
Trace defect formulas and zeta values for boundary problems

Gerd Grubb

Abstract. The aim of this lecture is to describe a circle of results for classical
pseudodifferential operators (ψdo’s) on closed manifolds, and to report on

their extension to pseudodifferential boundary operators (ψdbo’s) on compact
manifolds with boundary.

1. Recollection of results for manifolds without boundary

We first consider a compact n-dimensional C∞ manifold X without boundary,
provided with a smooth hermitian vector bundle E. A classical ψdo A in E of order
σ ∈ R is defined in local charts by formulas

Au(x) = OP(a(x, ξ))u(x) =
∫
ei(x−y)·ξa(x, ξ)u(y) dyd–ξ,

where d–ξ = (2π)−ndξ; here the symbol a(x, ξ) is a C∞ function with an expansion
in homogeneous terms

(1.1)

a(x, ξ) ∼
∑
j∈N

aσ−j(x, ξ), N = {0, 1, 2, . . . };

aσ−j(x, tξ) = tσ−jaσ−j(x, ξ) for t ≥ 1, |ξ| ≥ 1, all j;

∂β
x∂

α
ξ [a(x, ξ)−

∑
j<J

aσ−j(x, ξ)] is O([ξ]σ−J), all α, β ∈ Nn, J ∈ N.

The symbol [ξ] stands for a smooth positive function of ξ coinciding with |ξ| for
|ξ| ≥ 1.

Besides the usual trace TrA that exists for σ < −n (where A is trace-class), two
other trace functionals have in recent years been introduced. By a trace functional
on a class of operators M we mean a linear functional `(A) such that `([A,A′]) = 0
when A, A′ and [A,A′] belong to M; here [A,A′] is the commutator AA′ − A′A.
The two new traces are (i) the noncommutative residue, (ii) the canonical trace.

(i) The noncommutative residue res(A).
This is a functional defined on classical ψdo’s, introduced ca. 1984 by Wodzicki

[W1] and independently Guillemin [Gu], see also Kassel [K] for a nice overview.
It has the properties:

• It is defined for all classical ψdo’s in E, uniquely (up to a factor) if X is
connected.
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• A formula for it is

(1.2) res(A) =
∫

X

∫
|ξ|=1

tr a−n(x, ξ) d–S(ξ)dx,

where part of the information is that the integrand w.r.t. x has a coordi-
nate invariant meaning; here a−n is set equal to 0 if σ − j does not take
the value −n. (The symbol tr indicates fiber trace.)

• It is tracial: res([A,A′]) = 0 for all classical ψdo’s A, A′.
• It is local, also called symbolic (in the sense that it depends only on the

homogeneous terms in the symbol down to a certain order, here −n, in
any localization).

• It is 0 if σ /∈ Z (for then a−n = 0).
• It is 0 if σ < −n (for then a−n = 0). Hence it does not extend the

functional TrA!

The noncommutative residue plays an important role in the study of geometric
invariants; more on this later. The fact that it does not extend the standard
trace makes its role a little different from the role of Tr. There is another trace
functional, defined only on a subset of the classical ψdo’s, and tracial only under
suitable circumstances, which however does extend the standard trace:

(ii) The canonical trace TRA.
This was introduced ca. 1994 by Kontsevich and Vishik [KV]; further infor-

mation and extensions are found in Lesch [L] (1999) and [G3] (2005). It has the
properties:

• It is global (depends on the full structure of A as an operator on X).
• It is defined only for some A. It is so in the cases:

(1) σ < −n, then TRA = TrA;
(2) σ /∈ Z;
(3) σ ∈ Z, n odd, A is even-even;
(4) σ ∈ Z, n even, A is even-odd.

Here A is said to have even-even alternating parity (in short: be even-
even), when

(1.3) aσ−j(x,−ξ) = (−1)σ−jaσ−j(x, ξ) for |ξ| ≥ 1, all j;

this holds e.g. for differential operators and their solution operators.
A is said to have even-odd alternating parity (in short: be even-odd),

when

(1.4) aσ−j(x,−ξ) = (−1)σ−j−1aσ−j(x, ξ) for |ξ| ≥ 1, all j;

this hold e.g. for |D| and for D|D|−1 when D is a Dirac operator.
• In the cases (1)–(4),

(1.5) TR(A) =
∫

X

∫
− tr a(x, ξ) d–ξdx,

where the integrand w.r.t. x has a coordinate invariant meaning. Here∫
−f(x, ξ) d–ξ is a finite-part integral (partie finie in the sense of Hadamard),
defined as follows: When f(x, ξ) is a classical symbol of order σ, then the
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integral over {|ξ| ≤ R} has an asymptotic expansion in R:

(1.6)
∫
|ξ|≤R

f(x, ξ) d–ξ ∼
∑

j∈N,j 6=n+σ

aj(x)Rσ+n−j +a′0(x) logR+a′′0(x) for R→∞,

and one sets
∫
−f(x, ξ) d–ξ = a′′0(x), the R-independent term.

• The trace property holds in the sense that when A and A′ are of order σ
resp. σ′, TR([A,A′]) = 0 when

(1′) σ + σ′ < −n,
(2′) σ + σ′ ∈ R \ Z,
(3′) σ and σ′ ∈ Z, n is odd, A and A′ are both even-even or both

even-odd,
(4′) σ and σ′ ∈ Z, n is even, A is even-odd and A′ is even-even.

[KV] gave a definition of TR(A) in the cases (1)–(3) based on homogeneous
distributions; it is also used by Connes and Moscovici in [CM]. [L] showed the
equivalence of the definition of [KV] with the above one based on the finite-part
integral

∫
−a(x, ξ) d–ξ, in case (2). [G3] extended the equivalence to the case (3),

adding the case (4), by a calculatory proof that avoids comparison of meromor-
phic extensions. [L] generalized the definition in case (2) to log-polyhomogeneous
symbols; this was followed up for the cases (3) and (4) in [G3].

The log-polyhomogeneous symbols of order σ and log-degree k are introduced in
[L] as the functions of the form

(1.7) r(x, ξ) ∼
∑

j∈N, l=0,...,k

rσ−j,l(x, ξ)(log[ξ])l,

where the rσ−j,l(x, ξ) are homogeneous in ξ of order σ − j for |ξ| ≥ 1, and
r(x, ξ)−

∑
j<J, l≤k rσ−j,l(x, ξ)(log[ξ])l is O([ξ]σ−J+ε), all J , with similar estimates

of derivatives (as in (1.1).
The even-even operators are called ‘odd-class’ in [KV] and subsequent litera-

ture (possibly because TRA makes sense for these operators when dimX is odd).

Now let us describe the role of these functionals in the study of geometric
invariants. We shall focus on the generalized zeta function, and the associated
resolvent trace expansion. For this, let A be a classical ψdo in E of order σ ∈ R
and consider, along with it, an elliptic operator P1 of order m ∈ R+. Assuming
that the resolvent set of P1 contains a ray — which we for simplicity take to be the
negative half-axis R− — we can define the complex powers P z

1 by an integral

(1.8) P z
1 = i

2π

∫
C
λz(P1 − λ)−1 dλ

when Re z < 0; here λz is continuous on C \ R−, and C is a Laurent loop
(1.9)
C = {λ = reiπ | ∞ > r > r0}∪{λ = r0e

iθ | π ≥ θ ≥ −π}∪{λ = re−iπ | r0 < r <∞}
going around the nonzero spectrum of P1 in the positive direction. The definition
extends to general z by composition with integer powers of P1, and it is known
from Seeley [S] that the P z

1 are classical ψdo’s (and how their symbols are found):
the complex powers.

The generalized zeta function ζ(A,P1, s) is defined as the meromorphic exten-
sion of Tr(AP−s

1 ) (trace-class for Re s > (σ + n)/m) to the complex plane. It has
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simple poles at the real numbers (σ+n−l)/m, l ∈ N. This is known from the works
of Wodzicki, and can also be deduced from the trace expansion of the resolvent,
shown by use of local coordinates in Grubb and Seeley [GS1] (1995):
(1.10)
Tr(A(P1 − λ)−N ) ∼

∑
j≥0

c̃
(N)
j (−λ)

σ+n−j
m −N +

∑
k≥0

(
c̃
(N)′
k log(−λ) + c̃

(N)′′
k

)
(−λ)−k−N ,

for λ→∞ in a sector around R+ (N > (σ + n)/m), which implies

(1.11) Γ(s)ζ(A,P1, s) ∼
∑
j≥0

cj

s+ j−σ−n
m

− Tr(AΠ0(P1))
s

+
∑
k≥0

( c′k
(s+ k)2

+
c′′k
s+ k

)
,

where the right-hand side indicates the pole structure of the meromorphic extension.
Division by Γ(s) gives the simple poles. (More precisely, [GS1] treats the case where
m is integer; general m ∈ R+ are treated in Loya [Lo], Grubb and Hansen [GH].)

The term with Π0(P1) (the generalized eigenprojection for the zero eigenvalue
of P1) appears because P z

1 is defined as 0 on the generalized zero eigenspace of P1

for all z.
It is seen in particular that ζ(A,P1, s) has the Laurent expansion at s = 0:

(1.12) ζ(A,P1, s) ∼ c′0s
−1 +

(
cσ+n + c′′0 − Tr(AΠ0(P1))

)
s0 +

∑
j≥1

Cjs
j ,

where we set cσ+n = 0 when σ + n /∈ N. We call the coefficient of s0 the “regular
value at s = 0”.

The term Tr(AΠ0(P1)) does not occur in resolvent expansions but only in
statements concerning the zeta function ζ(A,P1, s), where it can be considered an
artificial nuisance; it is cσ+n + c′′0 that has the nice analytic properties.

The constants cσ+n + c′′0 and cσ+n + c′′0 − Tr(AΠ0(P1)) are both independent
of the choice of local coordinates, whereas the splitting in cσ+n and c′′0 (the latter
containing a global contribution in general) depends on the coordinates, see e.g.
the detailed account in [G3]. We define the basic zeta coefficient as

(1.13) C0(A,P1) = cσ+n + c′′0 ;

it equals the regular value of ζ(A,P1, s) at s = 0 plus Tr(AΠ0(P1)). One also has,
in reference to (1.10), that c̃(N)′

0 = c′0 for all N , and

(1.14)
C0(A,P1) = c̃

(1)
σ+n + c̃

(1)′′
0 if N = 1,

C0(A,P1) = c̃
(N)
σ+n + c̃

(N)′′
0 + αNc

′
0 in general, with αN =

∑
1≤j<N

1
j .

The latter formula is explained in detail in [G5]; it is consistent with comparison
of expansions for different powers N , in view of the fact that

(1.15)
(P1 − λ)−N = ∂N−1

λ

(N−1)! (P1 − λ)−1;

∂N−1
λ

(N−1)! [(−λ)−1 log(−λ)] = (−λ)−N log(−λ)− αN (−λ)−N .

The Laurent expansion (1.12) is connected with the two new traces as follows:
(i) The coefficient c′0 equals 1

m resA. In particular, it is independent of P1. (ii) In

the cases (1), (2), C0(A,P1) = TRA. In the cases (3), (4), C0(A,P1) = TRA holds
when m is even and P1 is even-even. The first result stems from [W1], [W2], the
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second result from [KV], [L] and [G3]. One has in the cases (1)–(4) that resA = 0.

The next question we shall address is: What can be said about C0(A,P1)
when we are not in one of the cases (1)–(4). Then it depends on P1, and need
not vanish on commutators. However, the independence of P1 and the vanishing
on commutators hold in general modulo local terms. More precisely, one has the
so-called trace defect formulas (when P2 is another auxiliary elliptic operator, of
order m′):

(1.16)
C0(A,P1)− C0(A,P2) = − res(A( 1

m logP1 − 1
m′ logP2)),

C0([A,A′], P1) = − 1
m res(A[A′, logP1]),

shown by Okikiolu [O], [KV], and Melrose and Nistor [MN]. Here logP1 is defined
by

(1.17) logP1 = lim
s↘0

i
2π

∫
C
λ−s log λ (P1 − λ)−1 dλ,

and its symbol is of the form, in local coordinates,

(1.18) symb(logP1) = m log[ξ] + l(x, ξ),

where l(x, ξ) is a classical symbol of order 0. Thus 1
m logP1 − 1

m′ logP2 and
[A, logP1] are classical.

Very recently, Paycha and Scott [PS] have given a considerable improvement
of the above informations on C0(A,P1). They show a formula for C0(A,P1) in gen-
eral, with ingredients both of the canonical trace-type and of the noncommutative
residue-type:

(1.19) C0(A,P1) =
∫

X

(
TRx(A)− 1

m resx,0(A logP1)
)
dx.

The integrand is defined in a local coordinate system by:

(1.20) TRx(A) =
∫
− tr a(x, ξ) d–ξ, resx,0(A logP1) =

∫
|ξ|=1

tr r−n,0(x, ξ)d–S(ξ);

here
∫
−a(x, ξ) d–ξ is as in (1.6)ff., and r is the symbol of R = A logP1, log-po-

lyhomogeneous of order σ and log-degree 1 (cf. (1.7)). Moreover, the expression(
TRx(A)−resx,0(A logP1)

)
dx has an invariant meaning as a density onX, although

its two terms individually do not so in general.
Having this more general formula (1.19), one can verify the previous formulas

(1.16) and the identifications of C0(A,P1) with TRA in the cases (1)–(4).
The methods of [W1], [Gu], [KV], [O], [MN], [PS] rely in an essential way

on the concept of holomorphic operator families of complex orders. The typical
operator family is P z

1 , z ∈ C, which is classical of order mz (with complex homo-
geneities of the symbol terms), but also AP z

1 (classical of order α(z) = σ + mz
holomorphic in z) and more general operator families are of interest. There are
various definitions of the associated symbol calculus; here we find in [PS] a clear
presentation of the fact that the z-derivative of such an operator family is no longer
a family of classical (polyhomogeneous) ψdo’s, but of log-polyhomogeneous ψdo’s.
In fact, each differentiation with respect to z increases the log-degree by 1.
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Remark 1.1. It may be useful to observe that in local coordinates,

(1.21) resx,0(A logP1) = resx(A(logP1)0),

where (logP1)0 is the classical ψdo OP(l(x, ξ)) = logP1−OP(m log[ξ]) (cf. (1.18)),
and resx stands for the integral over {|ξ| = 1} of the fiber trace of the symbol of
order −n.

2. Similar questions for manifolds with boundary

We next consider extensions of the above concepts to manifolds with boundary.
So now X denotes a compact n-dimensional C∞ manifold with boundary ∂X = X ′;
here X ′ is a smooth boundaryless manifold of dimension n−1. We can assume that
X ⊂ X̃ for a smooth n-dimensional manifold X̃ without boundary, so that ∂X is
its boundary there.

For given smooth vector bundles E and E′ over X (extending to Ẽ and Ẽ′ over
X̃), F and F ′ over X ′, we consider pseudodifferential boundary operators (ψdbo’s)
of order σ as defined by Boutet de Monvel [B]:

(2.1)

P+ +G K

T S

 :
C∞(X,E)

×
C∞(X ′, F )

→
C∞(X,E′)

×
C∞(X ′, F ′)

;

here
P is a classical ψdo on X̃, P+ = r+Pe+,
G is a singular Green operator (s.g.o.) from X to X,
T is a trace operator from X to X ′,
K is a Poisson operator from X ′ to X,
S is a classical ψdo on X ′.

The truncated operator P+ = r+Pe+ applies to u ∈ C∞(X,E); here e+ indi-
cates extension by zero on X̃ \ X and r+ indicates restriction from X̃ to X. In
order for this “brutal” truncation to introduce no new singularities, one assumes
that P is of integer order and satisfies the transmission condition at X ′, namely, in
local coordinates at the boundary (with tangential variable x′, normal variable xn,
the boundary represented by xn = 0):

(2.2) ∂β
x∂

α
ξ pσ−j(x′, 0, 0,−ξn) = (−1)σ−j−|α|∂β

x∂
α
ξ pσ−j(x′, 0, 0, ξn) for |ξn| ≥ 1.

When σ ∈ Z, (2.2) implies that P+ maps C∞(X,E) into C∞(X,E′).
Taking the trace of (2.1) is relevant when E = E′ and F = F ′, here the new

object to study the trace of is the operator B = P+ + G. For the definitions of T
and K we refer to [B] or [G1].

A singular Green operator G of class 0 (i.e., well-defined on L2(X), this assures
that the operators of low order are trace-class) is defined in local coordinates near
X ′ from a symbol g(x′, ξ′, ξn, ηn) or the associated symbol-kernel g̃ obtained by
inverse Fourier transformation and co-Fourier transformation in ξn and ηn:

(2.3) g̃(x′, xn, yn, ξ
′) = F−1

ξn→xn
F−1

ηn→yn
g(x′, ξ′, ξn, ηn) for xn, yn ≥ 0,
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by formulas

Gu(x) =
∫

R2n+1
ei(x′−y′)·ξ′+ixnξn−iynηng(x′, ξ′, ξn, ηn)u(y′, yn) dyd–ξ′d–ξnd–ηn

=
∫

Rn
+

eix′·ξ′ g̃(x′, xn, yn, ξ
′)ú(ξ′, yn) dynd

–ξ′,

where ú(ξ′, yn) = Fy′→ξ′u(y). The symbol g has an expansion in smooth terms
that are homogeneous in (ξ′, ξn, ηn) for |ξ′| ≥ 1:

(2.4)
g(x′, ξ′, ξn, ηn) ∼

∑
j∈N

gσ−j(x′, ξ′, ξn, ηn),

gσ−j(x′, tξ′, tξn, tηn) = tσ−j−1gσ−j(x′, ξ′, ξn, ηn) for t ≥ 1, |ξ′| ≥ 1, all j.

(The enumeration of the homogeneous symbols differs by 1 from the enumeration
in [G1], to fit with the convention for the normal trace, see (2.6)ff. below.)

Moreover, g satifies estimates that are most easily explained for the symbol-
kernel g̃, namely

(2.5) sup
xn,yn≥0

|xk
n∂

k′

xn
yl

n∂
l′

yn
∂β

x′∂
α
ξ′ [g̃(x

′, xn, yn, ξ
′)−

∑
j<J

g̃σ−j(x′, xn, yn, ξ
′)]|

≤ C[ξ′]σ−J−|α|−k+k′−l+l′ , all α, β ∈ Nn−1, J, k, k′, l, l′ ∈ N.

In the definition of G, σ ∈ R is allowed.
In trace calculations, an important step is to “reduce the s.g.o.s to the bound-

ary”: In local coordinates, one defines the normal trace trnG as the ψdo on the
boundary with symbol

(2.6) (trn g)(x′, ξ′) = (trn g̃)(x′, ξ′) =
∫ ∞

0

g̃(x′, xn, xn, ξ
′) dxn;

then s(x′, ξ′) = trn g is polyhomogeneous of order σ when g is of order σ, the j’th
term sσ−j(x′, ξ′) (of homogeneity degree σ − j in ξ′) being derived by (2.3), (2.6)
from gσ−j(x′, ξ′, ξn, ηn).

Example 2.1. Let P = 1 − ∆ on Rn, then P+ is 1 − ∆ on Rn
+ (the plus-

index may be omitted for differential operators since they act locally). The two
semihomogeneous Dirichlet problems on Rn

+,{
(1−∆)u = f,

γ0u = 0;

{
(1−∆)u = 0,
γ0u = ϕ;

are uniquely solvable, with solution operators R resp. K. An easy calculation shows
thatR = Q++G, whereQ is the ψdo (1−∆)−1 with symbol (|ξ|2+1)−1, andG is the
singular Green operator with symbol-kernel 1

2〈ξ′〉e
−〈ξ′〉(xn+yn); 〈ξ′〉 = (|ξ′|2 + 1)

1
2 .

Moreover, K is the Poisson operator with symbol-kernel e−〈ξ
′〉xn . Thus we may

write, denoting γ0 = T , (
P+

T

)−1

=
(
Q+ +G K

)
,

providing examples of matrices (2.1) with dimF = 0, resp. dimF ′ = 0. Note that

trn( 1
2〈ξ′〉e

−〈ξ′〉(xn+yn)) = 1
4〈ξ′〉2 = 1

4 (|ξ′|2 + 1)−1,
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the symbol of the ψdo trnG = 1
4 (1−∆x′)−1 on Rn−1.

A noncommutative residue was assigned to the operators B = P+ + G by
Fedosov, Golse, Leichtnam and Schrohe [FGLS] (1996):
(2.7)

res(B) =
∫

X

∫
|ξ|=1

tr p−n(x, ξ) d–S(ξ)dx+
∫

X′

∫
|ξ′|=1

tr(trn g)1−n(x′, ξ′) d–S(ξ′)dx′,

with similar properties as in the case of closed manifolds. When B = G and σ /∈ Z,
resG = 0.

A canonical trace was introduced in our joint work with Schrohe [GSc2] (2004).
For P+,

(2.8) TR(P+) =
∫

X

∫
− tr p(x, ξ) d–ξdx,

has an invariant meaning when P is as in one of the cases (1), (3), (4) (relative to
X̃). For G,

(2.9) TR(G) = TRX′(trnG) =
∫

X′

∫
− tr(trn g)(x′, ξ′) d–ξ′dx′

(defined on X ′ when a normal coordinate has been chosen and G is supported near
X ′), has an invariant meaning when the ψdo trnG is as in one of the cases (1)–(4)
pertaining to X ′ of dimension n− 1. They are then called canonical traces.

Note that for the joint expression B = P+ + G, the two terms have a canon-
ical trace when their parities are opposite, since X̃ has dimension n and X ′ has
dimension n − 1. This will rarely happen in geometrically interesting cases. For
example, the inverse of the Dirichlet realization of a strongly elliptic second-order
differential operator is of the form Q+ +G with Q even-even and trnG even-even,
both of order −2 (cf. Example 2.1 for a special, localized case). For n odd, Q+ but
not G will have a canonical trace, and the roles are exchanged when n is even.

Now consider the relation to geometric invariants. For definiteness, take the
order σ of B to be integer (we refer to [G4] for the results when σ /∈ Z and P = 0).
In [FGLS], resB was not identified with a residue of a generalized zeta function as
in the closed manifold case, simply because the relevant zeta function expansions
or resolvent expansions had not been developed yet. We did so in a joint work with
Schrohe [GSc1] (2001). Taking as an auxiliary operator the Dirichlet realization
P1,D of a second-order strongly elliptic differential operator P1 in E, principally
scalar near X ′, we showed the expansion (when N > (σ + n)/2)
(2.10)
Tr(B(P1,D−λ)−N ) ∼

∑
j≥0

c̃
(N)
j (−λ)

σ+n−j
2 −N +

∑
k≥0

(
c̃
(N)′
k log(−λ)+c̃(N)′′

k

)
(−λ)−

k
2−N ,

for λ→∞ in a sector around R−, which implies
(2.11)

Γ(s)ζ(B,P1,D, s) ∼
∑
j≥0

cj

s+ j−σ−n
2

− Tr(AΠ0(P1,D))
s

+
∑
k≥0

( c′k
(s+ k

2 )2
+

c′′k
s+ k

2

)
,

as a description of the poles of the meromorphic extension ζ(B,P1,D, s) of Tr(BP−s
1,D)

(extended to s ∈ C from Re s > (σ + n)/2). We then showed moreover that resB
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equals 2 times the first log-coefficient, hence in the transition to (2.11),

(2.12) resB = 2c′0;

it is indeed proportional to the residue of ζ(B,P1,D, s) at s = 0.
A particular point here was that when the resolvent (P1,D−λ)−N is decomposed

into its ψdo part and its s.g.o. part:

(2.13) (P1,D − λ)−N = (P1 − λ)−N
+ +G

(N)
λ ,

then Tr(BG(N)
λ ) has an expansion as in (2.10) but with k running over k ≥ 1; this

trace does not contribute to the residue, and its contribution to the coefficient of
(−λ)−N is local.

Define, similarly to the closed manifold case, the basic zeta coefficient by

(2.14) C0(B,P1,D) = cσ+n + c′′0 .

Then we showed in [GSc2] that

(2.15) C0(B,P1,D) = TRB

holds essentially in the cases where TRB could be defined.
Since these cases far from cover all interesting operators, it is important to get

information on C0(B,P1,D) in general. We showed in [GSc2] that the “global con-
tent” of C0(B,P1,D) (the value modulo local contributions) is expressed by integrals
such as (2.8), (2.9) in local coordinates, and that

(2.16) C0(B,P1,D)− C0(B,P2,D) and C0([B,B′], P1,D) are local.

(For the statement on C0([B,B′], P1,D), we moreover needed to assume that the
ψdo’s P and P ′ entering in B and B′ have normal order ≤ 0.)

All this was based on a painstaking analysis of the resolvent composition
B(P1,D − λ)−N and its symbol, using in particular that the principal interior re-
solvent symbol (p1,2 − λ)−1 has just two simple poles, one in the upper and one in
the lower halfplane of C.

We underline that all the work was carried out in the resolvent framework.
Here we used a combination of the Boutet de Monvel calculus (for each λ) and
the calculus of parameter-dependent ψdo’s developed in [GS1], applicable after
the considerations had been reduced to the boundary. The occurrence of complex
powers in the generalized zeta function is justified by a transition from expansions
such as (2.10) to pole structure information such as (2.11), as accounted for e.g. in
[GS2], but direct calculations on the powers P−s

1,D were not performed.
In fact, the powers P−s

1,D do not belong to the Boutet de Monvel calculus ex-
cept when s is integer, and there is, to our knowledge, not a sufficiently refined
holomorphic calculus available for such powers in order to get results on expansion
coefficients.

For further precision on the constant C0(B,P1,D), a first question to deal with
would be to search for generalizations of the trace defect formulas (1.16). The
proofs of (1.16) in [O], [KV], [MN] all rely on studies of the holomorphic family
P−s (and certain other families), where the fact that causes logP to appear is that

(2.17) d
dsP

−s|s=0 = − logP.

Since we do not have a nice theory of holomorphic families of ψdbo’s, we have to
understand from resolvent calculations how logP comes into the picture.
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3. Trace defect formulas proved by resolvent methods

For a short while we shall now go back to the closed manifold situation, giving
a brief explanation of how the trace defect formulas can be derived purely from
resolvent considerations; then this will be generalized to manifolds with boundary.

There are several ingredients in this. The first observation is that when we
define a trace expansion of one of our λ-dependent families of ψdo’s Sλ from its
symbol s(x, ξ, λ) ∼

∑
j∈N sσ−j(x, ξ, λ),

TrSλ =
∫

tr s(x, ξ, λ) d–ξdx,

we get exact local contributions cj(−λ)mj from those terms for which the strictly
homogeneous version sh

σ−j(x, ξ, λ) (extended from sσ−j by homogeneity to the full
region ξ 6= 0) are integrable in ξ at ξ = 0. For in these terms we can use the
joint (quasi-)homogeneity in ξ and λ to reduce the contribution to an integral of
sh

σ−j(x, ξ,−1) over the whole space times a power of −λ, and the difference between
sσ−j and sh

σ−j produces something of lower order in λ. So whether (−λ)−1 gets
a local coefficient defined as an integral over the full space depends on whether
the term in s(x, ξ, λ) with the appropriate homogeneity has an integrable strictly
homogeneous version.

The second observation builds on the following simple fact: When log λ is inte-
grated along a Laurent loop (1.9) together with a function f(λ) that is holomorphic
on a neighborhood of R− and is O(λ−1−ε) for |λ| → ∞ there, then

(3.1)
∫
C

log λ f(λ) dλ = 2πi
∫ 0

−∞
f(t) dt.

For, log λ just produces a jump of 2πi to be multiplied with f in the integration
along the ray R−; the contributions from log |λ| cancel out. In other words, we
can replace the integration over the Laurent loop with an integration over a ray,
whereby the “mysterious” log λ disappears. Or, reading (3.1) from the right to the
left, we can turn the integral over a ray into a log-integral.

The observations apply to C0(A,P1)−C0(A,P2) as follows: Let, for simplicity,
P1 and P2 be of order m > σ + n. Let Sλ = A((P1 − λ)−1 − (P2 − λ)−1). An
inspection of the symbol s(x, ξ, λ) ∼

∑
j∈N sσ−m−j(x, ξ, λ) shows that the strictly

homogeneous symbol terms sh
σ−m−j(x, ξ, λ) are integrable in ξ at ξ = 0 for j <

σ + n + m, with a convenient estimate of the remainder. (The homogeneity here
is a joint homogeneity in (ξ, µ) for λ = −µmeiθ, each θ.) The term that produces
the coefficient C0(A,P1)−C0(A,P2) is sh

−m−n (taken equal to 0 when σ + n /∈ N),
with

(3.2)
∫

Rn

sh
−m−n(x, ξ, λ) d–ξ = (−λ)−1

∫
Rn

sh
−m−n(x, ξ,−1) d–ξ ≡ (−λ)−1b0(x),

in local coordinates. Then tr b0(x) can be rewritten as the asserted residue integral
involving logP1 and logP2 (cf. (1.16), (1.17)) by use of (3.1) to get log λ into the
picture, combined with the homogeneity and polar coordinates (details in [G4]).
More general orders of P1 and P2 are included as indicated in Remark 3.12 there,
details for this are given in [G5]. The result follows by integration in x.
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In [G4] we used these principles to deduce the formulas (1.16), as well as the
formula

(3.3) C0(I, P1) = − 1
m res(logP1)

by Scott [Sco]. Next, in the heavier part of [G4], we generalized the formulas to
the situation of manifolds with boundary:

The calculus of parameter-dependent ψdbo’s presented in the book [G1] is more
crude than the parameter-dependent calculi of [GS1] and [G2], but it has just what
it takes to discuss how far the integrability of the strictly homogeneous symbols at
0 stays valid when j increases in the symbol sequence; notably, this works also for
the singular Green terms that are far more complicated than the ψdo terms. The
central idea is the concept of “regularity ν”, measuring to what extent the symbols
satisfy the estimates required for strongly polyhomogeneous symbols (such as those
arising from purely differential problems). When a µ-dependent ψdo symbol in
the calculus of [G1] has regularity ν > 0, and is of order d < −n, it has a trace
expansion in powers µd+n−l for 0 ≤ l < n+ ν, with a remainder that is O(µd−ν+ε)
(any ε > 0). There is a similar rule for s.g.o.s, applied to their normal trace.

When using this calculus, we shall make do with finite expansions of the λ-
dependent traces, aiming for just enough terms to capture the coefficient of (−λ)−1.
On the other hand, the calculus allows the use of general auxiliary elliptic differ-
ential operators P1, without delicate conditions on separation of the roots of the
characteristic polynomial, or scalarity. In [G4], they are taken of a sufficiently high
order m, to avoid having to deal with N ’th powers of the resolvent (but there are
means to get around this).

Since the singular Green part of the resolvent, cf. (2.13)ff., is known to con-
tribute locally (in the cases studied in [GSc1], [GSc2]), we focus on the contribu-
tion from (P1 − λ)−1

+ alone. This corresponds to studying the zeta function

(3.4) ζ(B,P1,+, s), meromorphic extension of Tr(B(P−s
1 )+),

where (P−s
1 )+ is an s-dependent family that equals the identity for s = 0 (just as

a family of powers of an elliptic realization of P1 on X would do).
The expansion of Tr(B(P1 − λ)−1

+ ) available directly from the theory of [G1]
does not extend far enough down to include the power (−λ)−1. However, we showed
in [G4] that B(P1−λ)−1

+ −B(P2−λ)−1
+ (with P2 of order m) has better regularity

than B(P1 − λ)−1
+ alone, with a symbol leading to the expansion formula

(3.5) Tr(B(P1 − λ)−1
+ −B(P2 − λ)−1

+ ) =
∑

0≤j≤σ+n

dj (−λ)
n+σ−j

m −1 +O(λ−1− 1
4m ),

where all the explicit coefficients are determined from integrals of strictly homoge-
neous functions. Combining (3.5) with the expansions (2.10) known for particular
choices of P1, we could deduce that
(3.6)
Tr(B(P1−λ)−1

+ ) =
∑

0≤j≤σ+n

cj (−λ)
n+σ−j

m −1+(c′0 log(−λ)+c′′0)(−λ)−1+O(λ−1− 1
4m )

holds for general elliptic differential operators P1 of order m > σ+ n having R− as
a spectral cut. Then the basic zeta coefficient

(3.7) C0(B,P1,+) = cσ+n + c′′0



1012 GERD GRUBB

is defined also in these cases.
A further analysis of the local coefficient of (−λ)−1 in (3.5), using the principles

described above for the case of closed manifolds, shows that the coefficient can
be identified with a sum of two integrals over S∗(X) resp. S∗(X ′) involving an
integration along with log λ over a Laurent loop (1.9). In general we find:

(3.8) C0(B,P1,+)− C0(B,P2,+) = − 1
m res+(P (logP1 − logP2))− 1

m resX′(S′),

where the two terms are worked out from localizations: res+(P (logP1 − logP2)) is
the integral over X, carried back from integrals over Rn

+ of residue-type integrals

(3.9) resx(R) =
∫
|ξ|=1

tr r−n(x, ξ)d–S(ξ);

with R = P (logP1 − logP2), its symbol denoted r in local coordinates. resX′(S′)
is defined from S′, a classical ψdo obtained by integration of the normal trace of
the s.g.o. part Gλ of B((P1 − λ)−1 − (P2 − λ)−1)+ along with log λ on a Laurent
loop (1.9), in local coordinates. Both terms in (3.8) have an invariant meaning as
the coefficient of (−λ)−1 in the trace expansion of the ψdo part, resp. s.g.o. part,
of B(P1 − λ)−1

+ −B(P2 − λ)−1
+ .

When m is even, the formula can be written as

(3.10) C0(B,P1,+)− C0(B,P2,+) = − 1
m res(B(logP1 − logP2)+),

using that the classical ψdo logP1−logP2 satisfies the transmission condition (since
m is even), so that B(logP1− logP2)+ is in the ψdbo calculus and the residue is as
defined by [FGLS]. (The need for evenness of m, in order for the classical parts of
logP1 and logP2 to satisfy the transmission condition, was pointed out in [G5].)

For the second trace defect formula, for the commutator of B = P+ + G and
B′ = P ′+ + G′, it is shown in [G4] that when m > σ + σ′ + n and P and P ′ have
normal order ≤ 0, there is a trace expansion with local coefficients

(3.11) Tr([B,B′](P1 − λ)−1
+ ) =

∑
0≤j≤n+σ+σ′

cj (−λ)
n+σ+σ′−j

m −1 +O(λ−1− 1
4m ),

so that C0([B,B′], P1,+) = cn+σ+σ′ (taken equal to 0 if n + σ + σ′ < 0) is local.
Here it is found to have the form

(3.12) C0([B,B′], P1,+) = − 1
m res+(P [P ′, logP1])− 1

m resX′(S),

where S is a classical ψdo on X ′ constructed in local coordinates by integrating the
normal trace of the s.g.o. part of B[B′, (P1−λ)−1

+ ] together with log λ on a Laurent
loop (1.9).

When m is even, P [P ′, logP1] is a classical ψdo having the transmission prop-
erty, so the first term in the right-hand side of (3.12) can be written as
− 1

m resX((P [P ′, logP1])+), as defined in [FGLS]. The whole right-hand side in
the formula can be regarded as an interpretation of − 1

m res(B[B′, (logP1)+]), al-
though [B′, (logP1)+] is generally not in the Boutet de Monvel calculus.

4. Formulas for the basic zeta coefficient

Finally we shall report on our efforts, worked out in detail in [G6], to find a gen-
eralization of the formula (1.19) of Paycha and Scott to manifolds with boundary.
We are looking for a description of C0(B,P1,+) when B is given in the Boutet de



TRACE DEFECT FORMULAS AND ZETA VALUES FOR BOUNDARY PROBLEMS 1013

Monvel calulus as described above and P1 is a suitably elliptic differential operator.
Our strategy is:

• Find C0(B,P1,+) for one particularly manageable choice of P1.
• Extend to more general P2 by combination with the trace defect formula

(3.10)(or (3.8)).
We showed in [G5] how this can be done for C0(A,P1) in the boundaryless

case, by placing the calculatory part in a localized framework where the opera-
tor P1 has constant coefficients and is of a simple form. The explicit calculation
takes place in Rn for the case of a compactly supported A, and P1 = OP(|ξ|m + 1)
with m large even. It was found that in this special case, since logP1 has symbol
log(|ξ|m + 1) = m log |ξ|+O(|ξ|−m) (with no classical term of order 0), the contri-
bution to C0(A,P1) comes entirely from TRxA, whereas resx,0(A logP1) vanishes.
Pulling the information back to the manifold, we could justify (1.19) by combining
this with the resolvent proof of the first formula in (1.16).

The situation is different in the case with boundary. To keep the calculations
as simple as possible, we use P1 = −∆ + 1 as auxiliary operator, and then have to
work with iterated resolvents

(4.1) QN
λ = (P1 − λ)−N = ∂N−1

λ

(N−1)! (P1 − λ)−1,

with N so large that BQN
λ,+ is trace-class. (QN

λ,+ is short for (QN
λ )+.)

Consider first the case B = P+. By use of local coordinates and a suitable
partition of unity (explained in detail in [G5], [G6]), we reduce to the situation
where the distribution kernel of P has compact support in Rn, taking P1 as 1−∆
there. The operator on Rn

+ may be written as

(4.2)
P+Q

N
λ,+ = r+Pe+r+QN

λ e
+ = r+PQN

λ e
+ − r+Pe−JJr−QN

λ e
+

= (PQN
λ )+ −G+(P )G−(QN

λ ),

where r− and e− denote the restriction and extension-by-zero operators for Rn
− ⊂

Rn, and J is the reflection operator J : u(x′, xn) 7→ u(x′,−xn); it is used here that
e+r+ + e−r− = I on functions. The last term is a composition of the s.g.o.s

(4.3) G+(P ) = r+Pe−J, G−(QN
λ ) = Jr−QN

λ e
+.

The term (PQN
λ )+ has a kernel expansion which is simply the restriction to Rn

+ of
the kernel expansion for the operators considered on Rn, so the formulas from the
case without boundary can be used (with elementary modifications resulting from
going via N ’th powers of the resolvent). The only contribution to C0(P+, P1,+)
from this term is the integral of TRx P .

The new term G+(P )G−(QN
λ ), however, contributes in a different way. As

noted in [G4], Sect. 4, it has a better regularity than PQN
λ in the sense of [G1],

for one can use the formula

(4.4) (P1 − λ)−1 = (−λ)−1 + λ−1P1(P1 − λ)−1

to write G−(P1−λ)−1 = λ−1G−(P1(P1−λ)−1), with similar formulas for N ’th pow-
ers. The extra factor P1 improves the regularity, and the new expression decreases
better in λ (but is, on the other hand, of higher order). Then all the informations
taken together allow the conclusion that the relevant strictly homogeneous symbol
is integrable at ξ′ = 0; no term with (−λ)−N log(−λ) appears in the trace expan-
sion. It is possible to reformulate the contribution to be expressed as an integral of
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trn[G+(P )G−(QN
λ )] together with log λ over a Laurent loop; this gives a classical

ψdo S on X ′ such that the relevant coefficient is a multiple of the residue of S. In
a formal sense, the contribution is

(4.5) 1
2 resX′ S = 1

2 resX′(trn(G+(P )G−(logP1))) = 1
2 res(G+(P )G−(logP1));

but here G−(logP1) is not a standard singular Green operator, so the last expres-
sion is not covered by [FGLS]. More precisely, G−(logP1) is an operator with
symbol-kernel −1

xn+yn
e−[ξ′](xn+yn) (cf. (1.1)ff.) plus more smooth lower order terms,

showing a singularity at xn = yn = 0 that is mild enough to allow taking trn of the
composition with a singular Green operator.

So in contrast with the boundaryless case, we do not just get a TRx-type
contribution from P when P1 = 1−∆.

We can choose P1 on the manifold so that it obeys these formulas in the specially
selected local coordinates, and we get C0(P+, P1,+) as a sum of contributions of the
form

(4.6) ϕ(
∫

[TRx P − 1
2 resx,0(P log(1−∆))] dxψ

+ ϕ

∫
1
2 resx′ trn(G+(P )G−(log(1−∆))) dx′ψ,

with cutoff functions ϕ,ψ; here resx,0(P log(1 − ∆)) is 0, and the integral in x′

vanishes if the local coordinate patch is inside Rn
+.

Now we can combine the special choice of P1 with general choices of P2 and
use (3.10) to conclude:

Theorem 4.1. For a ψdo P of order σ ∈ Z satisfying the transmission condi-
tion at X ′, together with a general elliptic differential operator P2 of order 2 having
R− as a spectral cut, C0(P+, P2,+) is found in local coordinates to be of the form

(4.7)
C0(P+, P2,+) =

∫
X

[TRx P − 1
2 resx,0(P logP2)] dx

+ 1
2

∫
X′

resx′ trn(G+(P )G−(logP2)) dx′.

Next, consider the case B = G. When σ /∈ Z, C0(G,P2,+) = TRG by a slight
extension of [GSc2]; we are presently considering integer σ. The main difficulty in
handling GQN

λ,+ is that the homogeneities of the s.g.o. symbol terms play together
with the homogeneity of the ψdo symbol in a bad way; the singular Green symbol
terms are homogeneous in (ξ′, ξn, ηn) but only for |ξ′| ≥ 1, so it is not fruitful to use
polar coordinates with respect to (ξ′, ξn, ηn). One can easily see that there will be
a global contribution TRx′(trnG), which in the term of order −n+1 stems from an
integration over |ξ′| ≤ 1, but the remaining integral over |ξ′| ≥ 1 is difficult to pin
down. Here we take recourse to one more trace concept, namely that of an infinite
dimensional matrix (indexed by l,m ∈ N).

We use that the symbol of G has a Laguerre expansion

(4.8) g(x′, ξ′, ξn, ηn) =
∑

l,m∈N
clm(x′, ξ′)ϕ̂l([ξ′], ξn) ¯̂ϕm([ξ′], ηn),
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where the ϕ̂l form an orthonormal basis of Fxn→ξn
(e+L2(R+)) for each ξ′. Writing

g as a sum of its diagonal and off-diagonal parts,

g = gdiag + goff , gdiag =
∑
l∈N

cll(x′, ξ′)ϕ̂l([ξ′], ξn) ¯̂ϕl([ξ′], ηn),

we find that the off-diagonal part contributes with a homogeneous term that is
integrable at ξ′ = 0 (and can be handled somewhat like the last term in (4.2),
giving a local contribution), whereas in the contribution from the diagonal part,
taking trn for each l has an effect independent of l (leading to simpler formulas
than when l 6= m).

After separate calculations for the two parts of GQN
λ,+ arising from this de-

composition, one can put the pieces together and write C0(G,P1,+) as a sum of
contributions, when P1 has the form 1−∆ in special local coordinates:

ϕ(
∫

[TRx′ trnG− 1
2 resx′,0 trn(G (log(1−∆))+)] dx′ψ;

the normal trace of G log(1−∆)+ is log-polyhomogeneous as in (1.7) with k = 1.
Finally, one can combine the special choice of P1 with general choices of P2 and

use (3.10) to conclude:

Theorem 4.2. For a singular Green operator G of order σ ∈ Z and class 0,
together with a general elliptic differential operator P2 of order 2 having R− as a
spectral cut, C0(G,P2,+) is found in local coordinates to be of the form

(4.9) C0(G,P2,+) =
∫

X′
[TRx′ trnG− 1

2 resx′,0 trn(G (logP2)+)] dx′.

Details are in [G6].

We shall end this survey by reporting on the basic zeta coefficient in another
interesting case, namely for the zeta function without the “smearing factor” B, for
an elliptic operator in the Boutet de Monvel calculus. Here a generalization of the
formula (3.3) holds; this was worked out in [G4]. Consider a system {P+ +G,T},
where P is of integer orderm > 0, G is of order and classm and T = {T0, . . . , Tm−1}
is a system of normal trace operators of order and class 0, . . . ,m − 1, such that
{P+ +G−λ, T} satisfies the conditions of parameter-ellipticity in [G1], Def. 3.3.1,
for λ on the rays in a sector V around R−. This system defines the realization
(P+G)T acting as P++G and with domain consisting of the sections u ∈ Hm(X,E)
(Sobolev space) such that Tu = 0. The resolvent Rλ = ((P + G)T − λ)−1 exists
on each ray in V for sufficiently large |λ|. As noted in [G1], Remark 3.3.11, even
though Rλ is only trace-class itself when m > n, the operator constructed from
the symbol minus its homogeneous terms of orders ≥ −n is always trace-class, and
its trace has an expansion in a number of terms with powers of −λ. The terms
match corresponding terms in trace expansions of higher powers of the resolvent
RN

λ = ∂N−1
λ

(N−1)!Rλ and in the zeta function ζ(I, (P +G)T , s) = Tr(P +G)−s
T . In fact,

(4.10) Tr(Rλ−
∑

0≤l≤n−m

Rλ,−m−l) =
∑

n−m<l≤n

a−m−l(−λ)(n−m−l)/m+O(λ−1− 1
4m ),

and here the coefficient of the term with l = n is equal to C0(I, (P +G)T ).
This is a situation where the strictly homogeneous symbol of order −m−n for

Rλ is integrable for ξ → 0 in the ψdo part, resp. for ξ′ → 0 in the s.g.o. part, which
makes it possible to verify a formula generalizing (3.3):
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The resolvent has the structure

(4.11) Rλ = Qλ,+ +Gλ,

where Qλ = (P − λ)−1 on X̃ and Gλ is the singular Green part. The operator
logP is defined on X̃ by the usual Cauchy integral (1.17), and we can, in local
coordinates, define the residue integral resx(logP ) by integration for |ξ| = 1 of
the fiber trace of the homogeneous symbol of order −n (recall that it is classical,
cf. (1.18)). It will contribute to C0(I, (P + G)T ) by integrals over the coordinate
patches intersected with Rn

+ (coming from X) multiplied by − 1
m . We denote the

contribution res+(logP ), similarly to the notation used above.
When m is even, the classical part of logP has the transmission property at

X ′ and the contribution can be regarded as resX((logP )+) in a sense of residues
as defined in [FGLS], except that we subtract the principal symbol (or just its
log-term) in order to have an operator in the Boutet de Monvel calculus. (Here we
are in fact dealing with (logP )0, cf. Remark 1.1.)

For the contribution from Gλ, we define Sλ = trnGλ in local coordinates near
the boundary (noting that Gλ on sets with positive distance from the boundary is
of order −∞ and O(λ−1− 1

4m )). Let S′λ be defined from the symbol of Sλ minus its
principal part; integrating this along with log λ on a Laurent loop gives a classical
ψdo S′ on the boundary. The contribution to C0(I, (P +G)T ) is the integral over
X ′ (carried back from the localized pieces) of the residue integrals resx′(S′) as in
(3.9) in dimension n− 1 (multiplied by − 1

m ).
In this sense, we can write the formula

(4.12) C0(I, (P +G)T ) = − 1
m res+(logP )− 1

m resX′(S′),

generalizing (3.3), the terms being defined from local calculations. (The above
account extends the formula from large m in [G4] to general m > 0.)

The right-hand side in (4.12) (times −m) can be viewed as an interpretation of
the residue of log((P +G)T ) in a generalized sense. The operator log((P +G)T ) =
(logP )+ + Glog, is studied in more detail in a forthcoming paper, where we show
that Glog, although certainly not belonging to the Boutet de Monvel calculus, does
satisfy some of the symbol-kernel estimates, as in the study of generalized s.g.o.s
arising from complex powers in [G1], Sect. 4.4.
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