1. Fix a simplicial set K, a group G, and a map $\varphi: K \longrightarrow B\cdot G$ of simplicial sets. (Here, $B\cdot G$ denotes the nerve of the category $B(G)$.)

(a) Fix $n \geq 2$, and consider the set of maps

$X_n = \{ f: |K| \times \Delta^n \longrightarrow BG \mid f(x, t) = |\varphi|(x) \text{ all } x \in |K|, t \in \partial\Delta^n \}.$

Set $A_n = X_n/\sim$, where \sim is the relation of homotopy through elements of X_n. Describe A_n.

(b) Set $n = 1$. Let X^*_1 and A^*_1 be as in (a), but with the additional condition on maps in X_1 that for a choice of basepoint $* \in K_0$, $f(*, t) = *_G$ (the basepoint in BG) for all $t \in \Delta^n$. Determine A^*_1.

(Intuitively, we identify $A_n = \pi_n(map(|K|, BG), |\varphi|)$ (homotopy based at the point $|\varphi|$) and $A^*_1 = \pi_1(map(|K|, BG)_*, |\varphi|)$ (restricting to the point of basepoint preserving maps). But what we will really need to work with are the sets/groups defined in (a) and (b).)

2. Let \mathcal{C} be the category of the poset \mathbb{Z}. (Thus $\text{Ob}(\mathcal{C}) = \mathbb{Z}$, and there is a unique morphism from n to m whenever $n \leq m$.)

(a) Prove that $|\mathcal{C}|$ is contractible.

(b) We embed \mathbb{R} in $|\mathcal{C}|$ by identifying the interval $[n, n + 1] \subseteq \mathbb{R}$ with the edge in \mathcal{C} from n to $n + 1$. Prove that \mathbb{R} is a strong deformation retract of $|\mathcal{C}|$.

In other words, one must construct a retraction $r: |\mathcal{C}| \longrightarrow \mathbb{R}$, together with a homotopy $|\mathcal{C}| \times I \longrightarrow |\mathcal{C}|$ from the identity to r which sends (x, t) to x for each $x \in \mathbb{R}$ and $t \in I$.

Note: Of course, (a) follows immediately from (b). But it is much easier to do, and hence is included as a “warmup”.

3. Consider the extension of groups

$$1 \longrightarrow C_2 \longrightarrow SL_2(5) \longrightarrow PSL_2(5) \cong A_5 \longrightarrow 1.$$

You may assume this induces a homotopy fibration sequence

$$BC_2 \longrightarrow BSL_2(5) \longrightarrow BPSL_2(5)$$

of classifying spaces.

(a) Assuming the fiber lemma of Bousfield and Kan, prove that this sequence is still a homotopy fibration sequence after completion at 2.

(b) Prove that $\pi_2((BA_5)_2) \neq 0$. Hint: What is $\pi_1(PSL_2(5)_2)$? You can answer this by showing that $SL_2(5)$ is perfect (equal to its commutator subgroup), for which you may assume that A_5 is simple.