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ABSTRACT. The time-dependent Navier-Stokes problem on an interior or exterior

smooth domain, with nonhomogeneous Dirichlet boundary condition, is treated in

anisotropic Lp Sobolev spaces (1 < p < oo) of Bessel-potential type H;+2’s/2+]

or Besov type B;+2’S/2+1
parabolic pseudodifferential boundary value problem. Earlier studies required s >

% — 1; the present work extends the solvability to spaces with s > % — 2 for zero

by use of a reformulation of the linearized problem to a

initial data (s > =2 if f =0), s > % — 2 for nonzero initial data, with s, p subject to
other conditions stemming from the nonlinearity.

Introduction.

The Navier-Stokes problem with nonhomogeneous Dirichlet or Neumann bound-
ary conditions has been studied in anisotropic Lo Sobolev spaces in Grubb-Solonni-
kov [4] and in L, Sobolev spaces (Bessel-potential spaces H§+2’5/2+1, Besov spaces
B;;+2’S/2+1, 1 < p < 00) in [7], extended to exterior domains in [8]. In these papers,
solutions were found for s > zl) — 1 (with s +3 > "T‘TQ), since the strategy was to
transform the linearized (Stokes) problem considered in solenoidal (divergence free)
spaces to a parabolic pseudodifferential problem in full Sobolev spaces; the para-
bolic system thus obtained is necessarily of class 2 and lacks a certain continuity
for s < % — 1. However, in the Dirichlet case, the original Stokes problem has only
class 1, so one could expect results for s €3 — 2,2 — 1] also.

In the present paper we show how one can use the general parabolic pseudodif-
ferential results in a more efficient way, extending the solvability of the Dirichlet
Stokes problem to s > % — 2 for nonzero boundary values and forces, zero initial
values (all s € R when f = 0). Nonzero initial values are included when s > % — 2.

For the Dirichlet Navier-Stokes problem, we then obtain extensions of the results
in [7], [8] down to s > 5 —2 too (s > —2if f =0, s > 2 — 2 for nonzero initial
values), with s,p subject to other conditions stemming from the nonlinearity.
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Key words and phrases. Navier-Stokes, time-dependent, nonhomogeneous boundary condi-
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1. Presentation of the problem and the function spaces.
Consider the nonhomogeneous Navier-Stokes problem with Dirichlet boundary
condition

atu—Au—l—/iZ?:lujaju—}—gradq:f on Qr, = Q x I,

divu=0 on ,
@, (1.1)
You=¢ on Sy =1 x I,

rou = ug on £

for an interior or exterior domain  C R™ with smooth boundary T', I, =]0,b],
b > 0. The constant k equals 1; if instead we take k = 0, we have the Stokes
problem.

Here u(z,t) is the velocity vector u = {uy,...,u,}, q(z,t) is the (scalar) pres-
sure. Let 71 = (ny,...,n,) be the (interior) normal at I, and denote by u, resp. u.,
the normal resp. tangential component of an n-vector field u defined near I':

Uy, =71 -u = pr,u, ur =u— (1 -u)7 = pr, u.
As usual, ypu = (0%u)|r with 9, = Z_’;Zl n;0;, and we write you, = vy, u.

We denote by pr; and pr;, the usual projection operators in L, (€22)" (orthogonal
for p = 2) onto the solenoidal spaces J, and Jy -

Jp =Jp(Q) ={ue L,()" | divu=0},

1.2
Jop =Jop(Q) ={ueL,(Q)" |divu=0, y,u=0} (12)

the projections satisfy
pry = I +grad Rp div, pr; = (I —grad Kyv,)pry, (1.3)

cf. e.g. [4, Th. 2.5]; cf. also [3, Ex. 3.14]. Here (Rp Kp):{f.¢} — u and
(Ry Kn): {f,9¥} — v are solution operators for the Dirichlet, resp. Neumann
problem for —A on :

{—Au—f, {—Av—f,

resp. (1.4)
You = @; Yo = .

For interior domains, the Neumann solution operator is chosen such that it maps
data {f,4} with [, fdz — [L¢ds’ = 0 into functions v with [,vdx = 0. For
exterior domains, the Dirichlet solution operator is chosen as explained e.g. in [8,
Th. 4] (in particular, grad Kp maps into functions that are O(|z| ™) for |z| — o0).
When @ = R", pr; = pr; = I + grad Rdiv and is denoted pr;.; there are no
boundary terms.
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The data are assumed to satisfy

(1-pry)f=0, pr,o=0, (1—pry)u=0. (1.5)

When f or ug is in a space of distributions in x € R™, the condition just means
that div f = 0 resp. divug = 0.

For the nonlinear term in (1.1) we observe that 2?21 uj0;v = div(u ® v) when
divu = 0, and we write '

K(u,v) = 377_, uj0;v, equal to div(u ® v) when divu =0,

(1.6)
Q(u,v) = pry, K(u,v), K(u,u) =K(u), Qu,u)= Qu).

As shown in [4], the problem (1.1) may by application of div and +, in the first
line be replaced by the two problems

Ou — Au+KkQ(u) + Gou=f  on Qy,,
You=¢ onSy, (1.7)

rou = ug on §);

and
~Aq = kdivC(u) on Qr,, L
719 = Tu — kv, K(u) on Sy, (18)
when the ingredients are sufficiently smooth. Here, using the fact that
Y Au = — divp y1ur + Aryou, when divu = 0,y,u = 0, (1.9)

where divp and A} are first-order tangential differential operators (cf. [4, Lemma
A.1]), we have set

T = (—divk v + Aryo) pr,, Go = grad Ky T, (1.10)

they are both of class 2.

The “class” terminology comes from the theory of pseudodifferential boundary
problems of Boutet de Monvel [2]; an operator A is of class r > 0 when it is of the
form A =B+ 3 ;< 1 K;v; with B well-defined on L, (£2). Negative class was
included in [3]; for r = —m < 0 we say that A is of class —m if A" is of class 0.

The projection operators pr; and pr; are of class 0 but not of any negative
class; this is important for the discussion of sharpness of estimates.

The procedure used in the mentioned papers was to solve (1.7) first and then
use (1.8) to determine ¢ as

q = k(Ry div —Kn7,)K(u) + KyTu = GK(u) + KyTu. (1.12)
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By [4, Th. 2.6], G = Ry div —Kn7y, is of class 0 even though the two terms
separately are of class 1, and grad G equals pr; —1I, likewise of class 0.

As in [7], we shall treat the problems in anisotropic Bessel-potential spaces

H;’S/Q(th)" and Besov spaces B;’S/Q(@Ih)", 1 < p < co. (In the present paper,
we drop the parentheses from (s, s/2) since there is no danger of confusion with
other spaces.) We briefly recall the main features, referring to [6] or [7] for further
details and references to the literature.

The H,’ 5/2 spaces, s € R, are generalizations of the positive integer case

H™™(@Q,,) = {u(z,t) € Ly(Qr,) | DEDiu € Ly(Q,) for |a| +2j < 2m };
they are defined by restriction from the spaces

H PESR) = {0 € 8| Fh ), o (241 4ale, 1) € L@} (113)

1

withnorm [|F¢ "y (|€|*+72+1)*/*4|r,,; this is a scale preserved under complex

interpolation. The spaces H,’ s/2(61,7) are Banach spaces provided with the norm
HUHH;’W@I,,) = inf{ ||U||H;,S/Q(Rn+1) 'u=U on Qy, },

where the U run through the extensions of u to R**! (they are spaces of eztendible
distributions).

The Besov scale B;’s/2 is defined slightly differently; it arises from the H;’s/2
scale by suitable real interpolation. The B-spaces must be included even if one
is mainly interested in finding solutions in H-spaces, because they are the cor-
rect boundary value spaces; in fact, v; maps H;’s/2(61b) as well as B;’S/2(@Ib)
continuously onto B;fjf%’(sfjf%)ﬂ(g]b), for s > j+ 3.

For the problems (1.1) and (1.7) with zero initial data, the appropriate setting
is obtained by using spaces of supported distributions, namely distributions defined
for t €] — 00,b]= I_~ and supported for ¢ > 0:

Hy o (@e,) = {u € HY (@) u =0 for t <0},

s,8/2 $,8/2 /7~ (114)
Hp(o) (le) = TQI,(X,,,,Hp(o) (Qne@r);

rys indicates restriction to M. There are corresponding B-spaces, and the spaces
are defined also with @) replaced by S.

Eunctions belonging to H;’(SO/)Q (th) are usually identified with their restriction
to )7, (an extension by 0 for £ < 0 is tacitly understood), and the space is regarded

as a space “over th”. The elements belonging to HZ’(‘B/)Q (th) for negative s are
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in this way a generalization of the functions in L,(Qy,) that is different from the
generalization defined by H;’s/2(61h) (except when s > 2 — 2). Smooth functions

vanishing near £ = 0 are dense in HS’S/Q(@Ib).
The trace operator -y, maps H® (ng(le) and B;(S;2(Q1b) continuously onto

Ll (e_i_ly/9 — .
B;(UJ) pilend ,,)/2(51}7)’ for s > j + 5. We shall denote

s 5+2*%’(5+2*%)/2 <. \n s 5+2— pv(5+2*%)/2 <. \n
BP}? = By (th) ) BP};Q( 0) — B »(0) (S[b) . (115)

The restriction to a fixed time, ry u = u|t—y,, is well-defined for s > —, in fact ry,

then maps H;’S/Q(ﬁ x R) and B;’S/Q(ﬁ x R) continuously onto B*~ 7 (€2).
We shall also need the spaces of distributions defined for z € R” and supported
for z € Q:

515/2(§XR) ={ue H;’s/d(R" xR) |u=0onCOxR}, and e.g.
HYS (@) =rq, _ {u€ Hyy*(@QxR) [u=0fort <0},

and the correspondlng B-spaces. Here smooth functions vanishing near Sg, resp.
vanishing near Sg and near t = 0, are dense. (Also here, functions of x are identified
with their restriction to £ € € — the extension by 0 for z ¢ € being tacitly
understood.) There are dualities between spaces with opposite exponents, such
that a space of extendible distributions is dual to a space of supported distributions
(with respect to = and ¢ separately), e.g.,
H, 5y "% (@x,) ~ (Hy" @), with =1 5. (1.17)
For s close to zero, there are identifications between the spaces of supported dis-
tributions and extendible distributions, e.g.,
;(50/)2(Q1b) gH;yS/Q(QIh) for %*2<S< %, (1 18)
H S/Q(QIb) ~ HS’S/Q(@Ih) for I —1<s<z.

For some special considerations we shall need ‘rhe slightly more general spaces
defined in a similar way for two real numbers o and g, both lying in R or in R_,
departing from

H(T,Q(]R" XR) — {u c S’ ‘ ]: _)(T f)(|§“ al + |7-“Q\ + ) (5’7.) c Lp(Rn_H)},

(1.16)

with £+1 chosen when o, € Ri. It is useful to know that
(i) HJ°(R"xR) = L,(R; HJ (R")) N HZ (R; Ly, (R™)) for 0,0 > 0;

s 7,0 (TN o /om n (1.19)
(i) By °(R" xR) = Ly (R; By (R")) N B2(R; Ly, (R™)) for o, 0 > 0.
We recall moreover that in all the scales,
B2 c Ho¢ « Bo—e0—eelo if p < 2;
P P P b= (1.20)

Hg® C BT C HY7=07=e/7 if p > 2;
with equality of B¢ and H-¢ if and only if p = 2. (Here ¢ is arbitrary > 0.)



6 GERD GRUBB

2. Linear results.

For the results in this section, x = 0 in (1.1). We shall show the following
generalization of [7, Th. 1.7], the new feature being that it allows s E]% -2, % —1],
whereas the earlier result required s > 1% — 1.

Theorem 2.1. Let b€ R, .
For any s > Zl) — 2 and any

{9} € HI51 (@) x B3G2 (2.1)

satisfying (1.5), there is a solution {u,q} of the Stokes problem (1.1) with xk = 0,
ug = 0, such that

we HItH P @), gradg e P (@)", a€ HW@,).  (2.2)

Here u and grad q are uniquely determined, and q is unique when, in case of an

interior domain, it is chosen in the closure in H’ (Z§Q(Q1b) of the smooth functions

satisfying [, q(z,t) dz = 0.
The following estimate holds with C nondecreasing in b:

|-

s + | grad ql|” . . ‘s
(H ” T02) /2+1(Q1h)n | grad q|| p(o)/Q(Q n Hq” p(O)/2(QIb))
< Cb f b s,s8/2 /A~ + s+2 % 23
(H | po(/o)(Q’b) H(pHB”ﬁ’ 0 ) (23)

In case f = 0, the solvability and estimates extend to all s € R.
The analogous result holds with H replaced by B throughout.

Proof.
We first treat the case where f = 0. Here we have to find {v,q} solving a
problem (1.1) of the form

Ov — Av +gradqg =0 on Qy,,

2.4
divv =0o0n Qr,, ~Yv=1%onS, 7rov=0o0n¢ ), (24)

with ¢ given in B b([)) Consider the two associated problems as in (1.7) and (1.8):

0w — Av + Gov =0, vov = 9, Tov = 0 (2.5)
—Aq=0, y1q="Tv. (2.6)

Here (2.5) is (in view of the parabolicity shown in [4] and extended to exterior
domains in [8]) covered by [6, Th. 3.4], applied as in Cor. 4.5 there, which shows that
it is uniquely solvable, by a Poisson solution operator K;. In fact, this holds not
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only for “sufficiently large s”, for K is continuous from B; (0) to H;EL;) #/2+1 (Q1,)
for all s € R (cf. [6, (3.25)]), regardless of the class of Gy, and solves (2.5) for all
s € R. Once (2.5) is solved, we can solve (2.6) by use of the Neumann Poisson

operator recalled around (1.4), cf. also (1.10)ff., obtaining altogether the solutions
v = Kb’l/), q = KNT’U = KNTKbQ'b, (27)

that solve (2.5) and (2.6) for any s.

Application of Ky to Tw, and the resulting uniqueness of ¢ modulo a side
condition, requires a justification that was given for more smooth v in [4, (5.19)ff.,
Ex. 2.3]; this extends to the present situation by an approximation of ¢ by smooth
functions, carried out below. We shall first investigate the spaces where KyTK,
acts.

With A_ denoting the pseudodifferential homeomorphism

. T(O) r—1/0
A HI() S HINQ), allr € R, (2.8)
defined in [3, (5.2)], we can write

q=KnNTKyp = — Ky divpv1 pr, Ky + Ky Apyo pr, Kyt

2.9
=AY (~A_Kydivh vy pr, Kptp + A_Kn Apyo pr, Kyip), (2.9)
where v, pr, K; and 7ypr, K, are continuous from B;*,;Q(O) to B;*,;l(ﬂ), and

—A_Kydivp and A_KyAf are Poisson operators independent of t of order 1,
hence continuous from B;jz;l(o) to HZ’(‘B/)Q (S1,)" by [7, Lemma 1.5 (iii)]. Thus

AT 1yrs 5/2(Slb) ss/Q(SIb)

s+2
KnTKyp: By, p (0) Hy0)

continuously for all s € R. (In Theorem 2.2 below, we show further estimates of g,
where in particular the regularity in ¢ is improved.)
Let 1, € C*(Sy,), supported in I'x ]0,b] and converging to 1 in B** b(O)

k — oo; then {v, ¢} is the limit in H;'("OQ)’ 5/2+1(Q1b) X H; (Z§Q(QI ) of the solutions
{vk,qr} of the problems (2.5), (2.6) with ¢ replaced by 5. By [4, Sect. 5.1],

the {vg, qr} solve (2.4) with data {0,,0}, and hence {v, g} solves it with data

{0,,0}. Tt follows in particular that gradq € H® (50/)2(5,Ih) .

We get as in [6, Cor. 4.5] (using the method from [4, Th. 6.3]) that the solu-
tion operators Ky, KyTK, and grad K xyTK; have norm-estimates with constants
nondecreasing in b, showing the relevant version of (2.3).

Next, let f # 0. Recall that it equals a distribution in H;’s/2(]R" X T oo p)™
vanishing for ¢ < 0 and for x ¢ €2, and that the condition in (1.5) just means that
div f = 0. By application of [6, Cor. 4.5] to the heat problem

U —AU=fonR* xI_o,, U=0fort<0, (2.10)
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we find a unique solution U = Wgn ,f € Hy q/2+1(]R" X I_oop)™ (cf. also [6, Th.
3.4]). Moreover, divU is the unique solution of (2.10) with f replaced by div f, so
div f = 0 implies divl = 0. Let w = rq, _ U; it is in H {> 2HH@Q,)", and

vow is defined as an element of BS'ZQ(O) when s > 5 — 2. Then u and g solve the
problem (1.1) with k = 0, ug = 0, if and only if v = u — w and ¢ solve problem
(2.4) with p = ¢ — yow; here ¢ € 35'22(0) This has been solved above, so we now

find the general solution

u=Ky(p—yw)+w=(I— KbVO)TQl,OO,bWR",bf + Ky,

2.11
q = KnTKy(p — yow) = KnTKy (o —yorq, _ , Wrnsf). (2.11)
Since Kjpyg maps HP2240 0 )7 into itself for s > 1 — 2, we find the continuity
g p (0) I 7

asserted in (2.3).
This ends the proof for H-spaces, and the proof for B-spaces is similar. [
For s > 2 —1, s — 3+ ¢ Z, the result is contained in [7, Th. 1.7] and [8],
s,s/2 n s,s/2, 7~ ) s,s/2 n 9 s/2 n
since H* "/ (@Q;,)" C Hp(og (Qg,)" and B / (le) / (Q;,)" as closed

p;0(0) p (0)
subspa(‘eq then.

The estimates of ¢ can be improved as follows:

Theorem 2.2. When f = 0, the pressure q determined in Theorem 2.1 has the
following additional properties:

g€ AZH(HH(@) N B (@) for s € R, (2.12)

s+1,(s>+1—%)/2 s+1,(s+1—%)/2
ge LTI @ ) np TR, )

for s > ——1 ors < —1, (2.13)

s+1,(s>+1—5)/2 9+1(9—|—1—2—
g€ By TIR@) 0y e @)

for s = 71, (2.14)

s+17§ s +17p 2 s+1 (s+17— /2 —~
f0r71<9<5—1, (2.15)

s<+l—%,(s>+1—-3)/2

TR G )
—1

s+l—%,(s>+1—%)/2
q € Hp(()) (5> )/ (QI,,) nB

for s = (2.16)

1
p )
where s~ stands for s — e if p > 2 and s otherwise, s stands for s — ¢ if p < 2 and
s otherwise, s3 stands fors —eifp22ands 1fp = 2, ¢ arbitrary > 0.

When f # 0 these properties hold for s > ; — 2. They are valid whether the

data space for f is taken as H’’ 05(/[]2)(le)n or BS 5/2 (QI,,) .
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Proof. First let f = 0. Consider g described in (2.9). Since 1 pr, K; and 7o pr, K
are Continuous from B;+b2(0) to B;+bl(0), we need to show that Ky divp and Ky Al

map ¢; € Bt - into the space listed in each line.

b(U)
(2.12) was shown in the proof of Theorem 2.1.

For (2.13), let first s > + — 1, so that ¢; € BU(T]§2(SI,7) witho =s+1—3 > 0.
By (1.19),
(T(T 2 o n o n
By (80" = Ly B (D) 0 B2 (B Ly (1)

and Ky divp, being a Poiwon operator of order 0 independent of %, maps the
former space into L, (IR; B”+ P (Q)ﬂHﬁLp (Q)) and the latter into B”/2 (R; By , Q)N
H7 (2)). Their 1ntersect10n 1s contained in B, o+ ’”/2(QR) ﬂHﬁLp ’”/2(QR) ifp <2,

and in BU+” U/Q(QR) N H 7o 6)/2(QR) if p > 2 (we have used (1.20)), so we
find the first part of (2.13) by specialization to the spaces of functions supported
for t > 0 and restricted to ¢ < b. The proof for Ky A is similar.

The second part of (2.13) is obtained by using that the adjoint of Ky divy is a
trace operator T" of order —1 and class 0. For o, 0 > 0, it maps

T': H7%(Qr) = Ly (R; HY ,(2)) N HE (R; Ly (2))
o l—L, n 1—]—/ n o+t —€
= Ly (BB ()" A H (B B, ()" € BETHIT(Sp)n, - (2.07)
with e subtracted if p’ < 2, i.e., p > 2. Then by duality,
Lol olae o
Ky divi: B, 7 7 2 (Sp)" — H, o 2(Qp) for o > 0,0 > 0.

For s < —1, we apply this with —oc =s+1, —p(+¢) = (s + 1 — %)/2, finding that

KN lell—\ B;+1 5o(s+1— —)/Q(SR)TL _ H;+1,(s(76)+175)/2(@R)’

as was to be shown. The same argument treats Ky Ap. There is a similar calcula-
tion with H replaced by B, s < —1, and no precautions concerning ¢. For s = —1,
the conclusion for B-spaces follows from the result for H-spaces in view of (1.20).

For the remaining values of s, namely —1 < s < % — 1, we argue a little
differently in order to avoid spaces with opposite sign for the smoothness in z and
t. The calculation in (2.17) gives in particular for o > 0:

o.(o(+e o+5,0/2 n o,0 n
T BT ED2(Qn) - BT (Se)h € BT (Sp)"
When s < zl) — 1, we use this with o = —s — 1+ zl) to get by duality:

. s+1—7,(s+1—5)/2 s+l—3,(s(—e)+1—3)/2 =
Ky divp: B p+ SRR (Sr)" Hp+ P (Qr),
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obtaining (2.15) and (2.16) for H-spaces. For s < 1 — 1, there is a similar proof

for B-spaces without precautions concerning e. When s = % — 1, we get the result
for B-spaces from the H-case with a loss of € if p < 2.

When f # 0, we need to assume s > 1—1) — 2 in order for yyw to be de-

fined, cf. (2.11). Here w € HSEQ)’S/QH(@I,])” resp. Bh(f) g/2+1(le)‘ when f €

H? 5/2 (th)n resp. BS 5/2 (QI,,) so in any case, yow € B*T b(O)’ entering in (2.11)
hke <p, and the conclusmns are as before. [J

The result for s > 1 — 1 was essentially given in [7, (1.50)], however the reser-
vation concerning an ¢ was overlooked there. For (2.12) one could remark that
when s > 0, A_"H**/2 ¢ H**15/2 but here the results from (2.13) are stronger.
Note that in all cases, the regularity in ¢ is lifted by at least (1 — 3 —€)/2. (The
regularity in z in (2.15) may possibly be improved by working with spaces with
different sign for the z- and t-regularity.)

Theorem 1.7 in [7] and its generalization to exterior domains in [8] allow nonzero
initial values when s > % — 1, describing the necessary compatibility conditions at
I' x {0} in full. We shall now also allow nonzero initial values for lower values of s:

Corollary 2.3. Let %—2 <s< %—1, and let {f, p,uo} be given in H, "/2(Q1b)

2
B;'Z%O) X B;,-g2 P(Q)", satisfying (1.5). Then the problem (1.1) with k = 0 and

the given data has a solution {u,q} in Hy™> 9/2+1(le)” X H;’s/2(61b), where
{u, grad q} is uniquely determined, and q is so under a side condition as in Theorem
2.1, with estimates

T=

(||“‘HZ;+2,S/2+1(§I )n + H gra‘quII)_I;,s/Z + Hqu S s/2

@, @, ))

1
+ i + lugll? 7. (2.18
Hsaugpffm ful? .y )% (219

p;0

< C, LA
(1412, e

Cp being nondecreasing in b. There are similar results with H replaced by B
throughout.
The statements on g in Theorem 2.2 hold in this case with the index (0) removed.

Proof. We recall that f and wug identify with a distribution in H;’S/Q(R" x Ip)™

_2 _
resp. a function in B;+2 P (R™), supported for 2z € Q. By application of [6, Cor.
4.5] to the heat problem

8tU — AU = f on R"™ x Iba U|t=0 = Ug, (219)

we find a unique solution U € Hyt»*/>*1(R" x I,)". Since div U is the unique solu-
tion of (2.19) with f and ug replaced by div f and div ug, divU = 0. Let w = Q. Us

_1y/9 —
it isin Hyt* S/2-"1(621 )™ with row = ug, and yow € BS+2 7o(st2 ”)/Q(Sjb)”. Here
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Yoo = roYow when s > % — 1, by [6, Sect. 4.1] (when s = l — 1, it holds in the

sense of coincidence explained there). So since ug € BS+2 (Q)", we have in fact

that yow € BS+2 . Then u and ¢ solve the problem (1 1) with k = 0, if and only
ifv=u—w and q solve the problem with f replaced by 0, ug replaced by 0 and ¢
replaced by ¢ —yow € Bp b (0)" This is solved in Theorem 2.1, from which we draw
the desired conclusions. [

The initial value space B;;+02_% ()" equals B;,+2_% (©)" when s €]2 2,3 —2],
and comes arbitrarily close to L,(€)™ when s \, 2 —2. When ¢ = 0 in (1.1),
there are other methods that allow larger initial spaces (including L,(2)"), e.g.
ug € H}(Q)" for r > £ — 1 in [5, Cor. 1.5, Rem. 1.6]. But the main efforts in the
present paper are directed towards the case ¢ # 0. See also Remark 3.10 below.

Let us also include a version of Theorem 2.1 and its corollary that allows force
distributions that are restrictions to @Q;, of solenoidal distributions on R"*!. For
this purpose, define

H2(@1,) ={f €D'(Q1) | f = rq,, F for some

F e Hy*?(R"1) with divF =0},
s,8/2 ay (220)
H;.:;ii/v(o)(le) ={feD(Qr.,) | f= TQLOCJ)F for some

2 . .
F e HP(RY x I_ooy) with divF =0},
and analogous B-spaces; the first space is provided with the infimum norm (infimum
of the norms of the divergence free extensions F'), the second is a closed subspace

s,8 2
Then we can show:

Corollary 2.4.
1° Theorems 2.1 and 2.2 hold with the data space H® .5/ (Q,)™ for f replaced

;0 (0)
s,s/2
by H, dl/v(ﬂ)(QIb) K
2° Corollary 2.3 holds with the data space H;;’S/Q(@Ib)" for { replaced by
HE ,8/2
pdlv (le) -

(There are similar result for B-spaces.)

Proof. 1° is shown by reduction to the result of Theorem 2.1 for f = 0. Now,
instead of having a distribution f defined for x € R", we use an extension F' to
x € R™ with, say, at most twice as large norm, and proceed as in (2.10)ff. Similarly,
for 2° we replace f used in Corollary 2.3 by F. [J

3. Nonlinear results.
For the results in this section, k = 1 in (1.1). One has the following estimates
of the nonlinear term:
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Theorem 3.1. Let 1 < p < co. The constants in this theorem are independent of
b. Assume that divu = dive = 0.

1° Let b < oo. For A\, p and w € R such that 4 > 0, w > 0 and 2\ + p + w >
max{0, (n +2)(2 — 1)},

17-9lmporq,) < Cllflgyeomrng, lgllgyreosarg, )
b / b b (3.1)
K@, o)l gar0-0r2 g, gu < Ctllullgyencenre g, yullollgyesoearreg, ya

when A+ pu+w > "Tﬂ;except that A\ 4+ pu +w > "T‘f'Q is assumed if y = 0 or w = 0.

2° Let s € R be such that

(i) s+3>282

N L1 (3.2)
(i)  s+2>max{0,(n+2)(; — 3)}
Let o € [0,1] satisfying o < s +3 — 242, with o < 1 if s + 2 = 2. Then
1K 0)llgerienrnig, yn < Collullygrasrmes g, yllvl gpeaanssg, yue - (3:3)

3° Moreover, if s + 3 > ”;2, one has for any ¢ > 0, when 0 <o < s+ 3 — n—;—2’

||]C(’LL’ U)||H;+m (S+”)/2(§1b)n

< (6HUIIH;+2,-§/2+1@,b)n + CéIIUHLp(Q,b)n)IIUIIH;HJMH@%)M (3.4)
and, if s +2 > 2,

||’C(“‘a 7)) ||H;+f” (S+f’)/2(§’b)n

b
S (t’f||’u||H;-¢-2,3/2+1(th)n + CE A ||U||H;+2,s/2+1(alt)n dt)||’U||H;+2,s/2+1(alb)n. (35)

4° The estimates in 2° and 3° are likewise valid with K replaced by Q = pr; K,
when s + 2 > 12722133’ we use the same notation for the constants. Similar results

hold with H,, replaced by B, throughout.

Proof. The first estimate in 1° was shown in Yamazaki [10, Th. 6.1] ([7] includes
references to earlier results), and the second estimate follows when we use the
second formulation in (1.6). 2° is a specialization to A+ = A+ w = s + 2, with
A chosen as large as possible under the given side conditions. 3° is a variant of [7,
Th. 2.1 4°]: We first note that as a consequence of (2.1),

HIC(U, 1)) |‘H;+a,(s+a)/2 (alb)n S CHUHH;+276,(s+27§)/2(61b)" HUHHE+2’S/2+] (alb)"’
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when 0 <o < s+ 3 — "TTQ —d, § > 0. Then the elementary inequality, valid for
0<d<s+2,

||UHH;+276,(3+275)/2(RHXR) S €||UHH;+2,S/2+1 (R7xR) + Ol (8)”“’HHS’O(R”><R)’

and similar versions over subsets and restrictions, lead to (3.4).
For (3.5) we observe that

b 1
@iy = (Il )’
J0
w-1/p( [ v
< sup ol £ ([ il oy )
tely i 70

b
< dsup [l e+ Co(8) [ vl aye
tely 0

for any § > 0. Since s +2 > 2, we have By (@) € L,(Q), and

HrtfHLp(Q) < C(l)HthHB;”*Q/P(ﬁ) < CUHfHH;“aS/?“(ﬁXR)

for any ¢+ € R, with constants independent of #; this holds also with
H;+2’s/2+1 replaced by B;,+2’s/2+1. We apply this fact to u in the preceding for-
mula, and insert it with 6 = ¢/(CyC!) in (3.4); then we get (3.5) (with 2¢ instead
of €). The H,, spaces can be exchanged by B,, spaces in the resulting expressions.

Finally, let us show the statements on @ = pr; K in 4°. Here, if s +0 > Zl, -1,

they follow simply by application of the projection pr; as a continuous operator
on H;+”’(s+”)/2(alb)”. The best possible o is min{1,s + 3 — 2+2}(—¢), where ¢
should be subtracted when s + 2 = "‘qu. With this o, s + o > % — 1 as long as

25 +3 M2 > L 1, e, s+2> 2F3, (3.6)

1
P
When these inequalities do not hold, prj; is not directly defined on

H;+”’(S+”)/2(@Ib)" since it is not of negative class, but then we can use an in-
vestigation of Johnsen [9] to pass into other spaces where the projection makes
sense. Note that s + o0 < % — 1 can only happen when s < % — 1, and that

—1>s>282 3 — p>ndl (3.7)

kST

By [9, Th. 6.1 and 7.2], applied with M = (1,...,1,2), [M| = n+ 2, so =
51 =5+2,po=p1 =p, g = q = 2, the mapping K: (u,v) — div(u ® v)
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is, when (3.2 ii) holds, continuous from HZ+2’5/2+1(Q%)" X HZ+2’5/2+1(QI[7)" to
Hﬁ+1’(s+1)/2(61b)", where

n+2 _ 9gn+2 : n+2
T—2T*(S+2), 1f3+2< > (38)
When we consider an s with s +2 < "2—‘;3 (in contrast to (3.6)) and satisfying

(3.2), the hypotheses for (3.8) are satisfied. Here r is a positive index lower than p.
For our application of pr;  to Hﬁ+1’(s+1)/2(61b)", we need that r > 1 (for r < 1,
the pseudodifferential boundary operators in anistropic spaces have not been fully
investigated). In fact, » > 1 in our case, for when s and p are such that (3.2) and
the conclusion in (3.7) hold, then

+2 42 L +2 L +2 _ n+42 2(n+2) _ 3n+5
L ST o (s2)S2F Rl = 1S S 1=

and hence

r > A0 which is > 1 for n > 2.

We can then apply prj, to Hﬁ+1’(s+1)/2(61b)" when s +1 > I — 1, i, when

s+ 2> % Here we have that

s+2>1 = (n+2)(s+2) >252 — (s +2) < s+2> 040 (3.9)

In the affirmative case,

Q = pr,, K and K are continuous:

H #2281 (Qy, )7 x Hy #2241 (Qy, )" = HEPHe+D/2(Q, ). (3.10)
Finally, by an anisotropic Sobolev imbedding theorem from [10],
HIFLEEOR (@) s Hyr el (@ ),

where
s+o—"E =541 282 je, 0=s+3— 22 (3.11)

The operators of course also map into the spaces H§+0’(S+g)/2Q1b)" for o <
min{l,s + 3 — ’%2} The statements in 3° now generalize straightforwardly to Q.

This shows that the results for K carry over to Q if in addition s+2 > ;EZii; O

When b < oo, (3.5) implies that (3.3) holds with C5 replaced by
C.p=c+C.b; (3.12)

here C. ;, can be made as small as we want by taking first ¢ and then b = b(e) small
enough.

We shall also need the elementary observation that is often used in these matters
(cf. e.g. [7, Lemma 3.1)):
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Lemma 3.2. Let o >0,0< 3 <1,y >0 and 4oy < (1 — 3)2. Then the smallest
root A_ of the polynomial aX®>+(B—1) A+, A_ = 2y(1 — B+ /(1 — B)2 — day) 1,

is positive, and
M<ad+B8 +7 <A = M <A (3.13)

Solvability properties were thoroughly investigated in [7] and [8] for the Navier-
Stokes problem in H§+2’5/2+1—spaces with s > Zl) — 1. The really new contributions
that are now made possible by the linear results in Section 1 are for low values of
s, namely s E]I—l, -2, zl) — 1], so let us restrict the attention to this interval. When
nonzero initial data enter, we moreover assume s > % — 2.

Here are some further remarks on the nonlinear estimates: First note that in
(3.2), condition (ii) follows from (i) when s > —2, as we assume. Secondly, in order
to allow spaces of ‘supported distributions’, we shall elaborate the considerations

iggi;g < s+2< 2 +1, using the

in the proof of Theorem 3.1 4° as follows, when

second identification in (1.18):
Let o be as in 2° Or3°,witha<1ifs:%—1. Then if s+ 0 > %—1, we have

(since s+o0<s+1< Zl))
K(u,v) and Q(u,v) € H}*" (S""’)/Q(th)
s+o,(s+0)/2 /7~ s,s/2 /7~
= Hy i 2@y,  Hyd?(@y,). (3.14)

For lower values of s + o we can get a similar result by invoking the mapping

properties (3.10). Tn fact, when 2842 < 542 < 22 (cf. (3.6) and (3.9)), and o

is chosen best possible according to (3.11), we have with r as in (3.8),

K(u,v) and Q(u,v) € HiF1+D/2(Q, )
= HVOVR2@Q ) c B CTP@Q) c HGP(@Qy)- (3.15)

For the first equality it is used not only that s +1 > 1 —1 (cf. (3.9)) but also that
s+1< % This holds since s + 2 < "2—';3:

o) =3t s —1=F 41 GG
pt2 _ (n43)* o (n45)(n4+2)—-(n+3)® _ _n41 :
> D 2p(n+2) > 2p(n+2) ~ 2p(n+2) > 07

in the last line we used that 2p > n + 1, cf. (3.7).

This shows:
Corollary 3.3. When ;EZI% < s+2< %—1—1, and o is chosen according to Theorem
3.12° or 3°, witho < 1 if s = ; —1, then the estimates (3.3)—(3.5) likewise hold for
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K and Q with H;+”’ 4712 porms replaced by H;:S”’ 5+2)/2_horms (and likewise
for B-spaces).

Consider data

S, 8 n S s+2— g
= {f,p,u0} € Hy /" (@) x B2, x Bon> P (@), (3.16)

satisfying (1.5) and provided with the data norm N , :

1
_ P P v
Ns,p,b((b) - (||f||H;:Os/2(§ + ||1/)||Bs+20 + ||U0||B;I)272/p(ﬁ)n) . (317)
Theorem 3.4. Let s €]2 — 2,1 — 1] with s > 22 — 3. Let b € R,
1° There is at most one solution {u,q} with
{u,grad q} € H T2 CHD/2(Q ) 5 HE*12(Qp )" (3.18)

of the Navier-Stokes problem (1.1) for each set of data ® satisfying (1.5) (where q in
the case of interior domains is subject to the side condition mentioned in Theorem
2.1).

2° There is a constant Ny, such that for data ® with data norm N ,,(®) <
N . there exists a solution {u,q} € H;+2’S/2+1(§Ib)" X H;’Sp(alb) of (1.1) with
(3.18), the norm depending continuously on ®. When s > s, for some so > "2—';2 -2,
the norm condition for existence can be replaced by the condition N, ,(®) <
Neg,p,b-

3° Assume that s > "—+2 — 3. One can for each N > 0 choose a b’ < b such that
there exists a solution {u, q} € Hyt? q/2+1(Q1 )™ x H;’S/2(§Ih,) of (1.1) (satisfying
also (3.18) with b replaced by ', and with norm depending continuously on ®) for
any set of data ® with norm N, (®) < N. For s > s, so as above, the solution
can be obtained with b’ defined relative to sg.

The statements hold with H,, replaced by B, throughout.

Proof. We denote

HfHHT A ) r,b HfHHT;S/Q@,b)" = r,b;0° ( )
3.19
!
(||f||2;+2,r/2+1(QIh + ||g||p rr/2(Q ))P = H‘f79H|r+2,b.
Note that since % > ;EZI;;, the condition s + 2 > ;E:ig is satisfied for the s

we consider. According to Theorem 3.1 and Corollary 3.3, we have for o < 1 with
0 <s+4+3— 12

1K (u, v)]|
1Q(u, v)

a0 < Cslll(w, V)]l 10 5,0 < C3Col[lull,
sbo < Osl|Q(w, )[4 5 40 < C3 O[]l

‘Hq—|—2 b

(3.20)

H‘s+2,b'
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First some generalities on the strategy for solving (1.1). We cannot directly
use the reduction to (1.7) and (1.8), since u is sought in H5+2’S/2+1(@Ib)" with
s+2 < 3 +1, where Gy is not in general defined. But thanks to (3.14), (3.15), we
can use a splitting of IC(u),

K(u) = pry, K(u) + (I —pry,)K(u) = Q(u) + (I —pry, ) K(u), (3.21)

and write
{“‘7 q} = {Ua ql} + {U)a q2}’ (322)

where {v,q1} is the solution according to Corollary 2.3 of the linear problem with

the same data: )
Ow—Av+gradg: = f in Qyp,,

dive =0 in @Qy,,

3.23
Yov=¢ on Sy, ( )
roU = ug on §.
and {w, g2} is to be constructed so that
atw—A'U): —Q(U+w) in lea
divw =0 in ,
O (3.24)
Yow =0 on Sy,
row =0 on €;
and
gradgs = —(I — pry )K(v + w). (3.25)

Then {u, ¢} solves the original problem if and only if {w, g2} solves (3.24) (3.25).
Here we first discuss (3.24); next if w solves (3.24), then ¢y is determined from
(3.25) (and the side condition when it applies), since (3.25) implies

—Agy = —divgrad gz = div(l — pr; )K(v +w) = div (v + w),

3.26
s = 7o grad g = 3 (~(1 — pry )K(w +w) = —pK(o +w), 20

so that _
g2 = GK(v + w) (3.27)

according to (1.12).

Let us first show the uniqueness. Let {u, ¢} and {u', ¢’} be two solutions of (1.1)
on I. Define {v,q1} from the data as above, then {u,q} = {v + w,q1 + ¢2} and
{v',¢'} ={v+w', g+ ¢} with {w, ¢} and {w', ¢} } solving the respective versions
of (3.24)—(3.25), and we have to show that {w", ¢} = {w — w',q2 — ¢4} is zero.
Since

—Q+w)+ Qv +w') =9 —w,v+w)+ Qv+ w, w —w), (3.28)
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w'' satisfies , , , oo
w'" — Aw" = —-Q(w",v+w) — Qv+ w',w"),

3.29
divw” =0, ~u”" =0, reu” =0. ( )
Denote by Hy: g — w the operator solving the heat problem
Oow—Aw =g in Qyp,,

' ' (3.30)

Yow =0 on S, row=0 on

by [6, Cor. 4.5] it satisfies

H‘w|Ht+2,b = H‘HbQ‘HH—Q,b < CFI;H‘Q‘Ht,b (3.31)

for t €]2 —2, 2[, since the values on Sy, and € x {0} satisfy the relevant compati-
bility condition. C} can be obtained to be nondecreasing in b, and if divg = 0 then
divw = 0 in view of the uniqueness of solutions. By (3.20) we have:

1wl y124 < Gyl Q" v +w) + Qv +w', w)|ll, 4.0

< 0030 |y + Nl + 10 g )" ] for al b( <5
3.32

This implies that w" = 0 on @, when
CyC2C32/[|v]| 540,50 + Wl gy + N l54050) <1,

which holds for sufficiently small &’ > 0 (depending on v, w and w'), so w = w' on
[0,b']. By (3.27), also g2 = ¢5 on b'.

Replacing 0 by arbitrary points in I, we see that if u = u’ on I, = [0,by] C
[0,b], then u = u’ on [0, bf] for some bf, € |by, b[, so there is no largest by < b where
u =u' on Ip,. Thus ' = u on Iy, and hence also ¢ = ¢’ on I,. This shows 1°.

Now let us show the existence, for a given set of data ® = {f, ¢, up}. In view
of the above analysis, we define {v,q;} as the solution of (3.23) and have to solve
(3.24). By (2.18),

|Hvaq1m;+2’b < Cqu,p,b(¢)- (333)

Since s + 0 €]
by

2 —2,2[, we can define the mapping R, on H5+2’S/2+1(61b)"

Ry w— Hy(—Q(v + w)); (3.34)

then (3.24) holds when w is a fixed point for Ry ,. The aim is to show that such a
fixed point exists when either the data norm is small enough in relation to a given
b, or b is small enough in relation to a given data norm estimate.
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For R;,, we have by (3.31) and (3.33), since (3.20) also holds for spaces without
4;0’7
[1Rb0wlll, 1o, < Colll Q(v,v) + Q(v, w) + Q(w,v) + Q(w, w)]|, b
< G203 ([0l 42, + 2110l srzo T wll5yz,)  (3:35)
< CyC2C3(CoNis p (D) + \|\w|\|s+2,b) :

We shall first show 2°, where we take b’ = b and adapt the norms. Here we
apply Lemma 3.2 with A\g = \Hw|HS+2’b and \; = H\Rb,vw\HHQ’b, and

a=CyC30y, B =20{C3C,CuN, = CjC3C03N?, (3.36)
N = N, (®). This gives that if, for some n €10, 1],
20,203020},./\[ S n, (20,;030205/\[)2 S (1 — 77)2, (337)

then
H|11)|HH_2 p S A = || Ry, v“’”|q+2 b S A
where
- 2y < 21 2GGGONT _ nGN
1-B+/01-p2—day " 1=~ 1-n  — 1-9
So Ry, maps the closed ball B,(0,A_) in H;+2’5/2+1(th)n with radius A_ into

itself.
When (3.37) holds and w and w’ € By(0,A_), then

(3.38)

[Rbww — R ww'|ll 404 = IHo[~ Qv +w) + Qv+ w)][ll 15,
< Gill|Q(w" —w,v +w) + Qv + w',w' —w)l|,,

s+2,b"

Since CobN +A_ < N (1+n(1—n)~ 1) = CyN(1—n) ' by (3.38), Ry, is a proper
contraction on By(0,A_) if in addition to (3.37)

2C;C,C3sCyN (1 — )™t < 1; (3.40)

note that this is just a sharpening of the second inequality in (3.37). Then R,
has a unique fixed point @ € Bj(0,A_) (determined as lim,,_, Ry, wo, for an
arbitrary wy € By(0,A_)). This W solves (3.24), and we set u = v +W. As noted
n (3.27), the accompanying gs is determined by ¢ = élC(u), and ¢ = ¢1 + ¢o.
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This proves the main statement in 2°. The modification with s replaced by sq is
obvious.

The preceding lines are a close generalization of the proof of [7, Th. 3.2 2°]. In a
similar way, the proof of [7, Th. 3.2 3°] is generalized straightforwardly to give 3°.
Again the crucial step is to construct w; one uses that (3.35) (3.38) are likewise
valid with b replaced by any smaller b’ (and the constants Cy, C;, can be replaced
by Cy,C} since they are nondecreasing), now the smallness in (3.37) is obtained
by making Cs small, using (3.12). Moreover, the estimates in Theorem 3.1 3° are
used. O

With zero initial data, we can extend the above proof to allow slightly lower s
in the uniqueness statement and statement on existence for small data norms:

Corollary 3.5. Let s 6]22213 — 2,3 — 1] with s > 22 — 3. Replace the data

spaces and norm in (3.16) (3.17) b

U= {f. 0} € HSI0 (@) x BL3?

p;b (0)
) ; (3.41)
Nopp @ () =UFI2 e = 00 T 10l )7
p 0(0)(Q " p b (0)
1° There is at most one solution {u,q} with
s+2,8/2+1 n 5,8/2/ 7~ \n
{u,grad g} € H) (0@ )" < H 5% (@),) (3.42)

of the Navier-Stokes problem (1.1) for each set of data U satisfying (1.5) (with the
usual side condition on q).
2° There is a constant Ny, , such that for data U with data norm N p, 5 (0)(¥) <

Nj pp there exists a solution {u, q} € H;'('-OQ) S/2+1(Q1b) X H;’(i)/f(@[b) of (1.1) with

(3.42), the norm depending continuously on W.

Proof. Note that ;EZI% €]z, 2. We can allow s down to ;EZI;% — 2, since there
is no need to define restrictions to ¢ = 0. The proof goes as in Theorem 3.4 1°
and 2°, now based directly on Theorem 2.1, omitting explicit mention of the zero

initial condition which is built into the spaces with index (0). [

As noted earlier in (3.7), the new results for s < % — 1 are applicable when

p > "T“ To see which lower bound on s that is strongest, we observe:

ntZ 3 for p € [t n + 1],
max{%Q,”;zii}:{ 1p hs: ]
5—2 for p > n+1; (3.43)
) ) nt2 3 for p € [2L, ], )
max{2 — 2,282 — 3} = |
5 — 2 for p > n.

Note that we can get s arbitrarily close to —2 by taking p large enough.
The estimates of ¢ can be improved as follows:
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Theorem 3.6. When {u,q} solve the Navier-Stokes problem according to Theo-
rem 3.4, then q = q1 + g2, where g, has the properties listed in Theorem 2.2 with

(0) removed, and g5 € H;+0’(S+a)/2(alb) (with b replaced by b’ in case 3°) for o
satisfying:

cel0,1], 0 <s+3-22 o<lifs=242-20r % —1. (3.44)

The result extends to the cases treated in Corollary 3.5 with Hy-spaces replaced
by H, o)-spaces.
Similar reults hold for B-spaces.

Proof. We give details for the solutions of Theorem 3.4. The information on ¢
follows since it is the pressure obtained by solving a linear problem, by Corollary
2.3.

For ¢y, we use that it equals GK(u) where G is a singular Green operator of order

0 and class 0. By [7, Lemma 1.5], G is continuous in H;’t/2(alb) when t > % -1
Here, when s+0 > 7 —1, we use (3.14) to apply G in H;+”’(s+”)/2(61b), and when
s+ o is lower, we use (3.15) to apply G in Hﬁ+1’(s+1)/2(61h), which is subsequently
injected continuously into H;+”’(s+”)/2(61b). O

It is also possible to treat the Navier-Stokes problem in a slightly different way
building on Corollary 2.4.

For s+2 >0, let [: H§+2’5/2+1(61b)" — HyP2/2P R o T1)7 be a continuous
linear extension operator (depending on s and p), which maps into functions sup-
ported in (Q + B.) x I, say, with B. = {|z| < £}. Then we can decompose by use

of pryga,

K(u,v) =rq, K(lu,lv)
=1Q,, Pryrn K(lu, lv) +rq, ((I — prjg.)K(lu, lv) (3.45)

= Q(u,v) —rq,, grad Rdiv K(lu, lv).

When u,v € H;+2’S/2+1(§Ib)” with s > "T'TQ -3, s E]% -2, %— 1], then it follows

from Theorem 3.1 2° that O(u,v) belongs to H;II?\;(HU)/Q(QI[))" (recall (2.20)) and
satisfies:

18 0l ggeocseorragg, o < Collull ggrnaros g, yullolggonoranr g, s (346

for the o described in Theorem 3.1 2°. The estimates (3.4) and (3.5) likewise
generalize to @(u, v). The advantage of this point of view is that we can use the
pseudodifferential operator pr;g. freely without class restrictions; on the other
hand [ is subject to a choice.
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Assume moreover that s > % — 2, and consider (1.1) with data as in Corollary
2.4 2°, now decomposing the nonlinear term by (3.45). We proceed as in (3.22)—
(3.25), now taking for {v, ¢} the solution of (3.23) according to Corollary 2.4 2°
and replacing @ by @, so that (3.25) is replaced by

grad g2 = rq,, grad Rdiv K(lu). (3.47)

It is now found just as in the proof of Theorem 3.4 that there is uniqueness of 4 in
a solution, and that u may be constructed either for small data norms in relation
to b, or for data norms estimated by a freely chosen constant but with b replaced
by a sufficiently small ¥'. For g3 we can then simply take

g2 = rq,, RdivK(lu), (3.48)

but we only claim uniqueness for grad go (which follows from uniquenes of u since
grad g = grad ¢; + grad ¢» is determined from u by (1.1)).
This shows:

Theorem 3.7. Let s €2 — 2,1 — 1] with s > 22 — 3 (cf. also (3.43)). Replace

in (3.16)—(3.17) the data space H;;S/z(alh)" for f by the data space H;:;i/f(le)"
defined in (2.20).
1° There is at most one solution {u, grad q} with

{u,grad g} € Hy*»*/>*1(Qp,)" x Hy**(@Q,,)" (3.49)

of the Navier-Stokes problem (1.1) for each set of data ® satisfying (1.5).

2° There is a constant Ny, such that for data ® with data norm N, ,(®) <
N . there exists a solution {u,q} € H;+2’S/2+1(§Ib)" X H;’Sp(alb) of (1.1) with
(3.49), the norm depending continuously on ®.

3° Assume that s > "T'j“Q — 3. One can for each N > 0 choose a b’ < b such that
there exists a solution {u,q} € Hy™> S/2+1(@Ih, ) % H;’S/Q(th,) of (1.1) (satisfying
also (3.49) with b replaced by V', and with norm depending continuously on ®) for
any set of data ® with norm N, (®) < N.

The statements hold with H), replaced by B, throughout.

With zero initial data, we can allow lower s in the uniqueness statement and
the statement on existence for small data norms:

Corollary 3.8. Let s €]3 — 2,5 — 1] with s > 22 — 3 (cf. also (3.43)). Replace
the data spaces and norm in (3.10) (3.11) by

s,8/2 A \n s+2
U ={f¢}e€ Hp,div(o)(le) X Bp,+b(0)’

Nawn(P) = (A%, 2 .

p.div (0) (@ Iy

(3.50)

S|=

w2 )
s+2
By o)
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1° There is at most one solution {u, grad q} with

s+2,s5/2+1 n s,8/2 /7 n
{u,grad g} € H) {0/ (@ )" < H 5% (@),) (3.51)
of the Navier-Stokes problem (1.1) for each set of data ¥ satisfying (1.5).

2° There is a constant Ny, such that for data U with data norm N, (V) <

Nj pp there exists a solution {u, q} € H;'('-OQ)’ S/2+1(le)" X HZ’(‘B/)Q (Q,) of (1.1) with

(3.51), the norm depending continuously on W.

Proof. The proof goes as in Theorem 3.6 1° and 2°, now based on Corollary 2.4 1°.
(We can allow s > % — 2 since there is no need to define restrictions to ¢ =0.) O

There are also generalizations of Theorem 3.6 to the cases in Theorem 3.7 and
Corollary 3.8.

In all the cases, it is seen as in [7, Th. 3.7] when s > "TTQ — 3, that if f and ¢
are C* for £ > 0, then so are u and gq.

Remark 3.9. When f = 0 in (3.50), the result of Corollary 3.8 can be further
improved for p > n+ 1. Now f and uq are zero in (3.23), so that problem can be
solved for all s € R by Theorem 2.1. Let us see which s < zl) — 2 will be allowed:

For (3.24) (with @ replaced by @), the conditions s > —2 and s > "TTQ — 3 are

needed; then the right hand side is in H5+U’(S+U)/2 with o = s — "TTQ + 3. For the

application of Hy, cf. (3.30), it suffices that s+o0 > %—2, ie., s > "2—‘;3 — % —2. This
condition is weaker than the condition s > 1—1) — 2 and replaces it, when p > n + 1.

In particular, when p > n + 3, only the hypothesis s > —2 is needed.

Remark 3.10. Much of the literature on the Navier-Stokes problem (1.1) deals
with the case ¢ = 0 (homogeneous boundary condition), see e.g. the survey of H.
Amann in [1], where he develops new general results for this case by use of semi-
group techniques and interpolation/extrapolation of solenoidal distribution spaces.
In a personal communication, Amann has sketched how his results may be ex-
tended to allow nonhomogeneous boundary conditions too, by a weak formulation
where the boundary data are incorporated in the force distribution f. However,
the present results are not readily compared with those of Amann. One funda-
mental difference is that the nonlinear term in [1] is taken of the form Q(u) (or
some extension by continuity in his family of spaces) where the projection pr; has
already taken place and the pressure is already eliminated; there is no attempt to
retrieve the unknown pressure g as we do. The class problems that we deal with
do not occur then. Another difference is that in the results of [1], the regularities
in 2 and ¢ are separated so that one can have more smoothness in ¢ (and less in
x) than in our results, where the regularities are linked by the anisotropic space
definitions, giving fractional differentiability in ¢. It may possibly be of interest to
try to combine the strong points of each method.
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