Matsumoto algebras for substitutional shift spaces

Toke M. Carlsen and Søren Eilers

Chengde 2002

Substitutions

Let \mathfrak{a} be a finite set of symbols, and let \mathfrak{a}^{\sharp} denote the set of finite non-empty words with letters from \mathfrak{a}. A substitution is a map

$$
\tau: \mathfrak{a} \longrightarrow \mathfrak{a}^{\sharp}
$$

We write " $w \dashv v$ " when $w, v \in \mathfrak{a}^{\sharp}$ and w is a subword of v.

Define

$$
\underline{\mathrm{X}}_{\tau}=\left\{\left(x_{i}\right) \in \mathfrak{a}^{\mathbb{Z}} \mid \forall i<j \exists n, a: x_{[i, j]} \dashv \tau^{n}(a)\right\} .
$$

and equip with

$$
\sigma\left(x_{n}\right)=\left(x_{n+1}\right)
$$

Shift dynamics

Using the product topology, $\left(\underline{X}_{\mathcal{F}}, \sigma\right)$ is a topological dynamical system.

Applications among others:

- Automata theory
- Quasicrystals
- Recurrent sets
- Transcendence in \mathbb{R}
- Diophantine approximation
'The book': http://iml.univ-mrs.fr/editions/ preprint00/book/prebookdac.html

Some substitutions

$$
\begin{gathered}
\tau_{1}(\aleph)=\aleph \beth \aleph \quad \tau_{1}(\beth)=\beth \aleph \beth \beth \\
\tau_{2}(\alpha)=\alpha \beta \quad \tau_{2}(\beta)=\alpha \beta \gamma \delta \epsilon \quad \tau_{2}(\gamma)=\alpha \beta \\
\tau_{2}(\delta)=\gamma \delta \epsilon \quad \tau_{2}(\epsilon)=\alpha \beta \gamma \delta \epsilon \\
\tau_{3}(1)=1212345 \\
\tau_{3}(2)=12123451234512345 \\
\tau_{3}(3)=1212345 \quad \tau_{3}(4)=1234512345 \\
\tau_{3}(5)=12123451234512345
\end{gathered}
$$

$\tau_{4}(a)=a b a b a c b \quad \tau_{4}(b)=a b a b a c b a b a c b a b a c b$ $\tau_{4}(c)=a b a c b a b a c b$

Substitution properties

Definition τ is primitive if

$$
\begin{aligned}
& \exists N \forall a, b: b \dashv \tau^{N}(a) \\
& \forall a:\left|\tau^{N}(a)\right| \longrightarrow \infty
\end{aligned}
$$

Definition τ is aperiodic if $\left|\underline{X}_{\tau}\right|=\infty$.

Observation If τ is primitive and aperiodic, then $\left(\underline{X}_{\tau}, \sigma\right)$ [with product topology] is a Cantor minimal system.

Cantor minimal crossed product

$$
\tau \mapsto C\left(\underline{\mathrm{X}}_{\tau}\right) \rtimes_{\sigma} \mathbb{Z}
$$

Matsumoto algebra

$$
\tau \mapsto \mathcal{O}_{\tau} \otimes \mathbb{K}
$$

Both!

The Matsumoto algebra

Several equivalent constructions

(i) Generators and relations
(ii) Groupoid algebra
(iii) Cuntz-Pimsner algebra
which - WARNING! - will sometimes differ from the original
(iv) Fock space algebra
cf. Carlsen/Matsumoto.

Incidence matrix

To a substitution τ one associates the $|\mathfrak{a}| \times|\mathfrak{a}|-$ matrix \mathbf{A}_{τ} given by
$\left(\mathbf{A}_{\tau}\right)_{a, b}=\#$ of occurrences of b in $\tau(a)$

Theorem [Giordano/Putnam/Skau ${ }^{2}$ /Durand/Host] When τ is aperiodic, primitive and proper*,

$$
K_{0}\left(C\left(\underline{\mathrm{X}}_{\tau}\right) \rtimes_{\sigma} \mathbb{Z}\right)=\underset{\longrightarrow}{\lim }\left(\mathbb{Z}^{|\mathfrak{a}|}, \mathbf{A}_{\tau}\right)
$$

as ordered groups.
*No loss of generality

C^{*}-qualities of \mathcal{O}_{τ}

\mathcal{O}_{τ} is nonsimple, and has a maximal ideal isomorphic to $\mathbb{K}^{\mathbf{n}_{\tau}}$ for suitable n_{τ}. Further,

$$
0 \longrightarrow \mathbb{K}^{\mathrm{n}_{\tau}} \longrightarrow \mathcal{O}_{\tau} \longrightarrow C\left(\underline{\mathrm{X}}_{\tau}\right) \rtimes_{\sigma} \mathbb{Z} \longrightarrow 0
$$

However,

$$
\left.C\left(\underline{\mathrm{X}}_{\tau}\right) \rtimes_{\sigma} \mathbb{Z} \simeq C\left(\underline{\mathrm{X}}_{v}\right) \rtimes_{\sigma} \mathbb{Z}, \mathrm{n}_{\tau}=\mathrm{n}_{v}\right\} \not \mathcal{O}_{\tau} \simeq \mathcal{O}_{v}
$$

K-qualities of \mathcal{O}_{τ}

The short exact sequence induces

$$
\begin{aligned}
& \mathbb{Z}^{\mathbb{n}_{\tau} \longrightarrow K_{0}\left(\mathcal{O}_{\tau}\right) \longrightarrow K_{0}\left(C\left(\underline{\mathrm{X}}_{\tau}\right) \rtimes_{\sigma} \mathbb{Z}\right)} \\
& \mathrm{p}_{\tau} \mid \\
& \mathbb{Z} \longleftarrow 0
\end{aligned}
$$

for suitable $\mathrm{p}_{\tau} \in \mathbb{N}^{\mathrm{n}_{\tau}} \backslash\{\underline{0}\}$. Consequently, \mathcal{O}_{τ} has real rank zero but is not stably finite.

And again,

$$
\left.\begin{array}{r}
K_{0}\left(C\left(\underline{\mathrm{X}}_{\tau}\right) \rtimes_{\sigma} \mathbb{Z}\right) \simeq K_{0}\left(C\left(\underline{\mathrm{X}}_{v}\right) \rtimes_{\sigma} \mathbb{Z}\right) \\
\mathrm{n}_{\tau}=\mathrm{n}_{v} \\
\mathrm{p}_{\tau}=\mathrm{p}_{v}
\end{array}\right\} \nRightarrow
$$

Theorem [Carlsen/Eilers]

Let τ be a primitive, aperiodic, proper* and injective ${ }^{\dagger}$ substitution of constant length ${ }^{\ddagger}$. For suitable $\mathrm{n}_{\tau} \times|\mathfrak{a}|$-matrix \mathbf{E}_{τ} we define

$$
\begin{aligned}
& \tilde{\mathbf{A}}_{\tau}=\left[\begin{array}{cc}
\mathbf{A}_{\tau} & 0 \\
\mathbf{E}_{\tau} & \mathbf{l d}
\end{array}\right] \\
& H_{\tau}=\mathbb{Z}^{\mathbf{n}_{\tau}} / \mathbf{p}_{\tau} \mathbb{Z}
\end{aligned}
$$

and have

$$
K_{0}\left(\mathcal{O}_{\tau}\right)=\underset{\longrightarrow}{\lim }\left(\mathbb{Z}^{|\mathfrak{a}|} \oplus H_{\tau}, \tilde{\mathbf{A}}_{\tau}\right)
$$

as ordered group, where $\mathbb{Z}^{|\mathfrak{a}|} \oplus H_{\tau}$ is ordered by

$$
(x, y) \geq 0 \Longleftrightarrow x \geq 0
$$

*No loss of generality
\dagger No loss of generality
\ddagger Dispensable

What are $\mathrm{n}_{\tau}, \mathrm{p}_{\tau}$?

Definition $x \in \underline{\mathrm{X}}_{\tau}$ is right special if

$$
\exists n: x_{[n, \infty[}=y_{[n, \infty[} \wedge x \neq y
$$

Theorem [Queffélec]

If τ is a primitive and aperiodic substitution on \mathfrak{a}, the number of orbit classes of special words is nonzero, but finite.

Answer

$$
\mathrm{n}_{\tau}=\#\left\{[x]_{\text {orbit }} \mid x \text { is right special }\right\}
$$

Enumerate one-sided representatives of the right special orbits for τ as

$$
x_{1}, \ldots, x_{\mathrm{n}_{\tau}}
$$

Answer

$$
\left(\mathrm{p}_{\tau}\right)_{i}=\#\left\{y \in \underline{\mathrm{X}}_{\tau} \mid y_{[0, \infty[}=x_{i}\right\}-1
$$

What is \mathbf{E}_{τ} ?

When τ is of constant length ℓ, the right special elements are all of the form

$$
\cdots \tau^{3 k}(w) \tau^{2 k}(w) \tau^{k}(w) a \tau^{k}(v) \tau^{2 k}(v) \tau^{3 k}(v) \cdots
$$

where w and v are unique if $|w|,|v|<\ell$. Fix v_{i} representing to the right orbit class x_{i} and note that if we enumerate the corresponding w as

$$
w_{1}, \ldots, w_{m_{i}}
$$

then $\left(\mathrm{p}_{\tau}\right)_{i}=m_{i}-1$.

Answer With this setup,
$(\mathbf{E})_{i, b}=\sum_{i=1}^{m_{i}-1}$ [\# of occurrences of b in $\left.w_{i}\right]$

Computability, I

[Previous work by Barge/Diamond, related unpublished work by Barge/Diamond/Holton]

There are efficient algorithms for computing $\mathrm{n}_{\tau}, \mathrm{p}_{\tau}$ and \mathbf{E}_{τ} :

CONCERNING tau GIVEN BY:
[a->bcada, b->bdbca, c->bccda, d->bddca]
COMPUTING ND_tau:
(a,c) <-- da,+ -- (a, c)
(b,d) <-- ca,+ -- (b,d)
(c,d) <-- a,- -- (c,d)
COMPUTING CONFIGURATION DATA [Pass to (tau) ${ }^{2}$]
[0--0, 0--0, 2--2, 2--2, 4--4, 5--4, 6--6, 6--7]
COMPUTING p-VECTOR AND E-MATRIX [Pass to (tau)~2]
Enumerating: [dabddcabcada, cabccdabcada, abcada]
p_tau: [1, 1, 1]
E_tau: [[2, 4, 4, 2], [2, 4, 2, 4], [3, 5, 5, 5]]

This extends to all primitive and aperiodic substitutions as regards n_{τ} and p_{τ}.

Computability, II

Decidability of

$$
K_{0}\left(\mathcal{O}_{\tau}\right) \simeq K_{0}\left(\mathcal{O}_{v}\right)
$$

is open in general. C, but cf. Bratteli/Jorgensen/ Kim/Roush.

