1 Mapping spaces revisited

Let G and H be discrete groups, and K a simplicial set.

Exercise 1. Assume that $|K|$ is connected, and let $T \subset K$ be a maximal tree. That T is a tree means that T is a simplicial subset of K with no nondegenerate simplices above degree 1 and that T contains no simplicial subsets whose realizations are homeomorphic to a circle ("there are no loops in $T"$). That T is maximal means that $T_0 = K_0$ and $|T|$ is connected.

For any vertex $x_0 \in K_0$, use these data to construct a map $K_1 \to \pi_1(|K|, x_0)$ with the obvious universal property (refer to our discussion of the exercise concerning the nerve of a category with a "beginning" object), and use this to describe $\pi_1(|K|, x_0)$ in terms of K_1 and K_2.

Exercise 2. Recall that we have seen in class that $[BG, BH]_* \cong \text{Hom}(G, H)$ and $[BG, BH] \cong \text{Rep}(G, H)$. Show that if BG is replaced by an arbitrary simplicial set K, we can identify $|K|, H$ with $\text{Hom}(\pi_1(|K|), H)$, and similarly in the unpointed case.

Hint: Begin by showing that for a chosen maximal tree $T \subset K$, any map $|K| \to BH$ is not just homotopic to the realization of a simplicial map $K \to \mathcal{B}_\ast(G)$, but that this simplicial map may be chosen so that its realization is constant on $|T|$. Use this to reduce the problem to the case where K has a single vertex by considering the simplicial set K/T. Do the proof in the one vertex case.

Exercise 3. If $\varphi: G \to H$ is a morphism of groups, identify the homotopy type of the component of the mapping space $\text{Map}(BG, BH)$ that contains $B\varphi$, denoted $\text{Map}(BG, BH)_{B\varphi}$. Show that in fact we have $\text{Map}(BG, BH)_{B\varphi} \cong BC_H(\varphi(G))$.

Hint: It is enough to compute the homotopy groups of the mapping space. What is another way of thinking of a loop in $\text{Map}(|K|, BH)_{B\varphi}$ that is based at $B\varphi$?

Definition 1.1. A map of spaces $f : X \to Y$ is called centric if f induces a homotopy equivalence $\text{Map}(X, X)_{id} \to \text{Map}(X, Y)_f$.

Exercise 4. Show that if $\iota: H \leq G$ is an inclusion of discrete groups, then $B\iota: BH \to BH$ is centric if and only if $C_G(H) = Z(H)$.

2 p-completion

Exercise 5. (From class)

- Show that a finite group G is p-perfect if and only if $G = O^p(G)$. (Especially in light of the next part, why are we assuming G is finite here?)

- Show that if X is a space such that $\pi_1(X)$ contains a p-perfect subgroup of finite index, then X is p-good and $\pi_1(X^p)$ can be described as a quotient of $\pi(X)$.

Exercise 6. Show that the p-completion of a point is (weakly homotopic to) a point.
Exercise 7. If G is a finite p'-group (so $p \nmid |G|$), what is $B G_p^\wedge$?

* Exercise 8. Show that the p-completion of a product is (weakly homotopic to) the product of the p-completions.

Exercise 9. Find two nonisomorphic nontrivial finite groups G and H such that $B G_p^\wedge \simeq B H_p^\wedge$.

Exercise 10. If H is a normal subgroup of the finite group G and $p \nmid |H|$, show that $B(G/H)_p^\wedge \simeq B G_p^\wedge$.