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2 GERD GRUBB1. Presentation of the problem and the function spaces.Consider the nonhomogeneous Navier-Stokes problem with Dirichlet boundarycondition @tu��u+ �Pnj=1 uj@ju+ grad q = f on QIb = 
� Ib;div u = 0 on QIb ;
0u = ' on SIb = �� Ib;r0u = u0 on 
; (1.1)for an interior or exterior domain 
 � Rn with smooth boundary �, Ib = ]0; b[ ,b > 0. The constant � equals 1; if instead we take � = 0, we have the Stokesproblem.Here u(x; t) is the velocity vector u = fu1; . . . ; ung, q(x; t) is the (scalar) pres-sure. Let ~n = (n1; . . . ; nn) be the (interior) normal at �, and denote by u� resp. u�the normal resp. tangential component of an n-vector �eld u de�ned near �:u� = ~n � u = pr� u; u� = u� (~n � u)~n = pr� u:As usual, 
ku = (@k�u)j� with @� =Pnj=1 nj@j , and we write 
0u� = 
�u.We denote by prJ and prJ0 the usual projection operators in Lp(
)n (orthogonalfor p = 2) onto the solenoidal spaces Jp and J0;p:Jp = Jp(
) = fu 2 Lp(
)n j divu = 0 g;J0;p = J0;p(
) = fu 2 Lp(
)n j divu = 0; 
�u = 0 g; (1.2)the projections satisfyprJ = I + gradRD div; prJ0 = (I � gradKN
�) prJ ; (1.3)cf. e.g. [4, Th. 2.5]; cf. also [3, Ex. 3.14]. Here (RD KD ) : ff; 'g 7! u and(RN KN ) : ff;  g 7! v are solution operators for the Dirichlet, resp. Neumannproblem for �� on 
:� ��u = f;
0u = '; resp. � ��v = f;
1v =  : (1.4)For interior domains, the Neumann solution operator is chosen such that it mapsdata ff;  g with R
 f dx � R�  dx0 = 0 into functions v with R
 v dx = 0. Forexterior domains, the Dirichlet solution operator is chosen as explained e.g. in [8,Th. 4] (in particular, gradKD maps into functions that are O(jxj�n) for jxj ! 1).When 
 = Rn , prJ0 = prJ = I + gradR div and is denoted prJ;Rn; there are noboundary terms.



NONHOMOGENEOUS DIRICHLET NAVIER-STOKES PROBLEM 3The data are assumed to satisfy(1� prJ0)f = 0; pr� ' = 0; (1� prJ0)u0 = 0: (1.5)When f or u0 is in a space of distributions in x 2 Rn , the condition just meansthat div f = 0 resp. divu0 = 0.For the nonlinear term in (1.1) we observe that Pnj=1 uj@jv = div(u
 v) whendivu = 0, and we writeK(u; v) =Pnj=1 uj@jv; equal to div(u
 v) when divu = 0;Q(u; v) = prJ0 K(u; v); K(u; u) = K(u); Q(u; u) = Q(u): (1.6)As shown in [4], the problem (1.1) may by application of div and 
� in the �rstline be replaced by the two problems@tu��u+ �Q(u) +G0u = f on QIb ;
0u = ' on SIb ;r0u = u0 on 
; (1.7)and ��q = �divK(u) on QIb ;
1q = Tu� �
�K(u) on SIb ; (1.8)when the ingredients are suÆciently smooth. Here, using the fact that
��u = �div0� 
1u� +A0�
0u� when divu = 0; 
�u = 0; (1.9)where div0� and A0� are �rst-order tangential di�erential operators (cf. [4, LemmaA.1]), we have setT = (�div0� 
1 +A0�
0) pr� ; G0 = gradKNT; (1.10)they are both of class 2.The \class" terminology comes from the theory of pseudodi�erential boundaryproblems of Boutet de Monvel [2]; an operator A is of class r � 0 when it is of theform A = B +P0�j�r�1Kj
j with B well-de�ned on Lp(
). Negative class wasincluded in [3]; for r = �m < 0 we say that A is of class �m if A@m� is of class 0.The projection operators prJ and prJ0 are of class 0 but not of any negativeclass; this is important for the discussion of sharpness of estimates.The procedure used in the mentioned papers was to solve (1.7) �rst and thenuse (1.8) to determine q asq = �(RN div�KN
�)K(u) +KNTu = � eGK(u) +KNTu: (1.12)



4 GERD GRUBBBy [4, Th. 2.6], eG = RN div�KN
� is of class 0 even though the two termsseparately are of class 1, and grad eG equals prJ0 �I, likewise of class 0.As in [7], we shall treat the problems in anisotropic Bessel-potential spacesHs; s=2p (QIb)n and Besov spaces Bs; s=2p (QIb)n, 1 < p < 1. (In the present paper,we drop the parentheses from (s; s=2) since there is no danger of confusion withother spaces.) We brie
y recall the main features, referring to [6] or [7] for furtherdetails and references to the literature.The Hs; s=2p spaces, s 2 R, are generalizations of the positive integer caseH2m;mp (QIb) = fu(x; t) 2 Lp(QIb) j D�xDjtu 2 Lp(QIb) for j�j+ 2j � 2m g;they are de�ned by restriction from the spacesHs; s=2p (Rn�R) = fu 2 S 0 j F�1(�;�)!(x;t)(j�j4+�2+1)s=4û(�; �) 2 Lp(Rn+1 ) g (1.13)with norm kF�1(�;�)!(x;t)(j�j4+�2+1)s=4ûkLp ; this is a scale preserved under complexinterpolation. The spaces Hs; s=2p (QIb) are Banach spaces provided with the normkukHs; s=2p (QIb ) = inff kUkHs; s=2p (Rn+1) j u = U on QIb g;where the U run through the extensions of u to Rn+1 (they are spaces of extendibledistributions).The Besov scale Bs; s=2p is de�ned slightly di�erently; it arises from the Hs; s=2pscale by suitable real interpolation. The B-spaces must be included even if oneis mainly interested in �nding solutions in H-spaces, because they are the cor-rect boundary value spaces; in fact, 
j maps Hs; s=2p (QIb) as well as Bs; s=2p (QIb)continuously onto Bs�j� 1p ;(s�j� 1p )=2p (SIb), for s > j + 1p .For the problems (1.1) and (1.7) with zero initial data, the appropriate settingis obtained by using spaces of supported distributions, namely distributions de�nedfor t 2 ]�1; b[ = I�1;b and supported for t � 0:Hs;s=2p (0) (QR+) = fu 2 Hs;s=2p (QR) j u = 0 for t < 0 g;Hs;s=2p (0) (QIb) = rQI�1;bHs;s=2p (0) (QR+); (1.14)rM indicates restriction to M . There are corresponding B-spaces, and the spacesare de�ned also with Q replaced by S.Functions belonging to Hs;s=2p (0) (QIb) are usually identi�ed with their restrictionto QIb (an extension by 0 for t < 0 is tacitly understood), and the space is regardedas a space \over QIb". The elements belonging to Hs;s=2p (0) (QIb) for negative s are



NONHOMOGENEOUS DIRICHLET NAVIER-STOKES PROBLEM 5in this way a generalization of the functions in Lp(QIb) that is di�erent from thegeneralization de�ned by Hs;s=2p (QIb) (except when s > 2p � 2). Smooth functionsvanishing near t = 0 are dense in Hs;s=2p (0) (QIb).The trace operator 
j maps Hs; s=2p (0) (QIb) and Bs; s=2p (0) (QIb) continuously ontoBs�j� 1p ;(s�j� 1p )=2p (0) (SIb), for s > j + 1p . We shall denoteBs+2p;b = Bs+2� 1p ;(s+2� 1p )=2p (SIb)n; Bs+2p;b (0) = Bs+2� 1p ;(s+2� 1p )=2p (0) (SIb)n: (1.15)The restriction to a �xed time, rt0u = ujt=t0 , is well-de�ned for s > 2p , in fact rt0then maps Hs; s=2p (
� R) and Bs; s=2p (
� R) continuously onto Bs� 2p (
).We shall also need the spaces of distributions de�ned for x 2 Rn and supportedfor x 2 
:Hs;s=2p;0 (
�R) = fu 2 Hs;s=dp (Rn�R) j u = 0 on {
�R g; and e.g.Hs;s=2p;0 (0)(QIb) = rQI�1;b fu 2 Hs;s=2p;0 (
�R) j u = 0 for t < 0 g; (1.16)and the corresponding B-spaces. Here smooth functions vanishing near SR, resp.vanishing near SR and near t = 0, are dense. (Also here, functions of x are identi�edwith their restriction to x 2 
 | the extension by 0 for x =2 
 being tacitlyunderstood.) There are dualities between spaces with opposite exponents, suchthat a space of extendible distributions is dual to a space of supported distributions(with respect to x and t separately), e.g.,H�s;�s=2p (0) (QR+) ' (Hs;s=2p0;0 (QR+))0; with 1p0 = 1� 1p : (1.17)For s close to zero, there are identi�cations between the spaces of supported dis-tributions and extendible distributions, e.g.,Hs;s=2p (0) (QIb) ' Hs;s=2p (QIb) for 2p � 2 < s < 2p ;Hs;s=2p;0 (QIb) ' Hs;s=2p (QIb) for 1p � 1 < s < 1p : (1.18)For some special considerations we shall need the slightly more general spacesde�ned in a similar way for two real numbers � and %, both lying in R+ or in R�,departing fromH�;%p (Rn�R) = fu 2 S 0 j F�1(�;�)!(x;t)(j�jj�j + j� jj%j + 1)�1û(�; �) 2 Lp(Rn+1 )g;with �1 chosen when �; % 2 R�. It is useful to know that(i) H�;%p (Rn�R) = Lp�R;H�p (Rn)� \H%p�R;Lp (Rn)� for �; % � 0;(ii) B�;%p (Rn�R) = Lp�R;B�p (Rn )� \B%p�R;Lp (Rn )� for �; % > 0: (1.19)We recall moreover that in all the scales,B�;%p � H�;%p � B��";%�"%=�p if p � 2;H�;%p � B�;%p � H��";%�"%=�p if p � 2; (1.20)with equality of B�;%p and H�;%p if and only if p = 2. (Here " is arbitrary > 0.)



6 GERD GRUBB2. Linear results.For the results in this section, � = 0 in (1.1). We shall show the followinggeneralization of [7, Th. 1.7], the new feature being that it allows s 2 ] 1p � 2; 1p � 1],whereas the earlier result required s > 1p � 1.Theorem 2.1. Let b 2 R+ .For any s > 1p � 2 and anyff; 'g 2 Hs; s=2p;0 (0)(QIb)n � Bs+2p;b (0) (2.1)satisfying (1.5), there is a solution fu; qg of the Stokes problem (1.1) with � = 0,u0 = 0, such thatu 2 Hs+2; s=2+1p (0) (QIb)n; grad q 2 Hs;s=2p (0) (QIb)n; q 2 Hs;s=2p (0) (QIb): (2.2)Here u and grad q are uniquely determined, and q is unique when, in case of aninterior domain, it is chosen in the closure in Hs; s=2p (0) (QIb) of the smooth functionssatisfying R
 q(x; t) dx = 0.The following estimate holds with Cb nondecreasing in b:�kukpHs+2; s=2+1p (0) (QIb )n + k grad qkpHs; s=2p (0) (QIb )n + kqkpHs; s=2p (0) (QIb )� 1p� Cb�kfkpHs; s=2p;0 (0)(QIb )n + k'kpBs+2p;b (0)� 1p : (2.3)In case f = 0, the solvability and estimates extend to all s 2 R.The analogous result holds with H replaced by B throughout.Proof.We �rst treat the case where f = 0. Here we have to �nd fv; qg solving aproblem (1.1) of the form @tv ��v + grad q = 0 on QIb ;div v = 0 on QIb ; 
0v =  on SIb ; r0v = 0 on 
; (2.4)with  given in Bs+2p;b (0). Consider the two associated problems as in (1.7) and (1.8):@tv ��v +G0v = 0; 
0v =  ; r0v = 0; (2.5)��q = 0; 
1q = Tv: (2.6)Here (2.5) is (in view of the parabolicity shown in [4] and extended to exteriordomains in [8]) covered by [6, Th. 3.4], applied as in Cor. 4.5 there, which shows thatit is uniquely solvable, by a Poisson solution operator Kb. In fact, this holds not



NONHOMOGENEOUS DIRICHLET NAVIER-STOKES PROBLEM 7only for \suÆciently large s", for Kb is continuous from Bs+2p;b (0) to Hs+2;s=2+1p (0) (QIb)for all s 2 R (cf. [6, (3.25)]), regardless of the class of G0, and solves (2.5) for alls 2 R. Once (2.5) is solved, we can solve (2.6) by use of the Neumann Poissonoperator recalled around (1.4), cf. also (1.10)�., obtaining altogether the solutionsv = Kb ; q = KNTv = KNTKb ; (2.7)that solve (2.5) and (2.6) for any s.Application of KN to Tv, and the resulting uniqueness of q modulo a sidecondition, requires a justi�cation that was given for more smooth v in [4, (5.19)�.,Ex. 2.3]; this extends to the present situation by an approximation of  by smoothfunctions, carried out below. We shall �rst investigate the spaces where KNTKbacts.With �� denoting the pseudodi�erential homeomorphism�� : Hrp(
) �! Hr�1p (
); all r 2 R; (2.8)de�ned in [3, (5.2)], we can writeq = KNTKb = �KN div0� 
1 pr� Kb +KNA0�
0 pr� Kb = ��1� (���KN div0� 
1 pr� Kb +��KNA0�
0 pr� Kb ); (2.9)where 
1 pr� Kb and 
0 pr� Kb are continuous from Bs+2p;b (0) to Bs+1p;b (0), and���KN div0� and ��KNA0� are Poisson operators independent of t of order 1,hence continuous from Bs+1p;b (0) to Hs;s=2p (0) (SIb)n by [7, Lemma 1.5 (iii)]. ThusKNTKb : Bs+2p;b (0) ! ��1� Hs;s=2p (0) (SIb)n � Hs;s=2p (0) (SIb)ncontinuously for all s 2 R. (In Theorem 2.2 below, we show further estimates of q,where in particular the regularity in t is improved.)Let  k 2 C1(SIb), supported in �� ]0; b] and converging to  in Bs+2p;b (0) fork !1; then fv; qg is the limit in Hs+2; s=2+1p (0) (QIb)n�Hs; s=2p (0) (QIb) of the solutionsfvk; qkg of the problems (2.5), (2.6) with  replaced by  k. By [4, Sect. 5.1],the fvk; qkg solve (2.4) with data f0;  k; 0g, and hence fv; qg solves it with dataf0;  ; 0g. It follows in particular that grad q 2 Hs;s=2p (0) (SIb)n.We get as in [6, Cor. 4.5] (using the method from [4, Th. 6.3]) that the solu-tion operators Kb, KNTKb and gradKNTKb have norm-estimates with constantsnondecreasing in b, showing the relevant version of (2.3).Next, let f 6= 0. Recall that it equals a distribution in Hs;s=2p (Rn � I�1;b)nvanishing for t < 0 and for x =2 
, and that the condition in (1.5) just means thatdiv f = 0. By application of [6, Cor. 4.5] to the heat problem@tU ��U = f on Rn � I�1;b; U = 0 for t < 0; (2.10)



8 GERD GRUBBwe �nd a unique solution U =WRn;bf 2 Hs+2;s=2+1p (Rn � I�1;b)n (cf. also [6, Th.3.4]). Moreover, divU is the unique solution of (2.10) with f replaced by div f , sodiv f = 0 implies divU = 0. Let w = rQI�1;bU ; it is in Hs+2; s=2+1p (0) (QIb)n, and
0w is de�ned as an element of Bs+2p;b (0) when s > 1p � 2. Then u and q solve theproblem (1.1) with � = 0, u0 = 0, if and only if v = u � w and q solve problem(2.4) with  = '� 
0w; here  2 Bs+2p;b (0). This has been solved above, so we now�nd the general solutionu = Kb('� 
0w) + w = (I �Kb
0)rQI�1;bWRn;bf +Kb';q = KNTKb('� 
0w) = KNTKb('� 
0rQI�1;bWRn;bf): (2.11)Since Kb
0 maps Hs+2; s=2+1p (0) (QIb)n into itself for s > 1p � 2, we �nd the continuityasserted in (2.3).This ends the proof for H-spaces, and the proof for B-spaces is similar. �For s > 1p � 1, s � 1p =2 Z, the result is contained in [7, Th. 1.7] and [8],since Hs; s=2p;0 (0)(QIb)n � Hs; s=2p (0) (QIb)n and Bs; s=2p;0 (0)(QIb)n � Bs; s=2p (0) (QIb)n as closedsubspaces then.The estimates of q can be improved as follows:Theorem 2.2. When f = 0, the pressure q determined in Theorem 2.1 has thefollowing additional properties:q 2 ��1� �Hs;s=2p (0) (QIb) \Bs;s=2p (0) (QIb)� for s 2 R; (2.12)q 2 Hs+1;(s>+1� 1p )=2p (0) (QIb) \Bs+1;(s+1� 1p )=2p (0) (QIb)for s > 1p � 1 or s < �1; (2.13)q 2 Hs+1;(s>+1� 1p )=2p (0) (QIb) \Bs<+1;(s?+1� 1p )=2p (0) (QIb)for s = �1; (2.14)q 2 Hs+1� 1p ;(s>+1� 1p )=2p (0) (QIb) \Bs+1� 1p ;(s+1� 1p )=2p (0) (QIb)for � 1 < s < 1p � 1; (2.15)q 2 Hs+1� 1p ;(s>+1� 1p )=2p (0) (QIb) \Bs<+1� 1p ;(s?+1� 1p )=2p (0) (QIb)for s = 1p � 1; (2.16)where s> stands for s� " if p > 2 and s otherwise, s< stands for s� " if p < 2 ands otherwise, s? stands for s� " if p ? 2 and s if p = 2, " arbitrary > 0.When f 6= 0, these properties hold for s > 1p � 2. They are valid whether thedata space for f is taken as Hs; s=2p;0 (0)(QIb)n or Bs; s=2p;0 (0)(QIb)n.



NONHOMOGENEOUS DIRICHLET NAVIER-STOKES PROBLEM 9Proof. First let f = 0. Consider q described in (2.9). Since 
1 pr� Kb and 
0 pr� Kbare continuous from Bs+2p;b (0) to Bs+1p;b (0), we need to show that KN div0� and KNA0�map '1 2 Bs+1p;b (0) into the space listed in each line.(2.12) was shown in the proof of Theorem 2.1.For (2.13), let �rst s > 1p � 1, so that '1 2 B�;�=2p (0) (SIb)n with � = s+1� 1p > 0.By (1.19), B�;�=2p (0) (SR)n = Lp�R;B�p (�)�n \B�=2p �R;Lp (�)�n;and KN div0�, being a Poisson operator of order 0 independent of t, maps theformer space into Lp�R;B�+ 1pp (
)\H�+ 1pp (
)� and the latter into B�=2p �R;B 1pp (
)\H 1pp (
)�. Their intersection is contained in B�+ 1p ;�=2p (QR)\H�+ 1p ;�=2p (QR) if p � 2,and in B�+ 1p ;�=2p (QR) \ H�+ 1p ;(��")=2p (QR) if p > 2 (we have used (1.20)), so we�nd the �rst part of (2.13) by specialization to the spaces of functions supportedfor t � 0 and restricted to t < b. The proof for KNA0� is similar.The second part of (2.13) is obtained by using that the adjoint of KN div0� is atrace operator T 0 of order �1 and class 0. For �; % � 0, it mapsT 0 : H�;%p0;0(QR) = Lp0�R;H�p0 ;0(
)� \H%p0(R;Lp0 (
)�! Lp0�R;B�+1� 1p0p0 (�)�n \H%p0(R;B1� 1p0p0 (�)�n � B�+ 1p ;%(�")p0 (SR)n; (2.17)with " subtracted if p0 < 2, i.e., p > 2. Then by duality,KN div0� : B��� 1p ;�%(+")p (SR)n ! H��;�%p (QR) for � � 0; % � 0:For s � �1, we apply this with �� = s+ 1, �%(+") = (s+ 1� 1p )=2, �nding thatKN div0� : Bs+1� 1p ;(s+1� 1p )=2p (SR)n ! Hs+1;(s(�")+1� 1p )=2p (QR);as was to be shown. The same argument treats KNA0�. There is a similar calcula-tion with H replaced by B, s < �1, and no precautions concerning ". For s = �1,the conclusion for B-spaces follows from the result for H-spaces in view of (1.20).For the remaining values of s, namely �1 < s � 1p � 1, we argue a littledi�erently in order to avoid spaces with opposite sign for the smoothness in x andt. The calculation in (2.17) gives in particular for � � 0:T 0 : H�;(�(+"))=2p0;0 (QR)! B�+ 1p ;�=2p0 (SR)n � B�;�=2p0 (SR)n:When s � 1p � 1, we use this with � = �s� 1 + 1p to get by duality:KN div0� : Bs+1� 1p ;(s+1� 1p )=2p (SR)n ! Hs+1� 1p ;(s(�")+1� 1p )=2p (QR);



10 GERD GRUBBobtaining (2.15) and (2.16) for H-spaces. For s < 1p � 1, there is a similar prooffor B-spaces without precautions concerning ". When s = 1p � 1, we get the resultfor B-spaces from the H-case with a loss of " if p < 2.When f 6= 0, we need to assume s > 1p � 2 in order for 
0w to be de-�ned, cf. (2.11). Here w 2 Hs+2; s=2+1p (0) (QIb)n resp. Bs+2; s=2+1p (0) (QIb)n when f 2Hs; s=2p;0 (0)(QIb)n resp. Bs; s=2p;0 (0)(QIb)n, so in any case, 
0w 2 Bs+2p;b (0), entering in (2.11)like ', and the conclusions are as before. �The result for s > 1p � 1 was essentially given in [7, (1.50)], however the reser-vation concerning an " was overlooked there. For (2.12) one could remark thatwhen s � 0, ��1� Hs;s=2 � Hs+1;s=2, but here the results from (2.13) are stronger.Note that in all cases, the regularity in t is lifted by at least (1 � 1p � ")=2. (Theregularity in x in (2.15) may possibly be improved by working with spaces withdi�erent sign for the x- and t-regularity.)Theorem 1.7 in [7] and its generalization to exterior domains in [8] allow nonzeroinitial values when s > 1p � 1, describing the necessary compatibility conditions at��f0g in full. We shall now also allow nonzero initial values for lower values of s:Corollary 2.3. Let 2p�2 < s < 2p�1, and let ff; '; u0g be given inHs; s=2p;0 (QIb)n�Bs+2p;b (0) � Bs+2� 2pp;0 (
)n, satisfying (1.5). Then the problem (1.1) with � = 0 andthe given data has a solution fu; qg in Hs+2; s=2+1p (QIb)n � Hs; s=2p (QIb), wherefu; grad qg is uniquely determined, and q is so under a side condition as in Theorem2.1, with estimates�kukpHs+2; s=2+1p (QIb )n + k grad qkpHs; s=2p (QIb ) + kqkpHs; s=2p (QIb )� 1p� Cb�kfkpHs; s=2p;0 (QIb )n + k'kpBs+2p;b (0) + ku0kpBs+2� 1pp;0 (
)n� 1p ; (2.18)Cb being nondecreasing in b. There are similar results with H replaced by Bthroughout.The statements on q in Theorem 2.2 hold in this case with the index (0) removed.Proof. We recall that f and u0 identify with a distribution in Hs;s=2p (Rn � Ib)nresp. a function in Bs+2� 2pp (Rn ), supported for x 2 
. By application of [6, Cor.4.5] to the heat problem@tU ��U = f on Rn � Ib; U jt=0 = u0; (2.19)we �nd a unique solution U 2 Hs+2;s=2+1p (Rn�Ib)n. Since divU is the unique solu-tion of (2.19) with f and u0 replaced by div f and divu0, divU = 0. Let w = rQIbU ;it is in Hs+2; s=2+1p (QIb)n with r0w = u0, and 
0w 2 Bs+2� 1p ;(s+2� 1p )=2p (SIb)n. Here
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0u0 = r0
0w when s � 1p � 1, by [6, Sect. 4.1] (when s = 1p � 1, it holds in thesense of coincidence explained there). So since u0 2 Bs+2� 2pp;0 (
)n, we have in factthat 
0w 2 Bs+2p;b (0). Then u and q solve the problem (1.1) with � = 0, if and onlyif v = u�w and q solve the problem with f replaced by 0, u0 replaced by 0 and 'replaced by '� 
0w 2 Bs+2p;b (0). This is solved in Theorem 2.1, from which we drawthe desired conclusions. �The initial value space Bs+2� 2pp;0 (
)n equals Bs+2� 2pp (
)n when s 2 ] 2p �2; 3p �2] ,and comes arbitrarily close to Lp(
)n when s & 2p � 2. When ' = 0 in (1.1),there are other methods that allow larger initial spaces (including Lp(
)n), e.g.u0 2 Hrp(
)n for r > 1p � 1 in [5, Cor. 1.5, Rem. 1.6]. But the main e�orts in thepresent paper are directed towards the case ' 6= 0. See also Remark 3.10 below.Let us also include a version of Theorem 2.1 and its corollary that allows forcedistributions that are restrictions to QIb of solenoidal distributions on Rn+1 . Forthis purpose, de�neHs;s=2p;div (QIb) = f f 2 D0(QIb) j f = rQIbF for someF 2 Hs;s=2p (Rn+1 ) with divF = 0 g;Hs;s=2p;div (0)(QIb) = f f 2 D0(QI�1;b) j f = rQI�1;bF for someF 2 Hs;s=2p (0) (Rn � I�1;b) with divF = 0 g; (2.20)and analogous B-spaces; the �rst space is provided with the in�mum norm (in�mumof the norms of the divergence free extensions F ), the second is a closed subspaceof Hs;s=2p;div (QI�1;b).Then we can show:Corollary 2.4.1Æ Theorems 2.1 and 2.2 hold with the data space Hs;s=2p;0 (0)(QIb)n for f replacedby Hs;s=2p;div (0)(QIb)n.2Æ Corollary 2.3 holds with the data space Hs;s=2p;0 (QIb)n for f replaced byHs;s=2p;div (QIb)n.(There are similar result for B-spaces.)Proof. 1Æ is shown by reduction to the result of Theorem 2.1 for f = 0. Now,instead of having a distribution f de�ned for x 2 Rn , we use an extension F tox 2 Rn with, say, at most twice as large norm, and proceed as in (2.10)�. Similarly,for 2Æ we replace f used in Corollary 2.3 by F . �3. Nonlinear results.For the results in this section, � = 1 in (1.1). One has the following estimatesof the nonlinear term:



12 GERD GRUBBTheorem 3.1. Let 1 < p <1. The constants in this theorem are independent ofb. Assume that divu = div v = 0.1Æ Let b � 1. For �, � and ! 2 R such that � � 0, ! � 0 and 2� + � + ! >maxf0; (n + 2)( 2p � 1)g,kf � gkH�;�=2p (QIb ) � C1kfkH�+�;(�+�)=2p (QIb )kgkH�+!;(�+!)=2p (QIb );kK(u; v)kH��1;(��1)=2p (QIb )n � C 01kukH�+�;(�+�)=2p (QIb )nkvkH�+!;(�+!)=2p (QIb )n ; (3.1)when �+ �+! � n+2p ; except that �+ �+! > n+2p is assumed if � = 0 or ! = 0.2Æ Let s 2 R be such that(i) s+ 3 � n+2p ;(ii) s+ 2 > maxf0; (n+ 2)( 1p � 12 )g: (3.2)Let � 2 [0; 1] satisfying � � s+ 3� n+2p , with � < 1 if s+ 2 = n+2p . ThenkK(u; v)kHs+�;(s+�)=2p (QIb )n � C2kukHs+2;s=2+1p (QIb )nkvkHs+2;s=2+1p (QIb )n : (3.3)3Æ Moreover, if s+ 3 > n+2p , one has for any " > 0, when 0 � � < s+ 3� n+2p ,kK(u; v)kHs+�; (s+�)=2p (QIb )n� �"kukHs+2;s=2+1p (QIb )n + C 0"kukLp(QIb )n�kvkHs+2;s=2+1p (QIb )n ; (3.4)and, if s+ 2 > 2p ,kK(u; v)kHs+�; (s+�)=2p (QIb )n� �"kukHs+2;s=2+1p (QIb )n + C" Z b0 kukHs+2;s=2+1p (QIt )n dt�kvkHs+2;s=2+1p (QIb )n : (3.5)4Æ The estimates in 2Æ and 3Æ are likewise valid with K replaced by Q = prJ0 K,when s + 2 > 2(n+2)p(n+3) ; we use the same notation for the constants. Similar resultshold with Hp replaced by Bp throughout.Proof. The �rst estimate in 1Æ was shown in Yamazaki [10, Th. 6.1] ([7] includesreferences to earlier results), and the second estimate follows when we use thesecond formulation in (1.6). 2Æ is a specialization to � + � = �+ ! = s+ 2, with� chosen as large as possible under the given side conditions. 3Æ is a variant of [7,Th. 2.1 4Æ]: We �rst note that as a consequence of (2.1),kK(u; v)kHs+�;(s+�)=2p (QIb )n � CkukHs+2�Æ;(s+2�Æ)=2p (QIb )nkvkHs+2;s=2+1p (QIb )n ;



NONHOMOGENEOUS DIRICHLET NAVIER-STOKES PROBLEM 13when 0 < � < s + 3 � n+2p � Æ, Æ > 0. Then the elementary inequality, valid for0 < Æ < s+ 2,kukHs+2�Æ;(s+2�Æ)=2p (Rn�R) � "kukHs+2;s=2+1p (Rn�R)+ C1(")kukH0;0p (Rn�R);and similar versions over subsets and restrictions, lead to (3.4).For (3.5) we observe thatkukLp(QIb )n = � Z b0 krtukpLp(
)n dt� 1p� supt2Ib krtuk(p�1)=pLp(
)n � Z b0 krtukLp(
)n dt� 1p� Æ supt2Ib krtukLp(
)n + C2(Æ)Z b0 krtukLp(
)n dt;for any Æ > 0. Since s+ 2 > 2p , we have Bs+2�2=pp (
) � Lp(
), andkrtfkLp(
) � C 00krtfkBs+2�2=pp (
) � C0kfkHs+2;s=2+1p (
�R)for any t 2 R, with constants independent of t; this holds also withHs+2;s=2+1p replaced by Bs+2;s=2+1p . We apply this fact to u in the preceding for-mula, and insert it with Æ = "=(C0C 0") in (3.4); then we get (3.5) (with 2" insteadof "). The Hp spaces can be exchanged by Bp spaces in the resulting expressions.Finally, let us show the statements on Q = prJ0 K in 4Æ. Here, if s+ � > 1p � 1,they follow simply by application of the projection prJ0 as a continuous operatoron Hs+�;(s+�)=2p (QIb)n. The best possible � is minf1; s + 3 � n+2p g(�"), where "should be subtracted when s+ 2 = n+2p . With this �, s+ � > 1p � 1 as long as2s+ 3� n+2p > 1p � 1; i.e., s+ 2 > n+32p : (3.6)When these inequalities do not hold, prJ0 is not directly de�ned onHs+�;(s+�)=2p (QIb)n since it is not of negative class, but then we can use an in-vestigation of Johnsen [9] to pass into other spaces where the projection makessense. Note that s+ � � 1p � 1 can only happen when s � 1p � 1, and that1p � 1 � s � n+2p � 3 =) p � n+12 : (3.7)By [9, Th. 6.1 and 7.2], applied with M = (1; . . . ; 1; 2), jM j = n + 2, s0 =s1 = s + 2, p0 = p1 = p, q0 = q1 = 2, the mapping K : (u; v) 7! div(u 
 v)



14 GERD GRUBBis, when (3.2 ii) holds, continuous from Hs+2;s=2+1p (QIb)n � Hs+2;s=2+1p (QIb)n toHs+1;(s+1)=2r (QIb)n, wheren+2r = 2n+2p � (s+ 2); if s+ 2 < n+2p : (3.8)When we consider an s with s + 2 � n+32p (in contrast to (3.6)) and satisfying(3.2), the hypotheses for (3.8) are satis�ed. Here r is a positive index lower than p.For our application of prJ0 to Hs+1;(s+1)=2r (QIb)n, we need that r > 1 (for r � 1,the pseudodi�erential boundary operators in anistropic spaces have not been fullyinvestigated). In fact, r > 1 in our case, for when s and p are such that (3.2) andthe conclusion in (3.7) hold, thenn+2r = 2n+2p � (s+ 2) � 2n+2p � n+2p + 1 = n+2p + 1 � 2(n+2)n+1 + 1 = 3n+5n+1 ;and hence r � (n+1)(n+2)3n+5 ; which is > 1 for n � 2:We can then apply prJ0 to Hs+1;(s+1)=2r (QIb)n when s + 1 > 1r � 1, i.e., whens+ 2 > 1r . Here we have thats+ 2 > 1r () (n+ 2)(s+ 2) > 2n+2p � (s+ 2) () s+ 2 > 2(n+2)p(n+3) : (3.9)In the aÆrmative case,Q = prJ0 K and K are continuous:Hs+2;s=2+1p (QIb)n �Hs+2;s=2+1p (QIb)n ! Hs+1;(s+1)=2r (QIb)n: (3.10)Finally, by an anisotropic Sobolev imbedding theorem from [10],Hs+1;(s+1)=2r (QIb)n ,! Hs+�;(s+�)=2p (QIb)n;where s+ � � n+2p = s+ 1� n+2r ; i.e., � = s+ 3� n+2p : (3.11)The operators of course also map into the spaces Hs+�;(s+�)=2p QIb)n for � <minf1; s+ 3� n+2p g. The statements in 3Æ now generalize straightforwardly to Q.This shows that the results for K carry over toQ if in addition s+2 > 2(n+2)p(n+3) . �When b <1, (3.5) implies that (3.3) holds with C2 replaced byC";b = "+ C"b; (3.12)here C";b can be made as small as we want by taking �rst " and then b = b(") smallenough.We shall also need the elementary observation that is often used in these matters(cf. e.g. [7, Lemma 3.1]):



NONHOMOGENEOUS DIRICHLET NAVIER-STOKES PROBLEM 15Lemma 3.2. Let � > 0, 0 � � < 1, 
 > 0 and 4�
 � (1� �)2. Then the smallestroot �� of the polynomial ��2+(��1)�+
, �� = 2
(1� � +p(1� �)2 � 4�
)�1,is positive, and �1 � ��20 + ��0 + 
; �0 � �� =) �1 � ��: (3.13)Solvability properties were thoroughly investigated in [7] and [8] for the Navier-Stokes problem in Hs+2;s=2+1p -spaces with s > 1p � 1. The really new contributionsthat are now made possible by the linear results in Section 1 are for low values ofs, namely s 2 ] 1p � 2; 1p � 1], so let us restrict the attention to this interval. Whennonzero initial data enter, we moreover assume s > 2p � 2.Here are some further remarks on the nonlinear estimates: First note that in(3.2), condition (ii) follows from (i) when s > �2, as we assume. Secondly, in orderto allow spaces of `supported distributions', we shall elaborate the considerationsin the proof of Theorem 3.1 4Æ as follows, when 2(n+2)p(n+3) < s+ 2 � 1p + 1, using thesecond identi�cation in (1.18):Let � be as in 2Æ or 3Æ, with � < 1 if s = 1p � 1. Then if s+ � > 1p � 1, we have(since s+ � < s+ 1 � 1p )K(u; v) and Q(u; v) 2 Hs+�; (s+�)=2p (QIb)= Hs+�; (s+�)=2p;0 (QIb) � Hs; s=2p;0 (QIb): (3.14)For lower values of s + � we can get a similar result by invoking the mappingproperties (3.10). In fact, when 2(n+2)p(n+3) < s+ 2 � n+32p (cf. (3.6) and (3.9)), and �is chosen best possible according to (3.11), we have with r as in (3.8),K(u; v) and Q(u; v) 2 Hs+1; (s+1)=2r (QIb)= Hs+1; (s+1)=2r;0 (QIb) � Hs+�; (s+�)=2p;0 (QIb) � Hs; s=2p;0 (QIb): (3.15)For the �rst equality it is used not only that s+1 > 1r � 1 (cf. (3.9)) but also thats+ 1 < 1r . This holds since s+ 2 � n+32p :1r � (s+ 1) = 2p � s+2n+2 � s� 1 = 2p + 1� (s+2)(n+3)n+2� p+2p � (n+3)22p(n+2) � (n+5)(n+2)�(n+3)22p(n+2) = n+12p(n+2) > 0;in the last line we used that 2p � n+ 1, cf. (3.7).This shows:Corollary 3.3. When 2(n+2)p(n+3) < s+2 � 1p+1, and � is chosen according to Theorem3.1 2Æ or 3Æ, with � < 1 if s = 1p�1, then the estimates (3.3){(3.5) likewise hold for



16 GERD GRUBBK and Q with Hs+�; (s+�)=2p -norms replaced by Hs+�; (s+�)=2p;0 -norms (and likewisefor B-spaces).Consider data� = ff; '; u0g 2 Hs; s=2p;0 (QIb)n � Bs+2p;b (0) �Bs+2� 2pp;0 (
)n; (3.16)satisfying (1.5) and provided with the data norm Ns;p;b:Ns;p;b(�) = (kfkpHs; s=2p;0 (Q Ib )n + k kpBs+2p;b (0) + ku0kpBs+2�2=pp;0 (
)n� 1p : (3.17)Theorem 3.4. Let s 2 ] 2p � 2; 1p � 1] with s � n+2p � 3. Let b 2 R+ .1Æ There is at most one solution fu; qg withfu; grad qg 2 Hs+2; (s+1)=2p (QIb)n �Hs; s=2p (QIb)n (3.18)of the Navier-Stokes problem (1:1) for each set of data � satisfying (1.5) (where q inthe case of interior domains is subject to the side condition mentioned in Theorem2.1).2Æ There is a constant Ns;p;b such that for data � with data norm Ns;p;b(�) <Ns;p;b there exists a solution fu; qg 2 Hs+2; s=2+1p (QIb)n�Hs;s=2p (QIb) of (1:1) with(3.18), the norm depending continuously on �. When s � s0 for some s0 > n+22p �2,the norm condition for existence can be replaced by the condition Ns0;p;b(�) <Ns0;p;b.3Æ Assume that s > n+2p � 3. One can for each N > 0 choose a b0 � b such thatthere exists a solution fu; qg 2 Hs+2; s=2+1p (QIb0 )n�Hs;s=2p (QIb0 ) of (1:1) (satisfyingalso (3.18) with b replaced by b0, and with norm depending continuously on �) forany set of data � with norm Ns;p;b0(�) < N . For s � s0, s0 as above, the solutioncan be obtained with b0 de�ned relative to s0.The statements hold with Hp replaced by Bp throughout.Proof. We denotekfkHr;r=2p (QIb )n = jjjf jjjr;b; kfkHr;r=2p;0 (QIb )n = jjjf jjjr;b;0;(kfkpHr+2;r=2+1p (QIb )n + kgkpHr;r=2p (QIb )) 1p = jjjf; gjjj0r+2;b: (3.19)Note that since 2p > 2(n+2)p(n+3) , the condition s + 2 > 2(n+2)p(n+3) is satis�ed for the swe consider. According to Theorem 3.1 and Corollary 3.3, we have for � < 1 with� � s+ 3� n+2p ,jjjK(u; v)jjjs;b;0 � C3jjjK(u; v)jjjs+�;b;0 � C3C2jjjujjjs+2;bjjjvjjjs+2;b;jjjQ(u; v)jjjs;b;0 � C3jjjQ(u; v)jjjs+�;b;0 � C3C2jjjujjjs+2;bjjjvjjjs+2;b: (3.20)



NONHOMOGENEOUS DIRICHLET NAVIER-STOKES PROBLEM 17First some generalities on the strategy for solving (1.1). We cannot directlyuse the reduction to (1.7) and (1.8), since u is sought in Hs+2;s=2+1p (QIb)n withs+ 2 � 1p +1, where G0 is not in general de�ned. But thanks to (3.14), (3.15), wecan use a splitting of K(u),K(u) = prJ0 K(u) + (I � prJ0)K(u) = Q(u) + (I � prJ0)K(u); (3.21)and write fu; qg = fv; q1g+ fw; q2g; (3.22)where fv; q1g is the solution according to Corollary 2.3 of the linear problem withthe same data: @tv ��v + grad q1 = f in QIb ;div v = 0 in QIb ;
0v = ' on SIb ;r0v = u0 on 
: (3.23)and fw; q2g is to be constructed so that@tw ��w = �Q(v + w) in QIb ;divw = 0 in QIb ;
0w = 0 on SIb ;r0w = 0 on 
; (3.24)and grad q2 = �(I � prJ0)K(v + w): (3.25)Then fu; qg solves the original problem if and only if fw; q2g solves (3.24){(3.25).Here we �rst discuss (3.24); next if w solves (3.24), then q2 is determined from(3.25) (and the side condition when it applies), since (3.25) implies��q2 = �div grad q2 = div(1� prJ0)K(v + w) = divK(v + w);
1q2 = 
� grad q2 = 
�(�(I � prJ0)K(v + w)) = �
�K(v + w); (3.26)so that q2 = eGK(v + w) (3.27)according to (1.12).Let us �rst show the uniqueness. Let fu; qg and fu0; q0g be two solutions of (1.1)on Ib. De�ne fv; q1g from the data as above, then fu; qg = fv + w; q1 + q2g andfu0; q0g = fv+w0; q1+ q02g with fw; q2g and fw0; q02g solving the respective versionsof (3.24){(3.25), and we have to show that fw00; q002 g = fw � w0; q2 � q02g is zero.Since�Q(v + w) +Q(v + w0) = Q(w0 � w; v + w) +Q(v + w0; w0 � w); (3.28)



18 GERD GRUBBw00 satis�es @tw00 ��w00 = �Q(w00; v + w)�Q(v + w0; w00);divw00 = 0; 
0u00 = 0; r0u00 = 0: (3.29)Denote by Hb : g 7! w the operator solving the heat problem@tw ��w = g in QIb ;
0w = 0 on SIb ; r0w = 0 on 
; (3.30)by [6, Cor. 4.5] it satis�esjjjwjjjt+2;b = jjjHbgjjjt+2;b � C 0bjjjgjjjt;b (3.31)for t 2 ] 2p � 2; 2p [ , since the values on SIb and 
�f0g satisfy the relevant compati-bility condition. C 0b can be obtained to be nondecreasing in b, and if div g = 0 thendivw = 0 in view of the uniqueness of solutions. By (3.20) we have:jjjw00jjjs+2;b0 � C 0b(jjjQ(w00; v + w) +Q(v + w0; w00)jjjs;b0;0� C 0bC2C3(2jjjvjjjs+2;b0 + jjjwjjjs+2;b0 + jjjw0jjjs+2;b0)jjjw00jjjs+2;b0 for all b0 � b:(3.32)This implies that w00 = 0 on QIb0 whenC 0bC2C3(2jjjvjjjs+2;b0 + jjjwjjjs+2;b0 + jjjw0jjjs+2;b0) < 1;which holds for suÆciently small b0 > 0 (depending on v, w and w0), so w = w0 on[0; b0]. By (3.27), also q2 = q02 on b0.Replacing 0 by arbitrary points in Ib, we see that if u = u0 on Ib0 = [0; b0] �[0; b[ , then u = u0 on [0; b00] for some b00 2 ]b0; b[ , so there is no largest b0 < b whereu = u0 on Ib0 . Thus u0 = u on Ib, and hence also q = q0 on Ib. This shows 1Æ.Now let us show the existence, for a given set of data � = ff; '; u0g. In viewof the above analysis, we de�ne fv; q1g as the solution of (3.23) and have to solve(3.24). By (2.18), jjjv; q1jjj0s+2;b � CbNs;p;b(�): (3.33)Since s + � 2 ] 2p � 2; 2p [ , we can de�ne the mapping Rb;v on Hs+2;s=2+1p (QIb)nby Rb;v : w 7! Hb(�Q(v +w)); (3.34)then (3.24) holds when w is a �xed point for Rb;v. The aim is to show that such a�xed point exists when either the data norm is small enough in relation to a givenb, or b is small enough in relation to a given data norm estimate.



NONHOMOGENEOUS DIRICHLET NAVIER-STOKES PROBLEM 19For Rb;v we have by (3.31) and (3.33), since (3.20) also holds for spaces without`;0',jjjRb;vwjjjs+2;b � C 0bjjjQ(v; v) +Q(v; w) +Q(w; v) +Q(w;w)jjjs;b� C 0bC2C3�jjjvjjj2s+2;b + 2jjjvjjjs+2;bjjjwjjjs+2;b + jjjwjjj2s+2;b�� C 0bC2C3(CbNs;p;b(�) + jjjwjjjs+2;b)2: (3.35)We shall �rst show 2Æ, where we take b0 = b and adapt the norms. Here weapply Lemma 3.2 with �0 = jjjwjjjs+2;b and �1 = jjjRb;vwjjjs+2;b, and� = C 0bC3C2; � = 2C 0bC3C2CbN ; 
 = C 0bC3C2C2bN 2; (3.36)N = Ns;p;b(�). This gives that if, for some � 2 ]0; 1[ ,2C 0bC3C2CbN � �; (2C 0bC3C2CbN )2 � (1� �)2; (3.37)then jjjwjjjs+2;b � �� =) jjjRb;vwjjjs+2;b � ��;where�� = 2
1� � +p(1� �)2 � 4�
 � 2
1� � � 2C 0bC3C2C2bN 21� � � �CbN1� � : (3.38)So Rb;v maps the closed ball Bb(0; ��) in Hs+2;s=2+1p (QIb)n with radius �� intoitself.When (3.37) holds and w and w0 2 Bb(0; ��), thenjjjRb;vw �Rb;vw0jjjs+2;b = jjjHb[�Q(v + w) +Q(v + w0)]jjjs+2;b� C 0bjjjQ(w0 � w; v + w) +Q(v + w0; w0 � w)jjjs;b� 2C 0bC2C3(CbN + ��)jjjw0 � wjjjs+2;b: (3.39)Since CbN +�� � CbN (1+�(1��)�1) = CbN (1��)�1 by (3.38), Rb;v is a propercontraction on Bb(0; ��) if in addition to (3.37)2C 0bC2C3CbN (1� �)�1 < 1; (3.40)note that this is just a sharpening of the second inequality in (3.37). Then Rb;vhas a unique �xed point w 2 Bb(0; ��) (determined as limm!1Rmb;vw0, for anarbitrary w0 2 Bb(0; ��)). This w solves (3.24), and we set u = v + w. As notedin (3.27), the accompanying q2 is determined by q2 = eGK(u), and q = q1 + q2.



20 GERD GRUBBThis proves the main statement in 2Æ. The modi�cation with s replaced by s0 isobvious.The preceding lines are a close generalization of the proof of [7, Th. 3.2 2Æ]. In asimilar way, the proof of [7, Th. 3.2 3Æ] is generalized straightforwardly to give 3Æ.Again the crucial step is to construct w; one uses that (3.35){(3.38) are likewisevalid with b replaced by any smaller b0 (and the constants Cb0 ; C 0b0 can be replacedby Cb; C 0b since they are nondecreasing), now the smallness in (3.37) is obtainedby making C2 small, using (3.12). Moreover, the estimates in Theorem 3.1 3Æ areused. �With zero initial data, we can extend the above proof to allow slightly lower sin the uniqueness statement and statement on existence for small data norms:Corollary 3.5. Let s 2 ] 2(n+2)p(n+3) � 2; 1p � 1] with s � n+2p � 3. Replace the dataspaces and norm in (3.16){(3.17) by	 = ff; 'g 2 Hs; s=2p;0 (0)(QIb)n �Bs+2p;b (0);Ns;p;b (0)(	) = (kfkpHs; s=2p;0 (0)(Q Ib )n + k kpBs+2p;b (0)� 1p : (3.41)1Æ There is at most one solution fu; qg withfu; grad qg 2 Hs+2; s=2+1p (0) (QIb)n �Hs; s=2p (0) (QIb)n (3.42)of the Navier-Stokes problem (1:1) for each set of data 	 satisfying (1.5) (with theusual side condition on q).2Æ There is a constant Ns;p;b such that for data 	 with data normNs;p;b (0)(	) <Ns;p;b there exists a solution fu; qg 2 Hs+2; s=2+1p (0) (QIb)n�Hs;s=2p (0) (QIb) of (1:1) with(3.42), the norm depending continuously on 	.Proof. Note that 2(n+2)p(n+3) 2 ] 1p ; 2p [ . We can allow s down to 2(n+2)p(n+3) � 2, since thereis no need to de�ne restrictions to t = 0. The proof goes as in Theorem 3.4 1Æand 2Æ, now based directly on Theorem 2.1, omitting explicit mention of the zeroinitial condition which is built into the spaces with index (0). �As noted earlier in (3.7), the new results for s � 1p � 1 are applicable whenp � n+12 . To see which lower bound on s that is strongest, we observe:maxf 1p � 2; n+2p � 3g = � n+2p � 3 for p 2 [n+12 ; n+ 1];1p � 2 for p � n+ 1;maxf 2p � 2; n+2p � 3g = � n+2p � 3 for p 2 [n+12 ; n];2p � 2 for p � n: (3.43)Note that we can get s arbitrarily close to �2 by taking p large enough.The estimates of q can be improved as follows:



NONHOMOGENEOUS DIRICHLET NAVIER-STOKES PROBLEM 21Theorem 3.6. When fu; qg solve the Navier-Stokes problem according to Theo-rem 3.4, then q = q1 + q2, where q1 has the properties listed in Theorem 2.2 with(0) removed, and q2 2 Hs+�;(s+�)=2p (QIb) (with b replaced by b0 in case 3Æ) for �satisfying: � 2 [0; 1]; � � s+ 3� n+2p ; � < 1 if s = n+2p � 2 or 1p � 1: (3.44)The result extends to the cases treated in Corollary 3.5 with Hp-spaces replacedby Hp (0)-spaces.Similar reults hold for B-spaces.Proof. We give details for the solutions of Theorem 3.4. The information on q1follows since it is the pressure obtained by solving a linear problem, by Corollary2.3.For q2, we use that it equals eGK(u) where eG is a singular Green operator of order0 and class 0. By [7, Lemma 1.5], eG is continuous in Ht;t=2q (QIb) when t > 1q � 1.Here, when s+� > 1p �1, we use (3.14) to apply eG in Hs+�;(s+�)=2p (QIb), and whens+� is lower, we use (3.15) to apply eG in Hs+1;(s+1)=2r (QIb), which is subsequentlyinjected continuously into Hs+�;(s+�)=2p (QIb). �It is also possible to treat the Navier-Stokes problem in a slightly di�erent waybuilding on Corollary 2.4.For s+2 � 0, let l : Hs+2;s=2+1p (QIb)n ! Hs+2;s=2+1p (Rn � Ib)n be a continuouslinear extension operator (depending on s and p), which maps into functions sup-ported in (
+B")� Ib, say, with B" = fjxj < "g. Then we can decompose by useof prJ;Rn, K(u; v) = rQIbK(lu; lv)= rQIb prJ;RnK(lu; lv) + rQIb ((I � prJ;Rn)K(lu; lv)= eQ(u; v) � rQIb gradR divK(lu; lv): (3.45)When u; v 2 Hs+2;s=2+1p (QIb)n with s � n+2p �3; s 2 ] 1p�2; 1p�1], then it followsfrom Theorem 3.1 2Æ that eQ(u; v) belongs to Hs+�;(s+�)=2p;div (QIb)n (recall (2.20)) andsatis�es:k eQ(u; v)kHs+�;(s+�)=2p (QIb )n � C 02kukHs+2;s=2+1p (QIb )nkvkHs+2;s=2+1p (QIb )n ; (3.46)for the � described in Theorem 3.1 2Æ. The estimates (3.4) and (3.5) likewisegeneralize to eQ(u; v). The advantage of this point of view is that we can use thepseudodi�erential operator prJ;Rn freely without class restrictions; on the otherhand l is subject to a choice.



22 GERD GRUBBAssume moreover that s > 2p � 2, and consider (1.1) with data as in Corollary2.4 2Æ, now decomposing the nonlinear term by (3.45). We proceed as in (3.22){(3.25), now taking for fv; q1g the solution of (3.23) according to Corollary 2.4 2Æand replacing Q by eQ, so that (3.25) is replaced bygrad q2 = rQIb gradR divK(lu): (3.47)It is now found just as in the proof of Theorem 3.4 that there is uniqueness of u ina solution, and that u may be constructed either for small data norms in relationto b, or for data norms estimated by a freely chosen constant but with b replacedby a suÆciently small b0. For q2 we can then simply takeq2 = rQIbR divK(lu); (3.48)but we only claim uniqueness for grad q2 (which follows from uniquenes of u sincegrad q = grad q1 + grad q2 is determined from u by (1.1)).This shows:Theorem 3.7. Let s 2 ] 2p � 2; 1p � 1] with s � n+2p � 3 (cf. also (3.43)). Replacein (3.16){(3.17) the data space Hs;s=2p;0 (QIb)n for f by the data space Hs;s=2p;div (QIb)nde�ned in (2.20).1Æ There is at most one solution fu; grad qg withfu; grad qg 2 Hs+2; s=2+1p (QIb)n �Hs; s=2p (QIb)n (3.49)of the Navier-Stokes problem (1:1) for each set of data � satisfying (1.5).2Æ There is a constant Ns;p;b such that for data � with data norm Ns;p;b(�) <Ns;p;b there exists a solution fu; qg 2 Hs+2; s=2+1p (QIb)n�Hs;s=2p (QIb) of (1:1) with(3.49), the norm depending continuously on �.3Æ Assume that s > n+2p � 3. One can for each N > 0 choose a b0 � b such thatthere exists a solution fu; qg 2 Hs+2; s=2+1p (QIb0 )n�Hs;s=2p (QIb0 ) of (1:1) (satisfyingalso (3.49) with b replaced by b0, and with norm depending continuously on �) forany set of data � with norm Ns;p;b0(�) < N .The statements hold with Hp replaced by Bp throughout.With zero initial data, we can allow lower s in the uniqueness statement andthe statement on existence for small data norms:Corollary 3.8. Let s 2 ] 1p � 2; 1p � 1] with s � n+2p � 3 (cf. also (3.43)). Replacethe data spaces and norm in (3.10){(3.11) by	 = ff; 'g 2 Hs; s=2p;div (0)(QIb)n � Bs+2p;b (0);Ns;p;b(	) = (kfkpHs; s=2p;div (0)(Q Ib )n + k kpBs+2p;b (0)� 1p : (3.50)



NONHOMOGENEOUS DIRICHLET NAVIER-STOKES PROBLEM 231Æ There is at most one solution fu; grad qg withfu; grad qg 2 Hs+2; s=2+1p (0) (QIb)n �Hs; s=2p (0) (QIb)n (3.51)of the Navier-Stokes problem (1:1) for each set of data 	 satisfying (1.5).2Æ There is a constant Ns;p;b such that for data 	 with data norm Ns;p;b(	) <Ns;p;b there exists a solution fu; qg 2 Hs+2; s=2+1p (0) (QIb)n�Hs;s=2p (0) (QIb) of (1:1) with(3.51), the norm depending continuously on 	.Proof. The proof goes as in Theorem 3.6 1Æ and 2Æ, now based on Corollary 2.4 1Æ.(We can allow s > 1p � 2 since there is no need to de�ne restrictions to t = 0.) �There are also generalizations of Theorem 3.6 to the cases in Theorem 3.7 andCorollary 3.8.In all the cases, it is seen as in [7, Th. 3.7] when s > n+2p � 3, that if f and 'are C1 for t > 0, then so are u and q.Remark 3.9. When f = 0 in (3.50), the result of Corollary 3.8 can be furtherimproved for p > n+ 1. Now f and u0 are zero in (3.23), so that problem can besolved for all s 2 R by Theorem 2.1. Let us see which s � 1p � 2 will be allowed:For (3.24) (with Q replaced by eQ), the conditions s > �2 and s � n+2p � 3 areneeded; then the right hand side is in Hs+�;(s+�)=2p with � = s� n+2p + 3. For theapplication ofHb, cf. (3.30), it suÆces that s+� > 1p�2, i.e., s > n+32p � 12�2. Thiscondition is weaker than the condition s > 1p � 2 and replaces it, when p > n+ 1.In particular, when p � n+ 3, only the hypothesis s > �2 is needed.Remark 3.10. Much of the literature on the Navier-Stokes problem (1.1) dealswith the case ' = 0 (homogeneous boundary condition), see e.g. the survey of H.Amann in [1], where he develops new general results for this case by use of semi-group techniques and interpolation/extrapolation of solenoidal distribution spaces.In a personal communication, Amann has sketched how his results may be ex-tended to allow nonhomogeneous boundary conditions too, by a weak formulationwhere the boundary data are incorporated in the force distribution f . However,the present results are not readily compared with those of Amann. One funda-mental di�erence is that the nonlinear term in [1] is taken of the form Q(u) (orsome extension by continuity in his family of spaces) where the projection prJ0 hasalready taken place and the pressure is already eliminated; there is no attempt toretrieve the unknown pressure q as we do. The class problems that we deal withdo not occur then. Another di�erence is that in the results of [1], the regularitiesin x and t are separated so that one can have more smoothness in t (and less inx) than in our results, where the regularities are linked by the anisotropic spacede�nitions, giving fractional di�erentiability in t. It may possibly be of interest totry to combine the strong points of each method.
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