f (cf. (A.3))and ' by  = '� S%Q+f ; this reduces (A.13) to the problem(A.14) Pz = 0 on X; S%z =  on X 0:Here  2 Hs(F ) and z is sought in Zs+. If we set � = %z, i.e., z = K+� (cf. Theorem A.1),the problem (A.14) is equivalent with the problem of �nding � 2 Hs(E0d1 ) such that(A.15) S� =  ; � 2 Ns+:Since Ns+ is the nullspace for C� as well as the range space for C+ in Hs(E0d1 ), we nowhave the following two equivalent strategies to solve problem (A.15):(A.16) (a) Find � such that � SC� � � = � 0 � :(b) Find � such that SC+� =  , then set � = C+�:It follows that the problem has uniqueness of solution if and only if � SC� � is injective; andthe problem has existence of solution if and only if SC+ is surjective. This discussion isfollowed up in Theorem A.4 below, after we have recalled the de�nitions of the appropriateellipticity concepts.The problem (A.13) is called injectively resp. surjectively elliptic when the model prob-lem(A.17) p0(x0; 0; �0; Dxn)u = 0 on R+ ;s0(x0; �0)%u = v at xn = 0;for all x0, all j�0j = 1 has uniqueness, resp. existence of solution u 2 S(R+)N for allv 2 CM . This is equivalent with injectiveness resp. surjectiveness of the operator � p0s0%�



HEAT TRACE EXPANSIONS 35from S(R+)N to S(R+)N � CM . By the Calder�on projector construction on the principalsymbol level, the solutions in S(R+)N of the �rst line of (A.17) are mapped bijectively ontoN+(x0; �0) by %. Hence injective resp. surjective ellipticity is equivalent with injectivenessresp. surjectiveness of the mapping s0(x0; �0) from N+(x0; �0) to CM . Observe that injectiveellipticity holds if and only if(A.18) v 2 C Nd ; s0(x0; �0)v = 0; c�(x0; �0)v = 0 =) v = 0;i.e., the nullspaces of s0 and c� are linearly independent; this can also be stated as theproperty that � s0(x0;�0)c�(x0;�0)� is injective for all x0, all j�0j = 1. Surjective ellipticity of theboundary value problem holds if and only if s0(x0; �0)c+(x0; �0) is surjective for all x0, allj�j = 1. Thus, in other words:(A.19) � PS%� is injectively elliptic () � SC� � is injectively elliptic;� PS%� is surjectively elliptic () SC+ is surjectively elliptic:Note in particular that injective resp. surjective ellipticity implies thatM � dimN+(x0; �0),resp. M � dimN+(x0; �0).Problems that are both injectively and surjectively elliptic are simply called elliptic;then M = dimN+(x0; �0). When M = dimN+(x0; �0), ellipticity is equivalent with injec-tive ellipticity and with surjective ellipticity, for dimensional reasons. The property is ageneralization of the Shapiro-Lopatinski�i condition.For noncompact manifolds we need a spatial uniformity in the ellipticity hypotheses.Here P and S are assumed to be admissible, and when P is uniformly elliptic, the problemis called uniformly injectively resp. surjectively elliptic when there is a left resp. rightinverse of the model problem at the boundary that is uniformly bounded in x0; this isequivalent with uniform injective resp. surjective ellipticity of � SC� � resp. SC+.Since p0 satis�es p0(x;��) = (�1)dp0(x; �), the polynomial det p0(x0; 0; �0; �) in � hasequally many roots in C + and C � when n � 3 (then �0 can be connected to ��0 by a curvein f�0 2 Rn�1 j j�0j = 1g), so Nd must be even and(A.20) dimN+(x0; �0) = dimN�(x0; �0) = Nd=2then (the so-called properly elliptic case). Here ellipticity of (A.13) requires M = Nd=2.As shown in [G77, Th. 3.1, 3.2] for very general systems on compact manifolds, onecan give explicit formulas for a left/right parametrix of the system � PS%� when injec-tive/surjective ellipticity holds. We shall extend this to admissible manifolds where The-orem A.1 applies, and at the same time keep track of how much is needed to get exactformulas when Seeley's projector (A.i){(A.iii) is used in the compact case. ([G77] treatssystems P of mixed order; for such systems the formulas contain an extra block matrix B.When P is of a single order, B is void | zero-dimensional | and the results hold with Band its e�ects omitted.)First we show a preparatory lemma. All calculations in the following are justi�ed withinthe extension of the calculus of Boutet de Monvel given in [G96]. Recall that operatorsare said to be \of class 0" when they are well-de�ned on L2(X) (do not involve 0).



36 GERD GRUBBLemma A.3. LetX be compact or admissible and let P be a uniformly elliptic di�erentialoperator of order d. In the compact case, de�ne the Calder�on projectors C� as in (A.i)|(A.iii), (A.8); in the admissible case assume that P has an inverse Q on eX and de�neC� as in Theorem A.1. The following formulas are valid on, respectively, Hs(E2) withs > � 12 , Hs(E1) with s > 12 , or Hs(E0d1 ) with s 2 R:(A.21) (i) PQ+ = I + T1;+;(ii) Q+P = I �K+%+ T4; with T4 = T2;+ + T3%;(iii) K+C� = T5; with T5 = T4K+ = T2;+K+ + T3C+:Here the Tj come from (A.1), (A.7); they vanish when Q = P�1.Proof. Formula (i) follows from the �rst formula in (A.1) by truncation to X (applicationof (A.3)), since (PQ)+ = PQ+. Next, we note that Green's formula (2.1) can be writtenin distributional form:(A.22) e+r+P ~u = Pe+r+~u+ e%�(A%u) for ~u 2 Hd( eE1); u = r+~u:Formula (ii) follows from this by composition with r+Q and use of (A.1) and (A.7). For(iii), we use (ii) and the facts that %K+ = C+, PK+ = 0, in the calculation:K+C� = K+ �K+C+ = K+ �K+%K+= K+ � (I �Q+P � T2;+ � T30)K+ = T2;+K+ + T3C+: �Theorem A.4. Assumptions as in Lemma A.3. Let S = (Sjk)j;k=0;:::;d�1 be a system ofadmissible classical  do's Sjk of orders j � k from E01 to Fj .1� Assume that � PS%� (equivalently, SC+) is uniformly surjectively elliptic.When S1 is a given right parametrix of SC+, then(A.23) (RS KS ) = (Q+ �K+S1S%Q+ K+S1 )is a right parametrix of � PS%�, in the sense that(A.24) � PS%� (RS KS ) = � I 00 I �+ T ;where T is of order �1 and class 0. If, moreover, PQ+ = I and S1 is a right inverse ofSC+, then (RS KS ) is a right inverse of � PS%�.Conversely, when (RS KS ) is a given right parametrix or inverse of � PS%�, then(A.25) S1 = %KSis a right parametrix resp. inverse of SC+.2� Assume instead that � PS%� (equivalently � SC� �) is uniformly injectively elliptic.



HEAT TRACE EXPANSIONS 37When (S1 S2 ) is a given left parametrix of � SC� �, then the operator de�ned in (A.23)is a left parametrix of � PS%�, in the sense that(A.26) (RS KS )� PS%� = I + T 0;where T 0 = T 00+T 000% with T 00 and T 000 of order �1, T 00 of class 0. If, moreover, Q = P�1and (S1 S2 ) is a left inverse of � SC� �, then (RS KS ) is a left inverse of � PS%�.Conversely, when (RS KS ) is a given left parametrix or inverse of � PS%�, then(A.27) (S1 S2 ) = ( %KS I � %KSS )is a left parametrix resp. inverse of � SC� �.3� In the case where � PS%� is two-sided elliptic, each of the constructions in 1� or2�, departing from a right parametrix of SC+ resp. a left parametrix of � SC� �, gives atwo-sided parametrix of � PS%�.Proof. For the �rst assertion in 1�, write SC+S1 = I +R1 where R1 is a  do on X 0 oforder �1. Then by (A.21i) and the facts that PK+ = 0 and %K+ = C+,(A.28) P (Q+ �K+S1S%Q+)u = u+ T1;+u;S%(Q+ �K+S1S%Q+)u = S%Q+u� SC+S1S%Q+u = �R1S%Q+u;PK+S1' = 0;S%K+S1' = SC+S1' = '+R1';This shows (A.24). Since %Q+ is well-de�ned on L2(X;E2), it is a trace operator of class 0(cf. [BM71] or e.g. [G96, pp. 27�. and 279]); hence the composed trace operator R1S%Q+,which is of order �1, is of class 0.Now if, furthermore, T1;+ = 0 and R1 = 0, the smoothing terms in (A.28) are zero, so(RS KS ) is a right inverse.In the converse direction, when (A.24) holds, thenPKS = T12; S%KS = I + T22;with operators T12 and T22 of order �1. If T12 and T22 are 0, KS maps into Zs+ so thatC�%KS = 0 and consequentlySC+%KS = S%KS � SC�%KS = I;so %KS is a right inverse of SC+. More generally, by (A.21ii),SC+%KS = S%K+%KS = B%(I �Q+P � T4)KS= I + T22 � S%Q+T12 � S%T4KS = I +R2;



38 GERD GRUBBwith R2 a  do on X 0 of order �1; so %KS is a right parametrix of SC+. This proves 1�.For the �rst assertion in 2�, write S1S + S2C� = I +R3 with R3 of order �1. Nowlet us check the composition (A.26). Using (A.21ii{iii) and the fact that C�C+ = 0, we�nd: (Q+ �K+S1S%Q+ K+S1 )� PS%� = (I �K+S1S%)Q+P +K+S1S%= (I �K+S1S%)(I �K+%+ T4) +K+S1S%= I �K+(I � S1SC+)%+ (I �K+S1S%)T4= I �K+(I � (I � S2C� +R3)C+)%+ (I �K+S1S%)T4= I �K+C�%�K+R3C+%+ (I �K+S1S%)T4= I � T5%�K+R3C+%+ (I �K+S1S%)T4;which is of the asserted form. Here if moreover Q is the inverse of P and R3 = 0, allsmoothing terms vanish, so (RS KS ) is a left inverse.For the converse statement, de�ne (S1 S2 ) by (A.27) and check its left compositionwith � SC� �:(A.29) ( %KS I � %KSS )� SC� � = %KSS + C� � %KSSC� = %KSSC+ + I � C+:When w = K+C+' for some ' 2 C1(E0d1 ), then Pw = 0, %w = C+C+' = C+' andS%w = SC+', so in view of (A.26),w + T 0w = KSS%w = KSSC+':It follows that %KSSC+' = %w + %T 0w = C+'+ %T 0K+C+';for ' 2 C1(E0d1 ). Then the expression in (A.29) equals%KSSC+ + I � C+ = I + %T 0K+C+ = I +R4;where R4 is a  do on X 0 of order �1. So (S1 S2 ) is a left parametrix. It is a leftinverse if T 0 = 0. This ends the proof of 2�.The statement in 3� is a standard consequence. �When there is a left inverse, there is uniqueness of a solution u 2 Hs(E1) for theboundary value problem (A.13) with data f 2 Hs�d(E2), ' 2 Hs(F ), s > d � 12 . Whenthere is a left parametrix, there is \best regularity of solutions," in the sense that ifu 2 Ht(E1) for some t, then Pu 2 Hs�d(E2) and S%u 2 Hs(F ) imply u 2 Hs(E1) (sinceu = RSPu+KSS%u+ T 0u); s; t > d� 12 . Moreover, if X is compact, there is uniquenessmodulo a �nite dimensional smooth subspace.When there is a right inverse, there is existence of solution for the boundary valueproblem (A.13); when there is a right parametrix and X is compact, there is existence ofsolution for data in the complement of a �nite dimensional smooth space.In the admissible case, when K+ and C+ are merely de�ned modulo smoothing opera-tors, there is a version of Theorem A.4 with parametrices everywhere.



HEAT TRACE EXPANSIONS 39Example A.5. The systems � P% � and � PC+%� are injectively elliptic; they both have theleft parametrix (Q+ K+ ) (inverse when Q = P�1). In fact, by (A.21ii{iii),Q+P +K+% = I + T4; Q+P +K+C+% = I + T4 � T5%:This left parametrix/inverse is also found from (A.23), when we use that � IC� � and � C+C� �both have the left inverse (C+ C� ). The case S = C+ is studied in Section 3 in the cased = 1.Formula (A.21i) shows that Q+ is a right parametrix of P without boundary conditions;i.e., in the case F = 0. This is also con�rmed by the formulas in the theorem.When S = C+, we have according to a result of Seeley [S69] (recalled in (3.9) for thecase d = 1) that the adjoint of the realization PS is the realization of P � determined bythe boundary condition (I � C+�)A�%u = 0. For completeness, we now show that thisboundary condition is the Calder�on projector condition for P � (up to a smoothing term,unless Q = P�1).Theorem A.6. For P � (provided with the parametrix Q� on eX), denote by C 0+ theassociated Calder�on projector according to (A.i){(A.iii) or Theorem A.1. Then(A.30) C 0+ = (A�)�1(I � C+�)A� + T6;where T6 is a  do of order �1 that vanishes when Q = P�1.In particular,(A.31) (I � C+�)A�%u = 0 () (C 0+ � T6)%u = 0:Proof. Since P � has a Green's formula similar to (2.1) but with A replaced by �A�, theCalder�on projector and associated Poisson operator for P � satisfy formulas(A.32) K 0+ = r+Q�e%�A� + T 03 ; C 0+ = %+Q�e%�A� + %T 03 ;where T 03 is a  do of order �1, vanishing when Q = P�1.There is a Poisson operator K% lifting sections ' 2 Hd(E0d1 ) to sections u 2 Hd(E1)such that %K%u = ', cf. e.g. [G96, Lemma 1.6.4] or the text before Lemma 2.3 above. Wehave from (A.21ii), by application of %:(A.33) K+%u = u�Q+Pu+ T2;+u+ T3%u;C+' = '� %Q+Pu+ %T2;+u+ %T3'= '� %Q+PK%'+ %T2;+K%'+ %T3':For the term %Q+Pu we note that when  2 eH0(E0d1 ) (cf. (A.2)):(%Q+Pu;  )X0 = (e%Qe+Pu;  )X0 = (e+Pu;Q�e%� ) eX= (Pu; r+Q�e%� )X = (Pu; [K 0+ � T 03 ](A�)�1 )X= (Pu;K 0+(A�)�1 )X � (u; P �K 0+(A�)�1 )X � (Pu; T 03 (A�)�1 )X= (';A�C 0+(A�)�1 )X0 � ('; (PK%)�T 03 (A�)�1 )X0 :



40 GERD GRUBBIt is used here that Qe+Pu 2 Hd( eX) so that e% and %r+ give the same result, that P �K 0+ =0, and that the Poisson operator PK% has as its adjoint a trace operator (PK%)� of class0. Taking this together with (A.33), we �nd:(C+';  )X0 = (';  )� (';A�C 0+(A�)�1 )X0+ ('; (PK%)�T 03 (A�)�1 )X0 + ('; (%T2;+K%)� )X0 + ('; (%T3)� )X0 ;which shows that(A.34) C+� = I �A�C 0+(A�)�1 + T 06 ; withT 06 = (PK%)�T 03 (A�)�1 + (%T2;+K%)� + (%T3)�:Then (A.30) holds with T6 = (A�)�1T 06A�; T 06 and T6 are  do's on X 0 of order �1 by therules of calculus. �We end with some remarks for the case d = 1. Recall from the analysis of the boundaryvalue problem, in particular (A.15), that it is really the space Ns+ that matters in thediscussion of solvability, rather than a certain projection onto it. When d = 1, H 12 (E01) =L2(E01). Here it may be convenient to replace C+ by a projection in Hs(E01) = Hs� 12 (E01)that has the same range Ns+ and is orthogonal for s� 12 = 0 (on L2(E01)), in particular ifthe L2-structure has an important meaning in the context. This can indeed be obtained,by use of the following lemma shown for compact manifolds in [BW93, Lemma 12.8]:Lemma A.7. When R is a projection in a Hilbert space H, then RR�+ (I �R�)(I �R)is invertible and(A.35) Rort = RR�[RR� + (I � R�)(I � R)]�1is an orthogonal projection in H satisfying(A.36) R(H) = Rort(H):Here if H = L2(F ), where F is an admissible vector bundle over a manifold X 0, and R isan admissible classical  do of order 0 in F , then the same holds for Rort, and the principalsymbol is determined by a formula similar to (A.35) on the principal symbol level.Proof. The formulas (A.35) and (A.36) are veri�ed in detail in [BW93]. For the laststatement, the invertibility of [ ] implies, by the spectral invariance shown in [G95], thatit is uniformly elliptic and its inverse is likewise admissible, classical and uniformly ellipticof order 0. Then since the principal symbol of R is a projection, the formulas likewise holdon the principal symbol level. �Remark A.8. Since the range of R in Hs(F ) equals the nullspace of I �R there, it followsfrom the fact that I � R and I � Rort have the same nullspace in L2(F ) that they alsohave the same nullspace in Hs(F ), s � 0. Hence(A.37) R(Hs(F )) = Rort(Hs(F ));



HEAT TRACE EXPANSIONS 41for s � 0. This property extends to negative s by consideration of the adjoint R�, whichis likewise a projection and a classical  do of order 0. Indeed, the nullspace of I � R inH�s(F ) (s � 0) is the annihilator of the range of R0 = I � R� in Hs(F ). Here one �ndsfrom (A.35) that(A.38) R0ort = I � Rort:Since R0(Hs(F )) = R0ort(Hs(F )) for s � 0 as already shown, the annihilators, equal to thenullspaces of I � R and I �Rort in H�s(F ), are the same.Let us apply the lemma and remark to C+ in the case d = 1. This gives a pseudodi�er-ential projection C+ort of Hs� 12 (E01) onto Ns+ (all s 2 R) that is an orthogonal projection ofL2(E01) onto N 12+ . The complementing projection is C+?ort = I � C+ort; its range is a closedsubspace of Hs� 12 (E01) that equals L2(E01) 	 N 12+ when s = 12 . It will be di�erent fromNs� whenever C+ is not selfadjoint, which is the most usual case. (See Remark 3.8 for anexample where C+ and C+ort are even principally di�erent.)Together with C+ort we can consider the Poisson operator(A.39) K+ort = K+C+ort;it clearly maps Ns+ into Zs+ with the same range as K+, hence with range complement Z0;and(A.40) +0 K+ort = C+C+ort = C+ort:Note that C+ort is uniquely determined from N 12+ . Still, in the compact case where invert-ibility of P is not assumed, Z0 can be 6= 0 and then there are other Poisson operators eK+than K+ort that map Hs� 12 (E01) into Zs+ and satisfy %+ eK+ = C+ort.In much of the preceding analysis, C+, C� and K+ can be replaced by C+ort, I�C+ort =C+?ort and K+ort. For example, departing from (A.15), we can replace C+ and C� by C+ortand C+?ort in (A.16) and the subsequent discussion. However, the formulas generalizingthose in Theorem A.4 will be somewhat more complicated.We shall call C+ort the orthogonal Calder�on projector (recall that d = 1). One can arguethat it is more natural to consider C+ort than C+ | at least when the norm in L2(E01)is in some sense canonically given | on the other hand, C+ contains more informationfrom P ; it is not determined from N 12+ alone but from this together with the complementN 12� representing essentially the Cauchy data of exterior null-solutions. (We underline thatthe complete symbol of C+ is determined from the symbol of P and its derivatives at X 0,independently of a choice of extension outside X.) At any rate, C+ is de�ned regardless ofa choice of norm in L2(E01) and gives fairly simple formulas in the application to boundaryvalue problems.As noted in [S66], the construction of the Calder�on projectors C� generalizes the con-struction of projection operators onto the boundary value spaces for holomorphic functionsinside resp. outside the unit disk; here the Cauchy-Riemann operator plays the role of P .In fact, N 12+ then corresponds to the L2 Hardy space. Here C+ is orthogonal, but for more



42 GERD GRUBBgeneral domains in C = R2 it need not be so. Then C+ort corresponds to the Szeg�o projec-tion operator, whose kernel has been considered with great interest. In higher dimensions,Dirac operators and Cli�ord analysis provide a tool to generalize the 2-dimensional func-tion theoretic phenomena; see e.g., Calderbank [Ca96] for an account linking this with theideas around the Calder�on projector for Dirac operators.References[APS75] M. F. Atiyah, V. K. Patodi and I. M. Singer, Spectral asymmetry and Riemannian geometry, I,Math. Proc. Camb. Phil. Soc. 77 (1975), 43{69.[BM66] L. Boutet de Monvel, Comportement d'un op�erateur pseudo-di��erentiel sur une vari�ete �a bord,I-II, J. d'Analyse Fonct. 17 (1966), 241{304.[BM71] , Boundary problems for pseudo-di�erential operators, Acta Math. 126 (1971), 11{51.[BW93] B. Booss-Bavnbek and K. Wojciechowski, Elliptic boundary problems for Dirac operators, Birk-h�auser, Boston, 1993.[BL97] J. Br�uning and M. Lesch, On the eta-invariant of certain non-local boundary value problems, toappear.[Ca96] D. M. J. Calderbank, Cli�ord analysis for Dirac operators on manifolds with boundary (1996),40 pp., Preprint MPI 96-131 (Max Planck Institut Bonn), part of Warwick Thesis 1995.[C63] A. P. Calder�on, Boundary value problems for elliptic equations, Outlines Joint Symposium PDENovosibirsk, Acad. Sci. USSR Siberian Branch, Moscow, 1963, pp. 303{304.[GG97] P. B. Gilkey and G. Grubb, Logarithmic terms in asymptotic expansions of heat operator traces,Preprint MPI 96-142 (Max Planck Institut Bonn), to appear.[G77] G. Grubb, Boundary problems for systems of partial di�erential operators of mixed order, J.Functional Analysis 26 (1977), 131{165.[G86] , Functional calculus of pseudodi�erential boundary problems, Progress in Math., vol. 65,Birkh�auser, Boston, 1986.[G96] , ibid., second edition 1996.[G92] , Heat operator trace expansions and index for general Atiyah-Patodi-Singer problems,Comm. P. D. E. 17 (1992), 2031{2077.[G95] , Parameter-elliptic and parabolic pseudodi�erential boundary problems in global Lp So-bolev spaces, Math. Zeitschrift 218 (1995), 43{90.[G97] , Parametrized pseudodi�erential operators and geometric invariants, Microlocal Analysisand Spectral Theory (L. Rodino, ed.), Kluwer Academic Publishers, Dordrecht, 1997, pp. 115{164.[GK93] G. Grubb and N. J. Kokholm, A global calculus of parameter-dependent pseudodi�erential bound-ary problems in Lp Sobolev spaces, Acta Mathematica 171 (1993), 165{229.[GS95] G. Grubb and R. Seeley, Weakly parametric pseudodi�erential operators and Atiyah-Patodi-Singer boundary problems, Inventiones Math. 121 (1995), 481{529.[GS96] , Zeta and eta functions for Atiyah-Patodi-Singer operators, J. Geometric Analysis 6(1996), 31{77.[H66] L. H�ormander, Pseudo-di�erential operators and non-elliptic boundary problems, Ann. of Math.83 (1966), 129{209.[H85] , The Analysis of Linear Partial Di�erential Operators III, Springer Verlag, Berlin, 1985.[S66] R. T. Seeley, Singular integrals and boundary value problems, Amer. J. Math. 88 (1966), 781{809.[S69] , Topics in pseudo-di�erential operators, C.I.M.E., Conf. on Pseudo-Differential Opera-tors 1968, Edizioni Cremonese, Roma, 1969, pp. 169{305.[Sh87] M. A. Shubin, Pseudodi�erential Operators and Spectral Theory, Springer Series in Soviet Math-ematics, Heidelberg, 1987.Copenhagen University Mathematics Department, Universitetsparken 5, DK-2100 Copen-hagen, Denmark


