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On the Logarithm Component in Trace
Defect Formulas
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Mathematics Department, Copenhagen University, Copenhagen, Denmark

In asymptotic expansions of resolvent traces Tr�A�P − ��−1� for classical
pseudodifferential operators on closed manifolds, the coefficient C0�A� P� of �−��−1

is of special interest, since it is the first coefficient containing nonlocal elements
from A; moreover, it enters in index formulas. C0�A� P� also equals the zeta function
value at zero when P is invertible. C0�A� P� is a trace modulo local terms, since
C0�A� P�− C0�A� P ′� and C0��A�A′�� P� are local. By use of complex powers Ps (or
similar holomorphic families of order s), Okikiolu, Kontsevich and Vishik, Melrose
and Nistor showed formulas for these trace defects in terms of residues of operators
defined from A, A′, logP and logP ′.

The present paper has two purposes. One is to show how the trace defect
formulas can be obtained from the resolvents in a simple way without use of the
complex powers of P as in the original proofs. We also give here a simple direct
proof of a recent residue formula of Scott for C0�I� P�. The other purpose is to
establish trace defect residue formulas for operators on manifolds with boundary,
where complex powers are not easily accessible; we do this using only resolvents.
We also generalize Scott’s formula to boundary problems.

Keywords Noncommutative residue; Pseudodifferential boundary operators;
Residue of logarithm; Resolvent method; Trace defect formula; Zeta function.

Mathematics Subject Classification Primary 35S15, 58J42; Secondary 58J50.

Introduction

Consider a classical pseudodifferential operator (�do) A of order � on an
n-dimensional smooth compact boundaryless manifold X. When P denotes an
auxiliary elliptic �do of order m > 0 and, say, positive, one can study the generalized
zeta function 	�A� P� s� defined as the meromorphic extension of Tr�AP−s� to the
complex plane, where the complex powers P−s are defined from the resolvent
�P − ��−1 as in Seeley (1967). It is well known that 	�A� P� s� has a Laurent
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expansion at s = 0,

	�A� P� s� ∼ C−1�A� P�s−1 + C0�A� P�+∑
l≥1

Cl�A� P�sl� (0.1)

where mC−1�A� P� equals the noncommutative residue resA (Wodzicki, 1984;
Guillemin, 1985), and C0�A� P� equals the canonical trace TRA in particular cases
(Kontsevich and Vishik, 1995; Lesch, 1999; recent extension in Grubb, 2005).

The coefficient C0�A� P� is not in general independent of P, but then it is viewed
as a “regularized trace” (Melrose and Nistor, 1996) or a “weighted trace” (Cardona
et al., 2002, 2003). In general it satisfies the trace defect formulas

C0�A� P�− C0�A� P ′� = − 1
m
res�A�logP − logP ′��� (0.2)

C0��A�A′�� P� = − 1
m
res�A�A′� logP��� (0.3)

shown by Okikiolu (1995) and Kontsevich and Vishik (1995), respectively Melrose
and Nistor (1996), by use essentially of the holomorphic family P−s and the fact that
its derivative at zero is − logP.

For a compact manifold X with boundary 
X = X′, the situation is somewhat
different. A pseudodifferential calculus that contains differential elliptic boundary
value problems and their solution operators and is closed under composition and
elliptic inversion is the calculus of Boutet de Monvel (1971); we consider an operator
A = P+ +G lying there. Here P is a �do defined on a larger boundaryless manifold
X̃ in which X is imbedded, such that P satisfies the transmission condition at X′

(in particular, it is of integer order), P+ = r+Pe+ is the truncation to X (e+ extends
by zero, r+ restricts to X), and G is a singular Green operator (smoothing in the
interior, but important near the boundary).

Even the simplest auxiliary operator P1�D with P1 equal to the Laplace operator,
the D indicating Dirichlet condition, does not have its complex powers in the
Boutet de Monvel calculus, so the ingredients in the zeta function Tr�AP−s

1�D� are
not easily accessible. Nevertheless, by relying on the resolvent family A�P1�D − ��−1,
we managed to show in a joint work with Schrohe (Grubb and Schrohe, 2004),
that C0�A� P1�D�− C0�A� P2�D� and C0��A�A′�� P1�D� are local, and to pinpoint the
nonlocal content of C0�A� P1�D� modulo local terms. The question of possible
generalizations of the formulas (0.2)–(0.3) remained open then.

In the present paper we show for the boundaryless case how the formulas
(0.2)–(0.3) can be derived directly from the knowledge of the resolvent (Section 2).
The crucial fact is that the constant comes from a strictly homogeneous term
in the symbol of A��P − ��−1 − �P ′ − ��−1�, respectively A�A′� �P − ��−1� which is
integrable at � = 0 (and is O��−2� for ��� → � when � �= 0). The operator log P
appears simply because log � has a jump of 2�i at the negative real axis; there is no
need to construct the P−s.

Before this, we give (in Section 1) a similarly simple proof of the formula shown
recently by Scott (2005),

C0�I� P� = − 1
m
res�logP�� (0.4)
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from which he draws consequences on multiplicative properties; here C0�I� P� equals
	�P� 0� + the nullity of P. Scott’s proof of (0.4) is based on calculations inspired
from Okikiolu (1995), going via results for P−s. In fact, finding the direct proof of
(0.4) in terms of the resolvent was the starting point for our present paper.

Next, we discuss possible generalizations of the formulas (0.2)–(0.3) to the
situation with boundary. Here we replace the auxiliary family �P1�D − ��−1 used in
Grubb and Schrohe (2001, 2004) by its �do part �P1 − ��−1

+ (which corresponds to
replacing P−s

1�D by �P−s
1 �+, another family which equals the identity for s = 0); this

spares us of the technicalities involved in working with a boundary condition for P1.
On the other hand, we allow general higher order choices of the differential operator
P1, where Grubb and Schrohe (2001, 2004) considered the second-order principally
scalar case (which provides simple roots in the detailed construction of the resolvent
symbol). To handle general choices of P1, we base the study on the relatively crude
methods in the book by Grubb (1996).

In Section 3, we show that (0.2) does generalize in a natural way,
since �logP1 − logP2�+ is a zero order �do having the transmission property

C0�A� P1�+�− C0�A� P2�+� = − 1
m
res�A�logP1 − logP2�+� (0.5)

Here we use the residue definition of Fedosov et al. (1996).
In Section 4, we consider generalizations of (0.3), for two operators A = P+ +G,

A′ = P ′
+ +G′ of orders � and �′, and normal order zero. The leftover terms (singular

Green type terms) coming from commutators �A′� �logP1�+� are not in the calculus
and have not (yet) been covered by residue formulas, so we cannot extend (0.3)
directly. However, considering A�A′� �P1 − ��−1

+ �, we show that the normal trace ��

of its singular Green operator part �� is a �do on X′ with sufficiently good symbol
estimates to allow integration against log �, leading to a classical�do S onX′ such that

C0��A�A′�� P1�+� = − 1
m
resX��P�P

′� logP1��+�−
1
m
resX′�S�� (0.6)

the right-hand side can be regarded as an interpretation of
“− 1

m
res�A�A′� �logP1�+��”.
Finally, in Section 5, we show a certain generalization of (0.4) to normal elliptic

pseudodifferential boundary problems �P+ +G�T as considered in Grubb (1996),
and include a remark on Atiyah-Patodi-Singer problems.

1. On the Residue of Logarithm Formula

Let P be an elliptic pseudodifferential operator of order m ∈ �+ acting on the
sections of a hermitian vector bundle E over a closed (i.e., compact boundaryless)
manifold X of dimension n, such that the principal symbol has no eigenvalues on
�−. We can assume that P has no eigenvalues on �− (by a small rotation if needed).
Then we can define the resolvent Q� = �P − ��−1 in a sector V around �−. The
complex powers and the logarithm are defined by functional calculus as

P−s = i

2�

∫
�
�−s�P − ��−1 d� for Re s > 0� Pk−s = PkP−s�

logP = lim
s→0

i

2�

∫
�
�−s log ��P − ��−1d��

(1.1)
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with integrations on a curve � in �\�− going around the nonzero spectrum of P
in the positive direction; hereby P−s and logP are taken to be zero on ker P.

It is well known that Tr P−s extends meromorphically to � as the zeta
function 	�P� s� (Seeley, 1967); it is regular at s = 0. It is also known that the
noncommutative residue can be defined for log P (Lesch, 1999; Okikiolu, 1995). The
value at s = 0 was recently identified by Scott (2005) with a residue

	�P� 0� = − 1
m
res�logP� (1.2)

(this is the formula if ker P = 0; also nonzero cases are considered). His method
is based on an analysis of the symbol of P−s inspired from Okikiolu (1995).
For strongly elliptic differential operators, a formal version of the formula was
established via heat operator and complex power considerations in Loya (2001b).
We shall show below how the formula can be proven directly from the knowledge
of the resolvent in a straightforward way.

We assume m > n for convenience. (Otherwise, one can consider �P − ��−N for
large N , where the local formulas however boil down to the same calculation, as
indicated in a general situation in Remark 3.12 below.) Then Q� is trace-class, and
its kernel (calculated in local trivializations) has an asymptotic expansion for � → �
in V , leading to a trace expansion by integration of the fiber trace in x

K�Q�� x� x� ∼
∑
j≥0

cj�x��−��
n−j
m −1 +∑

k≥1

�c′k�x� log�−��+ c′′k �x���−��−k−1�

TrQ� ∼
∑
j≥0

cj�−��
n−j
m −1 +∑

k≥1

�c′k log�−��+ c′′k ��−��−k−1
(1.3)

This was first shown by Agranovich (1987) (with reference to the heat trace
formulation of Duistermaat and Guillemin, 1975 and the complex power
formulation of Seeley, 1967); proof details can also be found in Grubb and Seeley
(1995) for the case where m is integer, and in Loya (2001a), Grubb and Hansen
(2002) for the general case. In fact, the meromorphic structure of 	�P� s� and the
asymptotic expansion of TrQ� can be deduced from one another (as accounted e.g.
in Grubb and Seeley, 1996). In particular, we can define

C0�P� = cn =
∫
X
tr cn�x�dx� then C0�P� = 	�P� 0�+ �0� (1.4)

where �0 is the algebraic multiplicity of zero as an eigenvalue of P. For �0
equals the rank of the eigenprojection �0 = i

2�

∫
���=�

�P − ��−1d�, cf. Kato (1996,
Section III 6.8).

We shall base our study of C0�P� on the resolvent information, and will now
recall an elementary deduction of the kernel expansion down to O����−2+��. In local
trivializations, the symbol q�x� �� �� of Q� has an expansion in quasi-homogeneous
terms q�x� �� �� ∼∑

j≥0 q−m−j�x� �� ��, where q−m = �pm − ��−1, and q−m−j for each
j ≥ 1 is a finite sum of terms with the structure

f�x� �� �� = g1q
�1−mg2q

�2−m · · · gMq�M−mgM+1� (1.5)

here the �k are integers ≥ 1 and the gk�x� �� are �do symbols independent of �
and homogeneous of degree rk for ��� ≥ 1. The index sums r =∑

1≤k≤M+1 rk and
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� =∑
1≤k≤M �k satisfy

2 ≤ � ≤ 2j + 1� r = −j + ��− 1�m (1.6)

This is seen by working out the symbol construction in Seeley (1967) in detail (more
information and references in Grubb, 1996, Remark 3.3.7). See also Remark 1.6
below. We indicate strictly homogeneous versions (the extensions by homogeneity
into the region ��� ≤ 1) by an upper index h; the qh

−m−j satisfy

qh
−m−j�x� t�� t

m�� = t−m−jqh
−m−j�x� �� �� for t > 0� all � �= 0 (1.7)

Note that in (1.5), fh is O����r � at � = 0 (for � �= 0), hence integrable in � at
� = 0 if r > −n. Then in view of (1.6), qh

−m−j is integrable at � = 0, when j < n+m
and � �= 0 (this is clear for j = 0, and for j ≥ 1, the least integrable contributions
are those with � = 2). In particular, qh

−m−n is continuous in �.
The diagonal kernel K�Q�� x� x� defined from q equals

∫
�n q�x� �� ��d

−� (where d−

stands for �2��−nd).

Lemma 1.1. q has an expansion in strictly homogeneous terms plus a remainder

q�x� �� �� = ∑
0≤j<m+n

qh
−m−j�x� �� ��+ q′

−2m−n�x� �� ��� (1.8)

where the qh
−m−j (j < m+ n) and q′

−2m−n are integrable in �, and
∫
q′
−2m−nd

−� =
O����−2+��, any � > 0. Consequently, K�Q�� x� x� has the expansion

K�Q�� x� x� =
∑

0≤j<m+n

cj�x��−��
n−j
m −1 + O����−2+��� where

cj�x� =
∫
�n

qh
−m−j�x� ��−1�d−�� for j < m+ n

(1.9)

Proof. For j = 0,

q−m − qh
−m = �pm − ��−1 − �ph

m − ��−1 = �pm − ��−1�ph
m − pm��p

h
m − ��−1� (1.10)

so it is supported in ��� ≤ 1 and O����−2� there. This also holds for q−m−j − qh
−m−j for

general j ≥ 1 since � ≥ 2 in (1.5). For j < m+ n the q−m−j − qh
−m−j are integrable in

�, the integrals being O��−2�. For the remainder q −∑
j<m+n q−m−n, write m = m′ + �,

m′ integer and � ∈�0� 1�, and note that j < m+ n means j ≤ m′ + n. The symbol
q −∑

0≤j<m+n q−m−j is of order −m−m′ − n− 1 = −2m− n+ �− 1 and satisfies∣∣∣∣q − ∑
j<m+n

q−m−j

∣∣∣∣ ≤ c�1+ ���m + ����−2�1+ ����−n+�−1

≤ c′�1+ ����−2+��1+ ����−n+�−1−m�� (1.11)

any � ≥ 0. If � < 1 (the case where m is noninteger), we can take � = 0, otherwise we
take it small positive; then the integral in � is O����−2+��. This shows the statements
on (1.8).
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Now (1.9) follows directly by integration in �, using the calculations∫
�n

qh
−m−j�x� �� ��d

−� = ��� n−j
m −1

∫
�n

qh
−m−j�x� �� �/����d−� (1.12)

For � ∈ �−, they show that cj�x� =
∫
�n q

h
−m−j�x� ��−1�d−�; this remains valid on

general rays in V since qh
−j−m is holomorphic in � (cf. e.g. Grubb and Seeley, 1995,

Lemma 2.3). �

In the case j = n, we get in particular, when the contributions cn�x� are carried
back to the manifold and collected:

C0�P� = cn =
∫

tr cn�x�dx� where cn�x� =
∫
�n

qh
−m−n�x� ��−1�d−� (1.13)

Now consider the operator logP, (1.1). It is well known that it has a symbol in
local coordinates (cf. e.g. Okikiolu, 1995)

symb�logP� = m log���I + b�x� ��� (1.14)

where b is classical of order zero, and ��� stands for a smooth positive function equal
to ��� for ��� ≥ 1. This symbol is found termwise from the symbol of Q� = �P − ��−1

by Cauchy integral formulas as in (1.1); in particular,

b−n�x� �� =
i

2�

∫
�′
log �q−m−n�x� �� ��d�� (1.15)

where �′ is a closed curve in �\�− encircling the eigenvalues of pm. According to
the definition of noncommutative residues of operators with log-polyhomogeneous
symbols (Lesch, 1999; Okikiolu, 1995),

res�logP� =
∫
X

∫
���=1

tr b−n�x� ��d
−S���dx (1.16)

(where the integral is known to have an invariant meaning). We want to show that
this number equals −mC0�P�. This will be based on a simple lemma.

Lemma 1.2. Let f��� be meromorphic on � and O��−1−�� for ��� → � (some � >
0), with poles lying in a bounded subset of �\�−. Let � be a closed curve in �\�−
encircling the poles in the positive direction. Then

1
2�i

∫
�
log �f���d� =

∫ 0

−�
f�t�dt (1.17)

The identity also holds if f��� is holomorphic in a keyhole region around �−:

Vr�� = �� ∈ � � ��� < r or � arg �− �� < �� (1.18)

(r and � > 0), and f��� is O��−1−�� for � → � in Vr��; then � should be a curve in
�\�− going around �Vr�� in the positive direction, e.g. defined as the boundary of Vr ′��′
for some r ′ ∈�0� r�, �′ ∈�0� ��.
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Proof. We can replace � by the curve �1 +�2 +�3 +�4 in the complex plane
cut-up along �−, where (for a sufficiently large R)

�1 = �Rei� � − � ≤ � ≤ ��� �2 =
{
sei� �R ≥ s ≥ 1

R

}
�

�3 =
{
1
R
ei� � � ≥ � ≥ −�

}
� �4 =

{
se−i� � 1

R
≤ s ≤ R

}
�

(1.19)

we shall let R → �. Here∣∣∣∣ ∫
�1

log �f���d�

∣∣∣∣ = O�RR−1−� logR� → 0 for R → ��∣∣∣∣ ∫
�3

log �f���d�

∣∣∣∣ = O�R−1 logR� → 0 for R → ��

(1.20)

moreover,

log � = log�sei�� = log s + i� on �2 log � = log�se−i�� = log s − i� on �4�

(the difference of the values of log � from above and from below on �− is 2�i).
Then

1
2�i

∫
�
log �f���d� = 1

2�i

∫ − 1
R

−R
2�if�t�dt + O�R−� logR� =

∫ 0

−�
f�t�dt

For the second statement, we can instead approximate � by �′
R = �′

1 +�2 +
�3 +�4 +�′

5, where �2, �3, and �4 are as above, and

�′
1 = �Rei� � �− �′ ≤ � ≤ ��� �′

5 = �Rei� � − � ≥ � ≥ −�− �′��

then we use that the integrals over �′
1 and �′

5 go to 0 for R → �. �

At each x, we have the formula for cn�x� in (1.13), and the formula with b−n:∫
���=1

b−n�x� ��d
−S��� =

∫
���=1

i

2�

∫
�′
log � qh

−m−n�x� �� ��d�d
−S���� (1.21)

so the identification of C0�P� and − 1
m
res�logP� will be obtained if we show that for

each x,∫
�n

qh
−m−n�x� ��−1�d−� = − 1

m

∫
���=1

i

2�

∫
�′
log �qh

−m−n�x� �� ��d�d
−S��� (1.22)

We transform the left-hand side by use of the quasi-homogeneity (1.7). For later
reference, the calculation will be formulated in

Lemma 1.3. Let m > 0. Let f��� t� be continuous for ��� t� ∈ ��n\�0��×�− and
quasi-homogeneous there in the sense that f�s�� smt� = s−m−nf��� t� for all s > 0, and
integrable at � = 0 for each t �= 0. Then∫

�n
f���−1�d−� = 1

m

∫
���=1

∫ 0

−�
f��� t�dt d−S��� (1.23)
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Proof. Since �f���−1�� = ���−m−n�f��/����−���−m�� is O����−m−n� for ��� → �, the
function in the left-hand side is integrable. For ��� = 1, we make a calculation using
the coordinate change t = −r−m, dt = mr−m−1dr∫ �

0
f�r��−1�rn−1dr =

∫ �

0
f���−r−m�r−m−1dr = 1

m

∫ 0

−�
f��� t�dt� (1.24)

which gives ∫
�n

f���−1�d−� =
∫
���=1

∫ �

0
f�r��−1�rn−1drd−S���

= 1
m

∫
���=1

∫ 0

−�
f��� t�dtd−S����

showing (1.23). (We are using the Fubini theorem; in fact (1.24) is valid almost
everywhere with respect to � ∈ Sn−1.) �

Now (1.22) follows by application of (1.23) to qh
−m−n�x� �� t� at each x and

application of Lemma 1.2 to
∫ 0
−� qh

−m−n�x� �� t�dt (the minus comes from replacing
1
2�i by

i
2� ). Integration in x of the fiber trace then gives the desired identity (0.4).

We have shown

Theorem 1.4. C0�P� equals − 1
m
res�logP�, and this holds pointwise, in that

C0�P� =
∫
X
tr cn�x�dx = − 1

m
res�logP�� (1.25)

where, for each x, in local coordinates,

cn�x� =
∫
�n

qh
−m−n�x� ��−1�d−� = − 1

m

∫
���=1

b−n�x� ��d
−S��� (1.26)

Remark 1.5. In this application of Lemma 1.3, f��� t� = qh
−m−n�x� �� t� is not only

integrable at � = 0 but continuous there, for t �= 0. Then for any � ∈ Sn−1, f��� t� =
�t�−1−n/mf��t�−1/m��−1�, where f��t�−1/m��−1� → f�0�−1� for t → −�, assuring that
the integrals in (1.24) exist. We can then say that the identification of the
contributions from qh

−m−n�x� ��−1� and − 1
m
b−n�x� �� holds on each ray �s� � s ≥ 0�,

� ∈ Sn−1 (holds microlocally in this sense).

Remark 1.6. The bounds on the qh
−m−j (j < m+ n) and the remainder q′

−2m−n could
also be inferred from the fact that q has ‘regularity’ m, cf. the general rules for
regularity numbers of parameter-dependent symbols introduced in Grubb (1996),
instead of from the explicit formulas around (1.5). In fact, writing −� = �mei�, � ≥ 0
(on each relevant ray with argument �), we have that p�x� ��+ �mei� is parameter-
elliptic of order m and regularity m, with parametrix symbol q�x� �� �� �� of order
−m and regularity m, cf. Grubb (1996, Section 1.5, (2.1.13), Theorem 2.1.22). This
assures the desired estimates, as accounted for in Grubb (1996, Theorem 3.3.5),
and its proof. The proofs in Section 2 below could also be phrased in terms of
the calculus in Grubb (1996). We use it effectively in Sections 3–5 concerned with
boundary operators; some basic facts are recalled in the beginning of Section 3.
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2. The Trace Defect Formulas for Closed Manifolds

Let A be a classical pseudodifferential operator of order � ∈ �, and let P be as in
the preceding section; we now assume for convenience that m > n+ �.

It was shown in Grubb and Seeley (1995, Theorem 2.7) (m integer > 0)
and Loya (2001a), and Grubb and Hansen (2002) (m ∈ �+), that the kernel of
A�P− ��−1 calculated in local trivializations has an expansion on the diagonal,
implying a trace expansion by integration of the fiber trace in x:

K�A�P − ��−1� x� x� ∼∑
j≥0

cj�x��−��
�+n−j

m −1 +∑
k≥0

�c′k�x� log�−��+ c′′k �x���−��−k−1�

Tr�A�P − ��−1� ∼∑
j≥0

cj�−��
�+n−j

m −1 +∑
k≥0

�c′k log�−��+ c′′k ��−��−k−1
(2.1)

Here � → � on rays in an open subsector V of � containing �−. It is convenient to
assume that the operators are represented, via local coordinate systems, as a finite
sum of pieces acting separately in a system of disjoint open sets in �n (as e.g. in
Grubb, 2005, Section 1), so that we get the trace simply by integrating over �n.

The c′k�x� vanish when � 
 �. We shall define

cn+��x� = 0� cn+� = 0� if n+ � 
 �� (2.2)

then cn+��x� and cn+� have a meaning for any �. (We denote �0� 1� 2�    � = �.)
The coefficient of �−��−1 in (2.1) will be denoted C0�A� P�

C0�A� P� = c�+n + c′′0  (2.3)

Corresponding to (2.1), the generalized zeta function 	�A� P� s�, defined as Tr�AP−s�
for large Re s, has a meromorphic extension to � with poles at the points �j − n�/m,
with Laurent coefficients directly related to the coefficients in the expansion (2.1).
In particular, C0�A� P� equals the coefficient of s0 plus Tr�A�0�, cf. (1.4)ff.

It is well known that C0�A� P� is in general nonlocal in the sense that it depends
on the full structure of A, not just its homogeneous symbols. However, when A′ and
P ′ are another pair of similar operators, one can show that

C0�A� P�− C0�A� P ′� and C0��A�A′�� P� are local (2.4)

(depend on a finite set of strictly homogeneous symbol terms of A, A′, P and P ′);
in this sense, C0�A� P� is a quasi-trace on the classical �do’s A. C0�A� P� is called a
regularized trace or weighted trace by other authors. Explicit formulas for the trace
defects in (2.4) were shown by Okikiolu (1995), Kontsevich and Vishik (1995), and
Melrose and Nistor (1996):

C0�A� P�− C0�A� P ′� = − 1
m
res�A�logP − logP ′��� (2.5)

C0��A�A′�� P� = − 1
m
res�A�A′� logP�� (2.6)

Here Okikiolu (1995) proved (2.5) by an exact symbol calculation passing via the
symbols of the complex powers P−s and �P ′�−s, and Kontsevich and Vishik (1995)
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proved it by use of their calculus of weakly holomorphic �do families. Melrose and
Nistor (1996) showed both (2.5) and (2.6) on the basis of the theorem of Guillemin
on holomorphic families (Guillemin, 1985) (we have reconstructed a proof based on
this idea in Grubb, 2005, pf. of Proposition 3.1). In all these cases, the logarithm
logP comes up as a result of a differentiation of P−s with respect to s.

Our present aim is to show how the formulas (2.5)–(2.6) can be found directly
from the knowledge of the resolvent expression A�P − ��−1, without worrying about
the construction of P−s. (This is important for generalizations to other types of
manifolds.) We show that in fact the full operator log P plays a very minor role;
its symbol comes in only because of the jump across the negative real axis as in
Lemma 1.2.

Let P and P ′ be auxiliary operators of order m with resolvents Q� = �P − ��−1,
Q′

� = �P ′ − ��−1 (symbols q, respectively q′), and consider the symbol s�x� �� �� of

S� = A�Q� −Q′
�� (2.7)

in local coordinates. Much as in Lemma 1.1, we can show

Proposition 2.1. The symbol s of S� = A�Q� −Q′
�� has an expansion in strictly

homogeneous terms plus a remainder:

s�x� �� �� = ∑
0≤j<�+m+n

sh−m−j�x� �� ��+ s′−2m−n�x� �� ��� (2.8)

where the sh�−m−j and s′−2m−n are integrable in � for � �= 0, and
∫
s′−2m−nd

−� is O����−2+��,
any � > 0. Consequently, K�S�� x� x� and the trace Tr S� have the expansions

K�S�� x� x� =
∑

j<�+m+n

s̃j�x��−��
n+�−j

m −1 + O����−2+���

Tr S� =
∑

j<�+m+n

s̃j�−��
n+�−j

m −1 + O����−2+��� where

s̃j�x� =
∫
�n

sh−m−j�x� ��−1�d−�� s̃j =
∫

tr s̃j�x�dx� for j < � +m+ n

(2.9)

In particular, when n+ � 
 �, there is no term with �−��−1 in the expansion of
Tr S�, and

C0�A� P�− C0�A� P ′� = 0 (2.10)

When n+ � ∈ �, the coefficient of �−��−1 in Tr S� equals

C0�A� P�− C0�A� P ′� =
∫

tr s̃n+��x�dx (2.11)

Proof. We use again the analysis of the resolvent symbol recalled in Section 1.
The composition with A in front leads to terms of the form (1.5), where the �-
independent coefficients now furthermore contain information from the symbol a
of A. Consider

q − q′ ∼ q−m�x� �� ��− q′
−m�x� �� ��+

∑
j≥1

�q−m−j�x� �� ��− q′
−m−j�x� �� ���
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All the terms in the sum over j ≥ 1 are finite sums of expressions as in (1.5),
containing at least two principal resolvent factors q−m, respectively q′

−m. Moreover,

q−m − q′
−m = �pm − ��−1 − �p′

m − ��−1 = �pm − ��−1�p′
m − pm��p

′
m − ��−1

= q−m�p
′
m − pm�q

′
−m�

showing that it also contains two principal resolvent factors (q−m and q′
−m) together

with a �-independent factor. Then an application of the standard composition rule
gives that the homogeneous terms in the symbol s = a � �q − q′� of S� are finite sums
of expressions that are a slightly generalized version of (1.5), where some of the
factors q−m may be replaced by q′

−m. The important observation is that there are at
least two such factors in each term. Then, taking the order and homogeneity degrees
into account, we see that s�x� �� �� ∼∑

j≥0 s�−m−j�x� �� �� satisfies

�sh�−m−j� ≤ c����m + ����−2����+m−j�

�sh�−m−j − s�−m−j� ≤ c���−2�1+ ����+m−j�� supported in ��� ≤ 1� any j� (2.12)∣∣∣∣s −∑
j<N

s�−m−j

∣∣∣∣ ≤ c�1+ ���m + ����−2�1+ �����+m−N � any N

For j < � +m+ n, the first two expressions are integrable in �. The remainder
s −∑

j<�+m+n s�−m−j is seen as in the treatment of (1.11) to be O��1+ ����−2+��1+
����−n−�′� with �′ > 0 and � arbitrarily small, here � can be taken = 0 if � +m 
 �.
This shows the first part of the lemma, and the second part follows by integration,
first in � and then (for the fiber trace) in x.

For the third part, observe that there is no term c�−��−1 in (2.9) when
n+ � 
 �. When n+ � ∈ �, the coefficient of �−��−1 is found from (2.9) for
j = n+ �. �

Note that all the indicated coefficients are local, and that there is no
�−��−1 log�−�� term as in (2.1).

We can now show (2.5) in a precise form, by a calculation as in Section 1. For
this we consider

F = A�logP − logP ′�

Since the logarithmic terms in the symbols of log P and logP ′ cancel out (cf. (1.14)),
it is a classical �do of order �; we denote its symbol by f�x� ��. When we define F
by the formula

F = A�logP − logP ′� = A lim
s→0

i

2�

∫
�
�−s log ���P − ��−1 − �P ′ − ��−1�d�

= i

2�

∫
�
log �S� d�� (2.13)

then in local coordinates, its symbol is found termwise from the symbol of S� by the
formulas

f�−j�x� �� =
i

2�

∫
�′
log �s�−m−j�x� �� ��d�� (2.14)
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where �′ is a closed curve in �\�− encircling the eigenvalues of pm and p′
m. This

follows from the calculations of the terms in log P and logP ′ described e.g., in
Okikiolu (1995), and the composition rule for �do’s.

When n+ � 
 �, there is no term of degree −n, so the noncommutative residue
of F is zero. When n+ � ∈ �, it is determined by

resF =
∫
X

∫
���=1

tr f−n�x� ��d
−S���dx (2.15)

Theorem 2.2. Let P and P ′ be classical �do’s of order m > 0 and such that the
principal symbol has no eigenvalues on �−, let A be a classical �do of order �, and
let S� = A��P − ��−1 − �P ′ − ��−1� and F = A�logP − logP ′� with symbols s resp. f .
Assume that m > n+ �.

Consider the case n+ � ∈ �. The formula (2.5) is valid, and it holds pointwise,
in that

C0�A� P�− C0�A� P ′� =
∫
X
tr s̃n+��x�dx = − 1

m
res�A�logP − logP ′�� (2.16)

where, for each x, in local coordinates,

s̃n+��x� =
∫
�n

sh−m−n�x� ��−1�d−� = − 1
m

∫
���=1

f−n�x� ��d
−S��� (2.17)

When n+ � 
 �, the identities hold trivially (with zero values everywhere).

Proof. The proof consists of rewriting
∫
�n s

h
−m−n�x� ��−1�d−� in the same way as we

did with the integral of qh
−m−n in Section 1:∫

�n
sh−m−n�x� ��−1�d−� = − 1

m

∫
���=1

i

2�

∫
�′
log �sh−m−n�x� �� ��d�d

−S���

= − 1
m

∫
���=1

f−n�x� ��d
−S���� (2.18)

where the first equation follows from Lemmas 1.2 and 1.3, and the second equation
follows from (2.14). �

There is a related proof of the other trace defect formula, (2.6). Here we
consider A of order �, A′ of order �′ and P as before, now assuming for convenience
that � + �′ +m > n.

Here we first observe that by cyclic permutation,

Tr��A�A′�Q�� = Tr�AA′Q��− Tr�AQ�A
′� = Tr�A�A′� Q���� where

A�A′� Q�� = A�Q��P − ��A′Q� −Q�A
′�P − ��Q�� = AQ��P�A

′�Q�
(2.19)

Let

T� = �A�A′�Q�� (2.20)

R� = A�A′� Q�� = AQ��P�A
′�Q� (2.21)
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The traces of T� and R� are identical, and the operators both have order � + �′ −m.
It is seen from the second formula for R� that the homogeneous terms r�+�′−m−j in
its symbol r are finite sums of terms of the form (1.5) with at least two factors q−m,
so that the strictly homogeneous symbols rh�+�′−m−j are integrable in � at � = 0 for
j < � + �′ +m+ n.

We then find, very similarly to the study of S�, that the diagonal kernel of R�

has an expansion

K�R�� x� x� =
∑

j<�+�′+m+n

r̃j�x��−��
n+�+�′−j

m −1 + O����−2+��� (2.22)

where

r̃j�x� =
∫
�n

rh�+�′−m−j�x� ��−1�d−� (2.23)

When n+ � + �′ 
 �, there is no term c�−��−1 in (2.22), hence no such term in the
trace expansion of R�. Since this is the same as that of T�, the term is also missing
from Tr T�, so C0��A�A′�� P� = 0. When n+ � + �′ ∈ �, the coefficient of �−��−1 in
(2.22) equals (2.23) with j = n+ � + �′, i.e.,

r̃n+�+�′�x� =
∫
�n

rh−m−n�x� ��−1�d−� (2.24)

Then the coefficient of �−��−1 in the expansion of TrR� equals the integral in x of
the fiber trace of this (collecting the contributions from local coordinate systems),
and since Tr T� has the same expansion, we can conclude that

C0��A�A′�� P� =
∫
X
tr r̃n+�+�′�x�dx (2.25)

On the other hand, we consider H = A�A′� logP�, observing that it is a classical
�do of order � + �′ in view of (1.14). Here,

H = A�A′ logP − logPA′� = A lim
s→0

i

2�

∫
�
�−s log ��A′Q� −Q�A

′�d�

= i

2�

∫
�
log �R� d� (2.26)

The symbol h�x� �� is found termwise in local coordinates from the symbol of R� by
the formulas

h�+�′−j�x� �� =
i

2�

∫
�′
log � r�+�′−m−j�x� �� ��d�� (2.27)

where �′ is a closed curve in �\�− encircling the eigenvalues of pm.
When n+ � + �′ 
 �, there is no term of degree −n, so the noncommutative

residue of H is zero. When n+ � + �′ ∈ �, it is determined by

resH =
∫
X

∫
���=1

tr h−n�x� ��d
−S���dx (2.28)
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We then get

Theorem 2.3. With P and A as in Theorem 2.2, let A′ be a classical �do of order
�′, and let R� = A�A′� �P − ��−1� and H = A�A′� logP� with symbols r resp. h. Assume
that m > n+ � + �′.

Let n+ � + �′ ∈ �. The formula (2.6) is valid, and it holds pointwise, in that

C0��A�A′�� P� =
∫
X
tr r̃n+�+�′�x�dx = − 1

m
res�A�A′� logP�� (2.29)

where, for each x, in local coordinates,

r̃n+�+�′�x� =
∫
�n

rh−m−n�x� ��−1�d−� = − 1
m

∫
���=1

h−n�x� ��d
−S��� (2.30)

When n+ � + �′ 
 �, the identities hold trivially (with zero values everywhere).

Proof. The identity follows from (2.27) together with Lemmas 1.2 and 1.3, in the
same way as in Theorem 2.2. �

Remark 2.4. The observation in Remark 1.5 on the microlocal identification
extends to the formulas in Theorems 2.2 and 2.3.

3. The First Trace Defect Formula for Manifolds with Boundary

We shall now discuss extensions of the above results to pseudodifferential boundary
operatos (�dbo’s) of Boutet de Monvel’s type in the case of manifolds with
boundary.

Consider a compact n-dimensional C� manifold X with boundary 
X = X′, and
a hermitian C� vector bundle E over X. Let A = P+ +G be an operator of order
� belonging to the calculus of Boutet de Monvel (1971), acting on sections of E.
Here P is a classical �do satisfying the transmission condition at 
X and G is a
singular Green operator (s.g.o.) of class zero with polyhomogeneous symbol. (More
details can be found e.g., in Boutet de Monvel, 1971; Grubb, 1996). When P �= 0,
we must assume � ∈ � because of the requirements of the transmission condition;
when P = 0, it is straightforward to allow � ∈ �. For the results in Section 4, P is
moreover assumed to be of normal order ≤ 0 (its symbol is bounded in �n, the
boundary conormal variable).

As auxiliary operator we take an elliptic differential operator P1 of order m > 0
whose principal symbol has no eigenvalues on �−; so �p1�m�x� ��− ��−1 is defined
for � in a sector V around �−, for all x, all � with ��� + ��� �= 0. P1 can be assumed
to be given on a larger boundaryless n-dimensional compact manifold X̃ in which X
is smoothly imbedded, acting in a bundle Ẽ extending E and with the same ellipticity
properties there. We set

Q� = �P1 − ��−1 (3.1)

on X̃; it is defined except for a discrete subset of �; in particular, it exists for large
� in the sector V .
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For the case where m = 2 and P1 is strongly elliptic with scalar principal
symbol, defining the Dirichlet realization P1�D, we showed in a joint work with
Schrohe (Grubb and Schrohe, 2001) that there is a resolvent trace expansion, when
N > �� + n�/2:

Tr�A�P1�D − ��−N � ∼∑
j≥0

c̃j�−��
n+�−j

2 −N +∑
k≥0

�c̃′k log�−��+ c̃′′k ��−��−
k
2−N � (3.2)

valid for � → � in V . It was used there to show that the coefficient c̃′0 is
proportional to the noncommutative residue of A, as introduced by Fedosov et al.
(1996).

The proofs in Grubb and Schrohe (2001) were formulated only for � ∈ �; but
for more general � ∈ �, they carry over without difficulty to the case A = G. In
particular, if � ∈ �\�, the coefficients c̃′k vanish (since the �do’s on the boundary
obtained by reduction of A�P1�D − ��−N are polyhomogeneous of noninteger order).
The identification of c̃′0 with a noncommutative residue then holds with

res�G� = 0� when � 
 � (3.3)

As usual, we define

C0�A� P1�D� = c̃n+� + c̃′′0 �

where c̃n+� is defined to be zero if n+ � 
 �. By a precise analysis of the terms
entering in trace expansions like (3.2), we showed in Grubb and Schrohe (2004)
that the functional C0�A� P1�D� has quasi-trace properties as in (2.4); moreover, we
singled out some cases where it has a value independent of the auxiliary operator
P1 and vanishes on commutators, so that it can be regarded as a canonical trace in
a similar sense as that of Kontsevich and Vishik (1995).

It is shown in Grubb and Schrohe (2004) that the singular Green part G
�N�
�

of �P1�D − ��−N = �QN
� �+ +G

�N�
� contributes only locally to C0�A� P1�D�. It has an

interest to consider the composition A�QN
� �+ alone; it likewise has an expansion

Tr�A�QN
� �+� ∼

∑
j≥0

ãj�−��
n+�−j

2 −N +∑
k≥0

�ã′
k log�−��+ ã′′

k��−��−
k
2−N � (3.4)

where ã′
0 = 1

m
res�A�, and the coefficient of �−��−N ,

C0�A� P1�+� = ãn+� + ã′′
0 (3.5)

is a quasi-trace on the �dbo’s (by the results of Grubb and Schrohe, 2004).
One may remark that in an associated zeta function formulation, the

consideration of �QN
� �+ alone corresponds to considering compositions with �P−s

1 �+
alone, where �P−s

1 �+ is another family of operators than �P1�D�
−s; both families have

the property that they equal I when s = 0.
But actually these complex powers lie outside the Boutet de Monvel calculus

(when s 
 �). There is a description in Grubb (1996, Section 4.4) of negative powers
(Re s > 0), showing how the s.g.o. part satisfies some but not all the standard
estimates. But they have not, to our knowledge, been successfully described as
a holomorphic family in some sense where results like that of Guillemin (1985,
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Theorem 7.1), for closed manifolds could be applied to generalize the trace defect
formulas (2.5)–(2.6). (The use of Guillemin’s result is explained e.g., in Grubb, 2005,
pf. of Proposition 3.1.)

Even if one avoids dealing with complex powers, there is still a problem
in generalizing the formulas (2.5)–(2.6) that logarithms of �dbo’s have not been
studied, and do not in general belong to the Boutet de Monvel calculus. However,
�logP1 − logP2�+ does belong there when P1 and P2 are two choices of the auxiliary
elliptic operator (of order m), thanks to the cancellation of logarithms resulting from
(1.14). But �A′� �logP1�+� does not so, except in trivial cases.

We shall show a generalization of (2.5) in this section, and treat (2.6) in the
following section.

The papers Grubb and Schrohe (2001, 2004) used the refined calculus of
Grubb and Seeley (1995), which allows obtaining complete trace expansions (with
remainders O��−M�, any M).

Presently, we shall use the cruder (but more generally applicable) calculus
from Grubb (1996) to achieve our result, building also on the insight gained in
Sections 1 and 2. Notably, we are avoiding some technical challenges by restricting
the attention to the trace of AQ��+, without an s.g.o. term AG� coming from a
boundary condition on P1.

An advantage is that we can allow rather general auxiliary operators P1 of
higher order, with no conditions on root multiplicities in the principal symbol.
(In Grubb and Schrohe, 2001, 2004, the order 2 and scalarity assured well separated
roots in �n, one in each complex half-plane.) On the other hand, the theory we
presently use gives trace expansions with a finite number of terms only (plus a
remainder); but this turns out to be just sufficient for studying the trace defect
formulas.

Let us first recall some elements of the theory. As usual, �� stands for
�1+ ���2� 1

2 ; moreover, it is convenient to denote ���� �� = ��� � and use the sign ≤̇
as shorthand for “≤ a constant times”.

A �do symbol s�x� �� �� on �n depending on the parameter � ∈ �+ is said
to be of order d and regularity � (d� � ∈ �) with uniform estimates (Grubb, 1996,
Definition 2.1.1), when it satifies, for all indices �� �� j

�D�
xD

�
�D

j
�s�x� �� ��� ≤ c����−��� + ��� ��−������� �d−�−j (3.6)

for �x� �� �� ∈ �2n ×�+, with constants c depending on the indices. It is then
said to be polyhomogeneous, when it furthermore has an expansion s�x� �� �� ∼∑

l∈� sd−l�x� �� �� in terms sd−l that are homogeneous in ��� �� of degree d − l for
��� ≥ 1, such that s −∑

l<M sd−l is of order d −M and regularity �−M , for all
M ∈ �. Note that in (3.6), ���−��� can be left out when ��� ≤ �, and ��� ��−��� can
be left out when ��� ≥ �.

For such symbols we have

Lemma 3.1. Let s�x� �� �� be polyhomogeneous of order d and regularity �, d and
� ∈ �. Write � = �′ + � with �′ integer and � ∈ �0� 1�. Then

�sd−l�x� �� ��� ≤̇ ��� �d−l for l ≤ �� with

�shd−l�x� �� ��� ≤̇ ���� ���d−l� (3.7)

�sd−l − shd−l� ≤̇ ��� �d−� for ���� ��� ≥ c > 0�
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and the next terms with l ≤ �+ n are estimated by

�sd−l�x� �� ��� ≤̇ ���−l��� �d−�� for � < l < �+ n� with

�shd−l�x� �� ��� ≤̇ ����−l���� ���d−��
(3.8)

so that altogether

s�x� �� �� = shd�x� �� ��+ · · · + shd−�′−n�x� �� ��+ s′�x� �� ��� (3.9)

where s′ = s′′ + s′′′, satisfying for � ≥ c0 > 0,

�s′′� ≤̇ ����−n���d−������ with � ∈ C�
0 ��n�� ���� = 1 for ��� ≤ 1�

�s′′′� ≤̇ ���−n−1��� �d−� (3.10)

Proof. The proof, given for particular choices of d and � in Grubb (1996, (3.3.35)ff.
and (3.3.69)ff.), extends to the general situation. The first two lines in (3.7) follow
readily from the definitions. The third line is less obvious; it is shown in Grubb
(1996, Lemma 2.1.9 2�) (by integration of an estimate of a high enough �-derivative).
(3.8) follows easily from the definitions (one may consult Grubb, 1996, Lemma
2.1.9 1�). Then (3.9) follows in view of (3.10), where s′′ collects the differences
between homogeneous and strictly homogeneous symbols and s′′′ is the remainder
s −∑

l≤�′+n sd−l. �

As in Grubb (1996, Theorem 3.3.5 and 3.3.10), we can use the lemma to get a
diagonal kernel expansion with n+ �′ precise terms.

Lemma 3.2. When d < −n in Lemma 3.1, the kernel K�S�� x� y� of S� =
OP�s�x� �� ��� is continuous and has an expansion on the diagonal

K�S�� x� x� =
∑

0≤l<n+�

s̃l�x��
n+d−l + s̃′�x� ��� (3.11)

here

s̃l�x� =
∫
�n

shd−l�x� �� 1�d
−�� (3.12)

and s̃′�x� �� is O��d−�+�� for � → �, any � > 0. Here if � 
 �, � can be left out.

Proof. This follows by integration of (3.9) in �. For the terms shd−l we use the
homogeneity, replacing � by � = �−1�∫

�n
shd−l�x� �� ��d

−� = �d−l+n
∫
�n

shd−l�x� �� 1�d
−��

and for s′ we use the estimates (3.10) (cf. Grubb, 1996, Lemma 3.3.6). �

Remark 3.3. The symbol spaces Sr�a
phg (a ∈ �) defined in Grubb and Seeley (1995)

are somewhat more refined; they fit into the regularity classes as follows. Let
s�x� �� �� belong to Sr�a

phg ∩ Sr+a�0
phg , where r + a < −n. Then s is of order r + a, and
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f�x� �� �� = �−as�x� �� �� satisfies the requirements (3.6), except those concerning
�-derivatives, for being of order r and regularity r. The fact that r + a < −n
makes the symbol integrable in �; the information on f assures that the strictly
homogeneous terms fh

r−l are integrable at � = 0 for l < r + n and the remainder
f −∑

l<n+r f
h
r−l is integrable at � = 0 (as in Lemma 3.1). Then we get the diagonal

expansion of the kernel of S� = OP�s� as in Lemma 3.2,

K�S�� x� x� = �a
∑

0≤l<n+r

s̃l�x��
n+r−l + s̃′�x� ��� s̃′�x� �� = O��a+��� (3.13)

for � → �, with locally determined coefficients s̃l. What the calculus of Grubb and
Seeley (1995) moreover gives for the symbols in Sr�a

phg ∩ Sr+a�0
phg is a full expansion of

the remainder,

s̃′�x� �� ∼ �a

[ ∑
l≥n+r

s̃l�x��
n+r−l +∑

k≥0

�s̃′k�x� log � + s̃′′k �x���
−k

]
�

with local coefficients s̃l�x�, s̃
′
k�x� and global coefficients s̃′′k �x�. Some of the s̃′′k �x�

may belong to the same powers as coefficients s̃l�x�, so the values of a and r are
important in the discussion of which terms are local.

Besides �do’s, we must now deal with singular Green operators. Singular Green
symbol-kernels g̃�x′� xn� yn� �

′� �� of order d (degree d − 1), regularity � and class
zero satisfy estimates

�D�
x′D

�
�′D

j
�g̃�x

′� xn� yn� �
′� ���L2��+×�+� ≤̇ ���′�−��� + ��′� ��−������′� �d−�−j� (3.14)

along with further estimates for xk
nD

k′
xn
ym
n D

m′
yn
g̃ (k� k′�m�m′ ∈ �) (cf. Grubb, 1996,

Section 2.3), and with a suitable definition of polyhomogeneity.
Here is the following rule for normal traces of s.g.o. symbol-kernels.

Lemma 3.4. When g̃�x′� xn� yn� �
′� �� is a singular Green symbol-kernel of order d,

regularity � and class zero, then the normal trace

s�x′� �′� �� = trn g̃ =
∫ �

0
g̃�x′� xn� xn� �

′� ��dxn (3.15)

is a �do symbol on �n−1 of order d and regularity �− 1
4 , polyhomogeneous if g̃ is so.

Proof. This is shown in Grubb (1996, pf. of Theorem 3.3.9), for � ∈ � ∪ ��+ 1
2 �;

s is denoted ˜̃g there. The first part of the proof extends to all real � ≥ 1 or ≤ 0; the loss
of 1

4 stems from the negative cases (which occur in symbol terms of low order). The
last part of the proof, showing how � = 1

2 is included by use of a derivative, extends
to general � ∈�0� 1�. (The considerations in Grubb (1996) were aimed at negative
integer values of d, but all the arguments work with arbitrary d ∈ � also.) �

Combining Lemma 3.4 with Lemma 3.2 in dimension n− 1, we find for s.g.o.’s
of order d < 1− n and regularity � the following lemma.

Lemma 3.5. Let G� be a �-dependent polyhomogeneous singular Green operator on
�

n

+ of order d < 1− n and regularity �. The normal trace S� = trn G� is a �do on
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�n−1 of order d and regularity �− 1
4 , whose kernel on the diagonal has an expansion

in powers of �:

K�S�� x
′� x′� = ∑

0≤l<n−1+�− 1
4

s̃l�x
′��n−1+d−l + O��d−�+ 1

4 �+���� (3.16)

with � = 0 if �− 1
4 
 �, any small � > 0 if �− 1

4 ∈ �. Here

s̃l�x
′� =

∫
�n−1

shd−l�x
′� �′� 1�d−�′ (3.17)

When the kernel has compact �x′� y′�-support, G� is trace-class and the trace has
an expansion with coefficients s̃l =

∫
tr s̃l�x

′�dx′:

TrG� = ∑
0≤l<n−1+�− 1

4

s̃l�
n−1+d−l + O��d−�+ 1

4 �+���� (3.18)

with � as above.

Proof. By Lemma 3.4, the operator family S� = trn G� satisfies the hypotheses of
Lemma 3.2 in n− 1 dimensions with � replaced by �− 1

4 , this implies (3.16) with
(3.17). Then (3.18) follows by integration in x′. �

Now let us turn to the specific operators we want to study. Consider A=P+ +G
of order � ∈ � together with an auxiliary elliptic differential operator P1 of order
m > n+ �. Recall that if � ∈ �\�, we have P = 0.

The resolvent Q1�� = �P1 − ��−1 depends on � running in a sector V around
�− in �, where it is defined for large �. We consider � on each ray there, writing
−� = �mei�, � ≥ 0. Since P1 is a differential operator, Q1�� is of regularity +�.
By Grubb (1996, (2.1.13), (2.3.54)), A = P+ +G enters in the parameter-dependent
calculus as an operator of order and regularity � (since G is of class zero). Then
the composed operator AQ1���+ is of order � −m and regularity �, in view of
Grubb (1996, Theorem 2.7.7, Corollary 2.7.8) (no loss of � regularity thanks to the
mentioned theorem).

In the following, we work in a localized situation, as explained e.g., in Grubb
and Schrohe (2004, after (3.11)).

For the �do PQ1�� we already have a diagonal kernel expansion (2.1) pointwise
for x ∈ X̃; integration of the fiber trace over X gives the trace expansion

Tr��PQ1���+� =
∑
l≥0

cl�+�−��
�+n−l

m −1 +∑
k≥0

�c′k�+ log�−��+ c′′k�+��−��−k−1 (3.19)

Lemma 3.5 applied to the singular Green part G� = AQ1���+ − �PQ1���+ gives the
expansion

TrG� =
∑

0≤l<n−1+�− 1
4

bl�−��
n−1+�−l

m −1 + O��−1+ 1
4m �+���

= ∑
1≤j<n+�− 1

4

b′
j�−��

n+�−j
m −1 + O��−1+ 1

4m �+���� (3.20)
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with b′
j = bj−1; � equals zero when � − 1

4 
 �, and can be any small positive number
when � − 1

4 ∈ �. Here one first shows the expansion on each ray, noting that for �
on the ray �− we get (3.20); then the holomorphy assures that the expansion is the
same on the other rays (as in Grubb and Seeley, 1995, Lemma 2.3). When � 
 �,
G� = AQ1���+, so (3.20) shows its trace expansion. When � ∈ �, addition of (3.19)
and (3.20) gives

Tr�AQ1���+� =
∑

0≤l<n+�

cl�−��
n+�−l

m −1 + O��−1+ 1
4m � (3.21)

This expansion does not show the appearance of a term c�−��−1. We shall
obtain that by proving two things:

1) When P1 is replaced by another auxiliary operator P2 of order m, then the
difference of the traces Tr�AQ1���+�− Tr�AQ2���+� has a better expansion,

Tr�A�Q1�� −Q2���+� =
∑

0≤j<n+�+ 1
4

dj�−��
n+�−j

m −1 + O��−1− 1
4m �+���� (3.22)

with � = 0 if � − 1
4 
 �.

2) There exist particular choices of P1, where one has a better expansion than
(3.21):

Tr�AQ1���+� =
∑

0≤j<n+�+ 1
4

cj�−��
n+�−j

m −1 + �c′0 log�−��+ c′′0��−��−1 + O��−1− 1
4m �+����

(3.23)

with � = 0 if � − 1
4 
 �.

Then an expansion (3.23) is obtained for general choices of P1 by use of (3.22).
For point 1) in this program, let us denote

�� = Q1�� −Q2��� with symbol 	�x� �� �� (3.24)

Then we can write, since A = P+ +G,

A�Q1�� −Q2���+ = A���+ = �P���+ + ��� with

�� = −G+�P�G−����+G���+
(3.25)

The last identity refers to a localized situation. In �n, G+�P� = r+Pe−J and
G−�P� = Jr−Pe+, where e± denote extension by zero from �n

± to �n, r± denote
restriction from �n to �n

±, and J maps u�x′� xn� to u�x′�−xn�, cf. Grubb (1996,
p. 252 and (A.32)). For the present operators, P+���+ = �P���+ −G+�P�G−����.

The desired formula for the �do term can be found pointwise in x ∈ X̃, by use of
Theorem 2.2, and then integrated over X. It is the singular Green term that requires
a new effort.

Theorem 3.6. Let A = P+ +G, of order � ∈ � with G of class zero, assuming P = 0 if
� 
 �. Let P1 and P2 be auxiliary elliptic differential operators of order m, as described
in the beginning of this section, with m > n+ �.
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The singular Green part �� of A�Q1�� −Q2���+ is of order � −m, class zero and
regularity � + 1

2 . Consequently, in local coordinates, its normal trace �� = trn �� is a
�do on �n−1 of order � −m and regularity � + 1

4 . Denoting its symbol 
�x′� �′� �� ∼∑
l≥0 
�−m−l�x

′� �′� ��, we have the trace expansion

Tr�� =
∑

1≤j<n+�+ 1
4

dj �−��
n+�−j

m −1 + O��−1− 1
4m �+���� (3.26)

with � = 0 if � − 1
4 
 �, � > 0 if � − 1

4 ∈ �. Here

dj = 
̃j−1 =
∫

tr 
̃j−1�x
′�dx′� where 
̃l�x

′� =
∫
�n−1


h
�−m−l�x

′� �′�−1�d−�′ (3.27)

Proof. In a localized situation, �� is the sum of the operators −G+�P�G−���� and
G���+. We first study G+�P�G−����.

We have from Section 2 (where the notation P�Q�� P
′� Q′

� was used for what
we now call P1� Q1��� P2� Q2��) that the symbol 	 of �� in (3.24) has an expansion∑

j∈� 	−m−j in homogeneous symbols

	 ∼ 	−m +∑
j≥1

	−m−j� 	−m−j�x� �� �� = q1�−m−j�x� �� ��− q2�−m−j�x� �� ���

where all the terms in the sum over j ≥ 1 are finite sums of expressions as in
(1.5), and

q1�−m − q2�−m = �p1�m − ��−1 − �p2�m − ��−1 = q1�−m�p2�m − p1�m�q2�−m�

so all the homogeneous terms 	−m−j are sums of terms of the form generalizing (1.5)
with at least two factors �p1�m − ��−1 or �p2�m − ��−1. Since P1 and P2 are differential
operators, we need not smooth out around � = 0, but can take the exact symbols
(for � �= 0).

When p1�m and p2�m are scalar (functions times the identity matrix), the analysis
is a little simpler than in the general matrix case, so let us describe this case first.
Here the factors qi�−m = �pi�m − ��−1 can be collected to the right, so in fact the terms
in 	 are of the form

f�x� �� �� = f0�x� ��q
�1
1�−mq

�2
2�−m� (3.28)

with �1 + �2 ≥ 2 and f0 polynomial in �. Then for each j ≥ 0, 	−m−j is a sum of
terms of the form r ′�x� ��q′′�x� �� ��, where r ′ is the symbol of a differential operator
of order m independent of � and q′′ is of order −2m− j, likewise with structure as
in (3.28), smooth in all variables (for ��� + ��� �= 0). The operator OP�r ′q′′� can be
further decomposed into a finite sum of terms RQ′ = OP�r�OP�q′�, where r and q′

have a similar structure as r ′ and q′′ (we need this modification to get a composition
of two operators instead of a product of symbols). Now we treat each term

G+�P�G−�RQ′�
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separately. We are working in �n, where the manifold corresponds to �
n

+, and can
assume that the symbols of P, R and Q′ are defined on �n. Here we write

G−�RQ′� = Jr−RQ′e+ = Jr−R�e+r+ + e−r−�Q′e+

= Jr−Re−JJr−Q′e+ = R+G
−�Q′�� (3.29)

where we have used that r−Re+ = 0 since R is a differential operator, and denoted
JRJ = R, again a differential operator. Thus G+�P�G−�RQ′� = G+�P�R+G−�Q′�,
where G+�P�R+ is a �-independent s.g.o. of order � +m and class m. It enters in the
parameter-dependent calculus as an operator of order � +m, class m and regularity
� + 1

2 , cf. Grubb (1996, (2.3.55)). (It is the presence of the normal derivatives of
order ≤ m in the differential operator R that brings the regularity down to � + 1

2 ,
not � +m as in the considerations for closed manifolds, but the gain of 1

2 will be
just enough to serve our purposes.) Composing with G−�Q′� of order −2m− j, class
zero and regularity +�, we find that

G+�P�G−�RQ′� = G+�P�R+G
−�Q′� is of order � −m− j,

class zero, and regularity � + 1
2
 (3.30)

Collecting the terms (finitely many for each order) we find that the
homogeneous terms in 	 contribute to an s.g.o. of order � −m, class zero and
regularity � + 1

2 . Since the remainder of 	 after subtraction of N homogeneous terms
is O���� �−m−N−1�, its contribution will, when N gets large, reach arbitrary low
orders and estimates O����−N ′

� for any N ′, so it complies with the regularity � + 1
2 .

There is a very similar proof for G���+. Again we use that each OP�	−m−j� can
be written as a finite sum of terms RQ′, where R is a differential operator of order
m and Q′ has symbol structure as in (3.28) and order −2m− j. Now for each term,
since G+�R� = 0,

G�RQ′�+ = GR+Q
′
+�

where GR+ is a parameter-independent s.g.o. of order � +m− j and class m, hence
has regularity � + 1

2 when taken into the parameter-dependent theory. Then GR+Q′
+

is of order � −m− j, class zero, and regularity � + 1
2 . Collecting the terms and

treating remainders as above, we get that G���+ has order � −m, class zero and
regularity � + 1

2 .
This shows the asserted symbol properties of ��. Its normal trace �� is of

order � −m and regularity � + 1
4 by Lemma 3.4. By Lemma 3.5, its kernel has an

expansion on the diagonal

K���� x
′� x′� = ∑

0≤l≤n−1+�


̃l�x
′��−��

n−1+�−m−l
m + O

(
�

�−m−�− 1
4 �+�′′�

m

)
= ∑

0≤l≤n−1+�


̃l�x
′��−��

n−1+�−l
m −1 + O��−1− 1

4m �+���� (3.31)

with � = 0, unless � + 1
4 ∈ �, and 
̃l�x

′� defined as in (3.27). In the proof, the lemma
is applied for each ray; the ray �− gives the value (3.27) for the coefficients, and the
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holomorphy assures that their values are the same on the other rays (as in Grubb
and Seeley, 1995, Lemma 2.3). Finally, integration in x′ of the fiber trace then gives

Tr�n+ �� = Tr�n−1 �� =
∑

0≤l<n−1+�+ 1
4


̃l �−��
n−1+�−l

m −1 + O��−1− 1
4m �+���

= ∑
1≤j<n+�+ 1

4

dj �−��
n+�−j

m −1 + O��−1− 1
4m �+���� (3.32)

with dj defined as in (3.27). This ends the proof when p1�m, p2�m are scalar.
It remains to explain how the case where the pi�m are general matrices is treated.

Consider the entries in the matrix 	−m−j = �	−m−j�k�l�k�l=1��dimE . Since the entries in
the matrices �pi�m�x� ��− ��−1 are rational functions of ��� �� (with C� coefficients
in x) that are homogeneous of degree −m in ��� ���1/m� on each ray in V , hence
O�����m + ����−1�, the entries in 	−m−j have the form of sums of products

f�x� �� �� = g1�x� ���1�x� �� ��g2�x� ���2�x� �� �� · · · gM�x� ���M�x� �� ��gM+1�x� ���

with homogeneous polynomials g1�    � gM in � independent of � and rational
functions �1�    � �M in ��� �� that are homogeneous of degree −m in ��� ���1/m�
on each ray in V ; here M ≥ 2, and the total degree in ��� ���1/m� is −m− j.
In each entry, the functions gi can be moved up front so that we get
f�x� �� �� = g1    gM+1 �1    �M , with a structure similar to (3.28). The compositions
G+�P�G−���� and G���+ are now worked out for each vector component as sums of
compositions of the form OPG�g�G−�OP�f��, respectively OPG�g�OP�f�+, which
can be analyzed just as described above after (3.28). This gives a large but finite
sum of terms from each homogeneous terms in 	, which sum up to give expansions
as above. �

Observe a direct consequence.

Corollary 3.7. Assumptions as in Theorem 3.6.
The trace of A�Q1�� −Q2���+ has an expansion (3.22).

Proof. If � 
 �, there is no �do part, and the expansion is (3.26). If � ∈ �, the �do
part has an expansion

Tr��P�Q1�� −Q2����+� =
∑

0≤j≤n+�

cj�+�−��
n+�−j

m −1 + O��−2+�′� (3.33)

(any �′ > 0), found from (2.9) by taking fiber traces and integrating over X. When
we add this to (3.26), we find (3.22). �

Now we turn to point 2) in the program for showing (3.23) in general.

Lemma 3.8. Let P0 be selfadjoint positive of order 2 with scalar principal symbol, and
let A = P+ +G be as above. For k so large that 2k > n+ �, there is a trace expansion
for � → � in �\�+:

Tr�A�Pk
0 − ��−1

+ � ∼∑
j≥0

cj�−��
n+�−j
2k −1 +∑

l≥0

�c′l log�−��+ c′′l ��−��−
l
2k−1 (3.34)

Here c′0 = 1
2k resA, and if n+ � 
 �, C0�A� �Pk

0�+� = c′′0 = TRA (= TrA if � < −n).



1694 Grubb

Proof. Here we use that (3.4) is known for P0 from Grubb and Schrohe (2004),
and translate it to a statement on the meromorphic structure of the generalized
zeta function 	�A� P0�+� s�, which allows replacing P0 by Pk

0 . This gives the structure
of 	�A� �Pk

0�+� s�, which translates back to a trace expansion (3.34). Here Grubb
and Seeley (1996, Proposition 2.9 and Corollary 3.5), are used. In details, we define
	�A� P0�+� s� and 	�A� �Pk

0�+� s� as the meromorphic extensions of Tr�A�P−s
0 �+�,

respectively Tr�A�P−sk
0 �+�, defined à priori for large Res. It is well known that the

expansion (3.4) implies the following meromorphic structure of 	�A� P0�+� s�:

��s�	�A� P0�+� s� ∼
∑
j≥0

c̃j

s + j−n−�

2

+∑
l≥0

(
c̃′l

�s + l
2 �

2
+ c̃′′l

s + l
2

)
(3.35)

(by use of e.g., Grubb and Seeley, 1996, Proposition 2.9). Dividing out the Gamma
factor, we obtain a meromorphic structure somewhat similar to (3.35),

	�A� P0�+� s� ∼
∑
j≥0

ãj

s + j−n−�

2

+∑
l≥0

(
ã′
l

�s + l
2 �

2
+ ã′′

l

s + l
2

)
(3.36)

except that the double poles vanish for l even, since they are turned into simple
poles by the cancellations from the zeros of ��s�−1 at 0�−1�−2�    . Since P0 is
self-adjoint positive, the complex powers agree with the definition by spectral theory,
so P−s

0 = �Pk
0�

−s′ , s′ = s/k. Then we can replace the formula for P−s
0 by the formula

for �Pk
0�

−s′ simply by replacing the variable s by s′k, so we get

	�A� �Pk
0�+� s

′� ∼ ∑
j≥0

ãj

s′k+ j−n−�

2

+∑
l≥0

(
ã′
l

�s′k+ l
2 �

2
+ ã′′

l

s′k+ l
2

)

∼ ∑
j≥0

b̃j

s′ + j−n−�

2k

+∑
l≥0

(
b̃′
l

�s′ + l
2k �

2
+ b̃′′

l

s′ + l
2k

)
�

with the double poles vanishing for l even. Multiplication by ��s′� gives still another
expansion

��s′�	�A� �Pk
0�+� s

′� ∼∑
j≥0

d̃j

s′ + j−n−�

2k

+∑
l≥0

(
d̃′

l

�s′ + l
2k �

2
+ d̃′′

l

s′ + l
2k

)
� (3.37)

where we get double poles back at the values where l/k is even (a subset of the set
where they were removed before).

Finally, we use Grubb and Seeley (1996, Proposition 2.9) in the direction
from 	�s� to f���, in the same way as in the proof of Grubb and Seeley (1996,
Corollary 3.5). The cited proposition shows how the meromorphic structure of
��1− s′���s′�	�A� �Pk

0�+� s
′� carries over to an asymptotic expansion of f�−�� =

Tr�A�Pk
0 − ��−1

+ �. The needed exponential decrease for �Im s′� → � follows from
the similar property of ��1− s���s�	�A� P0�+� s�. That f�−�� satisfies an O����−��
estimate (with � > 0) for � → � in the considered sector is assured by (3.21) above,
with m = 2k > n+ �. The positivity of P0 assures that f is regular at zero. The
method introduces some possible new integer poles on the positive real axis (coming
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from ��1− s′�), but in the end result they are not present, since we already have the
corresponding part of the expansion in powers known from (3.21).

It is known from Grubb and Schrohe (2001) that c̃′0 = 1
2 resA in (3.35), also

equal to the coefficient of ���−1 log�−�� in the corresponding resolvent trace
expansion. Following the reduction, we see that d̃′

0 in (3.37) equals 1
k
c̃′0 = 1

2k resA.
If n+ � 
 �, resA = 0 and we have from Grubb and Schrohe (2001) that

C0�A� P0�D� = TRA. Hence also C0�A� P0�+� = TRA (since there is no contribution
from G

�N�
� ), so 	�A� P0�+� s� is regular at zero with value TRA. Then also

	�A� �Pk
0�+� 0� equals TRA. �

Theorem 3.9. Assumptions as in Theorem 3.6.
Tr�AQ1���+� has a trace expansion (3.23); in particular, C0�A� P1�+� is well defined

as the coefficient of �−��−1 (equal to TRA if n+ � 
 �), and c′0 = 1
m
resA.

Proof. First let m be even = 2k. Then we can compare an arbitrary auxiliary
operator P1 with P3 = Pk

0 from Lemma 3.8 (with resolvent Q3�� = �P3 − ��−1). Here
(3.22) for the trace difference and (3.34) for Tr�AQ3���+� add up to give:

Tr�AQ1���+� = Tr�A�Q1�� −Q3���+�+ Tr�AQ3���+�

= ∑
0≤j<n+�+ 1

4

cj �−��
n+�−j

m −1 + �c′0 log�−��+ c′′0��−��−1 + O��−1− 1
4m �+����

(3.38)

with c′0 = 1
m
resA, c′′0 = TRA if n+ � 
 �. So the assertions hold for m even.

Next, let m be odd. Necessarily, P1 cannot have its spectrum in a sector with
opening < �, since the principal symbol is odd in �, so iterated powers are not easy
to use (e.g., for a selfadjoint Dirac operator D, �D2�

1
2 = �D� is different from D).

Instead, we shall use an idea of doubling up, found in Grubb and Seeley (1995). For
a given P1 of order m, consider

�1 =
(
0 −P∗

1

P1 0

)
� � =

(
A 0

0 A

)
�

acting in the bundle E ⊕ E. �1 is skew-self-adjoint, with resolvent

��1 − ��−1 =
( −��P∗

1P1 + �2�−1 P∗
1 �P1P

∗
1 + �2�−1

−P1�P
∗
1P1 + �2�−1 −��P1P

∗
1 + �2�−1

)
�

for � ∈ �\i�. Now

Tr����1 − ��−1
+ � = −�Tr�A�P∗

1P1 + �2�−1
+ �− �Tr�A�P1P

∗
1 + �2�−1

+ �

In the right-hand side, P∗
1P1 and P1P

∗
1 are self-adjoint elliptic of even order 2m

(and ≥ 0), so by the result already shown for even-order auxiliary operators,
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applied to the two traces, we get

Tr����1 − ��−1
+ �

= −�

( ∑
0≤j<n+�+ 1

4

aj�
2� n+�−j

2m −1� + �a′
0 log��

2�+ a′′
0��

−2 + O��2�−1− 1
8m �+����

)
= ∑

0≤j<n+�+ 1
4

bj�−��
n+�−j

m −1 + �2a′
0 log�−��+ a′′

0��−��−1 + O��−1− 1
4m �+���� (3.39)

with coefficients modified because of powers of −1 = ei�; here a′
0 = 2 1

2m resA =
1
m
resA, and a′′

0 = 2TRA if n+ � 
 �. Now �1 can be compared with

�2 =
(
P1 0
0 P1

)
�

and a calculation as in (3.38) gives that Tr����2 − ��−1
+ � likewise has an expansion

as in the last line of (3.39), with the same coefficient 2a′
0 of the logarithmic term,

and the same a′′
0 if n+ � 
 �. Then Tr�A�P1 − ��−1

+ � = 1
2Tr����2 − ��−1

+ � likewise
has an expansion, with log-coefficient a′

0, and C0�A� P1�+� = TRA if n+ � 
 �. �

One can also see from these proofs that the value of C0�A� P1�+� modulo local
terms is as described in Grubb and Schrohe (2004), namely, in local coordinates, a
sum of integrals over X resp. X′ of finite part integrals in �, respectively �′ of the
symbols of P, respectively trn G. (The identity C0�G� P1�+� = TRG extends to certain
integer order parity cases as in Grubb and Schrohe, 2004.)

Now the coefficient of �−��−1 in Tr�A�Q1�� −Q2���+� will be studied in detail.
Note that when n+ � ∈ �, the sum in (3.22) goes from zero to n+ � and the

last term is dn+��−��−1. When n+ � 
 �, we see that there is no term with �−��−1

in the expansion, so (as it should be)

C0�A� P1�+�− C0�A� P2�+� = 0 if n+ � 
 � (3.40)

We shall finally show

Theorem 3.10. Assumptions as in Theorem 3.6. One has that

C0�A� P1�+�− C0�A� P2�+� = − 1
m
res�A�logP1 − logP2�+� (3.41)

Proof. Denote

L = logP1 − logP2� (3.42)

with symbol l�x� ��; in view of (1.14), it is classical of order zero, and (cf. (3.24)) the
homogeneous terms l−j�x� �� are determined for ��� ≥ 1 by the formulas

l−j�x� �� =
i

2�

∫
�′
log �	−m−j�x� �� ��d�� (3.43)
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where �′ is a closed curve in �\�− encircling the eigenvalues of p1�m�x� �� and
p2�m�x� ��. From the fact that P1 and P2 are differential operators, it is easily checked
that L satisfies the transmission condition at xn = 0.

We have that

A�logP1 − logP2�+ = AL+ = �P+ +G�L+ = �PL�+ −G+�P�G−�L�+GL+ (3.44)

According to Fedosov et al. (1996) (with the sign of the s.g.o.-term corrected in
Grubb and Schrohe, 2001), the residue is determined by the formula

res�AL+� =
∫
�n+

∫
���=1

tr symb−n�PL�d
−S���dx

+
∫
�n−1

∫
��′ �=1

tr symb1−n�trn�−G+�P�G−�L�+GL+��d
−S��′�dx′� (3.45)

where symbk stands for “the homogeneous term of degree k in the symbol of the
operator”.

Consider first the case where � 
 �, P = 0. Then the left-hand side in (3.41) is
zero in view of (3.40), and the right-hand side is zero, since A�logP1 − logP2�+ is an
s.g.o. of noninteger order. So the formula is verified for � 
 �, and we can restrict
the attention to the case where � ∈ �.

The calculations leading to Theorem 2.2 show that

− 1
m

∫
�n+

∫
���=1

tr symb−n�PL�d
−S���dx =

∫
�n+

∫
�n

tr symbh
−m−n�P�����=−1d

−�dx� (3.46)

this gives the �do part of the desired formula.
Now consider the s.g.o. part (recall (3.25)). For the operator �� and its normal

trace ��, we denote the symbols �x′� �′� �n� �n� �� resp. 
�x′� �′� ��. Moreover,
we denote

G′ = −G+�P�G−�L�+GL+� S′ = trn�−G+�P�G−�L�+GL+�� (3.47)

with symbols g′�x′� �′� �n� �n�, s
′�x′� �′�.

From (3.27) we have in particular:


̃�+n−1�x� =
∫
�n−1


h
−m+1−n�x

′� �′�−1�d−�′� (3.48)

and the integral of its fiber trace gives the contribution to C0�A� P1�+�− C0�A� P2�+�.
In the following, consider first the case where 	 is independent of xn.
The term of order 1− n in the symbol of S′ is constructed for ��′� ≥ 1 as the

term of homogeneity degree 1− n in the symbol

s′�x′� �′� =
∫
�
�−g+�p� � g−�l�+ g � l+��x

′� �′� �n� �n�d
−�n

=
∫
�

(
− g+�p� � g−

(
i

2�

∫
�′′

log �	d�
)
+ g �

(
i

2�

∫
�′′

log � 	d�
)

+

)
d−�n�

(3.49)

here �′′ is a curve in �\�− formed as the boundary of a set Vr�� (1.18) with �, r
and � taken so small that the eigenvalues of the principal symbols p1�m�x� �� and
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p2�m�x� �� lie in the complement of Vr+���+� for all x, all ��′� ≥ 1. Such sets exist
since p1�m and p2�m are homogeneous of degree m in � for ��� ≥ 1 and the ellipticity
condition holds uniformly in x (originally running in the compact manifold X).
We have:

s′1−n�x
′� �′� = ∑

j+k+���=�+n−1

�−i����

�!
(∫

�

(
−
�

�′g
+�p��−j �n g−

(
i

2�

∫
�′′

log �
�
x′	−m−kd�

)
d−�n

+
∫
�

�
�′g�−j �n

(
i

2�

∫
�′′

log �
�
x′	−m−kd�

)
+

)
d−�n

)
� (3.50)

where �n stands for symbol composition with respect to the normal variables
(cf. Grubb, 1996, Section 2.6), and we denote the homogeneous term of order r in
an s.g.o. symbol g by gr (it is of degree r − 1; this index was used in Grubb, 1996).
There are finitely many terms. In each term, the integration in � and the factor log �
can be moved outside �n and g−, since these operations preserve the holomorphy
in Vr+���+� and preserve sufficient decrease in � for ��� → � (in view of the detailed
rules in (Grubb, 1996, Section 2.6), and the analysis in Theorem 3.6). Furthermore,
the integrations in � and �n can be interchanged. So if we define

��x′� �′� �� = ∑
j+k+���=�+n−1

�−i����

�!
∫
�

[
− 
�

�′g
+�p��−j �n g−�
�

x′	−m−k�x
′� 0� �� ���

+ 
�
�′g�−j �n �
�

x′	−m−k�x
′� 0� �� ���+

]
d−�n� (3.51)

we have that

s′1−n�x
′� �′� = i

2�

∫
�′′

log ���x′� �′� ��d� (3.52)

An application of Lemma 1.2 gives:

i

2�

∫
�′′

log ���x′� �′� ��d� = −
∫ 0

−�
��x′� �′� t�dt (3.53)

One checks from (3.51) that � has the quasi-homogeneity property ��x′� t�′� tm�� =
t−m−n+1��x′� �′� �� for ��′� ≥ 1, t ≥ 1. Taking strictly homogeneous symbols
everywhere gives �h, which is integrable at �′ = 0 for � �= 0 in view of the regularity
properties shown in Theorem 3.6. Now we can apply Lemma 1.3 with dimension n
replaced by n− 1, finding that∫

��′ �=1
s′1−n�x

′� �′�d−S��′� = −
∫
��′ �=1

∫ 0

−�
�h�x′� r�′� t�dtd−S��′�

= −m
∫
�n−1

�h�x′� �′�−1�d−�′

= −m
∑

j+k+���=�+n−1

�−i����

�!
∫
�n−1

∫
�

×
[
− 
�

�′g
+�p�h�−j �n g−�
�

x′	
h
−m−k�x

′� 0� ��−1��

+ 
�
�′g

h
�−j �n �
�

x′	
h
−m−k�x

′� 0� ��−1��+
]
d−�nd

−�′� (3.54)



Logarithm Component in Trace Defect Formulas 1699

which we recognize as

= −m
∫
�n−1


h
−m+1−n�x

′� �′�−1�d−�′ (3.55)

This shows that the contribution from S′ = trn G
′ (cf. (3.47)) matches the

coefficient 
̃n+��x
′� of �−��−1 in the diagonal kernel expansion of �� = trn ��,

pointwise in x′, cf. (3.48), (3.27). Integration of the fiber trace in x′ gives

res�G′� = −m
̃n−1+�� (3.56)

where 
̃n−1+� is the coefficient of �−��−1 in the trace expansion of �� (and the trace
expansion of ��), cf. (3.32). Adding this identity to (3.46), we find (3.41).

There remains to include the case where the symbol 	 depends on xn, but this is
easy to do. One takes a Taylor expansion of 	 in xn at xn = 0; since a factor xk

n

lowers the order in the resulting s.g.o.’s by k steps (cf. Grubb, 1996, Lemma 2.4.3),
only the first � + n terms can contribute to the constants we are studying. Each of
these terms enters by the standard composition rules in a very similar way as above,
only now one also has to keep track of the effect of powers xk

n. Again this leads
to (3.41). �

Remark 3.11. The proof shows that the identity (3.41) holds in a partly localized
way, namely, the pseudodifferential contributions from each side match pointwise in
x ∈ X (before integration in x), and for the singular Green contributions, the �do’s
on X′ obtained after taking trn match pointwise in x′ ∈ X′ (before integration in x′).

Remark 3.12. The identity (3.41) holds also when the Pi are taken of order m = 2
as in Grubb and Schrohe (2004), which necessitates a replacement of Qi�� by QN

i�� for

a large enough N . For, writing QN
i�� = 
N−1

�

�N−1�!Qi��, we see that the term with �−��−N

in Tr�A�QN
1�� −QN

2���+� is found by integration of compositions where the symbol

terms 	h
−m−j are replaced by 
N−1

�

�N−1�!	
h
−m−j . We just give the argument for the s.g.o.

part. The analysis in Grubb and Schrohe (2004) shows the needed fall-off in � and
integrability in �′ in this case. Since (with notation as in the proof of Theorem 3.10)

�−��−1
∫
�n−1


h
−m+1−n�x

′� �′�−1�d−�′ =
∫
�n−1


h
−m+1−n�x

′� �′� ��d−�′

for � ∈ �−, an application of 
N−1
�

�N−1�! gives for the corresponding function 
�N�h
−Nm+1−n

�x′� �′� �� resulting from insertion of the 
N−1
�

�N−1�!	
h
−m−j

∫
�n−1


�N�h
−Nm+1−n�x

′� �′� ��d−�′ = 
N−1
�

�N − 1�!
∫
�n−1


h
−m+1−n�x

′� �′� ��d−�′

= 
N−1
�

�N − 1�! ��−��−1
∫
�n−1


h
−m+1−n�x

′� �′�−1�d−�′�

= �−��−N
∫
�n−1


h
−m+1−n�x

′� �′�−1�d−�′� (3.57)
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showing that the coefficient of �−��−N in the expansion of Tr�A�QN
1�� −QN

2���+� obeys
the same formulas as the coefficient of �−��−1 in Theorem 3.10. Then it is set in
relation to the residue in exactly the same way as we did there.

Remark 3.13. The hypothesis that P1 and P2 are differential operators was
convenient in the proof of Theorem 3.6, but can probably be removed; this would
require keeping track of leftover terms resulting from decompositions as in (3.29)
with R replaced by a �do (having the transmission property). A similar remark can
be made for the analysis in Section 4 below, where allowing P1 to be a �do would
create a number of extra terms in Lemma 4.1, which however seem manageable.
This can be taken up if necessitated by applications.

Let us also remark that the argumentation in Section 4, based on the identity
(4.3), would apply to the problem treated in Section 3, giving the desired trace
expansions but not the full information on the symbol structure of �� in (3.25).

4. The Second Trace Defect Formula for Manifolds with Boundary

Now some words on possible extensions of the other trace defect formula (2.6) to
the situation of �dbo’s. Here we assume m > � + �′ + n in order to have a trace-
class operator �A�A′�Q��+. Clearly,

Tr��A�A′�Q��+� = Tr�A�A′� Q��+��� (4.1)

so one might strive to show that −mC0��A�A′�� P1�+� should equal

res�A�A′� �logP1�+�� (4.2)

But there are several problems with such a formula. The �do part of A�A′� �logP1�+�
is P�P ′� logP1�, hence classical in view of (1.14). But there will in addition be
s.g.o.-like elements that are not covered by existing theories. One is G+�logP1� =
r+ logP1e

−J , which is not a standard s.g.o., for example, G+�log�−��� on �n
+ has

symbol-kernel c�xn + yn�
−1e−��′ ��xn+yn� (for ��′� ≥ 1) with a singularity at xn = yn = 0.

Furthermore, compositions of �logP1�+ with �dbo’s will also contain nonstandard
terms.

We shall proceed in a different way. Namely, we show for the singular Green
part �� of A�A′� Q�+� that its normal trace �� has sufficiently good symbol estimates
to allow a “log-transform” (integration together with log � over a curve �′′ as in
Theorem 3.10) resulting in a classical �do S over X′, such that the contribution from
�� equals − 1

m
res S.

As in Grubb and Schrohe (2004), we assume that the �do’s P and P ′ are
of normal order 0. (Normal order k means that the symbol and its derivatives
are O���nk� at the boundary, here k ≤ the order. In general, when P satisfies the
transmission condition, it is the sum of a �do of normal order −1, a differential
operator, and a �do vanishing to a very high order at the boundary.)

There is a delicate argument in Grubb and Schrohe (2001, 2004) for showing
that terms containing compositions with G±�Q�� contribute to C0 with local
coefficients; this relies on the exact structure of the symbol of Q� at xn = 0 as a
function of the roots of the polynomial p1�2�x

′� 0� �′� �n�− � in �n. Here we shall
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replace this argument with an argument using that

Q� = �P1 − ��−1 = −1
�
+ 1

�
P1�P1 − ��−1 = −1

�
+ 1

�
P1Q�� (4.3)

where the contributions from the term 1
�

cancel out in the calculations of
commutators. A difficulty in using this is that P1Q� is only of order zero, not of
large negative order.

We work in a localized situation (as in Section 3). The singular Green terms
appearing in the treatment of A�A′� Q�+� are calculated in the following lemma.

Lemma 4.1. Let A = P+ +G, A′ = P ′
+ +G′ of orders �, respectively �′, the �do’s

being of normal order zero and the s.g.o.’s being of class zero; assume that P and P ′ are
zero if � or �′ is noninteger. The singular Green part �� of A�A′� Q�+� is the sum of terms

�� = G�G′� Q��+�+ P+�G
′� Q��+�+G�P ′

+� Q��+�+G1��� (4.4)

with the following properties:

1�. G�G′� Q��+�, P+�G′� Q��+� and G�P ′
+� Q��+� are singular Green operators

satisfying the primary formulas

G�G′� Q��+� = GG′Q��+ −GQ��+G
′�

P+�G
′� Q��+� = P+G

′Q��+ − P+Q��+G
′� (4.5)

G�P ′
+� Q��+� = GP ′

+Q��+ −GQ��+P
′
+

and the secondary formulas

G�G′� Q��+� =
1
�
GG′P1�+Q��+ − 1

�
GP1�+Q��+G

′�

P+�G
′� Q��+� =

1
�
P+G

′P1�+Q��+ − 1
�
P+P1�+Q��+G

′� (4.6)

G�P ′
+� Q��+� =

1
�
GP ′

+P1�+Q��+ − 1
�
GP1�+Q��+P

′
+

2�. P+�P ′
+� Q��+� is the sum of the �do term �P�P ′� Q���+ and the singular Green

term G1�� satisfying primarily

G1�� = −G+�P�G−��P ′� Q���− P+G
+�P ′�G−�Q��+ P+G

+�Q��G
−�P ′�� (4.7)

with

G−��P ′� Q��� = G−�P ′Q��−G−�Q�P
′�

= G−�P ′�Q��+ + P ′+G
−�Q��−G−�Q��P

′
+ − �Q��+G

−�P ′�� (4.8)

and secondarily

G1�� = −1
�
G+�P�G−��P ′� P1Q���

− 1
�
P+G

+�P ′�P1�+G
−�Q��+

1
�
P+P1�+G

+�Q��G
−�P ′�� (4.9)
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with

G−��P ′� P1Q��� = G−�P ′P1Q��−G−�P1Q�P
′�

= G−�P ′P1�Q��+ + �PP1�+G
−�Q��− P1�+G

−�Q��P
′
+

− P1�+�Q��+G
−�P ′� (4.10)

Proof. The cases in 1� follow easily by insertion of (4.3), since multiplication by 1
�

commutes with G′ and with P ′
+, and (since P1 is a differential operator)

�P1Q��+ = r+P1Q�e
+ = r+P1e

+r+Q�e
+ = P1�+Q��+ (4.11)

For the case 2�, we calculate

P+�P
′
+� Q��+� = P+�P

′� Q��+ − P+G
+�P ′�G−�Q��+ P+G

+�Q��G
−�P ′�� (4.12)

where we have used in the last expression that P ′ has normal order ≤ 0. Here, since
G±� 1

�
� = 0,

P+G
+�P ′�G−�Q�� =

1
�
P+G

+�P ′�G−�P1Q�� =
1
�
P+G

+�P ′�P1�+G
−�Q��

as in (3.29); similarly,

P+G
+�Q��G

−�P ′� = 1
�
P+G

+�P1Q��G
−�P ′� = 1

�
P+P1�+G

+�Q��G
−�P ′�

in view of (4.11). This explains the last two terms in (4.9).
For the first term in the right-hand side of (4.12) we observe:

P+�P
′� Q��+ = �P�P ′� Q���+ −G+�P�G−��P ′� Q���

The s.g.o. term satisfies:

G+�P�G−��P ′� Q��� =
1
�
G+�P�G−��P ′� P1Q����

in view of (4.3). This shows (4.7) and (4.9), and (4.8) and (4.10) follow by
calculations such as:

G−�P ′′Q�� = Jr−P ′′�e+r+ + e−JJr−�Q�e
+ = G−�P ′′�Q��+ + P ′′+G

−�Q�� (4.13)

Here P ′′ = JP ′′J is likewise a �do satisfying the transmission condition, and the
calculation holds regardless of the normal order of P ′′. We give details for the
formulas in (4.10):

G−�P ′P1Q�� = G−�P ′P1�Q��+ + �P ′P1�+G
−�Q���

G−�P1Q�P
′� = P1�+G

−�Q�P
′� = P1�+G

−�Q��P
′
+ + P1�+�Q��+G

−�P ′� �
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Lemma 4.2. Hypotheses as in Lemma 4.1.

1�. The singular Green terms appearing in the primary formulas in Lemma 4.1 are
all of one of the forms

A′′Q��+� A′′G±�Q��� A′′Q��+A
′′′� A′′G±�Q��A

′′′� (4.14)

(or the same expressions with Q� replaced by Q�), where A′′ = P ′′
+ +G′′ and A′′′ =

P ′′′
+ +G′′′ are of normal order zero and class zero.

2�. The singular Green terms appearing in the secondary formulas in Lemma 4.1,
with 1

�
omitted, are all of one of the forms (4.14) (or the same expressions with Q�

replaced by Q�), where A′′ = P ′′
+ +G′′ has P ′′ of normal order ≤ m and G′′ of class

≤ m. The right factor A′′′ = P ′′′
+ +G′′′ is of normal order zero and class zero. The only

resulting terms where A′′ = P ′′
+ of normal order = m can occur, are of the form

�PP1�+Q��+G
′ or �PP1�+G

+�Q��G
−�P ′�� (4.15)

with an s.g.o. to the right.

Proof. For the terms in (4.5), this is clear from the basic rules of calculus, cf. e.g.,
Grubb (1996). For the terms in (4.6) with 1

�
omitted,

GG′P1�+Q��+� GP1�+Q��+G′� P+G′P1�+Q��+�

P+P1�+Q��+G′� GP ′
+P1�+Q��+� GP1�+Q��+P ′

+�
(4.16)

all the expressions except the fourth one have s.g.o.’s of class m to the left of Q��+,
since, when P1�+ is composed to the left with an s.g.o. of class zero, we get an s.g.o. of
class m. For the fourth expression, we observe that since P1 is a differential operator
of order m,

P+P1�+ = �PP1�+ + ∑
0≤j≤m−1

Kj j� (4.17)

where PP1 is of normal order m and
∑

0≤j≤m−1 Kj j is an s.g.o. of class m; here the Kj

are Poisson operators of order � +m− j and the  j are the standard trace operators
( ju = �Dj

nu��xn=0). Thus

P+P1�+Q��+G
′ = �PP1�+Q��+G

′ +G′′Q��+G
′� (4.18)

where PP1 has normal order m and G′′ has class m.
Now consider the terms in (4.7). The second and third term are clearly of the

asserted form with A′′ of normal order and class zero. For the first term we use the
decomposition of G−��P ′� Q��� given in (4.8) to reach this conclusion.

Finally, consider the expressions in (4.9) with the additional decomposition of
a factor in the first term given in (4.10), and 1

�
omitted:

G+�P��G−�P ′P1�Q��+ + �PP1�+G
−�Q��− P1�+G

−�Q��P
′
+ − P1�+�Q��+G

−�P ′���

(4.19)
G+�P ′�P1�+G

−�Q��� P+P1�+G
+�Q��G

−�P ′�
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All the expressions have P1 or P1 entering in compositions to the left of a
�-dependent factor. The first line and the first expression in the second line lead to
expressions with s.g.o.’s of class m to the left. The last expression leads in view of
(4.17) to

P+P1�+G
+�Q��G

−�P ′� = �PP1�+G
+�Q��G

−�P ′�+G′′G+�Q��G
−�P ′� �

where PP1 has normal order m and G′′ has class m. �

We now investigate the normal traces.

Proposition 4.3. Let G� be a parameter-dependent singular Green operator of a form
as in Lemma 4.3, and such that the sum of the orders of A′′ and A′′′ is �; then S� = trn G�

is a �do in the parameter-dependent calculus of order �−m with symbol s�x′� �′� �� ∼∑
j≥0 s�−m−j�x

′� �′� ��.

1�. When A′′ is of normal order and class 0, S� is of regularity �− 1
4 , and the

symbol satisfies estimates (where � = ��� 1
m �:∣∣∣∣
���

x′��′

[
s�x′� �′� ��−∑

j<J

s�−m−j�x
′� �′� ��

]∣∣∣∣ ≤̇ ��′�− 1
4−���−J��′� �−m+ 1

4 � (4.20)

for all indices.

2�. When A′′ is of normal order m and class m, S� is of regularity �−m+ 1
4 , the

symbol satisfying estimates∣∣∣∣
���
x′��′

[
s�x′� �′� ��−∑

j<J

s�−m−j�x
′� �′� ��

]∣∣∣∣ ≤̇ ��′�−m+ 1
4−���−J��′� �− 1

4 � (4.21)

for all indices.

Proof. Note that G� is in all cases of class zero, since Q� is of order −m and A′′′ is
of normal order and class zero.

Consider first the case where there is no factor A′′′ (or when A′′′ = I); here we
get the results fairly easily. Then A′′ is of order �. If the class of G′′ is zero, A′′ enters
in the parameter-dependent calculus as the sum of a �do and an s.g.o. both of order
� and regularity �, so when it is composed with Q��+ or G±�Q�� of order −m and
regularity +� we get an operator of order �−m and regularity �, in view of Grubb
(1996, Theorem 2.7.7, Corollary 2.7.8). By Lemma 3.4, trn of it is a �do on X′ of
order �−m and regularity �− 1

4 .
When � ≤ 1

4 , the estimates (4.20) hold automatically (i.e., are standard symbol
estimates), since the power of ��′� � in the parenthesis as in (3.6) can be left out
when � ≤ 0. For larger �, we compose to the left with !�!−�, where !t = OP′���′t�;
it is accounted for in Grubb (1996, Section 2.8) that this defines operators within
the calculus (not only for �do’s on �n−1 but also for s.g.o.’s). The preceding
considerations now apply to the expression composed to the left with !−�, which
satisfies estimates with an extra factor ��′−�. The resulting operator will satisfy
(4.20) with � replaced by zero, and when we recompose with !� to the left, it is easily
checked from the composition rules that we obtain an operator satisfying (4.20).
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When A′′ = G′′ of class m, its regularity is only �−m+ 1
2 (by Grubb, 1996,

(2.3.55)); then the composed operator has regularity �−m+ 1
2 , and trn of it has

regularity �−m+ 1
4 by Lemma 3.4. (The central fact here is that G′′ = G1 +∑

l<m Kl l, such that the term with the weakest decrease in � will be Km−1 m−1Q��+,
where  m−1Q��+ is a trace operator whose symbol norm is O���′� �− 1

2 ).) If �−m <
− 1

4 , the estimates (4.21) are automatically satisfied, otherwise we obtain them by
pulling out a factor !t!−t for a large t as above.

Next, we consider the case where A′′′ is nontrivial. Here we have to make
some extra efforts, both since regularity numbers in compositions are not in general
additive, and since we have to deal with some inconvenient terms (4.15). There are
now three factors, with the �-dependent factor in the middle.

Let A′′ and A′′′ have orders �1 and �2, so that � = �1 + �2. Invoking the trick of
composing to the left with !�1!−�1 if �1 > 0 and to the right with !�2!−�2 if �2 > 0,
we can assume that �1� �2 ≤ 0. To begin with, assume also that q is independent
of xn.

The normal trace of G� is found by applying (3.15) to its symbol-kernel
g�x′� �′� xn� yn� ��. We recall from Grubb (1996) the notation g�x′� �′� Dn� �� (or just
g�Dn�) for the operator on �+ defined for each �x′� �′� �� by applying the s.g.o.
definition in one variable xn; we use again the notation �n for the composition of
such one-dimensional operators. For operators on �+ of normal order and class
zero, trn is the usual trace, so there is a certain commutativity, namely e.g.,

trn�g�Dn� �n g′�Dn�� = trn�g
′�Dn� �n g�Dn���

trn�g�Dn� �n p�Dn�+� = trn�p�Dn�+ �n g�Dn���
(4.22)

the s.g.o.’s are smoothing. We shall use this to reduce the most difficult estimates
for three components to cases of two components with better properties. Consider
e.g., a composition A′′Q��+A′′′. Here

trn�a
′′ �n q+ �n a′′′� = trn�a

′′′ �n a′′ �n q+�� (4.23)

since a′′ �n q+ and a′′′ are both of normal order and class zero. In the compositions
coming from the primary cases in Lemma 4.1, a′′′ �n a′′ will be of normal order and
class zero. In the compositions coming from the secondary cases in Lemma 4.1,
a′′′ �n a′′ will be a singular Green operator of class m; this is clear if a′′ is such
one, and if a′′ = p′′

+ is of normal order m, a′′′ is necessarily an s.g.o. of class zero
according to Lemma 4.2, so the composite is an s.g.o. of class m. The important
fact is that we get rid of contributions of the form �pp1�+q+g′, where a direct attack
need not give estimates with a decrease in � since

sup
�n

�p1�m�x� ���p1�m�x� ��− ��−1� = 1 (4.24)

Now the results from the beginning of the proof for compositions A′′Q��+ can be
applied. When a′′′ �n a′′ is of normal order and class zero, this gives a symbol of
order �−m and regularity �− 1

4 , and when a′′′ �n a′′ is an s.g.o. of class m, we
get a symbol of order �−m and regularity �−m+ 1

4 ; since � ≤ 0, the estimates in
(4.20)–(4.21) are automatic.



1706 Grubb

The commutation is only allowed on the one-dimensional level. To find the full
composition of a′′, q+ and a′′′, we note that

trn�a
′′ � q+ � a′′′� ∼ ∑

���∈�n−1

�−i��+�

�!�! trn�

�
�′a

′′ �n 
�
x′


�
�′q+ �n 
�

x′

�
x′a

′′′�� (4.25)

and perform the above commutation idea for each term, to find the desired symbol
information.

Concerning remainders, an analysis shows that it is only the part of normal
order m of PP1, giving a term D′Dm

n Q��+G′′′, that needs special treatment; for the
part Pm−1 of PP1 of normal order ≤ m− 1 one can appeal to the estimate

sup
�n

�pm−1�p1�m − ��−1�≤̇��′�+1��′� �−1 (4.26)

In the usual remainder term (as in e.g., Grubb and Schrohe, 2004, pf. of
Proposition 3.8) in the calculation of the composition inside trn��D

m
n Q��+G′′′�, one

can then perform a commutation (4.22) inside the integral w.r.t. h.
If q depends on xn, it must be Taylor expanded in xn and each term treated

individually; here one uses that in the terms with kth powers of xn, k ≥ 1, the
symbols coming from q are O��−2� and the order of the s.g.o.’s are lowered by k.

There is a similar analysis when Q��+ is replaced by Q��+, G±�Q��

or G±�Q��. �

It may be remarked that the fraction 1
4 comes in because of the general

application of Lemma 3.4. Particular efforts applied to the individual compositions
may give an improvement to 1

2 in (4.21)—and an analysis extending that of Grubb
and Schrohe (2001) would give further improvements, cf. Remark 3.3. But the gain
of 1

4 is sufficient for the present purposes.
We can now conclude with

Theorem 4.4. Let A = P+ +G of order � and normal order and class zero, let A′ =
P ′
+ +G′ of order �′ and normal order and class zero, and let P1 be an auxiliary elliptic

differential operator of order m > � + �′ + n, with no eigenvalues of the principal
symbol on �− (so that Q� = �P1 − ��−1 is defined for large � in a sector V around �−).
We assume that P and P ′ are zero if � or �′ is noninteger.

Let �� = trn �� with symbol 
�x′� �′� ��, where �� is the singular Green part of
A�A′� Q��+�. Then �� is a family of �do’s on X′ with the properties:

1�. �� is of order � + �′ −m and regularity � + �′ − 1
4 , the symbol satisfying:∣∣∣∣
���

x′��′

[

�x′� �′� ��−∑

j<J


�+�′−m−j�x
′� �′� ��

]∣∣∣∣ ≤̇ ��′�+�′− 1
4−���−J��′� �−m+ 1

4 �

(4.27)

on the rays in V (with −� = �mei�, � > 0), for all �� �� J .
2�. ��� is of order � + �′ and regularity � + �′ + 1

4 , and for all �� �� J ,∣∣∣∣
���
x′��′

[

�x′� �′� ��−∑

j<J


�+�′−m−j�x
′� �′� ��

]∣∣∣∣ ≤̇ ��′�+�′+ 1
4−���−J��′� �− 1

4 �−m

(4.28)
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Proof. This follows immediately from Proposition 4.3 in view of the description of
�� given in Lemmas 4.1 and 4.2. �

We can then establish trace expansions. Here we first consider the case where �
and �′ are integers.

Theorem 4.5. Assumptions as in Theorem 4.4, with � and �′ ∈ �.
There is a trace expansion

Tr��A�A′�Q��+� =
∑

0≤j≤n+�+�′
cj �−��

n+�+�′−j
m −1 + O��−1− 1

4m �� (4.29)

so that

C0��A�A′�� P1�+� = cn+�+�′ (4.30)

(taken equal to zero if n+ � + �′ < 0) is well defined.
The symbol s�x′� �′� deduced from the symbol 
�x′� �′� �� of �� by

s�x′� �′� = i

2�

∫
�′′

log � 
�x′� �′� ��d� (4.31)

(with �′′ a curve in �\�− encircling the sectorial set containing the eigenvalues of
p1�m�x� �� for x ∈ X, ��′� ≥ 1), is a classical �do symbol of order � + �′, defining a �do
S such that

C0��A�A′�� P1�+� = − 1
m
res��P�P ′� logP1��+�−

1
m
res�S� (4.32)

Proof. For �� = P�P ′� Q�� we have a diagonal kernel expansion as in (2.22)ff. with
coefficients r̃j�x�. Integrating over the coordinate patches intersected with �

n

+, we
find that

Tr���+ = ∑
j<�+�′+m+n

r̃j�+�−��
n+�+�′−j

m −1 + O����−2+��� where

r̃j�+ =
∫
�n+

tr r̃j�x�� r̃j�x� =
∫
�n

rh−m+�+�′−j�x� ��−1�d−�
(4.33)

The calculations around Theorem 2.3 apply to this situation, showing that the
coefficient of �−��−1 identifies with the residue

r̃n+�+�′�+ = − 1
m
res��P�P ′� logP1��+� (4.34)

For ��, the information that it is of order � + �′ −m and regularity � + �′ − 1
4

leads by Lemma 3.5 to a trace expansion

Tr�n−1 �� =
∑

1≤j<n+�+�′− 1
4

dj �−��
n+�+�′−j

m −1 + O��−1+ 1
4m ��

dj = 
̃j−1 =
∫

tr 
̃j−1�x
′�dx′� (4.35)


̃l�x
′� =

∫
�n−1


h
�+�′−m−l�x

′� �′�−1�d−�′�
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which just misses having a precise term c�−��−1. But we can improve the expansion
by using the additional information we have on the symbol in Theorem 4.4.
In fact, for j = � + �′ + n, l = � + �′ + n− 1, we have a term (taken equal to 0 if
� + �′ ≤ −n) satisfying

�
−m−n+1�x
′� �′� ��� ≤̇ ��′− 1

4−n+1��′� �−m+ 1
4 �

�
−m−n+1�x
′� �′� ��� ≤̇ ��′ 1

4−n+1��′� �− 1
4 �−m�

(4.36)

and the remainder 
′ = 
−∑
l<�+�′+n 
�+�′−m−l+1 after this term satisfies

�
′� ≤̇ ��′− 1
4−n��′� �−m+ 1

4 �

�
′� ≤̇ ��′ 1
4−n��′� �− 1

4 �−m
(4.37)

From (4.36) follows as in Grubb (1996, Lemma 2.1.9) that

�
h
−m−n+1�x

′� �′� ��� ≤̇ ��′�− 1
4−n+1��′� ��−m+ 1

4 �

�
h
−m−n+1�x

′� �′� ��� ≤̇ ��′� 14−n+1��′� ��− 1
4 �−m�

(4.38)

so 
h
−m−n+1 is integrable at �′ = 0 (besides being so for ��′� → �) when � �= 0. Then

Tr�OP′�
h
−m−n+1�� = d�+�′+n �−��−1� with

d�+�′+n = 
̃�+�′+n−1 =
∫

tr 
̃�+�′+n−1�x
′�dx′� (4.39)


̃�+�′+n−1�x
′� =

∫
�n−1


h
−m−n+1�x

′� �′�−1�d−�′�

as in (4.35). This gives the needed extra term, but we also have to show that
remainders do not interfere. (4.28) shows that �
′� ≤̇ ��′ 1

4−n�−m− 1
4 , which integrates

in �n− 1�-space to give an estimate by �−m− 1
4 . The difference 
h

−m−n+1 − 
−m−n+1

is O��−m− 1
4 � on its support contained in ���′� ≤ 1�, so it likewise integrates to an

O��−m− 1
4 � term. This also holds for the preceding terms, the differences 
h

�+�′−m−l −

�+�′−m−l with l < � + �′ + n− 1. Then we can finally conclude (4.29) from this
and (4.33).

We shall now show that the integral in (4.31) is well defined so that the symbol
properties can be checked directly. Again we use the estimates in Theorem 4.4. Note
that (4.27) gives too little decrease in � to allow the integration (4.31), whereas
(4.28) gives enough decrease in �, but much less in �′. Using that 
, its terms and
remainders are O��−1− 1

4 �, we can insert 
 in (4.31) in order to obtain s�x′� �′� ∼∑
j≥0 s�+�′−j�x

′� �′�. Here s�+�′−j is homogeneous of degree � + �′ − j in �′ for
��′� ≥ 1, in view of the following calculation with t ≥ 1, � = t−m�

s�+�′−j�x
′� t�′� = i

2�

∫
�′′


�+�′−m−j�x
′� t�′� �� log � d�

= i

2�

∫
�′′

t�+�′−m−j
�−�′−m−j�x
′� �′� ���log �+m log t�tm d�

= t�+�′−j i

2�

∫
�′′


�+�′−m−j�x
′� �′� �� log � d� = t�+�′−js�+�′−j�x

′� �′��

(4.40)
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where we have used that i
2�

∫
�′′ 
�+�′−m−j�x

′� �′� �� d� = 0 since the integrand is
holomorphic on the region to the left of �′′ and O��−

5
4 � for � → � there.

Remainders satisfy

�s�x′� �′�−∑
j<J

s�+�′−j�x
′� �′�� ≤̇ ��′�+�′+ 1

4−J (4.41)

for all J , in view of (4.28). Using the exact terms for j < J ′ = J + 1 and the
remainder estimate (4.41) with J replaced by J ′, we can improve (4.41) to

�s�x′� �′�−∑
j<J

s�+�′−j�x
′� �′�� ≤̇ ��′�+�′−J � (4.42)

which is the appropriate estimate for showing that s is polyhomogeneous of order
� + �′. Estimates of derivatives are included in a similar way.

So now s is well defined as a classical symbol of order � + �′; it defines the
operator S with the residue

res S =
∫
�n−1

∫
��′ �=1

tr s1−n�x
′� �′�d−S��′�dx′ (4.43)

From the fact that

s1−n�x
′� �′� = i

2�

∫
�′′

log � 
h
−m−n+1�x

′� �′� ��d�

for ��′� ≥ 1, it is found by use of Lemma 1.2 and Lemma 1.3 for dimension n− 1,
that

− 1
m
res S =

∫
�n−1

∫
�n−1


−m−n+1�x
′� �′�−1�d−�′dx′ = 
�+�′+n (4.44)

Collecting the residues and contributions to C0��A�A′�� P1�+� from (4.34) and
(4.44), we find (4.32). �

Noninteger orders are included as follows.

Theorem 4.6. Assumptions as in Theorem 4.4, with � and �′ ∈ � and P = P ′ = 0.
There is a trace expansion

Tr��A�A′�Q��+� =
∑

0≤j<n+�+�′+ 1
4

cj �−��
n+�+�′−j

m −1 + O��−1− 1
4m �+���� (4.45)

where � = 0 if � + �′ + 1
4 
 �. Define C0��A�A′�� P1�+� = cn+�+�′ if n+ � + �′ ∈ �,

C0��A�A′�� P1�+� = 0 otherwise. Then defining S as in Theorem 45, we have that

C0��A�A′�� P1�+� = − 1
m
res�S� (4.46)

Proof. There is no �do term in this case. For the s.g.o. term �� we proceed as in
the preceding proof. It goes over verbatim if � + �′ ∈ �, whereas one has to modify
the indexations when � + �′ 
 �. Actually, that is a case where there will be no
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nontrivial term c�−��−1, and all one has to check is remainder estimates. Since S is
of noninteger order then, res S is also zero. �

Remark 4.7. The local constant C0��A�A′�� P1�+� enters into index formulas as
follows (similarly to Melrose and Nistor, 1996).

If A = P+ +G is elliptic of order and class zero, and B is a parametrix of A
(necessarily also of order and class zero), then

ind�A� = C0��A� B�� P1�+�� (4.47)

for any auxiliary P1�+. In fact,

ind�A� = Tr�AB − I�− Tr�BA− I� = C0�AB − I − BA+ I� P1�+� = C0��A� B�� P1�+��

where the first equality is well known, and the second follows from Theorem 3.9,
since AB − I and BA− I are of order −�. Since the index is invariant under
homotopies, we moreover have that

ind�A� = C0��A
0� B0�� P1�+�� (4.48)

where A0 is defined from the principal symbol a0 of A and B0 is defined from a
parametrix of a0. By (4.32), the expressions in (4.47) and (4.48) equal residues.

Remark 4.8. When A = P+ +G goes from a bundle E over X to a bundle F over
X, and A′ = P ′

+ +G′ goes from F to E (both of normal order and class zero), then

C0�AA′� P2�+�− C0�A
′A�P1�+� (4.49)

is a residue, when P1 and P2 are auxiliary operators in E resp. F of the same order m.
For,

TrF �AA′�P2 − ��−1
+ �− TrE�A

′A�P1 − ��−1
+ �

= TrE�A
′�P2 − ��−1

+ A− A′A�P1 − ��−1
+ �

= TrE

(
A′ 1

�
��P2�P2 − ��−1�+A− A�P1�P1 − ��−1�+�

)
�

which can be analyzed in local coordinates just as we did above, to show that the
coefficient of �−��−1 is a residue (with �do part �P ′ logP2P − P ′P logP1�+). When
A is elliptic of order zero and B is a parametrix, we conclude that

ind�A� = C0�AB − I� P2�+�− C0�BA− I� P1�+�

= C0�AB� P2�+�− C0�BA� P1�+�− C0�I� P2�+�+ C0�I� P1�+� (4.50)

is a residue, where C0�I� Pi�+� = − 1
m
res�logPi�+ is obtained by integrating the fiber

trace of the pointwise formula (1.26) over X.
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5. Extension of the Res of Log Formula to Pseudodifferential
Boundary Problems

With these techniques at hand, we shall also investigate possible extensions of
the res of log formula (0.4) to realizations of elliptic pseudodifferential boundary
problems. Consider a normal elliptic realization �P+ +G�T , as defined in Grubb
(1996, Section 3.3). Here P is a classical �do in E of integer order m > 0 satisfying
the transmission condition at X′, G is a singular Green operator in E of order and
class m, and T = �T0�    � Tm−1� is a normal trace operator with entries Tk of order
and class k going from E to Fk, all polyhomogeneous. E and the Fk are hermitian
C� vector bundles over X resp. X′. We assume that the conditions for uniform
parameter-ellipticity in Grubb (1996, Definition 3.3.1) are satisfied on the rays in a
sector V around �−.

The resolvent

��P+ +G�T − ��−1 = R� = Q��+ +G� (5.1)

was constructed in Grubb (1996, Section 3.3) and shown to belong to the parameter-
dependent calculus set up in the book. Complex powers ��P+ +G�T�

z were described
to some extent in Grubb (1996, Section 4.4), just for Re z < 0, where it was shown
that their singular Green part has some, but not all of the symbol estimates of
standard s.g.o.’s. The logarithm of �P+ +G�T has not, to our knowledge, been
discussed anywhere.

Since the complex powers were only considered for Re z < 0, we cannot draw
conclusions about a derivative at z = 0, but one can try a formula as in (1.1); it
generally leads to an operator outside the Boutet de Monvel calculus. Rather than
going into a deeper analysis of such operators and the possibility of defining residues
on them, we shall show a generalization of (0.4) where a residue of the logarithm of
the �do part does enter, and the s.g.o. part is reduced to the residue of a classical
�do on X′; the “nice part” of the log contribution from G�.

It is shown in Grubb (1996, Theorem 3.3.5, 3.3.10), that when m > n, the
resolvent has a trace expansion with at least n+ 1 exact terms:

TrR� =
∑

0≤j≤n

cj�−��
n−j
m −1 + O��−1− 1

4m �� (5.2)

valid for � → � in the sector of parameter-ellipticity. (If the regularity is greater
than 1, there will be more terms in the expansion.) The coefficients cj are defined
by integration of the strictly homogeneous terms in the symbols of Q��+ and G�; in
particular, the coefficient of �−��−1,

C0�I� �P+ +G�T� = cn (5.3)

is defined from the term of order −m− n in the symbol of Q��+ and the term of
order −m+ 1− n in the symbol of G� (in local coordinates). As usual, Q� is the
inverse of P − �, defined on a larger compact n-dimensional manifold X̃ in which X
is smoothly imbedded.

In the following, we work in a localization to �n (with X carried over to subsets
of �

n

+), as in the preceding sections. Let Q�, G� and S� = trn G� have symbols q, g
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and s = trn g, respectively, with expansions, e.g.,

q�x� �� �� ∼∑
j≥0

q−m−j�x� �� ���

s�x′� �′� �� ∼∑
j≥0

s−m−j�x
′� �′� ��

(5.4)

Then

cn = cP
n�+ + cG

n � with

cP
n�+ =

∫
�n+

∫
�n

tr qh
−m−n�x� ��−1�d−� dx� (5.5)

cG
n =

∫
�n−1

∫
�n−1

tr sh−m+1−n�x
′� �′�−1�d−�′ dx′

Consider the elliptic system �P+ +G�T� defining the operator �P+ +G�T we are
interested in. The order is m, the regularity of P is m, and the regularity � of the
full system is an integer or half-integer lying in the interval � 12 �m� (cf. Grubb, 1996,
(3.3.11))—unless the operators are purely differential, in which case the regularity
is +� (any � ∈ � works then). As shown in Grubb (1996, Theorem 3.3.2), Q� is of
order −m and regularity m, and G� is of order −m, class zero and regularity � (the
regularities being replaced by +� in the differential operator case).

With reference to the lemmas in Section 3 here, the proof of (5.2) in Grubb
(1996, Section 3.3) consists of applying Lemma 3.2 to the pseudodifferential part
Q��+ to get pointwise expansions of the diagonal kernel of Q� and integrate
these over �n

+, applying Lemma 3.5 to the normal trace of the s.g.o. part G�

to get pointwise expansions of the diagonal kernel and integrate these over �n−1

(contributions from interior patches are smoothing and O��−1− 1
4m �), and adding the

expansions.
Now we want to relate the coefficients cP

n�+ and cG
n to residues. cP

n�+ is
immediately understood on the basis of Theorem 1.4 (integrating the pointwise
version over �n

+). For cG
n , we have the following lemma.

To explain the curve �′′ used there, we recall from Grubb (1996) that
the ellipticity hypothesis assures that the strictly homogeneous principal
symbol ph

m�x� ��− � and principal boundary symbol operator �ph�x′� 0� �′� Dn�+
gh�x′� �′� Dn�− �� th�x′� �′� Dn�� are invertible for � in a sector around �−,
��′� �� �= 0, such that the resolvent exists in a keyhole region Vr�� (1.18) except at
finitely many points. By a small rotation, we can assure that no eigenvalues are on
�−. As �′′ we take a curve in �\�− around �Vr�� and the spectrum except possibly
zero; it can be the boundary of Vr ′��′ with suitably small r ′ and �′.

Lemma 5.1. Define from s and S� the reduced symbol s′ and the corresponding
operator S′

�

s′�x′� �′� �� = s�x′� �′� ��− s−m�x
′� �′� ���

S′
� = OP′�s′�x′� �′� ����

(5.6)
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and set

B = i

2�

∫
�′′

S′
� log � d��

b−j�x
′� �′� = i

2�

∫
�′′

s−m−j�x
′� �′� �� log � d� for j ≥ 1� ��′� ≥ 1

(5.7)

Then B is a classical �do on �n−1 of order −1 with symbol b ∼∑
j≥1 b−j .

Proof. Since s′ is of order −m− 1 and regularity �− 5
4 , we have that

s′ is O
((

��′�− 5
4 + ��′� ��− 5

4

)
��′� �−m−1−�+ 5

4

)
�

hence falls off like � to the power max�−1− 1
m
�−1− �− 1

4
m

�, so the symbol multiplied
by log � is O��−1−�� with a � > 0. There are similar estimates for derivatives. Then
B is defined as a bounded operator in L2, and its symbol terms b−j are found by
integration of the terms in s′ as stated. To see that b−j is homogeneous of degree
−j in �′ for ��′� ≥ 1, we write for t ≥ 1, with � = t−m�

b−j�x
′� t�′� = i

2�

∫
�′′

s−m−j�x
′� t�′� �� log � d�

= i

2�

∫
�′′

t−m−js−m−j�x
′� �′� ���log �+m log t�tm d� (5.8)

= t−j i

2�

∫
�′′

s−m−j�x
′� �′� �� log � d� = t−jb−j�x

′� �′��

where the term with m log t drops out as in (4.40). Derivatives in x′ and �′ and
remainders are easily checked. �

B can in a sense be considered as the “nice �do part” of the logarithmic
contribution from the normal trace of the singular Green term G� in the resolvent;
we have only left out the principal symbol of G�. (It is not clear what kind of
operator comes out of applying the log Cauchy formula to this term in general.)

Theorem 5.2. Consider a normal elliptic realization �P+ +G�T , where P is of integer
order m > 0, G is of order and class m, and T = �T0�    � Tm−1� is normal, with entries
Tk of order and class k. Assume that m > n.

With B defined in Lemma 5.1, we have that

C0�I� �P+ +G�T� = − 1
m
res��logP�+�−

1
m
res�B� (5.9)

Here

cP
n�+ = − 1

m
res��logP�+�� cG

n = − 1
m
res�B� (5.10)

Proof. This goes as in Theorems 3.10 and 4.5. The necessary symbol information
has been provided above, so we just have to identify the contributions from the
specific homogeneous terms. �
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In some cases one can get a more informative formula, as the following example
(similar to Grubb and Schrohe, 2004, Remark 4.2) shows.

Example 5.3. Consider a second-order strongly elliptic differential operator P, of
the form

P = −
2xnI + P ′ (5.11)

in a collar neighborhood of X′, where P ′ is a positive self-adjoint second-order
elliptic operator on X′. Let T =  0, restriction to X′; then P 0

is the Dirichlet
realization of P. The resolvent R� does not have high enough order to be trace-class,
but we can iterate it, considering

RN
� = 
N−1

�

�N − 1�!R� =

N−1
�

�N − 1�!Q��+ + 
N−1
�

�N − 1�!G� = �Q��
N
+ +G

�N�
� (5.12)

for N > n/2 instead. It is easily verified (further details in Grubb and Schrohe, 2004,
Remark 4.2) that trn G� = − 1

4 �P
′ − ��−1, a resolvent on X′ (times a constant). The

interior contribution to the coefficient of �−��−N is

−1
2
resX��logP�+�� (5.13)

in view of the considerations in Remark 3.12. The same considerations plus the
information from Section 1 for closed manifolds, applied to − 1

4 �P
′ − ��−1, gives that

the s.g.o. contribution is

1
8
resX′�logP ′� (5.14)

So here

C0�I� �P+� 0� = −1
2
resX��logP�+�+

1
8
resX′�logP ′�� (5.15)

where we have logarithmic operators in both terms.
It may be remarked as in Grubb and Schrohe (2004) that the interior term

vanishes when n is odd, the boundary term vanishes when n is even.

Remark 5.4. Realizations defined by spectral boundary conditions are not covered
by the above theorem, since the boundary condition is not normal. Let us however
make some remarks on what can be said for them. Let P be a second-order strongly
elliptic differential operator on X which is as in (5.11) on X′. Consider the realization
PT defined as in Grubb (2003) by a boundary condition

�1 0u = 0� �2� 1u+ B 0u� = 0� (5.16)

where �1 is a pseudodifferential projection, �2 = I −�1, and B is a first-order
�do on X′ (all classical). Under the assumption that �1 commutes principally
with P ′ and a suitable parameter-ellipticity condition is satisfied (cf. Grubb, 2003,
Theorem 2.10), the resolvent R� = �PT − ��−1 = Q��+ +G� exists in a sector of
�; this includes the case where PT = �D��

∗D� for a Dirac-type operator with a
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well-posed boundary condition � 0u = 0, � an orthogonal �do projection (playing
the role of �1). A particular case is where D� represents the Atiyah-Patodi-Singer
problem. For N so large that RN

� (= 
N−1
�

�N−1�!R�) is trace-class (i.e., 2N > n), there is an
expansion

TrRN
� = ∑

0≤j≤n

cj�−��
n−j
2 −N + �c′0 log�−��+ c′′0��−��−N + O��−N− 1

2+�� (5.17)

(with more terms that are unimportant here). The coefficient of �−��−N , cn + c′′0 is
generally nonlocal, so there is no generalization of (5.9). However, one can show
that the difference between two such coefficients with different P and B but the same
projection �1, is a residue.

In fact, for two such realizations PT and PT , consider the resolvent difference
and its iterated versions:

R� − R� = �Q� −Q��+ +G� −G��

RN
� − R

N

� = �QN
� −Q

N

� �+ +G
�N�
� −G

�N�

� �
(5.18)

with G
�N�
� = 
N−1

�

�N−1�!G�. The interior part �QN
� −Q

N

� �+ has for 2N > n a complete
expansion in pure powers with local coefficients, where the coefficient of �−��−N is
identified with − 1

2 res��logP − logP�+�, by use of the local formulas in Theorem 2.2
(cf. also Remark 3.12). For the s.g.o. part, we have according to Grubb (2003,
Theorem 4.1, (4.7)).

trn�G� −G�� = �1�� +�2�� +�3��� with

�1�� = −1
2
�2��P

′ − ��−1 − �P
′ − ��−1��

(5.19)


N−1
�

�N−1�!�2�� strongly polyhomogeneous of degree −2N , and 
N−1
�

�N−1�!�3�� having its
symbol in S1�−2N−1 ∩ S−2N�0, in the notation of Grubb and Seeley (1995), for any
N ≥ 1. All three terms have trace expansions when 2N > n:

Tr

N−1
�

�N − 1�!�i��
= ∑

0≤j≤n−1

d
�N�
i�j �−��

n−1−j
2 −N + O��−N− 1

2+�� (5.20)

with coefficients determined from strictly homogeneous symbols. For �1�� this is
seen as in Section 2, for �2�� it is straightforward, and for �3�� it is seen from Grubb
(2003) or Remark 3.3. Here the d

�N�
i�n−1 are independent of N . Defining

S = i

2�

∫
�′′

trn�G� −G�� log � d� = i

2�

∫
�′′

3∑
i=1

�i�� log � d��

we can identify
∑3

i=1 d
�N�
i�n−1 with − 1

2 res S, as in the earlier proofs. Then we conclude
that

C0�I� PT �− C0�I� PT � = −1
2
res��logP − logP�+�−

1
2
res S� (5.21)

when PT and PT have the same projection �1.
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