COMMENTS TO G. GRUBB: "DISTRIBUTIONS AND OPERATORS"

Springer Verlag, New York 2009

Corrections, updated January 15, 2011.

Notation: x means page x, with x^y indicating line y from above, x_y indicating line y from below.

- 4^{15} replace "differentian" by "differentiation"
- 13¹⁹⁺²³ replace " $p_{j,k}$ " by " $p_{k,j}$ " 18¹²⁺¹⁸ replace " L^1 " by " L_1 "

 24_{8+7} replace "i = 0" by "j = 0"

- 24_7 add the sentence "The conclusion of Theorem 2.17 also holds when the V_i are arbitrary open sets, since they can be replaced by bounded sets $V_i \cap B(0,R)$ with R taken so large that $K \subset$ B(0, R)."
- 42^5 replace " (φ) " by " $(\check{\varphi})$ "
- 42_{10} replace "(2.35)" by "(2.32)"
- 44₁₅ replace " $J \circ T^{-1}$ " by " JT^{-1} "
- 60^{13} add the line "here $\partial f = q$."
- 62_{14} replace "(C.11)" by "(C.10)"
- 63^4 replace "v" by "u" in two places
- 647 replace " $\chi_N u$ " by " $\chi_N u = \chi(x/N)u$ "
- 65^{2+5+6} replace "L²" by "L₂" in the subscripts
 - 65₂ replace " $B(0, \frac{1}{i})$ " by " $B(x, \frac{1}{i})$ "
 - 66 let the footnote refer to (3.60) instead of (3.43)
 - 72_{11} change the definition of \tilde{v}_{δ} to

$$\tilde{v}_{\delta}(x) = \tilde{u}(\frac{\alpha+\beta}{2} + \frac{1}{1-\delta}(x - \frac{\alpha+\beta}{2}))$$

73⁹ replace "perioodic" by "periodic"

- 76¹⁶ replace "m-1)" by "m-1"
- 799 replace " $dy_n dx'$ " by " $dx' dy_n$ "
- 83₉ replace " $\Omega_b = \{x \in \mathbb{R}^n \mid 0 \leq x_j \leq b\}$ " by " $\overline{\Omega}_b$, where Ω_b $= \{ x \in \mathbb{R}^n \mid 0 < x_j < b \}$
- 84⁶ replace " Ω_R " by " Ω_b "
- 84^9 replace "the lemma" by "Theorem 4.29"
- 89⁷ replace "(H, V, l(u, v))" by " $(H, V, l_0(u, v))$ "
- 126_{14} replace "Exercise 12.36" by "Exercise 12.35"
- 126_{10} replace "this theorem" by "Theorem 6.3"

2 COMMENTS TO G. GRUBB: "DISTRIBUTIONS AND OPERATORS"

127₁ add "(The constant 4/3 can e.g. be found as the maximum of (1+2s+2t)/(1+s+t+st) for $s=|x|^2, t=|y|^2 \in \overline{\mathbb{R}}_+$.)"

- 1354 replace " $d\eta d\zeta$ " by " $d\zeta d\eta$ "
- 136¹⁷ replace "when u" by "when φ "
- 158^1 replace "Show that" by "Let $\operatorname{Re} b > -2$. Show that"
- 226_{9-7} " $\rho_{(m)}$ " should be " $\varrho_{(m)}$ " (such wrong fonts occur here and there in the book)
- 320^{15} replace "LiC-" by "C-"
- 349₃ replace " $|p(\xi)| \leq C$ for $\xi \in X$ " by " $|p(x)| \leq C$ for $x \in \Omega$ "
- 350_{11} replace " $\beta a x_2$ " by " $\beta a (x_2)$ "
- 352_{13} replace "12.9 3°" by "12.9"
- 353₅ add the sentence "Moreover, H is dense in V^* ; this is seen e.g. by observing that the mapping $f \mapsto \ell_f$ from H to V^* is the adjoint of the injection of V into H; here one can apply Theorem 12.7."
- 359₈ replace "at" by "as"
- 362^{11} replace " $e^{i}\theta$ " by " $e^{i\theta}$ "
- 368^{19+20} remove "see in particular Exercise 4.14"
 - 370^{23} remove "rr"
 - 434⁵ replace "Exercise B.1" by "Exercise B.3"
 - 436_1 the signs "|" are superfluous
 - 437^{13} the signs "|" are superfluous
 - 448¹⁸ replace "order m" by "order k"

Additional exercises.

Exercise 6.39. Denote by $\ell_2^N(\mathbb{N})$ the Hilbert space of complex sequences $\underline{x} = (x_k)_{k \in \mathbb{N}}$ with norm $\|\underline{x}\|_{\ell_2^N(\mathbb{N})} = \left(\sum_{k \in \mathbb{N}} |k^N x_k|^2\right)^{\frac{1}{2}} < \infty$; the corresponding scalar product is $(\underline{x}, \underline{y})_{\ell_2^N(\mathbb{N})} = \sum_{k \in \mathbb{N}} k^{2N} x_k \bar{y}_k$.

(a) Show that $V = \ell_2^1(\mathbb{N})$ and $H = \ell_2^0(\mathbb{N})$ satisfy the hypotheses around (12.36).

(b) Show that when V^* is considered as in Lemma 12.16, it may be identified with $\ell_2^{-1}(\mathbb{N})$.

(c) Let $a(\underline{x}, \underline{y}) = (\underline{x}, \underline{y})_{\ell_2^1(\mathbb{N})} + 2(\underline{x}, \underline{y})_{\ell_2^0(\mathbb{N})}$, with domain V. Find the associated operator A in H defined by Definition 12.14, and check the properties resulting from Theorem 12.18.

Exercise 6.40. Let I be an interval of \mathbb{R} . Show, by construction, that the equation Du = f has a solution $u \in \mathscr{D}'(I)$ for any $f \in \mathscr{D}'(I)$. Describe all solutions for a given f.

(*Hint:* The mapping from φ to ψ defined in the proof of Theorem 4.19 may be helpful.)

Exercise 6.41. Define the sesquilinear form a_1 by

$$a_1(u,v) = \int_0^\infty (u''\bar{v}'' + 2u'\bar{v}' + u\bar{v}) \, dx, \quad u,v \in H^2(\mathbb{R}_+),$$

and let a_0 be its restriction to $H_0^2(\mathbb{R}_+)$. Let $H = L_2(\mathbb{R}_+), V_1 = H^2(\mathbb{R}_+), V_0 = H_0^2(\mathbb{R}_+)$.

(a) Show that the triples (H, V_0, a_0) and (H, V_1, a_1) satisfy the conditions for application of the Lax-Milgram theorem (Theorem 12.18).

(b) Denoting the hereby defined operators by A_0 resp. A_1 , find how these operators act and what their domains are.

(c) Show that the operators are selfadjoint positive.

Exercise 6.42. Let $Q =]-1, 1[\times]-1, 1[\subset \mathbb{R}^2$, and let u(x, y) be the function on \mathbb{R}^2 defined by

$$u(x,y) = \begin{cases} x+y & \text{ for } (x,y) \in Q, \\ 0 & \text{ for } (x,y) \notin Q. \end{cases}$$

(a) Find the Fourier transform of u.

(*Hint.* One can first determine the Fourier transform of the function 1_Q and then use rules of calculus.)

(b) Find the Fourier transforms of $D_x u$ and $D_y u$.

(c) Determine whether $u \in H^0(\mathbb{R}^2)$, and whether $u \in H^1(\mathbb{R}^2)$.

Exercise 6.43. Let I =]-1, 1[, and let \mathcal{B} denote the space of functions $\varphi \in C^{\infty}(\overline{I})$ satisfying $\varphi(0) = 0$. Show that \mathcal{B} is dense in $L_2(I)$, but not in $H^1(I)$.

(*Hint.* Recall that convergence in $H^1(I)$ implies convergence in $C^0(\overline{I})$.)