COMMENTS TO
 G. GRUBB: "DISTRIBUTIONS AND OPERATORS"

Springer Verlag, New York 2009

Corrections, updated January 15, 2011.
Notation: x means page x, with x^{y} indicating line y from above, x_{y} indicating line y from below.
4^{15} replace "differention" by "differentiation"
13^{19+23} replace " $p_{j, k}$ " by " $p_{k, j}$ "
18^{12+18} replace " L^{1} " by " L_{1} "
24_{8+7} replace " $i=0$ " by " $j=0$ "
24_{7} add the sentence "The conclusion of Theorem 2.17 also holds when the V_{j} are arbitrary open sets, since they can be replaced by bounded sets $V_{j} \cap B(0, R)$ with R taken so large that $K \subset$ $B(0, R)$."
42^{5} replace " $\left(\varphi\right.$ " by " $\left(\breve{\varphi}^{\prime \prime}\right.$
42_{10} replace " (2.35) " by "(2.32)"
44_{15} replace " $J \circ T^{-1}$ " by " $J T^{-1}$ "
60^{13} add the line "here $\partial f=g$."
62_{14} replace "(C.11)" by "(C.10)"
63^{4} replace " v " by " u " in two places
64_{7} replace " $\chi_{N} u$ " by " $\chi_{N} u=\chi(x / N) u$ "
65^{2+5+6} replace " L^{2} " by " L_{2} " in the subscripts
65_{2} replace " $B\left(0, \frac{1}{j}\right)$ " by " $B\left(x, \frac{1}{j}\right)$ "
66 let the footnote refer to (3.60) instead of (3.43)
72_{11} change the definition of \tilde{v}_{δ} to

$$
\tilde{v}_{\delta}(x)=\tilde{u}\left(\frac{\alpha+\beta}{2}+\frac{1}{1-\delta}\left(x-\frac{\alpha+\beta}{2}\right)\right)
$$

73^{9} replace "perioodic" by "periodic"
76^{16} replace " $m-1$)" by " $m-1$ "
79_{9} replace " $d y_{n} d x^{\prime \prime}$ " by " $d x^{\prime} d y_{n}$ "
83_{9} replace " $\Omega_{b}=\left\{x \in \mathbb{R}^{n} \mid 0 \leq x_{j} \leq b\right\}$ " by " $\bar{\Omega}_{b}$, where Ω_{b} $=\left\{x \in \mathbb{R}^{n} \mid 0<x_{j}<b\right\} "$
84^{6} replace " Ω_{R} " by " Ω_{b} "
84^{9} replace "the lemma" by "Theorem 4.29"
89^{7} replace " $(H, V, l(u, v))$ " by " $\left(H, V, l_{0}(u, v)\right)$ "
126_{14} replace "Exercise 12.36 " by "Exercise 12.35 "
126_{10} replace "this theorem" by "Theorem 6.3"
127_{1} add "(The constant $4 / 3$ can e.g. be found as the maximum of $(1+2 s+2 t) /(1+s+t+s t)$ for $\left.s=|x|^{2}, t=|y|^{2} \in \overline{\mathbb{R}}_{+}.\right) "$
135_{4} replace " $d \eta d \zeta$ " by " $d \zeta d \eta$ "
136^{17} replace "when u " by "when φ "
158^{1} replace "Show that" by "Let $\operatorname{Re} b>-2$. Show that"
226_{9-7} " $\rho_{(m)}$ " should be " $\varrho_{(m)}$ " (such wrong fonts occur here and there in the book)
320^{15} replace " $L i C^{-}$" by " C^{-}"
349_{3} replace " $|p(\xi)| \leq C$ for $\xi \in X$ " by " $|p(x)| \leq C$ for $x \in \Omega$ "
350_{11} replace " $\beta a x_{2}$ " by " $\beta a\left(x_{2}\right.$ "
352_{13} replace " 12.93° " by " 12.9 "
353_{5} add the sentence "Moreover, H is dense in V^{*}; this is seen e.g. by observing that the mapping $f \mapsto \ell_{f}$ from H to V^{*} is the adjoint of the injection of V into H; here one can apply Theorem 12.7."
359_{8} replace "at" by "as"
362^{11} replace " $e^{i} \theta$ " by " $e^{i \theta}$ "
368^{19+20} remove "see in particular Exercise 4.14"
370^{23} remove " r "
434^{5} replace "Exercise B.1" by "Exercise B.3"
436_{1} the signs " " are superfluous
437^{13} the signs "" are superfluous
448^{18} replace "order m " by "order k "

Additional exercises.

Exercise 6.39. Denote by $\ell_{2}^{N}(\mathbb{N})$ the Hilbert space of complex sequences $\underline{x}=\left(x_{k}\right)_{k \in \mathbb{N}}$ with norm $\|\underline{x}\|_{\ell_{2}^{N}(\mathbb{N})}=\left(\sum_{k \in \mathbb{N}}\left|k^{N} x_{k}\right|^{2}\right)^{\frac{1}{2}}<\infty$; the corresponding scalar product is $(\underline{x}, \underline{y})_{\ell_{2}^{N}(\mathbb{N})}=\sum_{k \in \mathbb{N}} k^{2 N} x_{k} \bar{y}_{k}$.
(a) Show that $V=\ell_{2}^{1}(\mathbb{N})$ and $H=\ell_{2}^{0}(\mathbb{N})$ satisfy the hypotheses around (12.36).
(b) Show that when V^{*} is considered as in Lemma 12.16, it may be identified with $\ell_{2}^{-1}(\mathbb{N})$.
(c) Let $a(\underline{x}, \underline{y})=(\underline{x}, \underline{y})_{\ell_{2}^{1}(\mathbb{N})}+2(\underline{x}, \underline{y})_{\ell_{2}^{0}(\mathbb{N})}$, with domain V. Find the associated operator A in H defined by Definition 12.14, and check the properties resulting from Theorem 12.18.

Exercise 6.40. Let I be an interval of \mathbb{R}. Show, by construction, that the equation $D u=f$ has a solution $u \in \mathscr{D}^{\prime}(I)$ for any $f \in \mathscr{D}^{\prime}(I)$. Describe all solutions for a given f.
(Hint: The mapping from φ to ψ defined in the proof of Theorem 4.19 may be helpful.)

Exercise 6.41. Define the sesquilinear form a_{1} by

$$
a_{1}(u, v)=\int_{0}^{\infty}\left(u^{\prime \prime} \bar{v}^{\prime \prime}+2 u^{\prime} \bar{v}^{\prime}+u \bar{v}\right) d x, \quad u, v \in H^{2}\left(\mathbb{R}_{+}\right)
$$

and let a_{0} be its restriction to $H_{0}^{2}\left(\mathbb{R}_{+}\right)$. Let $H=L_{2}\left(\mathbb{R}_{+}\right), V_{1}=H^{2}\left(\mathbb{R}_{+}\right)$, $V_{0}=H_{0}^{2}\left(\mathbb{R}_{+}\right)$.
(a) Show that the triples $\left(H, V_{0}, a_{0}\right)$ and $\left(H, V_{1}, a_{1}\right)$ satisfy the conditions for application of the Lax-Milgram theorem (Theorem 12.18).
(b) Denoting the hereby defined operators by A_{0} resp. A_{1}, find how these operators act and what their domains are.
(c) Show that the operators are selfadjoint positive.

Exercise 6.42. Let $Q=]-1,1[\times]-1,1\left[\subset \mathbb{R}^{2}\right.$, and let $u(x, y)$ be the function on \mathbb{R}^{2} defined by

$$
u(x, y)= \begin{cases}x+y & \text { for }(x, y) \in Q \\ 0 & \text { for }(x, y) \notin Q\end{cases}
$$

(a) Find the Fourier transform of u.
(Hint. One can first determine the Fourier transform of the function 1_{Q} and then use rules of calculus.)
(b) Find the Fourier transforms of $D_{x} u$ and $D_{y} u$.
(c) Determine whether $u \in H^{0}\left(\mathbb{R}^{2}\right)$, and whether $u \in H^{1}\left(\mathbb{R}^{2}\right)$.

Exercise 6.43. Let $I=]-1,1[$, and let \mathcal{B} denote the space of functions $\varphi \in C^{\infty}(\bar{I})$ satisfying $\varphi(0)=0$. Show that \mathcal{B} is dense in $L_{2}(I)$, but not in $H^{1}(I)$.
(Hint. Recall that convergence in $H^{1}(I)$ implies convergence in $C^{0}(\bar{I})$.)

