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ABSTRACT

The paper treats coerciveness inequalities (of the form Re(dw, 1) = ¢ |ju2
-2 |iu|[g, ¢ >0, Ae R) and semiboundedness inequalities (of the form
Re(Au,u) = — A u[[?) for the general boundary problems associated with
an elliptic 2m-order differential operator 4 in a compact n-dimensional mani-
fold with boundary. In particular, we study the normal pseudo-differential
boundary conditions, for which we determine necessary and sufficient conditions
for coerciveness with s = m, and for semiboundedness with || # || = | « .,
in explicit form.

1. Introduction

Let A be a properly elliptic 2m order linear differential operator with
C® coefficients on an n-dimensional compact Riemannian manifold Q with
boundary I' (Q\I" denoted Q). With 4, = A4 defined on {u € I*(Q) l Aue I2(Q)};
and A, = the closure, as an operator in I*(Q), of A defined on 2(Q), we call
the linear operators 4 in I2(Q) with Ay =« 4 = A, the realizations of 4. In part of
the paper we shall assume that the realization defined by the Dirichlet problem
is bijective, which permits application of [11].

When s = 0 we shall say that 4 is s-coercive! if there exist ¢ > 0, e R such
that (with the I*(Q) Sobolev norms)

(1.1) Re(Au,u) = c” u ||f - /1” ull2, for all ue D(A)

(the case s = 0 is included for convenience). More generally, we say that 4 satisfies

a semiboundedness estimate if, for some norm ||| - |, one has the estimate

1 This terminology is inspired by [20, Def. 2.9.2]; we use the term regularity for estimates
like [Ju|l, < el Au|. + ||ulls-1), and coerciveness for estimates like (1.1).
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(1.2) Re(Au,u) = — A |||ul||?, for all ueD(A);
it will in particular be studied for H[u]” = ﬂu }m, and for
(e[ = Lo S + a2

In Chapter 2, we introduce notations and collect the known results that our
theory builds on.

In Chapter 3, we discuss (1.1) and (1.2) within the general framework of [11].
It was shown there how the set of closed realizations 4 is in 1-1 correspondence
with the set of closed, densely defined operators L: X — Y’, where X and Y denote
closed subspaces of ]—[}";01 H™7~Y%(T); in such a way that each 4 represents a
specific boundary condition described in terms of the corresponding L: X — Y’,
Here X =yD(A) and Y =yD(A*), where y denotes the Dirichlet boundary
operator y = {yg,***,Ym—1}, With y; = (i—18/on)’. Under the assumption that 4
equals its formal adjoint A’it was shown, in [11] for s =0, and in [12] for

s€ [0, m], how (1.1) is related to a similar property of L. In the present paper we
permit A ## 4’, and then we treat (1.1) and (1.2) in general only on

(13) D(A) N {ue Z(Q)| A'ue H™Q)},

since we need the Dirichlet problem of 4’ as well as of 4 to have a sense. We find,
roughly speaking, that (1.2) with Hl u ||| = ” u “m is characterized by: X = Yand a
related semiboundedness estimate for L; and that (1.1), when A is strongly
elliptic, again requires X — ¥, but now depends on the validity of a related coer-
civeness estimate for L+ Q, where  is a certain non-positive pseudo-differen-
tial operator in I', defined from A. (Q=0when A=A4".) (Theorem 3.4 and 3.6 give
these statements with the relevant modifications; other estimates are also treated.)

In Chapter 4 the results are applied to realizations defined by normal boundary
conditions:

(1.4 yiu — X Funu=0, jed;

keK, k<j

here J and K denote complementing subsets of {0,1,:-,2m — 1}, each consisting
of m elements; and the F; denote pseudo-differential operators in I' of orders
j—k. We set

1.5) D(4) = {ue D(4,)|(1.4) holds}.

The main explicit results are here:
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THEOREM I. (Cf. Theorems 4.1, 5.2.) When A is properly elliptic, and A4 is
determined by (1.5), the following statements (1.6)-(1.8) are equivalent:

1.6) 3AeR s.th. Re(du,u) = — A u|?, for all ue D(A)NH™Q),
(1.7) yD(A) = yD(T*),

J= {j|2m ~j—1eK}, and the matrix (Fj)jsmy=m i8S @ certain explicit

1.8) {function of the matrix (F j); <myx<m (cf-(4.66)).

In the course of the proof one finds that (1.6)-(1.8) are also equivalent with:
l(du,0)| g c|ulmlo|m on DA NH™Q), and with: yD(I) = yD(Z*).

THEOREM II. (Cf. Theorem 4.3.) When furthermore A is strongly elliptic, A
is m-coercive if and only if

(1) the equivalent conditions in Theorem I hold,

(ii) a certain matrix-valued function on S(I'), formed of the principal
symbols on I of A and the F, is positive definite.

The function in (ii) is ¢%(¢"), where " is a pseudo-differential operator in T,
which in a sense represents the real part of L + Q. The restriction indicated in
(1.3) is eliminated in these theorems by easy density arguments.

Theorem II solves completely the old problem of characterizing m-coerciveness
of normal boundary problems; in Chapter 5 we compare this with previous
results. It was solved by Agmon in [1] for the case where A4 is associated with an
integro-differential sesquilinear form a(u,v) in such a way that

(1.9) a(u,v) = (Au,v), for all u,ve D(A) NH>"(Q);

however, the problem of expressing when (1.9) may be obtained was left unsolved.
Another characterization, not using sesquilinear forms, of selfadjoint A was
given by Agmon in [2]. Recently Shimakura [26], Shimakura-Fujiwara [27]
and Grubb [12] characterized, without the use of sesquilinear forms, the m-co-
ercive realizations (1.5) where

(1.10) J={0,1,--,m—p—1, mm+1,-,m+p—1}

for some pe[0,m]. ((1.10) is necessary for the stability of (1.1) w.r.t. perturba-
tions of A.) All these partial characterizations concern principal symbols; the
remarkable aspect of Theorem II is the condition (i), which concerns the full

operators F; (not even just their symbols). It is trivially satisfied when (1.10)
holds. For the case where the F, are differential operators, we investigate in
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Chapter 5 the connection between (i) and Agmon’s sesquilinear forms, and find
that indeed (i) is necessary and sufficient for the existence of a form a(u, v) fitting
together with 4 in (1.9).

The Appendix (Chapter 6) elaborates a statement in Chapter 2 about certain
operators P in I ; a simple proof is given there that they are pseudo-differential
operators, together with some explicit formulae concerning their principal sym-
bols. (These were already used in [12], the proofs being deferred to a later paper.)

Theorem II and a weaker version of Theorem 1 were previously announced,
for the case A = A’ in [13], and for general A4 in [14].

Chapter 5 was written after, and inspired by, a correspondence with Professor
S. Agmon, to whom the author would like to express her gratitude.

2. Notations and preparatory theorems
2.1. Spaces. Throughout this paper we assume:

ASSUMPTION 2.1. Q is an infinitely differentiable n-dimensional compact
Riemannian manifold with boundary I'; O\I' is denoted by Q.

As it will sometimes be convenient, one may regard Q as an open subset of a
compact Riemannian manifold £ without boundary, in which Q has the C®
boundary I" and the closure Q. The generic points in X resp. I' will be denoted x
resp. y. In a neighborhood Z, of T', the points may be represented in tangential
and normal coordinates: x = (y,t), where x denotes the point at the distance ¢
from I" on the geodesic through y (we take t> 0 in Q, £ <0 in Z\Q,

X, = {(y,t)lyel", [t[ <g}
for a suitable &> 0). Thereby is defined a first order differential operator
D, =i '8 /0t in T,, which we call the normal derivative.

For a manifold Z, we denote by Z(E) the space of C*® functions on = with
compact support in Z. When ue 2(Z,) or 2(Q NX,), we denote by you its res-
triction to I', you = u IF €2(T); and by y;u (j integer > 0) the function y,u = yo(D/u)
e 2(I).

The cotangent bundle of £ will be denoted by T*(Z), the subbundle obtained by
suppressing the zero section by T*(Z), and the subbundle obtained by replacing
the fibres by their unit spheres by S(X). The restrictions to Q resp. Q are denoted
T*Q) resp. T *(€), etc., and the analogous bundles for I' are denoted T*(I'),
T¥T), S(I'). The generic element of T*(Z) is (x, &), where & denotes a covector
at the point x; analogously the generic element of T*(T') is (y,5).
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The space I*(Q)=I*Q) consists of the (equivalence classes of) complex
valued square integrable functions on Q w.r.t. the measure dx defined by the
Riemannian metric, it is a Hilbert space with inner product and norm

(u,v) =j uvdx resp. [] u “0 = (u,u)*.
Q

I*(T) is the analogous space for I', provided with the measure do induced on T’
by the metric on Q.

By the help of local coordinates one defines the Sobolev spaces H*() and
H'T) for seR, and H{(Q) for s =0 (cf. e.g. Lions-Magenes [20]); they are
s and for s = 0 we identify them with

Hilbert spaces with norms denoted | u
the Hilbert spaces I*(Q) and I*(I"), respectively. For s 5% 0 we prefer not to fix on
beforehand the choice of norm (since, as is well known, there are various equally
sensible ways of defining these norms), but recall that, for s > 0, the anti-duality
between H(Q) and H™°(Q), and the antiduality between H*(I') and H™(I')
(usually written with sharp brackets (,») coincide with the inner products in
I%(Q) resp. I*(T), when they are applied to elements that also lie in I*(Q) resp.
IX(T).

2.2. Vector- and matrix-notation. Throughout this paper we assume that
m is a fixed positive integer. We denote by M, M, and M, the following ordered

sets of integers
1) M={0,1,,2m—1}, Mg ={0,---,m—1} and M, = {m,--,2m—1}
(so M =Myu M,;). When N cM, we denote
2.2 NNMy=No, NAM; =N, and {j|2m —1—jeN} =N’
(N’ again considered as an ordered subset of M). The number of elements in N
will be denoted |N|.
Let J c M and K = M. A matrix E = (E;);, wex indexed by J x K will be
called a J x K-matrix, and a vector ¢ = {¢;},.; indexed by J will be called a

J-vector.
letLcJcMand N <« K <M. When EisaJ x K-matrix, and {j,k} eJ x K,

E, denotes the {j, k}th entry in E, and E, y denotes the minor
2.3) Ern = (Eji)jer ken-

Similarly, when ¢ is a J-vector, ¢; is the jth entry, and ¢, is the vector
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(2.4 ¢L= {¢j}jel_-
We denote by I and 0 the unit resp, zero M x M-matrices
(2-5) I= (5jk)j.keMa 0= (O)j.keM

(Then, in (2.4), ¢, =1.;¢4.)

The vector notation will primarily be used in the following connection: Let
J <M and let {s;};; be a vector of real numbers. Then the elements ¢ of
[Ijcs H(T) are J-vectors with ¢;e H*(T). When a norm ” . ”sj in H¥(I') is
chosen for each s;, the expression (X; ,H ¢; ”f}.)*L defines a Hilbert space norm
in the product space [ [;.; H*(I'). Such a norm, and any Hilbert space norm in
[1;esH¥() equivalent with it, will be denoted

26) | ltsspes
where the *‘jeJ’’ may be omitted if it is understood from the text. The duality
between [[;; H(I) and [[,., H *(T) will be denoted < , >orjust {, ).

fsjb{—s;
Certain vectors of the boundary operators y; defined in Section 2.1 will be given

special names:
(2.7) p= {)’j}jeM, Y= {yj}jeMow vy = {Vj}jeMp

here y = py,, v=py,. We recall the classical ‘‘trace-theorem’ (cf. Lions-
Magenes [20])

PrOPOSITION 2.1. 9, defined on 9(Q), extends by continuity to a mapping,
also denoted by y, which sends H(Q) continuously onto [];e H* ™' "3T) for
all s>m — %; here {u eHs(Q)Iyu =0} equals HY(Q), when m — 4 < s < m, and

2@ N HY(Q), when s = m,

The matrix-notation will be used mainly on pseudo-differential operators in I’
and their symbols. We shall use the ‘classical’ pseudo-differential operators
(from now on abbreviated to ps.d.o.’s) introduced in Kohn-Nirenberg [18],
Hormander [16], [17], Seeley [25], to which we refer for details. Here, when P
is a ps.d.o. in T, its symbol ¢(P)(y,#) is, in local coordinates, a formal series of
functions on T¥T),

o0
o)) = X p'(y.n),
=0
each p’being C* in y and homogeneous in # of degree r;, the r; forming a sequence

of real numbers strictly decreasing towards — oo. The principal symbol is
a®(P)(y,n) = p°(y,n), also denoted 0,(P)(y,n) if one wants to emphasize the
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degree of homogeneity. Note that it is determined by its value on S(I') and r.
P has order ry, i.e., is continuous from H**"(") into H(I"), all seR.

DerFINITION 2.1. Let J e M, K = M, and let {t;},; and {s;},.x be vectors of
real numbers. Furthermore, let P = (Pj)jesuex denote a J x K-matrix of
ps.d.o.’s Py. Then P will be said to be of type (s;,t)errex if €ach Py is of
order s, —t;, for {j,k}eJ x K. When this understood to hold, the principal
symbol of P is defined as the J x K-matrix

(2.8) O'O(P ) = (Usk—x ,(P jk))je],keK [ =(o O(P jk))je].kel(]'

We note that P being of type (s¢, £;)jes, sex means that P is continuous from
[TiexH™™" (I) into [];c;H *'(T), for all reR. Then P is also of type
(sx+ 7, tj + 1)jes rex» any 7€ R. Now, the adjoint of P is the K x J-matrix of
ps.d.o.’s

29 P* = (Q) ek, res> Where Qy = Pk’:'s

P* is of type (— t, — ;) « k.x es» and its principal symbol is ¢°(P)* (the conjugate
transpose of c°(P)). When in particular K = J, and s; = — t;, each j e J, then P*
is of the same type as P, and we define the “‘real’’ and ‘‘imaginary’’ parts of P by

(2.10) ReP=4P+P*, ImP= —;_?(P — P%),

a similar notation will be used for the symbols.

Recall that P is said to be elliptic if ¢°(P)(y,n) is injective at each point
(y,n) € S(I'). Let us further mention the following results on positive semidef-
initeness and definiteness:

ProrositioN 2.2. Let J < M, and let P be a J x J-matrix of ps.d.o.’s in T,

of type (S, — S;); kes» Where {sj}jEJ is any real J-vector.

O If
@.11) Re (Pg, ¢ 20, all e [] 2(D),
then .
(2.12) Re ¢°(y,n) = 0 for all (y,n)e S(T)

(i.e., Re 6°(y,n) is positive semidefinite).
(ii) Let r > 0. In order that there exist ¢ >0, AeR such that

(2°13) Re <P¢’ ¢> g C” ¢ |I{25j) - '1” ¢ “%Sj_r}’ all ¢€ 1:_!:, ‘@(r)9
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it is necessary and sufficient that

.19 Red®(P)(y,n) > 0 for all (y,n)e S(I)

(i.e., for some ¢’ >0, Re ¢°(P)(y,n) —c'I;; =0 on S(I)).
These statements are well known or are at least elementary consequences of
well known theorems, see e.g. [12], Appendix.
We shall finally compose the boundary operators y; with ps.d.o.’s in I':
A (pseudo-) differential boundary operator B is a composite operator

k
p= 2 By,
1=0

where the B, are (pseudo-) differential operators in I". The order is the largest of
the numbers / + order of B, When J = M, a normal system of (pseudo-) differ-
ential boundary operators of orders m;, j € J, is a J-vector of boundary operators
{B;};cs» where each B; is of the form

Bi=Db;jVm + 2 Byn
k<mj

with b; and 1/b;e Z(T), and the B;, denoting (pseudo-) differential operators in
I" of orders m; — k, respectively, the m; being distinct. (In contrast with previous
papers we denote all boundary operators by small Greek letters.)

2.3 The elliptic operator A. Once and for all we assume

ASSUMPTION 2.2. A is a 2m-order uniformly properly elliptic operator with
C® coefficients on Q. Its symbol is o(4)(x, £); the principal symbol 6°(4) (x, &)
will also be noted a(x, &).

With A4 are associated the following operators in I2(Q)?:
the maximal operator A,: A defined on the domain

D(4;) = {ue IQ)| Au e I*(Q) in the distribution sense},
the minimal operator Ay: the closure of A defined on 2(Q),
the realizations of A: all linear operators 4 in I2(Q) satisfying

Ay = A cA,.

2 When S'is an operator in a Hilbert space H, we denote by D(S), R(S) and Z(S) its domain
range and null-space, respectively. Moreover, we denote its numerical range

v(S) = {(Su, u) | ue D(S), |u ”H =1},

and its lower bound
m(S) = inf Re v(S).
The adjoint of S'in H is denoted S*.
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The (formal) adjoint of A will be denoted A’, the “‘real” part (4 + A)=A".
Recall that, with 4," and 4, denoting the maximal resp. the minimal operator
for A’, one has

(2.15) A = A} A= A%,

and therefore, that adjoints 4* of realizations 4 of A4 are realizations of A’. We
also recall that, because of the ellipticity, D(A4,) = D(4y) = HZ"(Q), and
D(A,) = HEZ(Q). A special realization of 4 is the Dirichlet realization A, defined
by

D(4,) = Hy(Q) N H*™(Q).

A well known regularity theorem assures that the realization 4, of 4" with the
same domain satisfies *

A = (A,)*.
DErFINITION 2.2. A will be said to have uniquely solvable Dirichlet problem
if 4, is a bijection of H3(Q) NH*"(Q) onto L*(Q).

Most of the results in the following will presume the validity of Definition 2.2,
which makes the theory of [11] applicable. In general, A, has only finite dimen-
sional kernel and cokernel; we have not made the effort to include this case in
our general theory, but it is possible that it may be done by use of the technique
of Lions and Magenes [20] and others, factoring out finite dimensional subspaces.
Anyway, the main aim of the present paper is a discussion of inequalities that
require at least semidefiniteness of 6°(4), in which case Definition 2.2 is satisfied
after the addition of a constant to A. More precisely, we recall

ProrosITION 2.3,
() (Gérding [15]) In order that, with some ¢ >0, LeR,
(2.17) Re (Au,u) = c|u |2 — A u |3, all ue H3(Q) NH*™(Q),

it is necessary and sufficient that Re a(x,&) >0 for all (x, EeSQ) (ie., A is
strongly elliptic).
(ii) (Agmon [3]) If there exists 8 €[0,2n] such that
a(x, &)

(2.18) TaGx.B)| # e, all (x,£)e SQ)

then A —r €” has uniquely solvable Dirichlet problem for sufficiently large
r>0.
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(iii) If there exists AeR such that
(2.19) Re (Au,u) = — Alju
then Re a (x,£) =2 0 on S(Q).

¢, all ue 9(Q),

The last statement is related to and derivable from Proposition 2.2 (i). Note
that Proposition 2.3 (ii) is not its converse, since (ii) does not give information
on the numerical range.

We shall need one more observation on differential operators in Q:

When C is a 2m-order differential operator with C* coefficients in Q, then for
ue H*™(Q), ve H™Q),

(2.20) | (Cu,v)| = | {Cu,v)| = | Cul|l_n|v]n = const. |u,]v

the sharp brackets denoting the duality between H™™(Q) and HH(Q).
2.4. General trace- and decomposition theorems.
Define, for each seR, teR the spaces
H5(Q) = {ue H(Q)| Aue H'(Q)}
and
Zi(Q = {ueH(Q)| Au =0 in Q},
Au always taken in the distribution sense. Provided with the graph-norms
el = (o + ] Au 232

resp.

] z5@ = u
the spaces are easily seen to be Hilbert spaces. Moreover we note that, when
sZt+2m,

5>

H3(Q) = H(Q) = A5 72"(Q),
with equivalent norms. Note also that Z5(Q) is a closed subspace of #5(Q)
for any 1.
Lions and Magenes proved in [19, IT and V] and [20]

PrROPOSITION 2.4. Let J <M and let f = {B,},., be a normal system of
differential boundary operators of orders j, jeJ. Then B, originally defined
on HQ), extends by continuity to an operator, also denoted by B, which maps
H#%° (Q) continuously into [[;o5 H*™/7/% (D), for each seR.

The operator y = {y;};.;, may be extended even further, to an operator,
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also called y, that maps #%5™™(Q) continuously into [[jarH /3T, for
each seR.

With this extended definition of y, we shall present a general version of the
fundamental existence, uniqueness and regularity theorem, due mainly to
Nirenberg, for s = 2m, and to Lions and Magenes, for s < 2m.

THEOREM 2.1. Assume that A satisfies Definition 2.2.
(@) For all pairs of real numbers {s,t}, where t 2 —m, t# — 1%, — 3/2,--,
—m+4, and s <t+ 2m, the mapping {A,y} is an isomorphism of

HG(Q) onto HQ) x [[ H*/*(1).

JjeMg
(b) For {s,t} as in (a), and u e #(Q), let u, denote the solution of
(2.21) Au, = Au, yu,=0,

and let u, =u —u, then the decomposition

(2.22) u=u,+u,

decomposes H#%'(Q) into the topological direct sum
(2.23) HZQ) = [Ho@) N HM Q)] + Z4(Q)

(here, HT(Q) N H'**™Q) is provided with the norm in H'**"(Q)).
() For all seR, y maps Z3(Q) isomorphically onto [, H* ' *(T).

ProoOFS AND REFERENCES FOR THEOREM 2.1.

(b) and (c) are easy corollaries of (a); however, we shall use (b) and (c) in our
explanation of the proof of (a).

For s =1t +2m, t integer = 0, (a) is a consequence of the regularity theory
initiated by Nirenberg [21] (see also Schechter [23], Agmon-Douglis-Nirenberg
[5]) stating that a distribution solution u of the problem

Au=f, yu=¢,

with fe H(Q), &[] em, H>"/7T), is necessarily in H'"*™(Q). (They also
showed that the problem satisfies the Fredholm alternative; then it is uniquely
solvable when we assume Definition 2.2.) Their result was extended to integer
t = — m by Peetre [22], and to non-integer ¢ (excepting the values — 3, ---, —m4-1)
by interpolation by Lions and Magenes (cf.[20]), this gives (a) for s=1t+2m
with ¢ real = — m avoiding certain values.

Next, (a) was proved for t =0, 2m =2 s> — oo by Lions and Magenes, see
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[19, V] and [20] (the values s =% + integer were excepted in [19, V], but may
be included by an application of the results in [20}).

Now, the validity of (a) for t =0, s =t + 2m, and for t =0, s £ 2m, suffices
to imply (c). After this, (b) is proved as follows:

Let {s,t} be a pair satisfying the assumptions in the theorem. Then, evidently
each summand in the right side of (2.23) is contained in #%5'(Q). Conversely, when
ue A3(Q), then Aue HY(Q), which implies u,e H'*?"(Q) N HY(Q) (note that
t+2m=m) by the abovementioned regularity theory. Since s =<t + 2m,
u; =u — u, € H(Q); then, since Au, = Au — Au, =0, u, e Z3(Q). This shows the
desired decomposition, which is unique because of (¢). To complete the proof of
(b) it remains to show that the decomposition is continuous both ways; this is
easy and will be omitted.

Finally, one obtains the remaining part of (a) by combining (b) and (¢) with
the fact that, by the already proven part of (a), 4 maps HG(Q) N H*™"(Q)
isomorphically onto H'(Q), for t= —m, t# —4,---, —m + L.

In connection with this theorem, we shall introduce some further notation

DEeFINITION 2.3. Let {s,t} be as in Theorem 2.1. The projections u — u, and
u — ug, defined for u e #75(Q), will be denoted pr, resp. pr,. The inverse of the
isomorphism y: Z3(Q) —> [[jemoH* ™’ “}T) will be denoted y; *When convenient,
we indicate the dependence on A by writing instead pr;i, priand (y7)~'. However,
when A is replaced by A’ or A" = (4 + A’) (then assumed elliptic etc.), we write

U=u, + Uy 185p. U = U, + Upr
and we denote the corresponding mapping pr,, pr, and (y3)~", resp. prJ, pri
and (5" L
We use here tacitly that the definition of each of these operators is consistent

for varying {s,t}, One may show furthermore, that y is consistently defined for
varying A:

LemMA 2.1. Let A and B be two properly elliptic operators of order 2m,
and let s < m. Let y4and y®be the extensions of the classical operator y, defined
on HLT™(Q) resp. HF™(Q) by Proposition 2.4. Then y*'u=y% for
ue Y7 N Q).

PrOOF. Let ue o3 ™(Q) N A5~ "(Q). Then, since Z5(Q) and Z}Q) lie in
C®(Q), ue Hy(Q). On the surfaces I', parallel to I in the distance g, “‘yu”’ is
therefore defined as an element y uel];. MDH"'_j “T,), by Proposition 2.1.
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By theorem 2.8.1 in [20] (p. 207), y,yu — y*u as well as y%u in [[jen,H* ™/ *(I)
(with a suitable identification between I" and T',, cf. [20]); thus y*u = y%u.

We now note that pr, satisfies
(2.24) pre=7v;"'oy.
By this formula, pr, may actually be defined on any space #5'(Q) as in Lemma

2.1. We shall show

PROFPOSITION 2.5. Let A and B be properly elliptic, of order 2m, satisfying
Definition 2.2. Let seR. Then pr? may be defined on #3"(Q) by

pri=(y) " "oy;

this coincides on H#5~"(Q) N S5~ "(Q) with the original definition. Moreover,

m

priis continuous from 5™ into Z3(Q), and it maps Z}(Q) isomorphically
4

onto Z3(Q). Finally, when C is 2m order properly elliptic, satisfying Definition
2.2, then
(2.25) pripriu = priu, all ue #°C"(Q).

Proor. The first statements follow immediately by use of Lemma 2.1 and the
properties of y and (y3)~ ' stated in Proposition 2.4 resp. Theorem 2.1 (c). For

the last statement we note that

prépriu = @9~y (D yu = (9 'yu = priu,

since y(y5) "' is the identity on [ H* ™/ ().
(2.25) will later be used with B replaced by A’ or A"

2.5. Green’s formulae, the operators P and p. Near I', we may write A in the form
2m

(2.26) A= X AD,
1=0

where each A,(t) is a differential operator of order 2m — [ in T, the parallel
surface to I' in the distance t.

In particular, 4,,(?) is a function, nonvanishing because of the ellipticity of A.
We denote 4,(0) = 4;. Now ¢°(4) may at points yeI' be written

2m
(2'27) a(y9 1, T) = lz al(ya r’)’tla
=0

where a(y,n) = 6°(4,) (v, 1), and 7 eR. For each fixed (y,n)e T*(), the polyno-
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mial a(y,n,7) in 7eC has, by the assumption of proper ellipticity, m roots
{t}(y,m)}i=y in C, ={Ae@|lml>0} and m roots {t; (y,m}Z, in C_

={AeC|Im) > 0}. Let

228) @ (.m0 = I G- () a”(n,1,7) = [l = G.m).

i=

then
(2.29) a(y,n,v) = Azyu(y)a*(y,m,0)a (y,1,7).

The coefficients in a® resp. a~ will be denoted s, resp. 5,

(2.30) a'(ymr) = T s, a (= X si(y.nr
I1=0 =0
Following Seeley [24] we find from (2.26) Green’s formula
2.31) (Au,v) — (u, A'0) = f Apu- pode, u,ve H™Q),
r

where ./ = (1) xem 18 @an M x M-matrix of differential operators in I' of the
form

iAjipe1 +S; when j+k+1<2m,
(2.32) A= iAs, when j+ k + 1 =2m,

0 when j+ k + 1> 2m,

here the S, denote differential operators of orders < 2m — (j + k + 1). Note
that the matrix (id,,) '« is skew-triangular with ones in the second diagonal
and zeroes below it. Therefore, 7 is invertible with its inverse </ ~! again a
differential operator, now having (i4,,)” " in its second diagonal and zeroes
above it. A similar statement holds for any minor of the form &y, K <= M;
in particular it holds for oy .

Denoting the corresponding operators associated with 4’ resp. A" (when it is
elliptic) by &/’ resp. &', we note (cf. (2.31))
(2.33) A= —* A=Y A+ L) [=HA - ) =iIm L]
We now introduce the particular boundary differential operators

X = JZ{M()Mlv + %‘%M()Mo'y

(2.34)

X’ = M"“IOM[V + %M]'\JQMO'V [ = - ejz{]W*lﬂ'lov - %M:[QMQ'})]'
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Then in view of (2.32), the formula (2.31) may be written in the form
(2.35) (Au,v) — (u, A'v) = (qu, ) — yu, x'v),  u,ve H™(Q)
(where <, > denotes the inner product in H,-EMOLZ(F ) or suitable extensions).
The choice (2.34) of y and x' is not so special, for we observe

LemMA 2.2.  The pairs of normal systems of boundary differential operators
K = {K;}jeror K" = K} jero» K; and xj; of orders 2m — j — 1, j e My, with which
(2.36) (Au,v) — (u, A'v) = {ru, ) — {yu,k'vd, u,ve H™Q),
are exactly those of the form
(2.37) K=yx+ Sy k" =y + 5%,
where S runs through all differential operators in ' of type

(—k,=2m +j + 1)} yepo-

The proof of this elementary fact amounts to a comparison of (2.36) with (2.35)
for all u,ve H*™(Q); details will be omitted.

It was noted by Lions and Magenes in [19, V] that the formula (2.35), with the
extensions of definitions of y and y given in Proposition 2.4, extends as far as
the orders of the boundary operators permit (and not further, cf. [11, Remark
1.3.3]): When se[0,2m], (2.35) is valid for ue s#5%Q) and ve #"5%Q)
(with the relevant interpretations of the sharp brackets). In order to have a
Green’s formula valid for ue #3°Q) and ve #3:°(Q), we shall introduce an
additional device.

DerFINITION 2.4. When A satisfies Definition 2.2, we denote by P, , the compo-
site operator
(2'38) Py,v =VvVo ’))Z_ 1’
it maps [Jeesr, HSHIT) continuously into [[js, H* T) for all seR. To

emphasize the connection with 4 we may write P;fv instead of P, . However, we

usually write, for the operators associated with A’ and A" (when it is elliptic etc.)
(2.39) Py, =vyp)~'  Pp,=viph
About such operators one has

PROPOSITION 2.6. P4, is a ps.d.o. in T of type (—k, — [jemykeror With
principal symbol (P;)jem, iem, cOnsisting, at each (y,n)e TXT), of the coef-
ficients in the rest polynomials
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(240) I\Z ij(ysr’)TkE Tj (mOda+(ya’7’T))’ jeMl'
keMo

This result is a consequence of the work of Boutet de Monvel [6], and was
also proved explicitly by Vajnberg and Grusin [28], in both cases by means of a
composition rule for boundary operators (like v) and Poisson integral operators
(like y7 '). Let us however also mention the observation, that it may be shown
as an elementary consequence of the conceptually simpler result on the “‘Calderén-
Seeley-projector”” (Calderén [7], Seeley [24], Hormander [17]). We describe
this*" in the Appendix, which gives us an opportunity to derive some useful
explicit formulae.

We also introduce

DEerINITION 2.5. When A satisfies Definition 2.2, and § is a normal system of
pseudo-differential boundary operators of orders m;, j e J(the m;e M), we denote

(2.41) P y=pfo0 120
it is a ps.d.o. in I" of type (— k, — M );c 7,4 m,+ In particular, we denote
(2:42) Pyy=1vz's Prpy=202"" Py=10D""

the last definition requires 4" elliptic etc., and then x"= i(x + ¥').
Note that by (2.34)

(243) Py.x = MM0M1P)! v + %%MUMO’

with analogous formulae with ““’*” and ““r".

DERINITION 2.6. Let A be a 2m order properly elliptic operator. Then we
define the (non-normal) pseudo-differential boundary operators p, 1’ and p" on
#5°(Q) (seR), when the respective ps.d.o.’s P, ,, P, .. or P} . are defined:

(244) p=x- Py,xv, ,Ll’ = X’ - P;,x'y’ IJr = Xr— P;_x"))'
Note the formula, easily seen from (2.34) and (2.43)
(2.45) t=Lyom, (v — P, 3y).

The fundamental properties of u are expressed in the following statement,
proved in [11, theorem IIT 1.2] (where p was called M):

PROPOSITION 2.7. Assume that A satisfies Definition 2.2. Consider i, restricted

2" The proof was constructed at a time where we needed the result but could not find it in
the literature. We have later become aware that related ideas have been known for some time.
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to D(A,) = #2%Q). It maps D(A,) continuously onto I_L-EMOH”’}(F), and may
alternatively be defined by

(2.46) Hu =y pru,

or

(2.47) Cpu 5 ¢ > =(Au,(yp) ') allge [| H/THD).
(i+%} {—-J—%} JjeMo

The kernel of u: D(A4,) - ]_[jEMOHH%(F) is D(4q) + Z(A,). One has the general
Green’s formula

(2.48) (Au,v) — (u, A'v) = (uu,yv) — {yu, u'vy, allue D(4,),ve D(A)).
Comparison of (2.48) with (2.35) for all u,ve H*"(Q) gives
CORCLLARY 2.7. For P, and P, defined in Definition 2.5,
P, =P},
We remark however, that P} . is in general ditferent from Re P, ,=3(P, ,+ P.X)

3. General theory

3.1. Resumé of old results. We assume throughout this chapter:

AsSUMPTION 3.1. A has uniquely solvable Dirichlet problem (cf. Definition
2.2).

With Ao, A4, and A4 defined as in Section 2.3, Theorem 2.1(b) for s =1=0
may be expressed as follows:

LeMMA 3.1. By the projections pr, and pr, defined in Definition 2.3, D(4,)
is decomposed into the topological direct sum (with respect to the graph-

topologies)
(3.1) D(A) = D(4,) + Z(A,).
pr, and pry decompose D(A}) similarly:
(3.2) D(A;) = D(45) + Z(4)).
With this as basis, the author showed in [11]
PROPOSITION 3.1. Let A be a closed realization of A. Let
(33 V=prDd), W=prDA¥;

they are closed subspaces of Z(A;) resp. Z(Ay). Then there exists a uniquely
determined closed, densely defined operator T: V— W such that
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(3.4) D(A) = {ueD(A,)|u e D(T), (Au,w) = (Tug,w) for all we W},
here D(T) = prCD(E).

Conversely, if Vand W are any closed subspaces of Z(A,) resp. Z(A]), and
Tis any closed, densely defined operator from Vinto W, then (3.4) determines a
unique closed realization A of A, such that T: V- W is exactly the operator
derived from A in the above fashion.

When A corresponds to T in this way, the general element of D(A) is decom-

posed uniquely as
(3.5) u=v+A;1(Tz +f)+z
where [v,z,f ] runs through D(4,) x D(T) x (Z(A})©W). Moreover, the realiza-
tion A* of A’ then corresponds to the adjoint T*: W — V by
(3.6) D(A*) = {ue D(4;) | u; € D(T*),(A'u,v) = (T*u,,v),Yoe V}.

The correspondence introduced above carries numerous properties, —dimension
of nullspace, closedness of range, codimension of range —to mention a few (cf.

[L1]). The property we are interested in, ‘‘s-coerciveness’’, was treated in [12]
for the case where A" = A4:

PrOPOSITION 3.2. Assume that A is strongly elliptic, with A’ = A and

(3.7) (Au, W)z c,l|ulr >0, all ue H"Q)

(then also m(Ay) > 0,cf2). Let A be a closed realization of A, corresponding by
Proposition 3.1 to T: V— W. With a real number se[0,m], we consider the

two assertions
(3.8) 3c>0,AeR s.th. Re (Au,u) = | u |2~ | u |3, VueDA).
G Vew

N
(39 (i) 3¢'>0, A'eR s.th. Re (Tz,z) = ¢’ %, Yze D(T).

[z

Here, (3.8) implies (3.9) for all se[0,m], and (3.9) implies (3.8) for all
sem —%,m]. When se[0,m — %], (3.9) implies (3.8) if furthermore X' < m(4,).

This result was proved for s = 0in [11], and for s € [0, m] in [12] (cf. the proof
of Proposition 2.7 there). The direction (3.8) = (3.9) uses that when u e D(A),
u =u, + u, where u e D(T) and u, may be brought to converge to 0 in HG(Q),
since D(A) > D(4,) = H{™(Q) which is dense in Hj(Q). The converse direction

uses a splitting of (Au,u) that holds when ¥V < W.
Let us point out that it is the very natural property V' < W, necessary for the
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validity of (3.8), that leads to the seemingly previously unnoticed ‘‘global’’
condition for semiboundedness of realizations of normal boundary problems, as
explained in Chapter 4.

3.2. New results, formulated for the correspondence between A and T.

The main aim of the present chapter is to generalize Proposition 3.2 to non-
selfadjoint 4. As it will be seen, the splitting we use in the general case does not
work on the full domain D(A;). On the other hand, we exploit the technique of
the proof of (3.8) = (3.9) much further, to show how a condition generalizing
V = W is necessary even for very weak kinds of semiboundedness, that do not
require (semi-) definiteness of ¢°(4).

In the rest of this chapter, we shall always assume:

ASSUMPTION 3.2. A is a closed realization of A4, corresponding to T: V— W
by Proposition 3.1.

LemMa 3.2. Let ue D(A) N#F™Q). With u=v+ A7 (Tz+f)+z ac-
cording to (3.5) in Proposition 3.1, and

(3.10) u=u, +u,, where u, = pr;z,
according to Definition 2.3 and Proposition 2.5, one has
(3.11) (Au,u) = (Au,u,) + (Tz, priz) + (f, pr/z).

PROOF.
(Au,u) = (Au,u,) + (Au,u,)

(Au,u,) + (v + Tz + f, prez)
(Au,u,) + (Tz, priz) + (f, pri2),
where (Av, pr;z) =0 since Ave R(A4y) L Z(A4}), cf. (2.15).

THEOREM 3.1. Let U be a linear space with H*"(Q) = U = H™(Q). Then the
following statements (3.12) and (3.13) are equivalent:

(3.12) 3ieR s.th. Re(du,u) = = A|u 2, YueDA)NU.

@ prd(MNU)=W

(3.13) (i) 31’ eRs.th. Re(Tz,priz) =z — A

z||2,  VYzeD(T)NU.
Proor. We use the decomposition
(3.5) u=v+ A4, (Tz+f) +z
Note first of all that u runs through D(A) N U exactly when [v, z,f] runs through
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D(Ay) x ((T) NU) x (Z(A)© W), since v+ A, (Tz + f)e D(4,) < H*™ (Q)
< U.

1° (3.12) = (3.13). Let ueD(A) NU, decomposed by (3.5. Let {w},.n
be a sequence in D(A4,) = HZ"(Q), converging to — v — 4, '(Tz + f) in HXQ).
Then u" =u + w" belongs to D(A) NU, and

uy = u,+w"'—0in H5(Q),

u; = zeU c HY(Q),
prize H'(Q) (cf. (2.25)),

n
uc,

and 4" = u"+ priz — priz in H3(Q). (3.12) and Lemma 3.2 give
¥ ¥ by Y g

(3.14) Re[(Au",u}) + (Tz,priz) + (f,priz) ] = — /1” u" “fn
Here |(Au”,u;',)l = I(Au;‘, uy'5)| < c” u;‘”m ” uy, “,,, (cf. (2.20)), and therefore goes

to zero as n — co. Thus, using that 4" — z in H™(Q),
(3.15) Re[(Tz,priz) + (f,prin)] 2 — 2| z |2

For each fixed pair [z,f]e (D(T) NU) x (Z(A1))© W) we find by inserting kf,
keC, in (3.15), that one must have

(3.16) (f,priz) =0,
i.e., since pryD(T) NU) < Z(4,),

3.7 pr{D(T) NU) = W.
Inserting (3.16) in (3.15) we now also have

(3.18) Re (Tz,priz)z — A z|5, zeD(T)NU.

2° (3.13)= (3.12). When (3.13) holds, we have, by Lemma 3.2, for
ueD(A)NU

Re (Au,u)

Re (Au,,u,)+Re (Tz, pr/z)

2

m?

1\%

z

e 1 M

of. (2.20). Here, |u,|n < cof 4 |m
u e H™(Q), by various applications of Theorem 2.1(b) (with s =m,t = — m), so

that finally

y fn < csulln and |z |0 caful, for

Re (Au,u) = — c5” u Hf,,, when ue D(A) N U,

for some c¢5eR. This proves the theorem.
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ReMARK 3.1. Note, for one thing, that (3.12) does not require strong ellipticity
of A, in fact it holds on H*™(Q) N Hy(Q) for any smooth 2m-order operator,

cf. (2.20). Secondly, for the normal boundary problems considered in Chapter 4,
(3.13) (ii) is automatically satisfied. Then the above theorem singles out the exact ro-
le of (3.13) (i), as a necessary and sufticient condition for the rather weak inequality
(3.12).

COROLLARY 3.1. Let U be as in Theorem 3.1; then, when T belongs to the
class of operators satisfying ](Tz,prgz)l =< cn z Hf, on D(T) N U (some ¢ > 0),

(3.19) |(du,0)| S c'||ula]o

lw  Yu,0eD(A)NU

is equivalent with
prD(T)NU) = W.
Proor. Apply Theorem 3.1 to e”4, all 0€[0,2x], noting the equivalence
between (3.19) and

|(Au,u)|§c’ 2 YueD(A)NU.

|u
The next inequality is also independent of requirements on ¢°(4), however, it

gives a nontrivial condition on T, also when A is as in Chapter 4 ((3.21) (ii)’ below).

TueoreM 3.2. Let U be a linear space with H*™(Q) c U c #3™™(Q). If
there exists A€ R such that

(3.20) Re (Au,u)z — A(|u i + || 4'u||2,) on D) N,
then ‘
( Q) prD(T) AU) < W;
(3.21) 1@) Re (Tz,prz) 2 — M|z |3+ | A'z||2,), Vze D(T) N U;
(i)’ Re (Tz,priz)z — A| priz

f,g-—/lcnz

13, YzeD(T) N U,
for a certain ¢ > 0.

ProoF. In analogy with (3.14) we now have
(3.22)  Re [(Au"u)) + (Tz,priz) + (f;pri)] = — M| " 5 + | 4w |2,

where ueD(A) NU, and w"=u+w", w"eD(A4,). Letting w"— —u,=—v
— A; YTz + f) in Hy(Q), we have that uy— 0 in H(Q), uy = uy + pryz — priz
in H™Q) (since ze £ "(Q)); and u"—z in HYQ), with A'v" = A'uj -
A’ priz=A'z in H "(Q). Altogether, this gives

Re [(Tz, priz) + (fpri20) 2 — A 2 |+ | A2 ] 2,
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for [z,f]1e(D(T) NU) x (Z(A]))OW), from which (i) and (ii) follow as in
Theorem 3.1.

To obtain (i)', we let instead w"— —u, = —u, — pr,z in Hy(Q). Then
u), =0 in Hy(Q), uy - — priz in HG(Q), u"— priz in H(Q) and A'u" = A'u}, -0
in H™™(Q). Altogether, (3.22) gives by passing to the limit (and using (i))

Re (Tz,priz) Z — /1” prézl .

The remaining part follows by using that pr; is continuous from Z3(Q) to Z3(Q),
cf. Proposition 2.5.

We now turn to inequalities of the kind treated in Proposition 3.2.

DEFINITION 3.1. Let s = 0, and let U < I*(Q). An operator S in I*(Q) will be
said to be s-coercive on U if there exist ¢ > 0, A e R such that

(3.23) Re (Su,u) 2 c|u LueDS)NU.

f—)v”u

The case s =0, where the terminology is somewhat unjustified, has been
included for convenience. Note that (3.23) in particular means that D(S) N U
< H(Q).

By Proposition 2.3 (iii), s-coerciveness of a realization A requires at least semi-
definiteness of 6°(4), and then Assumption 3.1 becomes trivial, cf. Proposition
2.3(ii). But Re 6%(4) = 0 does not (to our knowledge) imply even O-coerciveness of
Ajg. (According to a theorem of Hormander [17], Re 6,,(C) = 0 is necessary and
sufficient for the inequality Re (Cu,u) = —-AH u ”,,f_% on 2(Q'), each Q' < Q, when
C is any 2m order operator.) In our search for simultaneously necessary and
sufficient conditions for s-coerciveness of realizations, we shall let this aspect lie
and simply assume strong ellipticity of A. We shall also assume a sufficiently
large constant added to A such that

(3.24) , Re (Au,u) 2 ¢, u

Let H*"(Q) = U < #5"(Q), then when pr{(D(T) N U) = W, we have found
that for ue D(A) NU

Z, ¢, >0, YueD(A,).

(3.25) (Au,u) = (Au,u,) + (Tz, pr/z)

(Auy,u,) + (Au,, pr,z) + (Tz, prz).

In the case 4 = A’, pryz =0, so (Au, u) is split by (3.25) into a quadratic form in
u, and a quadratic form in z; this led to Proposition 3.2 by use of (3.24). How-
ever, when 4 5 A’, the mixed term (Au,, pr,z) prevents us from getting truly
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necessary and sufficient condition for s-coerciveness of 4 on U in terms of similar
estimates on (T'z, pr;z). This necessitates the following development:

Recall that A '=L(A + A') is strongly elliptic and satisfies (3.24) when 4
does, and recall Definition 2.3. Note that

(3.26) D(A) N H#L"™(Q) = D(4,) N F L "(Q).
LEmMMA 3.3. Let A be strongly elliptic satisfying (3.24). For
ueD(4) N HL™Q),
3.27) Re (Au,u,) = Re{Au,, u,y + Re{Auy, pryupy),
the sharp brackets denoting the duality between H™™(Q) and Hy(Q).
PROOF. Set u,=x, uy, =y, then xecHy(Q) and yeZ(Q) N H# g "),
by Theorem 2.1(b). Then
u, = pr,x + pr,y = Xx + pr,y
Uy = PryX + pry =x -+ pr.y,
where also pr,y and pr,y lie in Hy(Q); and thus
Re(Au,,u,) = Re (A(x + pr,y), x + pr;y)
= Re {4x + Apr,y,x + pryy>
= Re {Ax,x) + Re [{A4x, pryy> + (A pr,y,x>]
+ Re (A pr,y, pr,y>.
We now observe that A pr,y = Ay (e H™™(Q)) and that the term in [ ] equals
Re[{4x, pryy) + (Ay,xy] = Re[{A'pryy, x) + {Ay,x)]
= Re[{A'y,x) + {Ay,x)] =Re(RA"y, x> = 0,
since y € Z%.(Q). Thus finally
Re (4u,,u,) = Re{A4x,x) + Re{Ay, priyy,
as was to be shown.

By use of Lemmas 3.2 and 3.3 and the fact that priu = pr; pru = priz (cf.
Proposition 2.5) we then obtain

PROPOSITION 3.3. Let A be strongly elliptic satisfying (3.24). For
ue D(A) N H#YL™Q), with u=v+ A, '(Tz + f) + z according to Proposition
3.1,
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(3.28) Re (du,u) = Re {Au,,u,> + Re (f,pr;z)

+ Re [(Tz, pr;z) + (A priz, pr, priz)]
(the sharp brackets denoting the duality between H™ ™(Q) and Hg(Q)).

REMARK 3.2. Whereas Lemma 3.2 extends easily to (Au,v), for u and v
different elements of D(A), it is essential in Proposition 3.3 that we have u on
both places and take the real part.

THEOREM 3.3. Assume that A is strongly elliptic, satisfying (3.24). With
se[0,m] and U a linear space satisfying H*"(Q) c U < #5~"(Q), we consider
the two statements
(3.29) 3e>0,Ae R s.th. Re (Au,u) 2 cfju||? — A|u |5 Yue D(A) NU.

[ (@) pri(D(T) N U) = W
(3.30) 3 (ii)de’ >0, e Rsth forallze (T)NU,
A R K ¢
Here, (3.29) implies (3.30) for all se[0,m], and (3.30) implies (3.29) when
selm—3%,m]. When se[0,m—1], (3.30) implies (3.29) if furthermore
Aou < m(Ay), where

Re [(Tz,pr{z) + (Apr{z, pryprizy] Z ¢

3.3 a = sup{ H z ||§ :ze D(TY N U with ” prez “0 =1}.
(Here —1>0o0r — 1220 implies — ' >0 resp. — A" =0 and vice versa.)

Proor. We use the decompositions u=v+ 4, (Tz+f)+z and u=u,
+ t;, where u, = pri z, as in Proposition 3.3. It is already known from Theorem
3.2, that (3.29) implies (3.30) (i). To obtain (ii), let ze D(T) N U and let

u":w”-l—Ay—l Tz + z,
where w" is a sequence in D(4,) converging to — A, 'Tz — pryz in Hy(Q),
Then uj). =w"+ A, ' Tz + prjz—0 in Hy(Q), and, since u"c H(Q), u"— pr;z
in H(Q). By use of (3.28), the inequality (3.29) applied to u” then gives by passage
to the limit
Re[(Tz,pr.z) + (A pr{z, pr,priz)] 2 c” priz ”sz — /IH priz HOZ
In view of Proposition 2.5, that pr,is an isomorphism of Z}(Q) onto Z4(Q), all
t, this implies (3.30) (ii).
In the converse direction, we have that (3.30) (i)-(ii) imply

(3.32) Re (Au,u) 2 Reddu,,u,> +c'|| z||2 = 2 z |3,
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for ue D(A) N U, decomposed by (3.5), hence by use of Proposition 2.5 and an
easy extension of (3.24)

Re (Au,u) = c,,| u, e

,%,—I— c”“ Ugr

2 ocl’l

ugr

(cf. 3.31)). If — ok’ = 0, we are through (and the last statement of the theorem is
ensured). Otherwise, we proceed as in [12, Proposition 2.7]:
1°. se]m — %, m]. Choose te]m — 1,s[, then

IIA

2
0

erf v |Eion S o yullizion Sesfu?

e u s + €@ | u]

” Ugr

lIA

Z for any given &> 0;

here we used Theorem 2.1 and Proposition 2.1 and a well known inequality. Now
Re (4u,u) = }min(c,,c") H u “? — ol “ U g

4 min (¢, ¢") H u Ilsz —al' C(e) ” u

(1%

| 2
0>
when we choose ¢ = (40(1,') _lmin(cm, C").

2° se[0,m —1],al’ <m(A4y). Let he]0,1[. Then since we also have,
besides (3.24), that

2
0>

Re{Au,, uyy = m(Ao) [ 4,

(3.32) also leads to

Re (4u,u) 2 hc,| u, i

2
(03]

%)+c:/

|“c"

24 (1 —hym(4y) |u,
whence by use of the inequality

A+ [x[?=r[Pz-+07H [x+y
follows that

ugr

2 V6 >0,

Re (Au,u) = $min (he,,¢”) |u |2 — C) | u |3,
when A is chosen such that ai’ < (1 — k) m(4,).

REMARK 3.3. 1t is still an open question to the author (cf. [12, Remark 2.97)
whether the bound on A’ for se [0,m — %] may be removed in general, as it may
be in certain cases of constant coefficients, Q = R". In Fujiwara [9], [10] (which
concerns a class of normal boundary problems), this difficulty is circumvented by
use of a technique (related to a device in Agmon [3]) of introducing an extra
variable. Fujiwara studied the case s = m — 4; however, his method seems likely

to work in other cases where s> 0.

The above study can of course be continued in several directions. For one
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thing, one may study the numerical range of 4 by applying Theorem 3.3 to
rotations ¢4 of 4, as in [11]. Secondly, one may on the basis of Proposition 3.3
investigate inequalities like (3.12) with other norms appearing on the right, e.g. the
norms in H™ *(Q), or in more general HQ), or in # %~ ™(Q); which give in-
teresting results. We shall not go further into this in the present paper.

Let us conclude this section with the following observation: As might be
expected by comparing the methods of Theorem 3.2 and 3.3, the *‘new’” term in

(3.30) (ii) is always non-positive;
PROPOSITION 3.4. When ye Z5.(Q) N #3™"(Q),
(3.33) Re{Ay,pr,y> < 0.
ProoF. Since (4 + A)y =0,
Re (Ay,pr;y) = — ReA'y, pryy)
= — Re<A' pr)y, priy> £ — | pry |2 S0,
by a simple extension of (3.24).

3.3. The new results formulated for general boundary problems.
We recall from [11, Chapter ITI] the definition

DeriNtTION 3.2, Let V = Z(A,), W < Z(A,), closed subspaces, and let T be an
operator with D(T) = V, R(T) = W. We denote y( V) by X, y(W) by ¥, and by
Yy resp. yy the isomorphisms from Vto X resp. from Wto Y obtained by restriction
of y. Identifying the spaces ¥V and W with their duals, and denoting the dual
spaces of X and Y by X’ resp. Y’, we introduce the adjoint isomorphisms
yp: X’ > Vand y5:Y’ - W. Then we denote by L the operator from X to Y’
defined by

(3.34) D(L) = yD(T), L= ()~ 'Ty*.
Here, L may equivalently be defined as the operator L: X — Y’ for which
(3.35) {Lyv,yw) = (Tv,w)y, all ve D(T), we W,

where the sharp brackets denote the duality between Y’ and Y.

REMARK 3.4. As it stands, Y’, the (strong anti-) dual of the Hilbert space
Yc HjeMoH —i _*(F), has a somewhat abstract character; however, as soon as
we choose a fixed norm in [ [ H ™’ “IN), we have therewith an isometry E of
[TiewoH ™% (I) onto its dual space [] ;e H'* (D) (s0 || ¢ H{_j_%} = (Ep,p>Y),
which places Y’ as the subspace EY of [];cu,H’"*(I). For instance, when
[ LiemoH ' ™% () is given the norm with which y: Z(4]) = [ H "} ([)isan
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isometry, the associated isometry from [[ o H /"% (1) to [[ar ' H(I) is
the ps.d.o. R’ described in Example 6.3; then we identify Y’ with R’Y. This
identification has some advantages (e.g. when one wants to define the numerical
range of L) but on the other hand the disadvantage that, when Y is a “‘product”
subspace Y = ][], H “ITHT) (J, = My), R'Y is generally not a similar product
subspace of []jemoH’"*(I); this could be obtained by a different choice of
norm. We shall simply refrain from fixing a norm on beforehand.

With a slight abuse of notation, we introduce

DErFINITION 3.3. The adjoint i} of the injection iy: Y [jem ™7~ ¥(T) will
be denoted pry., it maps [ H’**() onto Y'. Similar definitions of iy and pry..

Here, as soon as [ [jemH “ITXT) is provided with a Hilbert space norm etc.,
pry. (resp. pry.) becomes a true projection.

Since y, and y, are isomorphisms, Definition 3.2 introduces a 1-1 corre-
spondence between all operators T: V— W with closed V < Z(4,), W < Z(4,),
and all operators L: X — Y’ with X and Y closed subspaces of [],.y,H ~ITHD),
The correspondence translates in a straightforward way all the properties we shall
be concerned with; let us just note the following:

When H*™Q) c U < #$7™(Q), then

Y pri{D(T) N U) = 3(y2) ™ 'W(D(T) N U)
(3.36) =y ((T) N [UNZ(AD]) = yD(T) Ny[U N Z(4,)]
= D(L) Ny[U N D(4,)].

Therefore,

3.37) pr{D(M)NU)cW <« DIL)Ny[UND(A,)] Y.

When this holds, one has for ze D(T), we D(T) NU

(3.38) (Tz, pryw) = {Lyz,yw),

the sharp brackets denoting the duality between Y’ and Y.
Now Proposition 3.1 may be translated as follows (see [11, I11§2] for the
proof; cf. also section 2.5 for changes in notation):

PROPOSITION 3.5. There is a 1-1 correspondence between all closed realiza-
tions A of A and all operators L: X — Y', where X and Y denote closed subspaces
of [ljemo H '"*T), and Lis densely defined in X and closed; the correspondence
being determined by
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(3.39) D(A) = {ue D(4,) I yu € D(L), Lyu = pry.uu}.

In this correspondence, D(L) = yD(A) and X = )F(EI moreover, the realization
A* of A’ corresponds to L*: Y - X' by

(3.40) D(A*) = {ue D(A{) | yu e D(L*), L*yu = pry.u'u},

and D(L*) = yD(A*), Y = yD(A*).

REMARK 3.5. It is the surjectiveness of {y,u}: D(Ay) - [jem,H ' H(I)
X [Tjen,H’T* () that permits us to characterize 4 and L by each other in this
way, cf. the discussion in [11, TIT §2].

In the rest of this chapter we assume (in addition to Assumption 3.2)
AssUMPTION 3.3. A corresponds to L: X — Y’ by Proposition 3.5.

Now Theorems 3.1-3.2 translate into the following results, by use of the iso-
morphism in Theorem 2.1(c) together with the above remarks:

THEOREM 3.4. (No particular assumption on 6°(4).) Let U be a linear space
with H*™(Q) < U « H™(Q). Then (3.41) and (3.42) are equivalent:

(3.41) JAeRs.th. Re (Au,uy 2 — A u |2, VueD(A) NU;

) DALYNYUNDA)]<=Y
(3.42) (i) 34 eR s.th. ReCLop, > = — 2’| ¢ [[Fucj- s
V¢ € D(LY Ny[U N D(A,)].

COROLLARY 3.4. Assumptions of Theorem 3.4. Identify Y’ with a subspace of
[1cm H**(T) as in Remark 3.4. If L has the property: |[<L,¢)| < c|@| - ;-4
on D(L) Ny[U ND(A,)], then

I(Au,v)[ < c’” u ”,,, “ v ”,,, for u,ve D(AYNU
is equivalent with
D(L)Ny[UND(A)]}c Y.

TueOREM 3.5. (No particular assumption on ¢°(A).) Let H*™Q)cU
c #T™(Q). If there exists LR such that

(3.43) Re (Au,u)2 — M| u|d+ | A'u|2,), ueDA)NU,

then
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( () D(L) Ny[UNDMA)] <Y
(3.44) j (i) 3V eR s.th. ReLo,dp = — 4| b [i=;-4
L Vé e D(L) Ny[U N D(4,)].

REMARK 3.6. One may actually define X, Y and L without the assumption
that A has a uniquely solvable Dirichlet problem, and prove corresponding versions
of Theorems 3.4 and 3.5, and Corollary 3.4 on the basis of the techniques of
Chapter 5. To limit the article we shall not reproduce it here.

ReMARK 3.7. Recall that D(L) is dense in X; then of course, when D(L)
Ny[U ND(A,)] is also dense in X, (i) means that

XcY.
Before translating Theorem 3.3 we shall look more closely at the “‘new”’ term.
DerINITION 3.4. Assume that A is strongly elliptic satisfying (3.24). For
(3.45) ¢ ey[Ha Q) N AL TQ)]
we define the quadratic form ¢(¢, ¢) by
(3.46) (¢, ) = Re<A() ' b, pry (7)™ ' ¢,
the sharp brackets denoting the duality between H ~™(Q) and HJ(Q).
The expression (3.46) is well defined when (3.45) holds, since

(3.47) WALTHQ) N A LTD] = y[H () N AHLTQ)]
=[Z3(Q) N #T@).
Recall also that, by (3.33)
(3.48) 4(d,P) <0, Ve[ A T"Q) N A ET(D)]
DermNiTION 3.5. When A4 is strongly elliptic satisfying (3.24), we denote by ©
the ps.d.o. in T of type (— k, — 2m 4 j + 1); 1on, defined by
(3.49) Q= P;ﬂx’ +Re Py, [ == Pv,rx' + %(Pv.z‘i' Pv lr)]
(Cf. Corollary 2.7.)

PrOPOSITION 3.6. Let A be strongly elliptic satisfying (3.24). When
dpey[D(A) ND(AY)], then Qe[ [ien,H’ T and

(3.50) a4, 9) =<0¢, ¢ >.

+4 {-i-%
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ProOF. Let ¢ ey[D(4;) ND(A]] = y[D(4}) N D(A,)] = y[Z3(Q) N D(4,)].
Let y = (y;) ' ¢, it belongs to Z{(Q) and satisfies Ay = — A’y € [}(Q), so pry
and pr,y are well defined elements of Hg(Q) N H*™(Q). Then

q(¢, $) = Re{ Ay, pryy> = Re (Ay, priy)
= (A pr,y, pryy) + (pryy, Apr, y)]
= 3[(Apr,y,pr)y) + (A" pryy, pr, )]
= 3[(Ay,y — pr{y) +(A'y,y — prey)]
= (4 + 4)y,y) = Ay, priy) + (A'y, prey)).
Here (4 + A’)y = 0, moreover, we find by Proposition 2.7, that
q(h:¢) = — H . > + 'y, > = (= 3u + 1)y, 6,
where (1 + u)y € [[jamoH THI). Now, (cf. (2.44) and (2.34))
1y =1y = Py = [Fromn, Pyy + 3 vomro — Py 110,
since y e Z3(Q) with yy = ¢. Similarly,
1y = [ srom, Py s + 5 omo — Py 19
Altogether,
— 3+ 1)y =1 — ¥ A som, + L sgom ) Py v — 2 saopt + A stono)
+ 3P, + Py )19
=[ — A5 Pyy = 3 stomo + 3Py, + Py )¢ = [ — PJ,r + Re P, ]9,
by Corollary 2.7; so that
4(¢,¢) = {(— Py »+ Re P, )o, ),
which shows the proposition.
Using these considerations, we finally obtain from Theorem 3.3

THEOREM 3.6. Assume that A is strongly elliptic satisfying (3.24). With
se[0,m] and U denoting a linear space satisfying H*™(Q) c U c #3:~™(Q),
we consider the two statements

(3.51) 3¢ >0, AleR s.th. Re(du,u) = c| u
() DL)Ny[UNDMAY]<Y,

22

ull5,allue D(A)NU;

(3.52) 1 (i) 3¢’ > 0,4’ R such that for all ¢ € D(L) Ny[U ND(4,)],
L Re<Lp, d> + (s ) = ]| ¢ [2ejopy = 4] D2 -4
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(where q(¢, d) takes the form {Qd¢,d> when U < D(A/)). Here (3.51) implies
(3.52) for all se[0,m], and (3.52) implies (3.51) when se]m —%,m]. When
se[0,m — L], (3.52) implies (3.51) if furthermore A'0’ < m(A,), where

o' = SUP{” ¢H {—Zj—-,L ¢ € D(L) Ny[U N D(4,)] with “ oD '¢ ”o =1}

(Here —A>0o0r — 220 implies— A" >0 resp. — A" 2 0, and vice versa.)

4, Application to normal boundary problems

4.1. Reduction of the boundary condition to a special form. We assume Assump-

tion 3.1, and now furthermore

AssuMPTION 4.1. J and K denote two complementing subsets, each consisting
of m elements, of the set M = {0,1,---,2m — 1}. For each pair {j,k}eJ x K,
F, denotes a ps.d.o. in I" of order j — k, such that Fj; = 0 when k > j.

With J, K and (F ); <y x « x given in this way, we consider the system of boundary

conditions

(4.1) ‘))]u - E ij'yku = 0, jE J,
ke Kk=<j

and shall study the realization 4 of 4 defined by

4.2) D(A) = {ue D(4,)|u satisfies (4.1)}.

(4.1) is a reduced version of the usual homogeneous normal boundary condition,
generalized to include ps.d.o.’s in the boundary.

Recall the definitions (2.1), (2.2) of the sets of integers My, M,,Jo,J;,J;
etc. ...; note that they form the disjoint unions

M():JO UKO=J1UK,1, M1=J1UK1=J,0UK(I).
We set
4.3) Fo= (ij)je.lo,ke Ko F1= (ij)je.ll,keKo’ and F, = (ij)jeJ1,keK1;

here (Fj)jes ek, is 2 ps.d.o. in T of type (—k, — fjes kek, for ,=0,1
(cf. Definition 2.1). (Note that (F;); <y, k< k, 15 Zero.) Then, with the notations of
Section 2.2, (4.1) may be written

4.4 Vi = Foygotts Vo, =Fiygu + Fyvgu.

(We use the convention that empty index sets give zero terms). Recall the boundary
operator defined in Section 2.5

(4'5) X= MMoMlv + %‘%MQMO’V'

Our first step will be to reduce (4.4) to the form
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(4.6) Vst = Foygohs x5 = Gyygut + Goyxitt,

where G, and G, are suitable ps.d.o.’s in I'. It is fairly evident that this may be
done. To do it in a precise and explicit form, we introduce some notation:

DermNITION 4.1. With F, as in (4.3) we define ® as the M, x Ky-matrix of
ps.d.o.’s in I" for which @y x, = I «, and @, x, = F,. Briefly written,

(IKOKQ)
O = F, ;
it sends ¢ € [Jve k,H* (I into l//e]—[jeMoHs"j(F), where Yx, = ¢, Wy, = Foo.

In a similar way, we define @ and ¥ as the M, x J,—resp. M x J;-matrices
of ps.d.o.’s satisfying

I.’1J1
®Jl-ll:IJ1Jl’®K1J1=_Fz;inShort®=( F*)’
]

resp.

Iy,
V=1, Yy, = — G3;inshort ¥ = (~ G*) ;
2
F, and G, being J, x K,- resp. J{ x K -matrices of ps.d.0.’s.
For the inverse of
&{MOMO MMOM]
=

(4.7 A g 0

(cf. (2.32)) we introduce the notation o/ ~'= 4, so
0 A s mo
(4.8) B = ( _ - B ) :
Jfﬂ'[oli\'fl - LSsz{olMl J%M()M() dM}Mo

in particular, &y, = @By m,- Then, by (4.5),
4.9) V= BagmoX — 2B im0 MoMo)-

ProposiTION 4.1. Let (Fo, Fy, F,) denote a triple of ps.d.o.’s. in T of types
(— ka _j)jeJo,ks Ko® (_ k’ —j)je.ll,k Ko resp. (_ ka _.j)je.ll,ker with (Fi)jk =0
when k > j.3 Let (Fy, G, G,) denote a triple of ps.d.o.’s. in T with F, as before,

and G, and G, of types (k,=2m+j+ Djcs xex, €SP (K,))jest e k) With
(GZ)jk = 0 When ] > k

3 In [13] the operators were said to be subtriangular when having this property.
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There is a 1-1 correspondence between the class of triples {(Fo, F,,F,)} and
the class of triples {(Fy, G, G,)}, in which (F,, F{, F,) corresponds to (Fy, G, G,)
if and only if (4.10)<>(4.11) for all ue 2 (Q), where

(4.10) Vi = Foyotts vy u=Fyygu + Favg u,
(4.11) Yiokh = Foykott, s = Grygott + Gaxgiu.

In this correspondence, G, and G, are expressed by (Fo,F{,F,) by
(4.12) G, = (0*By, ;) "(F1 + 30*Zy me 1rom D)
(4.13) Gy = — (0", ;)" O*By s

and F, and F, are expressed by (F,,G;,G;) by

(4.14) Fi=(Y*Zyy,5,) (G — 3¥* Ly, 31, D)

(4.15) Fy=—(¥* ;)" "W Ay k-

Proor. We note first that a triple (Fg, F,, F,) is uniquely determined by the
boundary condition (4.10) on Z(Q) that it gives rise to, since p:2 @-]];.n2 (D)
is surjective, and since a ps.d.o. is determined by its action on smooth functions.
Also, a triple (F,, G, G,) is uniquely determined by the boundary condition (4.11)

that it gives rise to.
Let (Fo, F,, F,) be given. Then (4.10) may be written in the form

(4.16) yu = Oy u, O%vu = Fyygu,
(cf. Definition 4.1). Let u belong to 2(Q) and satisfy (4.16). By use of (4.9) we find
0 = O*vu — Fyygu = O*By yoxth — 5O* B o momo¥ — F1¥x 4
= OBy, s +O* By, g1kt — 3O*Brr,mo omo® + F 1) s
whence
417 O* By, yitsth = (Fy + 10*Brr 3o sonto @ kot — OFBrg ki kit

Here, ©*By;,,;=%;,;,— F,%Bx .y, Where By ;; is skew-triangular invertible with
zeroes above the second diagonal, and F,% ,; is skew-triangular with zeroes in
and above the second diagonal (since (F,); =0 for kzj and %,,=0 for
k+1 < 2m—1, such that (F,@x,;)i= Ziex,F B =0 when {j,l}eJ xJ{
with j +4-1<2m —1). Thus
(4.18) O*%,,,,; is invertible,

so that we get from (4.17)
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Xy = (@*Zy 51)” Y(Fy +10*2, Mo Moo @)V kU
- (G)*ngJ{)—l@*%MlK;XK;u'

Thus when u satisfies (4.10), it satisfies (4.11) with G, and G, defined by (4.12)-
(4.13). Conversely when u satisfies (4.11) with (4.12)—(4.13), backwards calculations
give that it satisfies (4.10).

Now let (Fy, Gy, G,) be given, and write (4.11) in the form

(4.19)

(4.20) yu= Oy u, Y*yu=Gygu.
Using (4.5) we now find that when u satisfies (4.20),
0 = W*elpp pr,vu + 3P*A pp pyvu — Gy U
= WA ppo0, V5, + W5k, ViU — (G — V¥ 300 )y g -

Here W*/yy ;,=;,5; — G, ), is invertible by arguments analogous to those
establishing (4.18). So we find that

(421) leu =(\P*‘%Mol1)—1(G1 _%W*"Q{MQMOQ)YK()” - (T*%Moll)—lT*dMoxlvxlu’
and obtain that (4.20) is equivalent with (4.10), when F; and F, are determined
by (4.14)-(4.15).

There is an alternative description of G, and G, in terms of (Fy, F,, F,) that
will be useful later.

LemMmaA 4.1.  When (F,, F, F,) corresponds to (Fy, Gy, G,) as in Proposition
4.1, then

(4.22) Gy = (A g, + 53, F) (g, + A 5, Fo)™?
and, with W* defined from this,
(4.23) G, = W*A py s Fr + 3V*A 3y 01, P

PrOOF. Multiplication with W*.<7), ; in (4.15) gives

\P*‘MM()J1F2 = - T*‘MMoKl
or
Ay Fy— Gl g5 Fy= — &g, + G g,

Then
Gy (A g, + Ay Fy) =Ly, + A5, Fa,

and, since &k, +.7¢:; F, is invertible by the usual argument, we get (4.22).
(4.23) is then obtained straightforwardly from (4.14).
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We shall also need

CorOLLARY 4.1. Let (Fy, F,F,) correspond to (Fo,G,G,) as in Proposition
4.1. Then

o=V
or, equivalently,
4.29) J{ =Ky and - G5 =F,,
if and only if
4.25) Ji=Kq and Fy = — (@*ALyy ;)" ' O* yy .

Proor. When ® = ¥, formula (4.15) takes the form (4.25). Conversely, when
(4.25) holds, it reduces as in the proof of Lemma 4.1 to

— F§ = (A, + Lyg F) (A xix, + A ks, Fo)™?
whence, by comparison with (4.22), — F§ = G,.
4.2, The description of X, Y and L. In view of Proposition 4.1, we may now
restrict our attention to boundary conditions in the form (4.11), or, with Defi-
nition 4.1, of the equivalent form (4.20)
(4.11) () s = Foygotts (D) xsu = Gyt + Godxis
4.20) (@) yu = Oyg,u, (i) W¥yu = Gyyg,u.

So now D(4) = {u € D(4,)|(4.11) holds}. Since yy u varies freely, at least among
smooth functions, when u € D(4), we see from (4.20) (i)

(4.26) X =yD(A) = <1>( I1 H"“*(r)).

keKo

To determine Y, we need some information on 4*.
Recall that

4.27) D(A*) = {ue D(4])|(4u,v) — (u,A'v) = 0, Yu e D(A)}.
For each se[0,2m] one has for ueD(A) NH(Q), veD(A*¥)NH™ 5(Q)
(cf. section 2.5)
0 = (Au,v) — (u, A'v) = {qu, yv) — {yu, x'v)
= (gt VE;0Y + {Grygo¥ + Gaxgiths ¥riv) — Py, X005
(4.28) 0 = (it 70 + GRyavd + (ot Gl — @¥f'v).

Introduce the ‘‘adjoint” boundary condition
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(4.29) vriv = — Gy, O 'v=Giyp,

i.e., using Definition 4.1,

(4.30) yo =Wy, @®*'v= Gy,

and define the realization 4’ of A’ by

4.31) D(A") = {ve D(4;)| v satisfies (4.30)}.

Then (4.28) gives, by varying s in [0,2m], that

4.32) DAY N H™Q) < DA% < D).

This suffices to conclude (like for X)

(4.33) Y = yD(3%) = ¥ ( ) H‘f“%(r))).
Jjeldi

(A* will be precisely characterized later).

We proceed to determine L.

Consider the three spaces [[;cx,H ' "*I), X = O([; cx,H ' ¥T)), and
[iemH ~/7}(I"). We denote by ®, the restriction* of the ps.d.o. ® with domain
space [[;cx.H ~J"XT') and range space X; then, with iy denoting the injection
ix: X [T /D),

(4.34) O=iD, (on 11 H'f'%(r)).
jeKo
By taking adjoints, we obtain the formula
(4.35) ®* = OF pry. (on I H“%(l“)),
jeMo

here if=pry.:[[jemH’ () > X', as defined in Definition 3.3, and %
sends X' into [[;. kH’ *XT). Now, since X is a graph, @, is evidently a bijection
with Iy s, as inverse, or, more precisely

(4.36) 07 = T poix
This gives us the formula for (®F)~': [];. x,H' T*IM) > X".

(4.37) (‘DT)_I = ((Dl_l)* = i;‘ IK0M0*= Pryxdpoxo-

In a similar way, defining W, as the restriction of the p.s.o. ¥ with domain

[Tjes;H ?7* () and range Y =¥([ ] H ~I7H(I"), we have the formulae

4 We use the word “‘restriction” in a general sense; the important part of the above res-
triction takes place in the range space.
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(4.38) ¥=iy¥, on [[| H/HD);
jedi
(4.39) ¥* =¥ pry. on [] HITHI);
JjeMqg
(4.40) lill_l = IJ;Moiy;
(4.41) (Y™ =prydy,;; on [J HY (D).
JE€4

REMARK 4.1. Since X and Y are usually understood to be subspaces of
HjeMOH ~ITHT), we shall often omit iy and iy in formulae; on the contrary,
pry. and pry. of course cannot be omitted. In continuation of Remark 3.4, let us
mention that when [ | jesoH ~I7XT) is provided with a norm (E¢, ¢>*, for which
the associated isometry E of [];.poH ' *(I) onto [[;emH **(T) is a ps.d.o.
(e.g. R, R’ or R" of Example 6.3, or A!"%/"Y of [12, Appendix]), then pry. (say)
may be considered as the restriction of a ps.d.o.: Identify Y’ with EY, and consider
the commutative diagrams representing (4.38) and (4.39), connected by E: Y — Y
and E: [[jeaoH 3D > [ e H THI). It is seen that W*EW = WIEY,,
which is composed of isomorphisms, so that W*EY maps [];.;;H 7T
isomorphically onto [];. ,{H”%(I“). Next, one finds that
(4.42) pry. = E¥,(Y*E¥)”'¥* on 11 HIYHD),

JehMo
so that pry. may be considered a restriction (cf.%) of the ps.d.o. E¥(W*EY)~ 'W*.
(All this is seen easily from the indicated diagram, which we omit drawing, since
the remark is of minor importance.)

LeMMA 4.2. When ue D(A,), u satisfies (4.20) if and only if

@) yu= Dygu
(i) (Gy —W*P, D)y u belongsto [[ HTHI)

jedt
and equals Y*uu.

Proor. The lemma is evident from the fact that, when ue D(4,), pu=
qu—P,yue [ HTXI) (Proposition 2.7).

jeMg
DEerINITION 4.2. Define the ps.d.o. &, in I by
4.43) %, =G, —¥*P, 0,

it is of type (— k, —2m +j + 1); sl ke ko
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We note that %, in general sends ¢ € [[;. x,H ~*"}(T) into
$1¢ e H' H—2m+j+% (F),

jedy
so that (ii) in Lemma 4.2 puts a nontrivial requirement on %y u. This is essential

in the description of L.

PrROPOSITION 4.2. The operator L: X — Y' associated with A by Proposition
3.5 is defined by

(4.44) D(L) = {q,’) eX|Zdye [ HTHD) }
Jjedi
(4.45) Lo = pry Qa1 11, P> when ¢ e D(L).

PRrROOF. Let us compare the statement of Proposition 4.2 with the equation
defining L in Proposition 3.5:

(3.39) D(A) = {ue D(4,) l yu € D(L), Lyu = pry.uu}.
When u e D(A), we have by Lemma 4.2
(4.46) Yruu = Lygue [ HHD).

jeldy

Inserting (4.39) in this, we find
Pipryuu = L1V ko>
which, by application of (4.41), is equivalent with
(4.47) prypu = (¥ 'L gt = prydaes L sIxomov-
This shows (4.45); and then another application of Lemma 4.2 shows (4.44).
REMARK 4.2. When E is chosen as in Remark 4.1, L is a restriction of the ps.d.o.
EV(P*E¥) ™ '* Ly 11 I goro-
The following alternative definition of L is convenient in some questions.

LemMa 4.3.  Let L, be the operator from [ [y g H * 3 (ID) to []jes;H THI)
obtained by restricting £, to

(4.43) D(L) = {pe [] H*¥D)|Zpe [] H D)}
ke Ko jeds

Then

(4.49) L = pryDyosiLid komoix-

Proor. Evident, in view of Proposition 4.2.
This gives, concerning L* (which defines A* by (3.40))
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COROLLARY 4.2. L* =pry Iy « LIy iy

From the definition of L, as a maximal operator for &, it is now seen by
standard arguments that LT is a minimal operator for £ *

Lemma 44. L¥: [LiesH 73 T) = [ ik HH(T) is the restricion of the
ps.d.o.

4.50) L= G- o*PF ¥
with domain equal to the closure of [ |;.5;2T) in the graphnorm.
Hereby A* is determined; moreover we find

PROPOSITION 4.3. With A" defined by (4.30)-(4.31), one has A* = A’ exactly
when % = G; —W*P, ® has the property:
[Tke x,2(I) is dense in D(L,) (defined by (4.48)) with respect
to the graph-norm (|| ¢ |&-x-ypexot [ £18 |G 5y,s D
PrOOF. A* = 4’ if and only if A = (4')*, so the proposition may be proved

by applying the whole set-up to A’. One may also observe that (4.51) and its
analogue hold or do not hold for #; and #§ simultaneously.

(4.51) {

In particular, we obtain a characterization of the selfadjoint realizations of
normal boundary problems, without any 4 priori regularity assumptions.

COROLLARY 4.3. A= A* if and only if: A=A4", ®="¥ (ie. Ji=K, and
Fy= — (Q*A ) ' @* Ay k), and Z, is selfadjoint as a ps.d.o. and satisfies
(4.51).

Density properties like (4.51) are often in the literature labeled ‘‘weak =
strong” properties. They have been widely discussed, often in connection with
regularity estimates, but they can also take place in cases without regularity.

4.3. Application of the general theory. We continue in the terminology of
Section 4.2, so 4 is the realization determined by (4.1) transformed into (4.11) or
(4.20); X and Y are then given by (4.26) and (4.33), and L: X — Y is determined
by Proposition 4.2 (or Lemma 4.3).

In order to apply Theorems 3.4-3.6 we shall identify some of the things appearing
there.

ProposiTION 4.4. Let H™(Q) < U = #3™™(Q).
The condition

(4.52) D(L) Ny[U ND(A)] = Y
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is equivalent with
(4.53) J{ =K, and F, = — (®*sZy ;)" ' ®* Ay &,
and then also with
(4.549) X=y.
Proor. Recall X = &[], x,H D)), Y = ¥([[;cs;H ' ~*(T)). Evidently,
Xn [[ B ¥ < b(L) < X,

JjeMo

then, since y[U N D(A,)] <yH*"(Q) = []; e m,2*" 73D, D(L) Ny[U N D(4,)]
is dense in X, so that (4.52) is equivalent with

(4.55) q)( I H‘f‘*(r))c ‘I’(]—[' H‘j"f’(l“)).

je Ko JjelJa

Recall from Corollary 4.1 that (4.53) is equivalent with
(4.56) o=V (ie,Ky=J;, Fo=—G3),

and thus with (4.54); we shall therefore simply show that (4.55) implies (4.56).
Both spaces in (4.55) are graphs (of F, resp. —G%) and furthemore, because
of the subtriangular property: (F,); =0 for j<k, {j,k}eJ,x K,, and
(G =0 for j <k, {j,k}eK] x J;; the elements ¢ = {@g,***, Pn_q} in each
space have the property that for each le M,, ¢, depends at most on all the
preceding entries {¢g, -+, $;_,}. Then (4.55) implies successively, for each le M,

Ko n{0,---,1} «J; N {0,---,1},
so that K, = J,, whence, since IKo[ = ]Jl’[,
Ko =J..
Then also J, = K/ ; and the two spaces are now graphs of operators F, resp. — G5
with same domain [];.x,H ' *(T) and same range space [];.;,H ' *I),

thus (4.55) implies
FO = ~- G;k.

Remark 4.3. Note that the condition (4.53) is concerned not only with
principal symbols or symbols but with the complete structure of the operators
Fy and F,. In this sense we call it a global condition.

LemMA 4.5. When ® =Y, and ¢ and Y e D(L), then
(457) <L¢’ ¢> = <$1¢K°a ¢KO>,
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the left bracket denoting the duality between X’ and X, and the right between
[Tie o3 and [[;e g, H ' 7HD).
Proor. We find by use of Lemma 4.3 and that X = Y, K, =J|,
L ¥ = {pryduorolil komoix®> ¥ = {LyIgonroixPs Txomoix¥s

which we may write, omitting iy, as

= <$1¢K0,¢K0>-
LemMMA 4.6. When @ =V,
(4.58) Gl = q)*‘%MollFl + %@*ﬂMoMOCD
and
(4.59) L, =G — (I)*PMQ) = 0%y ; F1 — O*A yy 0, Py D
here
(4.60) GO(MM0M1P}-,V) = —idy," S, S,

in the notation of the Appendix (for oy ;, cf. (2.32) or (6.28)).

PrOOF. (4.58) and (4.59) follow from (4.23), (4.43) and (2.43); (4.60) follows
from (6.28), (6.25).

With @ denoting the operator introduced in Definition 3.5, we have
Lemma 4.7. Assume A strongly elliptic. When ® =¥, and
peDL)N [] H™~*(T), then

jeMo

(4.61) Re{Lg, ¢) + {09, ¢ = {(Re L, + D*QD),, Pk,

(the brackets denoting dualities between X' and X, HIGMOH""'”‘L%(F)

and [[; esH™ /D), resp. [[jexH ™ H4T) and [[;ex H™ 7 HD).
Proor. All expressions are well defined, in view of the types of #;, ® and Q.

Using Lemma 4.5 and that ¢ = ®¢y, we have

Re(Lo, ¢) + (Q¢, ¢> = Re(Z 1dky, Pk, + QPPx, Db,
= {H(Z 1 + L1 + O*QP)og,, Px,» = {Re £ + D*QP), P, )-

REMARK 4.4. When ., has the property (4.51), the validity of (4.61) extends
to D(L) Ny[D(A{) N D(Ay)], cf. Proposition 3.6 and Lemma 4.4 (the brackets
suitably interpreted).

DEFINITION 4.3. When @ =¥, we define the ps.d.o.¢ in I by
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(4.62) A =Re %, + *Q0.
It is of type (—k, —2m + j + 1); e ko-
REMARK 4.5. ¢ is the real part of the ps.d.o. named ¢ in [14].
LEMMA 4.8.
(4.63) H = Re[@*L g 1] — O ygout Py + 3 piopa )0
here, with the notation of the Appendix,

(A yion, Py + 3 wponss) = i [ — (Re A,,)S;,S4
(4.64)

(for Ay5, ¢f. (2.32) or (6.28)).
PrOOF. Applying (4.59), (3.49) and (2.43) (noting (2.33)) to (4.62), we find
A = Re[@*L 5 Fy + JO*A 0, @ — O*P, O] + O*[ — P, . + Re P, J@
= Re[®*Zy s Fi] — O*[P, - — 1Re &y p, | D

+345,(53 55+ 5555)],

Re[@*af yp o5, F1] — O* [ yone, Py v + 1 monto + A ntomto)
— H A womo — L atom,) ] P
= Re[®*&ppos F (] — O* [ yyopr, P}y + 4 1001, 1P

Next, an application of (6.25), (6.27) and (6.28) to A" resp. A’ (noting (6.21) and
(6.22)) gives (4.64).

Finally, note the following immediate consequence of the definition of @:
LeMMA 4.9. For each seR, there exist constants ¢;> 0, ¢,/> 0 such that
for all pe[];exH (),
” ¢ ”{s—j}.jeKo s G ” (D¢“{s—j},jeMo = C;“ ¢ “{S—j)-je Ko+
We are now ready to apply Theorems 3.4-3.6.

THEOREM 4.1. Let A be properly elliptic satisfying Definition 2.2, and let A
be the realization of A determined by (4.2). Let H*™(Q) = U « H™(Q). There
exists AcR such that

(4.65) Re (Au,u) 2 — A u | for all ue D(A)NU
if and only if, in the terminology of Section 4.1,
(4.66) J{ =K, F; = — (@*JZ{MOJI)'l(D*MMOKl;

and then A represents the boundary condition
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(4.67) yu =@y u, O¥yu=Gyygu,
where G| = ®*olyy ; Fi + 2@% s yp 1 D.
Proor. Since U < H™(Q), y[UNDA)] <[];en,H™ ' "¥T). Then, when
(4.66) holds, we have for ¢ e D(L) Ny[U ND(A4,)]
[<L¢,>| = | <ingoa {¢K0} M ={Z1bxp bk, > |

—i—% tmmtj+il m—j-4}

Il

(4.68)

IIA

el bxo [fn-s-13 S €'l on- -1
where we used Lemmas 4.5 and 4.9, and the type of #;. Then Theorem 3.4 implies

that (4.65) is equivalent with (4.66), in view of Proposition 4.4. The last statement
is now seen from Corollary 4.1 and Lemma 4.1.

Since (4.66) is independent of A, we find

COROLLARY 4.4. With the assumptions of Theorem 4.1, A satisfies
(4.69) [(Auwv)| < clufa]v]n for uve DA)NU
if and only if (4.66) holds.

Here, Corollary 4.4 could also have been derived from Corollary 3.4, by use
of the notations in Remarks 4.1 and 4 2.

EXAMPLE 4.1. When Q =R", and 4 = A?, one finds that boundary conditions
of the form
Vit = Fopou,  yau = Fagpou + Faapou,
satisfy J{ = K(= {0}); and that here the second part of (4.66) means exactly
that F32 = — F;ko

REMARK 4.6. In continuation of Remark 3.6, we note that Theorem 4.1 and
its corollary may be proved without the assumption that 4 has uniquely solvable

Dirichlet problem, by use of techniques from Chapter 5; this will be done in
Theorem 5.2.

Application of Theorem 3.5 leads to

THEOREM 4.2. Let A and A be asin Theorem4.1. Let H*™(Q) c U = #3:™™(Q)
If there exists AeR such that

(4.70) Re (du,u)z — A(||uf5+ || A'u

If,,, , YueD(A)NU;

then, with the terminology of Section 4.1 and Lemma 4.6,
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(G) Ji=K, F,=- (D* A pp5,) " O¥ A g
(4.71)< (i) 31’ eR s.th. Re(Lo,¢> = — M| ¢ |}~ ;_4,, Yo e D(L) Ny[UND(4,)]
(iii) Rep*(Z)(y,n) 2 0, all (y,m)e S(D).

Proor. That (4.70) implies (4.71) (i)-(ii) is immediate from Theorem 3.5 and
Proposition 4.4. An application of Proposition 2.2 (i) then yields (iii): Choose a
pseudo-differential isomorphism E of type ( — k — 4, j + %) xcu, as in Remark
4.1, then (4.71) (ii) implies that for ¢ e D(L) N[ ];em, 2(T),

0 ZRe(Lg,d) + A'(E,¢) = (Re £, + L/ D*E®) dy,, P,

whence, since &, is of type (im —k—3%, —m+j+ 1) 1cme

6°(Re £, + VO*ED) = ¢°(Re #,) = Re 6°(Z,) = 0 on S(I).
Finally, we apply Theorem 3.6.

THEOREM 4.3. Assume that A is strongly elliptic, and that A is the realization
of A defined by (4.2). Then there exists ¢ > 0, 1R such that

4.72) Re (Au,u) = c|u|’— il u|g for all ueD(A)
if and only if, with the terminology of Section 4.1 and Lemma 4.8,

() J{=K, and F, = — (O* ;) ' 0¥y,
{(ii) (A (y,n) > 0 for all (y,m)eSD).

In the affirmative case D(A) = H*"(Q); and A* is the realization of A’ deter-
mined by the adjoint boundary condition

(4.73)

(4.74) =0y v, O%'v=_CGTyg,
and has the analogous properties.

PrOOF. When (4.72) holds, then (4.73) (i) holds by Theorem 4.1; and Theorem
3.6 assures that

(L, $) +<0h, > 2 || b |-y — 2| D[ F-s-5s
(4.75) for geDL) N [ H™ (D).

jeMp

By Definition 4.3 and Lemmas 4.7-4.9, this implies

{H Do oy 2 C”“ Pk “(Zm—j——%} - '1”“ Pxq ”%'f“%}’
(4.76) all g, e [ H*™ I7XD).

je Ko
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Then, since 4~ is of type (m —k —%, —m+j+ 1);xem, Proposition 2.2 (ii)
gives that ¢°(¢") > 0 on S(I).

Conversely, assume (4.73). Then Proposition 2.2 (ii) (with the inequality
extended by continuity to [[i.x,H Zm=i=%(T") together with Theorem 3.6 gives
that (4.73)(i) and (ii) imply

4.77) Re (du,u) 2 c|ul|Z - 2| u[§ on D) N H>™(Q).
Now, since {Q¢,¢p> <0 (cf. (3.48)), we have
(4.78) ¢%(Q) £ 0 on S(I),

so that (4.73) in particular implies
Red®(Z,) = o°%(H ) — ¢°(@)*c°(Q)e®(®) > 0 on S(I).
This shows that .#, is elliptic, and then (cf. Proposition 4.2, where ¢ = O¢y.)
pw =0 ([ === [ #"),

je Ko JeMp
which implies D(T) < Z2™(Q) and thus (c.f. (3.5))
D(A) < H*™(Q).

Then (4.77) implies (4.72). The statements concerning 4* follow by use of Pro-
position 4.3, where (4.51) is valid by the ellipticity of Z,.

REMARK 4.7. When (4.73) holds, the ellipticity of .#, assures in fact that for
for all t=0

(4.79) ueD(A), AucH(Q) = ueH**™Q),

with the analogous property of A*. This is so, because ellipticity of &, is equivalent
with the well known ‘‘complementing condition” (generalized to the ps.d.o.-
case). We refrain from further discussion, since this aspect is so well covered in the
literature (cf. e.g. [5], [25]).

ExaMpLE 4.2. For the boundary problem in Example 4.1 one finds,
when Fy, = — Fio: 0% #0) = Reo™(&) = — Im f30(y,n) — 4”1‘21mf10(y,’1)
+ 2| 11] | S10w,m) |2 + 2[ n |3 on T.*(T) (denoting 6°(F ;) by f;); positivity of this
function is necessary and sufficient for 2-coerciveness.

Theorem 4.3 gives a concrete solution of the problem of characterizing the
m-coercive realizations of normal boundary problems. For s <m we shall let
do with Theorems 3.6 and 4.1, together with the explicit description of L: X —» Y~
given above; except for the following remarks:
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When s e lm — %, m], s-coerciveness is equivalent with m-coerciveness. Fujiwara
treated in [9], [10] the case s = m — % for a special class of boundary problems;
his results should be extendable to the general case by the techniques of the
present paper (the relevant condition on the ps.d.o. in the boundary is related to
Hormander’s subellipticity [17]). For s < m — 4, some results on the required
inequalities may be found in Calderén [8]. Concerning ‘‘0-coerciveness’’, we note

the consequence of Theorem 3.6 and Proposition 2.2 (i):
THEOREM 4.4. Assumptions of Theorem 4.3. If, for some LeR,
(4.90) Re (Au,u) = — A

ul2,  VYueD(A) NnH*™Q),

then

(4.91) {(i) J{=Ko Fy=— (@ App5)" O .

(i) o°(A) =0 on SI).
As a corollary we find Agmon’s result [2]:

COROLLARY 4.5. In addition to the assumptions of Theorem 4.3, assume that
D(A) = H*™(Q) and that A is selfadjoint. Then (4.90), (or just (4.91) (ii)) implies

that A is m-coercive.

Proor. D(A) = H*™(Q) is equivalent with ellipticity of %, ; then in view of
Corollary 4.3, 4 is selfadjoint if and only if A = 4, (4.91)(i) holds, and &, = Z }
Now A=A’ implies Q =0, thus /" =Re.¥, = %,. By Theorem 4.4, (4.90)
implies 6°(#,) = 0 on S(I'); this together with the ellipticity (i.e. 6°(%,) % 0 on
S(I) gives 6°(.Z,) > 0, whence A4 is m-coercive by Theorem 4.3.

ReMARK 4.8, Note however, that (4.90) together with regularity do not in
general imply m-coerciveness. As a counter example, let ¥, = S — ®*Q®, where
S is skew-selfadjoint and elliptic with a large enough ellipticity constant such that
&, is also elliptic. Then D(4) = H*™(Q), but # =Re S — O*Q® + P*Q & = 0;
and then, by Theorem 3.6, Re(4u, u) = 0 on D(A) but A is not m-coercive. (The
presence of Q plays no important rdle in this argument.)

Finally, we have a curious observation:

COROLLARY 4.6. Assumptions of Theorem 4.3. When Q is elliptic, then (4.90)
implies D(A) < H*™(Q).

This follows by observing that (4.90) here implies Red®(Z,) = o%(X)
— ¢%(@*QD) = — ¢°(@*Q®) > 0 on S(I'). An example, where Q is elliptic: Let
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n =2, and let a(y,n,t) = t* + 3int + 45> on a component I'y of . One finds on
this component: a*(y,n,7)=1— iy when 5 >0, and 7+ 4in when 5 <0;
a~(y,1,7) =1t + 4in whenn> 0, and t — in when n < 0; and a'(y,n,7) = 1> + 4>
=(t —2iy) (7 +2in). This gives, by formulae (6.20)-(6.22) and (6.29) that
P, = — %|n| and ¢°(P; )= —2|n|; thus ¢°(Q) = — 3y If we take
Q~T, x ]0,1[, we may obtain a similar result on the other component of I.

5. Comparison with prior results

The most fundamental previous result on m-coerciveness is due to Agmon [1]
1958, who characterized those normal boundary problems, associated in a certain
way with sesquilinear forms, that determine m-coercive realizations.

We assume in this chapter, that Q cR” and is provided with the metric of R".
We use the standard notation for differential operators in terms of coordinates:
With x = (x,--,%,), let D; =i~ ! 0 /0x;, and, for any multi-index p = (py,---, p,),
where each p; denotes a non-negative integer,

G.1) D= Dy'DY - Dy (=D3),

here [p| =p, + -+ + p, is the order of D*.

Let us remark that we as usual assume for simplicity that all our differential
operators have C® coefficients, which is much more smoothness than Agmon
required. To present his result, Iet us first recall

LemMMA 5.1. Let there be given an integro-differential sesquilinear form

(5.2 e(u,v) = f Y ¢, (x)D%uDrodx,
Q

|p|,lg}Sm

where each c,(x)€ 9(5), so that c(u,v) is defined and continuous for
{u,v} e H"(Q) x H"(Q). Furthermore, let there be given a normal system
B ={B;};em, of boundary differential operators of orders j, jeM,. Denote by C
the differential operator defined on 2(Q) by

(5.3) Cu= ¥ D¥%c,Du.

ipl.jqlsm

Then there exists a unique system of boundary differential operators
K = {K;}; o> With K; of order 2m — j — 1, such that

5.4) c(u,v) = (Cu,v) — {xu, fvy, all u,ve Q).

When C is elliptic, k is furthermore a normal system.
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HiNT ofF Proor. Notefirst that f = #y for some invertible differential operator
Z#in T, so, by replacing k by & = #*i we may assume f§ = y. Now integration by
parts gives (Cu,v)—c{u,v) as an integral over I involving derivatives of u up to
order 2m — 1 and of » up to order m — 1, this may be arranged in a form
{xu,yvy.—For the elliptic case, cf. e.g. [20, Section 2.2.4].

In the following we denote by a(u,v) a sesquilinear form

(5.5) a(u,v) = X a,DuDdx

Q |pl.]glsm
with a,,€ @(ﬁ), for which the associated ditferential operator
(5.6) A= X Da,D!
[pl . fal=m
(understood like (5.3) and then extended to 2'(Q))) is properly elliptic. Here
(5.7 °(A)(x, &) = > a, (x)ErT.
Ipl=ql=m

We recall that A is determined by a, but not vice versa; in fact this is central
for the discussion to follow.

THEOREM 5.1. (Agmon [1]). Let a and A be given as above, with A strongly
elliptic. Let Jo = My, and let p={B;};.;, be a normal system of differential
boundary operators of orders j, je Jo, B; of the form

(5.8) Bi=7;— X By

k<j
Then there exists ¢ >0, LeR such that
(59 Rea(u,u) Z ¢ |u |y — 2| u |3 for all ue H™(Q) with pu = 0,
if and only if the following condition is satisfied at each yeT:
Introduce a local coordinate system (with generic point ze R") where z, =0

on I, z=0 at y, and the normal derivative D, at y goes into D, at 0. With

A+ A") denoted A", and (&,,--,&,- 1) denoted &', write in this coordinate
system

2m
O = T a0k,
1l ,
@D = X 40,88,

and

aj—k(Bjk) (03 é/) = bjk(il).
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Then, for each &' e R"=1\{0}, the non-zero, bounded solutions of the ordinary
differential boundary problem (where we denote (i ~'d [dt)'v(f) by vV(P))

T a0,&) vV () =0 for t >0,
1=0
{[v(j)(t) -z b,-k(é')u“"o] =0, eachjeJ;
k<j t=0
satisfy
Re f 2 apq(O)( p dq,(O,é’)v(’)(t)) ( h dp,((),é')v“)(t)) dt > 0.
0 |pi=laf=m =0 t=0
In view of Lemma 5.1, Theorem 5.1 has the corollary
COROLLARY 5.1. Assumptions of Theorem 5.1. Let Ky, = My \J,, and choose
normal boundary differential operators B; of orders j for jeK,. Denoting
{B;}jemo by B, let x be the system of boundary operators with which
(5.9) a(u,v) = (Au,v) — {xcu, fvy, u,v e HQ).
Then the realization A of A with domain
(5.10) D(A) = {ueD(A,)|Bju=0 for jeJo;xu=0 for je Ko}
is m-coercive if and only if the condition of Theorem 5.1 holds.
Proor. Under the given circumstances one finds from (5.9) (after an extension
by continuity to H>"(Q))
(5.11) a(u,v) = (Au,v) for ue D(A) NH>"(Q).

Then the statement follows from Theorem 5.1 by using (as Agmon pointed out) that
the condition in Theorem 5.1 in particular implies that the system

[{B3}j cvor {35 k0]
satisfies the complementing condition (cf. [5]), whence D(4) = H*™Q).

This corollary indicates the applicability of Agmon’s theorem. Although one
may think of more general consequences of Theorem 5.1, there always remains
the problem of finding a sesquilinear form a associated with A and with the
particular boundary condition, such that (5.11) or a suitable generalization holds
for functions satisfying the boundary condition. This puts a restriction on the
class of realizations that may be tested by Agmon’s theorem; a restriction that
up until now does not seem to have been systematically characterized. (That
there is really a restriction may be seen by noting that the condition in Theorem
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5.1 concerns principal symbols, whereas we know from Theorem 4.3 that a global
condition (like Theorem 4.3(i), cf. Remark 4.3) is necessary.) We shall go deeper
into this question further below.

The subsequent treatments of the coerciveness problem avoided involving a
sesquilinear form. In [2], [3] (1960 and 1962) Agmon gave a simple necessary
and suffient condition for m-coerciveness of selfadjoint realizations of normal
boundary problems, the so-called ‘‘strong complementing condition”’. (It concerns
only principal symbols, which is well in accordance with Agmon’s remark in [2],
that such selfadjoint realizations may, at least locally, be brought into the frame-
work of the sesquilinear froms. See also Corollary 4.5. The “‘strong complemen-
ting condition’’ may be defined generally for nonselfadjoint normal problems
[3], for these however, the corresponding realizations are usually not semibounded,
simply because our global condition need not be satisfied.) It has been known
for a long time that the orders of the boundary operators must comply with the
condition J| = K, in order for m-coerciveness to hold. Recently, Shimakura [26]
aborded the problem again, giving a sufficient condition applicable to the boundary
problems where

(5.12) Ko=J{={m—-p,---,m—1}, for some 0 < p < m.

This was soon after improved to a necessary and sufficient condition by Shimakura
and Fujiwara [27] (see also [9]), and (independently, for formally selfadjoint 4)
by Grubb [12]. (The condition again concerns only principal symbols, but then
again Theorem 4.3 (1) is trivially satisfied: Fo, F, and ®*o/) i, are all zero
because of (5.12) and the ‘“‘subtriangular’ property, cf.3.) Finally, Theorem 4.3
of the present paper, announced for formally selfadjoint A4 in [13], and for
general 4 in [14], characterizes m-coerciveness of normal problems completely.

We shall now show how the problem of associating a sesquilinear form with 4
fits into the general result. The fundamental step is expressed in Corollary 5.2,
which is in a sense analogous to Lemma 2.2, but much more involved.

LeMMA 5.2. Let a be associated with A by (5.5)-(5.6). Then
(5.13) a(u, v) = (Au,v) — {pu + Syu,yod, all u,ve YQ)
where S is a differential operator in T of type (— k, —2m + j + 1); 4 . 1,

Proor. Define

(5.14) a*(v,u) = a(u,v) foru,ve H"(Q).
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Then it is easily seen that a* is associated analogously with 4’ (for A’
= Elpl,lqlémeaDp)' Now, by Lemma 5.1,

(5.15) a(u,v) = (Au,v) — {xu,yoy,  a*(v,u) = (A'v,u) — {x'v, yu),
for certain normal systems x, k’, and then by (5.14)
(Au,v) — (u, A'v) = {xu,yv> — {yu,k'v),
for u,ve 2(Q). Then Lemma 2.2 gives that k = y + Sy in the desired fashion.

LeMMA 5.3. Let ¢ and C be as in Lemma 5.1. If for some differential opera-
tors #; and %, in T of types (—k, =2m +j + Djcponenm, TeSp-
(=k —2m+j+ D)jreumo

(5.16) e(u,v) = {B,vu + Byu, >, all u,ve 2Q),
then C=0 and #,=0.

Proor. Use Lemma 5.1, then a comparison of (5.4) with (5.16) gives
(5.17) (Cu,v) = {xu + Byvu + By yu,pvd,  all u,ve Q).
In particular, for u,ve Z(Q), (Cu,v) =0, whence
(5.18) C=0.

For one thing, this implies ¥ = — #,v — #,y, by the uniqueness of k. But also,
the formal adjoint C’ = 0, whence, by applying Lemma 5.1 to ¢*(v,u) = c(u,v),

.19 c*(v,u) = — {x'v,yu>, u,vE 9(@)
for some x'. Together with (5.16) this gives the identity
(B vu + Byyu,po) = — {yu,k'vd, u,ve HQ),
from which it follows, by letting u run through 2(Q) N HWQ), that #,=0.
In contrast with this, #, may take any value, as will be shown now.

PROPOSITION 5.1. When S is a differential operator in T' of type
(=k, —2m + j + 1) 4 cpo» there exist ¢, € D(Q) such that, with ¢ (u,v) defined
by (5.2),

(5.20) c(u,v) = {Syu, yv>, all u, ve H"(Q)
(then in particular C, defined by (5.3), is zero).

Proof. Of course it suffices to verify (5.20) for u,ve 2(Q).
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1°. Consider the case where Q = B” = R? NB" and S = X5 ay(x)D; + ag(x’),
each a(x)e 2(B"1)°.
Let {(x,) denote a function in Z(R), which is 1 near 0, and for which Uz;(‘,
(supp a; x supp{) = B". Denote a,(x"){(x,) = d(x). Now let u,ve 2(Q). Then

[ aolmouigas = | s(audx
B /B

=i f D (Goud)dx = f (= ido(D,)6 + idouDp — i(D,dg)ud) dx.
Q Q :

To handle the first order terms we note that, when b,e2(Q) N 2(B"),
k,1=1,---,n, then

n

Z bkl(x) Dkubg) dx = 2 “ [ i _a;ax—(bleku 6) + D[(bleku)l-)] dx
JQ 1

ki=1 Q ki=1

n-1 o n
- f (—i Y b () Do — ibyy)yevdx’ + 5 | Di(bDyu)5dx.
B k=1 ki=1Ja
In particular, when by =0for k,I=1,---,n — 1, and by, = — b, fork=1,.--,n
then
n n—1 n—1
2 DbyDiu) = X (Dyby)Du — X (Dyby,)Dyu,

k=1 k=1

kl=1
so that

n—1
f (2 bk,,(x')Dkyou)yovdx'
Bn—l

k=1

ki=1

n n—1 n—1
- f [i S buDuDp—i % (Dybe)D 54+i 3 (Db fz] dx
Q k=1 I=1

This leads to the following choice of the ¢

we | Pl @] £ 1 (we denote the kth
unit vector by e,):

Coer = 0 for kyl=1,--,n—-1;¢, ., =0;

cek,en = - ce,.,ek=iak for k= 1,"',"-1;
n—1

cek,O =_andk for k=19°",n_1; ce",0=i Z Dldl—i[io;
1=1

Coe =0 fork=1,-n—15c¢9, =idy; cgo=—1D,dp;

SR = {xelR"lx,,>0};B"= {xeR"l lxl <1}; and {xeR"lx,,=O, IxI <1} is
identified with B"~!.
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with which one has

k-1 I
f 1 ( Y a.D, + ao)youyovdx' =f 2 ¢,y D Dvdx.
B" @

n=1 Ipl.lat=1
The idea in this proof stems from Agmon [2], [4].
2° Let again Q = B", and let now S, denote a differential operator in R*~!
with coefficients in 2(B"~?), of order I =2m ~ j — k, where j and k are two
nonnegative integers < m — 1. We consider for u,ve 2(Q) the integral

J‘B"_ISjkykuijdx’.
To treat this, write Sy as a finite sum

Sjk = E QiRiTi:

where the Q,, R; and T; are differential operators in R*~!, with coefficients in
2 (B"1), and of orders respectively m — 1 —j, 1 and m — 1 — k. Then

f Sjk Tl ﬁ_dx' =X f Ri(Tinu)(Q;k?j”) dx’.
Bn- 1 i Bn—l

Here Tpyu = yoTu, Q;“ij=on~,~v, for suitable smooth differential operators
T., 0, of orders m — 1 in Q. This reduces the problem to 1°, whereby one alto-
gether finds functions ¢, (x)e 2(Q) N 2(B") for which

[ Syt y 0 dx’ =f X ¢, DuDPvdx,
R Bn—l Q

Ipl.lafsm
all u,ve P(Q). When S =(S ke b, 18 @ differential operator in R*~! of type
(= k, —2m + j + 1) x e m, With coefficients in  Z(B"™ 1),

[ Syu-yodx' = X [ Sty dx’,
. B"" JkeMo B"'l
where each summand is handled by the above argument.

3°. The general case, where Q is a smooth bounded domain in R" and S is a
system of differential operators in the boundary I, is now reduced to 2° by use
of a finite system of local coordinates. (The arguments involved are standard,

and will not be reproduced here.)

Altogether, Lemmas 5.2 and 5.3 and Proposition 5.1 imply (after an extension
by continuity, cf. Proposition 2.4):

COROLLARY 5.2. When a(u,v) is a sesquilinear form associated with A, then
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(5.21) a(u,v) = (Au,v) — {u + Syu,yv), all ue #7°(Q),ve HY(Q),

where S is a differential operator in I of type (—k, —2m+j + 1); e m,-
Conversely, when S is such an operator, there exists a sesquilinear form a(u,v)
associated with A, satisfying (5.21).

We can now show that the differential boundary problems to which Corollary
5.1 may be applied are exactly those which satisfy the ‘‘global’’ condition (4.66)
(i.e., Theorem 4.3(i)). At the same time, we shall show how Theorem 4.1 may be
proved (after reduction the case Q — R") without the assumption that A has
uniquely solvable Dirichlet problem, cf. Remark 4.6.

THEOREM 5.2. Assume merely proper ellipticity of A. Let A be the realization
of A determined by a boundary condition (4.1). Then there exist e R such that

(5.22) Re (du,u) = — 2| u 2, all ue D) NH"(Q)
if and only if (4.66) holds.

If furthermore the operators F . are differential operators, (4.66) is equivalent

with the existence of a sesquilinear form a(u,v) (as (5.5)) such that
(5.23) (Au,v) = a(u,v) for all u,ve D(A)N H™Q).
Proor. Pick an arbitrary sesquilinear form aq(u,v) associated with 4, it

satisfies an equation (5.21). Inserting this in (5.22), we find that (5.22) is equivalent
with the validity of an inequality

(5.24) Re (pu,yud = — Ayl ul|,2, all uwe D(A) NH™Q),

since ag(u,u) and {Syu,yu) are continuous on H™(Q).

To prove the first statement, let us begin with assuming that (5.24) holds. Let
uy € D(A) N H™(Q), and let w run through Z(Q), then insertion of u = uy + w in
(5.24) gives

Re{yug,yup) = — /l1” Uy +w

|,ﬁ, all we 2(0), whence (assuming 1, = 0)

2

fm—j—%1

Reyuo,puo) =2 — 4y inf “ Ug + W an = - /12“ YUo
Wea(Q)

(cf. Proposition 2.1). Now, using that u, satisfies (4.1), written in the form (4.11),
we have

Re [{xgitto, Vxiuoy + {G1yKoug + GoXkito, Vrjtioy]

> — Ay 1o | i-ae

whence, using the type of G, and the fact that yu, = @y, u,,
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(5.25) Re (xxios Txitto + G3vrito) Z.— As| Yoty || immj— 10

Here, yx;uo and 7pg u, independently run through all smooth values, when u,
runs through D(4) N H*"(Q), and therefore (5.25) implies

(5.26) Vit + GEyp. u=0 for all uge D(A) NH*™Q).

This means in particular that, with the notations of Definition 4.1,

(5.27) ) ( I1 HZ"'"f'*(r)) c‘P( I1 HZ"'*f'*(r)),
Jje Ko jeh1

to which the proof of Proposition 4.4 may be applied to conclude that @ =¥,
i.e., (4.66) holds (cf. Corollary 4.1).

Conversely, assume (4.66). This means that the boundary condition has the
form

(5.28) yu=®yu, ®*u=_Gygu.
Then, for u,ve D(4d) N H™(Q),
(Au,v) = ao(u,v) + {yu + Syu, vy
(5:29) = ao(u,0) + (D*gu + O*Spu, g,
= ao(u,0) + (G + O*S®)yg,u, Yk V)-
Thus, in view of the type of G, + ®*SD,
(5.30) [(4u,0)| < c| u], || o] for all u,ve D(A) N H™(Q),
which in particular shows (5.22).
For the second statement we proceed as follows:

When (5.23) holds, (5.22) is an immediate consequence, so (4.66) holds by the
first part. Conversely, when (4.66) holds and the F, are differential operators,
the boundary condition is of the form (5.28), so that one has (5.29) for
u,ve D(A) N H™(Q), with G, + ®*S® a differential operator of type

(—k,—2m+j+ 1) rexe
By Proposition 5.1 there exists a sesquilinear form c(u,v) with C = 0 such that

o, v) = (G + P*SO)y g, x,v> all u,ve H'(Q),

then

a(u,v) = ag(u,v) + c(u,v)

fits together with 4 in (5.23).
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Remark 5.1. This theorem actually does not use the ellipticity of A4, but
rather that I' is nowhere characteristic for A (cf. (2.26)).

In the course of the proof we also found

COROLLARY 5.3. Under the assumptions of Theorem 5.2, (4.66) is also equivalent
with (5.30).

Finally, we have

COROLLARY 5.4. The normal differential boundary problems for A that may
be brought into the framework of Corollary 5.1 are exactly those which satisfy
(4.66).

When A is a realization determined by such a boundary condition, and
a(u,v) has been chosen to satisfy (5.23), and A is strongly elliptic, then Agmon’s

condition in Theorem 5.1 (on principal symbols) is equivalent with our condition
(ii) in Theorem 4.3.

6. Appendix. Further details on P.

In this appendix, we consider  as an open subset of a compact manifold
without boundary, as described in Section 2.1. We shall then also assume, as we
may, that 4 is defined and properly elliptic throughout . Now y,(j € M) is defined
on smooth functions in I as usual as (D;/u) | r» but for the extended definitions as in
Proposition 2.4, there is a distinction between y; = #%(Q) - H*/"*T) and
77 HFE\Q) -~ HITHI), when s<2m. We set p* = {yF},00 75 =03,
and v* = pg,.

We assume as usual that 4 in Q has uniquely solvable Dirichlet problem
(Definition 2.2) (but remark that all considerations may be carried through
without it, with evident modifications); then in particular, {ue 2Z(X) l Au=01in
%, pu = 0} = {0}. With this assumption, the result of Seeley [24] (cf. also Caldéron
[7]}, Hérmander [17]) takes the form

PrROPOSITION 6.1. For each seR
(6.1) 11 H D) = p"2Q) + pZiE\Q),
je
topological direct sum; and the projections Qt and Q~ in HjeMHs'j'*(l")
defined by (6.1) with ranges p*+Z3(Q) resp. p~Z3Z\Q) are ps. d. 0.’s in T of
types (— k, — j); xe - Moreover, their principal symbols are determined by the
analogous construction for the ordinary differential operator
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1 d 2m 1 4V
6.2 — | = =
(6.2) a (y,n, : dt) I=EO az(y,n)(i dt) , teR,
at each fixed (y,n)e T*(T): here Q,I" and X are replaced by R, {0} and R,
respectively, and p* and p~ map
1 d 6
Za(R+) = Z(t) ey(R+)la ysr’aT 747 Z(t) =0on R+
resp.
1 d
Z(R.) = {z(9 eS”(IR{_)Ia Vit — —r z(f)=0 on R_}
into [[;em C (= C*™), which decomposes

(6'3) I—I C = p+Za(R+) + p—Za(R—)a

JjeM
such that the projection M x M-matrices q*(y,n) and q~ (y,n) determined by
(6.3) are the principal symbols of @t resp. Q~ at (y,n).

Secley proves this by showing that, when 4 is an invertible operator on
2(X), 0+ = —p+tA~1p*s/~1and Q- = p~A~1p*a/~1 (cf. (2.31)(2.32)), which
he modifies to the general case where A has an index in the appendices of [24]
and [25].

We shall now rapidly indicate how Proposition 2.6 is proved on the basis of
this.

Recalling (2.29)+2.30), we define for each (y, ) € T.*(I') the differential operators
in R

6.9 j

Then
1 d\_ . 1 d)\ _ 1 d
(65) a (JU%T W)_AZm(y)a (y’”a—l W)a (}’,’7,7 W)

1 d 1 d
= A, (y)a” (y, ﬂa—i‘ —d‘t‘)‘fr (y,",—i— 7{) .

6 P(R+) denotes the space of functions u€ C®(R+) for which r*difdt'u( 1) is bounded on
R+ resp. R-, forallk =0,/ = 0.
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(We shall omit the dependence on (y,#) whenever convenient). The following

lemma is well known.

Lemma 6.1. A function ueC“’(@i) belongs to Z (R ) if and only if
1 d
+ £+ (1 4 _
6.6) a ( P )u(t) 0on R,.

(The “if”” part follows from the fact that a solution of (6.6)* is a linear combination
of exponentials exp(i t,%f), where the 7 are the roots of a¥(r), and thus belongs
to & (R,). The “‘only if*’ part uses the Paley Wiener theorem.)

Now, a solution u of (6.6)F is uniquely determined by the value of yu, therefore
we may introduce

DEFINITION 6.1. p* is the M, x M,-matrix sending yu into vu for ue Z,(R.).

Furthermore, Lemma 6.1 reduces the computation of p* to an algebraic
manipulation:

LEMMA 6.2. p¥ isthe matrix (Pji)j e M, xe M, Whose elements are the coefficients
in the rest polynomials of the division equations
= ( ) cj,;ck) a*(t) - X pit,  jeM,

ke Mo keMyp

(6.7)*

(ie,t!= X pFt (moda*(v)), for each je M,).
ke Mg

By use of the identities (6.7) one easily shows

LemMMA 6.3. p*,p~ and p* — p~ are invertible matrices.

This leads to the construction of g* from p*: Let ¢ e[];.»C, and denote
elements of [],.x,C by x, y, then the equation ’
(6.8) {Oueru,} = {x,p*x} + {y,p7y}

(where evidently {x,p*x}epZ(R,) and {y,p"y}epZ, (R_)) has the unique

solution

x=(pt—p) ' (~ P Ppy + Du,)
(6.9) {

y=@" =) (0¥ dary — dag,)-
This gives that

—(pt—p)'p” (pr—p)!
(6.10) 7 = (— pr(pt—p7)'p” p*(p+—p“)‘1)
and (p*t—p7)~ip* —(pt=p)!
1) e = (p“(zﬁ—p‘)“p* —p‘(p+—p‘)“) = e a7
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The observation that we shall use is that, by application of Lemma 6.3 again,
each of the four m x m-blocks in g* and ¢~ is invertible, and that p* and p~
may in fact be derived from ¢+ or g~. More precisely, we shall use

LemMMA 6.4. In the M x M-matrix q*, each of the minors g, (i,j = 0,1)
is invertible, and

(6'12) p+ = (q;loM1)_1 (IMQMO - q;\’loMo)'
This lemma leads immediately to an analogue in the non-symbolic set-up:
PROPOSITION 6.2, In the M x M-matrix of ps.d.o.’s Q*, each of the minors
Q;iMj (i,j=0,1) is elliptic, and, with T denoting a parametrix of Q,T,OM,,
(6.13) Pyy = T(Iyor, ~ Qators,) + 5
where S is of order — co.
Proor. The invertibility of q,T,iMj(y, n) for each (y,n)e T.*(I') means exactly
that Q. is elliptic. Now, the elements ¢ e p* Z,(€) satisfy

(6.14) Ou, = P2 bu,, Where ¢y runs through [] H°7/7¥ID),

JjeMo

and on the other hand Q+¢ = ¢, which may be written
(6'15) Q;’;oMoqﬁMo + QA-"I-oMl(ﬁM; = ¢Mo!

(616) QJ1M0¢M0 + QA;1M1¢M1 = ¢M1;
then an insertion of (6.14) in (6.15) gives

Qiromo + Qatonr, P = Do
from which (6.13) follows by composition with T.

In view of (6.12) and Lemma 6.2, this proves Proposition 2.6: that P;‘,v is a

ps.d.o. of type (— k, — j); e, x « o With principal symbol p*(y, 7). (Computation
of the complete symbol of P;fv may also be based on (6.13).)

REMARK 6.1 The convenient aspect of this proof of Proposition 2.6 is that it
never moves outside of ps.d.o.’s and standard boundary operators (and their
adjoints), as would be required if one tried to generalize the considerations
behind Lemma 6.2 directly; it seems hard to associate with a+(y,#,7) a workable
global operator in Q.

Definition 2.5 of P, ;= Byz! may be extended to arbitrary B, of the form

B={B;};c, where J is any finite subset of N'U {0}, {m,},,is any real J-vector,
and
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i
(6.17) Bi= X By, jeJ,
1

=0
with each Bj; denoting a (scalar) ps.d.o. in I of order m;—1I; by use of the identity
DXy = — Ay (2 1 4,Dlu) near T when u e Z(Q) (cf. (2.26)). Then one finds
casily

PRrOPOSITION 6.3. With B as above, Pj; is a psdo. in T of type
(= k, —m));csrem, with principal symbol (pj)j.srem, consisting, at each
(y,m) e T*. (), of the coefficients p;, in the polynomials determined by

(6.18) ’B)'= T put(moda*(v)), jel.

ke Mg

IS

1

REMARK 6.2. When f is in particular a normal system of m differential boundary
operators of orders jeJ < M, ellipticity of P;.; means exactly that the “‘comp-
lementing condition’” is satisfied (cf. [S]); this is equivalent with well-posedness
of the boundary problem Au = 0in Q, fu = ¢ on I'; which is here also seen using
Pyy=pyz".

When P;'fﬁ is an isomorphism, and « is another system of boundary operators,
we may of course define

(6.19) Py = PPy
(and corresponding modifications when we admit a finite index).

We shall now describe some concrete examples. To do this, we introduce the

matrices Sy (V1) = (Smik—;(V> M) ke nro a0d S5 (¥, 1) = (3i= {(¥s 1)) ke w05 here the
si~ are the coefficients in a*(r) resp. a~(z) (cf. (2.30)) and we put s =0 for
1¢[0,m]. So

+
S 0 -0 S(:)t sl:t...st

m—1

+ + .oQE + o

6200 sE= |5t S0 5 S 0 S0 Sma
Sit Sé—‘h ...Si LO O ...Soi

Noting that a(?) = A4,,, a—(7) a*(1), we have
(6.21) S, (A)=SF(4), p=0,m;

furthermore, since Rea(r) = da'(r) = (Red,,)a"" () a" (1), where a"~ ()
= a"*(7), we denote:
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r

(6.22) S;AN=S8,, S;(4)=S, p=0m.

EXAMPLE 6.1: o%(Pf,).
Solving the equation (6.7)* is equivalent with solving the matrix equation
(6.23) 0 D=CSs S,)+(T, 0),

where 0 and 1 temporarily denote the (m x m) zero resp. identity matrix, and C
and T are the unknown (m x m)-matrices. (6.23) splits up in

(6.24) 0=CS;+T, I=CS)},
whence, since S, is invertible (in fact s, = 1),
T=—(S)""S,.
This shows that
(6.25) Py ) (y,m) = = (Sm(y,m) ™ 'S5 (v, 1)-
EXAMPLE 6.2. ¢°(Pi,).
Comparison of (2.27) and (2.29) gives

2m m m 2m
) aO(Az)rlez,,,( z s;r”) ( Z s T“) = Az X ( 5 sZ)f’,
\p= q=

1=0 I=0 ptg=l

whence (cf. (2.32))

00(&{‘]%) = iAZm 2 S; S;.

ptg=j+k+1

Denoting the (m x m) skew-unit matrix by I
0 -0
010
(6.26) I*=

L 10 OJ
we thus find that
1Sy Ixs,;)<s:; 0 )_iA (1*(sgs;+s,;s;;) 1*5,;5,:)
- 2m
N

o(A) = i (
Sq Sa I*S. S} 0

I*S,, 0
In particular,

(6.27) (A stopo) = izl “(Sg Spy + S 50),
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(6.28) 0% (A ror,) = 1Ayl * Sy S
whence, by (6.25), and (2.43)

o°(Py) = 0™ (L rou)0(Py) + 36°(H o)
= 1A *[S5Su(— 5,)7"Sq + H(Sg Sy + S,50)]

3idynl (S5 Sy = 5u.50).

We have proved
(6.29) a%(Py,) =i Ayl ¥ (S5 S — SpSo).
ExAaMPLE 6.3: The isomorphism R.

By the isomorphism y: Z(A4y) = [[;emH “ITHI), the IA(Q)-inner product in
Z(Ay) induces an inner product in []; 4 H 7 #T); thereby giving rise to an
isomorphism R: [[;caH /73T = [ ;e s H(I), with which

(z1,25) = {Ryzy, 925, all z,,z, € Z(A)).

It may be shown that R is a selfadjoint positive definite elliptic ps.d.o. in T of
type {(—k — 4,7 + 1)jsem,; that it is the operator

(6.30) R=P o Tuu,

oAb

(in the notation of Remark 6.2, cf. (6.19)), and that
(6.31) a°(R) = i I*[S§(S3) ™' =SS~ 'Se S5

Since R is not essential for the present paper, we omit proofs and further
details. Note that, as should be expected, 6°(R) depends only on a*.
R’ and R" are defined analogously relative to 4’ and 4"

A final remark. In the article [12] we used some results, for which the proofs
were deferred to a later paper with the provisional title ““‘On the regularity of a
general class of boundary problems’’. These results were in part concerned with
with the operators P, 4, for which the present Appendix provides the proofs; in
part they were concerned with the connection between the regularity of 4 and of
L. For the latter part, Remark 4.7 of the present paper covers what is used in
[12]; a more systematic study is easy to set up, and may be included in a future

paper.



94 GERD GRUBB Israel J. Math.,
REFERENCES

1. S. Agmon, The coerciveness problem for integro-differential forms, J. Analyse Math. 6
(1958), 183-223.

2. S. Agmon, Remarks on self-adjoint and semi-bounded elliptic boundary value problems,
Proc. Intern. Symp. on Linear Spaces, Pergamon Press, Jerusalem, 1960, 1-13.

3. S. Agmon, On the eigenfunctions and on the eigenvalues of general elliptic boundary value
problems, Comm. Pure Appl. Math. 15 (1962), 119-147.

4. S. Agmon, Lectures on Elliptic Boundary Value Problems, Van Nostrand Mathematical
Studies, Princeton, 1965.

5. S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary... I, Comm. Pure
Appl. Math. 12 (1959), 623-727.

6. L. Boutet de Monvel, Comportement d’un opérateur pseudo-différentiel sur une variété a
bord. 11 Pseudo-noyaux de Poisson, J. Analyse Math. 17 (1966), 255-304.

7. A.P.Calderdn, Boundary value problems for elliptic equations, Proc. Joint Soviet-American
Symp. on Part. Diff. Equations, Novosibirsk (1963), 1-4.

8. A. P. Calderdén, A priori estimates for singular integral operators, C1.M.E. Confer:nce
on Pseudo-differential Operators, Edizioni Cremonese, Rome, 1969, 87-141.

9. D. Fujiwara, On some homogeneous boundary value problems bounded below, Proc*
Japan Acad. 45 (1969), 228-232.

10. D. Fujiwara, On some homogeneous boundary value problems bounded below, J. Fac.
Sci. Univ. Tokyo Sect. I 17 (1970), 123-152.

11. G. Grubb, A characterization of the non-local boundary value problems associated with
an elliptic operator, Ann. Scuola Norm. Sup. Pisa 22 (1968), 425-513.

12. G. Grubb, Les problémes aux limites généraux d’un opérateur elliptique, provenant
de la théorie variationnelle, Bull. Soc. Math. France (2e sér.) 94 (1970), 113-157.

13. G. Grubb, Coerciveness of the normal boundary problems for an elliptic operator, Bull,
Amer. Math. Soc. 76 (1970), 64-69.

14. G. Grubb, Urne condition nécessaire et suffisante pour la m~-coercivité des problémes aux
limites elliptiques, C. R. Acad. Sci. Paris Sér. A, 270 (1970), 1495-1497.

15. L. Garding, Dirichlet’s problem for linear partial differential equations, Math, Scand. 1
(1953), 55-72.

16. L. Hormander, Pseudo-differential operators, Comm. Pure Appl. Math. 18 (1965),
501-517.

17. L. Hormander, Pseudo-differential operators and non-elliptic boundary problems, Ann.
of Math. 83 (1966), 129-209.

18. J. J. Kohn and L. Nirenberg, An algebra of pseudo-differential operators, Comm. Pure
Appl. Math. 18 (1965), 443-492.

19. J. L. Lions and E. Magenes, Problémes aux limites non homogénes 1I, Ann. Inst.
Fourier (Grenoble) 11 (1961), 137-178, Problemi ai limiti non omogenei V, Ann. Scuola Norm-
Sup. Pisa 16 (1962), 1-44.

20. 1. L. Lions and E. Magenes, Problémes aux limites non homogénes et applications, vol. 1,
Ed. Dunod, Paris, 1968.

21. L. Nirenberg, Remarks on strongly elliptic partial differential equations, Comm. Pure
Appl. Math. 8 (1955), 648-674.



Vol. 10, 1971 BOUNDARY PROBLEMS 95

22. J. Peetre, Théorémes de régularité pour quelques classes d’opérateurs différentiels, Medd.
Lunds Univ. Mat. Sem. 16 (1959), 1-122.

23. M. Schechter, General boundary value problems for elliptic equations, Comm. Pure
Appl. Math. 12 (1959), 561-578.

24. R. T. Secley, Singular integrals and boundary value problems, Amer. J. Math, 88 (1966) ,
781-809.

25. R. T. Seeley, Topics in pseudo-differentiai operators, C.I.M.E. Conference on Pseudc-
differential Operators, Edizioni Cremonese, Rome, 1969, 169-305.

26. N. Shimakura, Problémes aux limites variationnels du type elliptique, Ann, Sci. Ecole
Norm. Sup. (4e sér.) 2 (1969), 255-310.

27. N. Shimakura and D. Fujiwara, Sur les problémes aux limites stablements variationnels,
J. Math. Pures Appl. 49 (1970), 1-28.

28. B. R. Vajnberg and V. V. Grusin, Uniformly non-elliptic problems 11, Mat. Sb. 73 (1967),
126-154. Math. USSR-Sb. 2 (1967), 111-133.

UNIVERSITY OF COPENHAGEN



