Categories and Topology: Exercises 2

November 22, 2010

1 Kan complexes and nerves of categories

Definition 1.1. For \(n \geq 1 \) and \(0 \leq k \leq n \), the \(k \text{th } n \)-horn is the simplicial set \(\Lambda^k_n \subset \Delta_n \) whose \(i \)-simplices consist of those maps \(\varphi \in \Delta([i],[n]) \) whose images do not contain the complement of \(\{k\} \) in \([n]\). A simplicial set \(K \) is a Kan complex if “every horn can be filled,” i.e., if every simplicial map \(\Lambda^k_n \rightarrow K \) extends to a simplicial map \(\Delta_n \rightarrow K \).

Exercise 1. Describe the geometric realization of \(\Lambda^k_n \), and explain why this is called a “horn.”

Exercise 2. Is \(\Delta_n \) a Kan complex for all \(n \)?

Exercise 3. If \(X \) is a topological space, show that the singular simplicial set \(S_n(X) \) is a Kan complex.

Exercise 4. If \(C \) is a small category, is the nerve of \(C \) a Kan complex? If not, which horns can be filled?

Exercise 5. Give a condition on a simplicial set \(K \) that is equivalent to \(K \)'s being the nerve of a small category.

Definition 1.2. A path in a simplicial set \(K \) is a simplicial map \(\gamma : \Delta^1 \rightarrow K \). Let \(I = [0,1] \) denote the unique nondegenerate 1-simplex of \(\Delta^1 \). The 0-simplex \(d^1_1 \gamma = \gamma([0]) \in K_0 \) is the initial point of \(\gamma \), and \(d^0_0 \gamma = \gamma([1]) \in K_0 \) is the terminal point of \(\gamma \).

Two 0-simplices \(a,b \in K_0 \) lie in the same path component if there exists a path in \(K \) with initial point \(a \) and terminal point \(b \).

Exercise 6. Show that if \(K \) is a Kan complex, “lying in the same path component” is an equivalence relation. Find a category \(C \) in whose nerve this statement is false.

Exercise 7. Suppose that \(C \) is a small category with a “beginning” object, i.e., some \(c \in \text{ob} C \) such that for all other objects \(c' \in \text{ob} C \), \(C(c,c') \neq \emptyset \) (similarly one could define an “ending” object as one that accepts a morphism from every object of \(C \)). Suppose further that for every \(c' \in \text{ob} C \) we have chosen an “inclusion” morphism \(c^c' \in C(c,c) \) such that \(c^c' = \text{id}_c \).

Let \(\text{Mor}(C) \) denote the set of all morphisms of \(C \). Construct a map \(\text{Mor}(C) \rightarrow \pi_1(|C|) \) that sends composition to multiplication and “inclusion” to the identity, and which is universal with regards to these properties. Equivalently, construct a functor \(C \rightarrow \mathcal{B}(\pi_1(|C|)) \) that sends “inclusion” to the identity. Show that this actually gives a computation of \(\pi_1(|C|) \).

Exercise 8.

Generalize the previous exercise by computing \(\pi_1(|K|) \), for \(K \) any connected simplicial set, in terms of \(K_1 \) and \(K_2 \).

\[^1 \text{This is not at all standard terminology.} \]
2 Covering spaces of groupoids

Let \(\mathcal{G}, \mathcal{H} \) be small groupoids (categories all of whose morphisms are invertible).

Exercise 9. Show that if \(\mathcal{G} \) is a connected groupoid (i.e., all objects are isomorphic), for any \(g \in \text{ob} \mathcal{G} \) we have \(B \text{Aut}_\mathcal{G}(g) \simeq B\mathcal{G} \) as spaces. Show moreover that this homotopy is actually induced by an equivalence of categories \(B \text{Aut}_\mathcal{G}(g) \simeq \mathcal{G} \).

Definition 2.1. A (left) \(\mathcal{G} \)-set is a functor \(X : \mathcal{G} \to \text{SET} \) (a right \(\mathcal{G} \)-set is a functor \(Y : \mathcal{G}^{\text{op}} \to \text{SET} \)). A morphism of \(\mathcal{G} \)-sets is a natural transformation.

Definition 2.2. For \(g \in \text{ob} \mathcal{G} \), the star at \(g \) is the set \(\star(g) \) of morphisms whose source is \(g \).

A map of groupoids \(F : \mathcal{H} \to \mathcal{G} \) is a cover if for every \(g \in \mathcal{G} \) and \(h \in F^{-1}(g) \), \(F \) induces a bijection \(\star(h) \to \star(g) \).

Exercise 10. Show that if \(F : \mathcal{H} \to \mathcal{G} \) is a cover of groupoids, then \(B\mathcal{H} \to B\mathcal{G} \) is a cover of topological spaces.

Exercise 11. Show that there is an isomorphism of categories of \(\mathcal{G} \)-sets and covers of \(\mathcal{G} \).

Hint: It might be easier to start with the case that \(\mathcal{G} = B\mathcal{G} \) is the classifying category of a discrete group. In this case, a \(B\mathcal{G} \)-set can be identified in a natural way with a left \(\mathcal{G} \)-set. What is the corresponding cover of \(B\mathcal{G} \)?

Exercise 12. Show that an inclusion \(H \leq G \) of discrete groups induces a map \(\iota : BH \to BG \) that is homotopy equivalent to a cover of topological spaces (i.e., there is some space \(T \), a homotopy equivalence \(BH \simeq T \) and a cover \(T \to BG \) such that \(\iota \) is homotopic to the composite \(BH \to T \to BG \)).

3 Mapping spaces

Let \(G \) and \(H \) be discrete groups.

Exercise 13. For \(K \) a simplicial set, compute \(|K|, BG \) and \(||K||, BG \) (basepoint-preserving homotopy classes of basepoint-preserving maps and homotopy classes of all maps, respectively).

Exercise 14. If \(\varphi : G \to H \) is a morphism of groups, identify the homotopy type of the component of the mapping space \(\text{Map}(BG, BH) \) that contains \(B\varphi \), denoted \(\text{Map}(BG, BH)_{B\varphi} \). Again, do this also in the case that \(BG \) is the realization of a simplicial set.

Definition 3.1. A map of spaces \(f : X \to Y \) is centric if \(f \) induces a homotopy equivalence \(\text{Map}(X, X)_{\text{id}} \to \text{Map}(X, Y)_{f} \).

Exercise 15. Show that if \(\iota : H \leq G \) is an inclusion of discrete groups, then \(B\iota : BH \to BH \) is centric if and only if \(C_G(H) = Z(H) \).